八年级上册上海数学期末试卷测试卷(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册上海数学期末试卷测试卷(解析版)

一、八年级数学全等三角形解答题压轴题(难)

1.如图,已知△ABC中,AB=AC=20cm,BC=16cm,点D为AB的中点.

(1)如果点P在线段BC上以6cm/s的速度由B点向C点运动,同时点Q在线段CA上由C向A点运动.

①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;

②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使

△BPD与△CQP全等?

(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【答案】(1)①△BPD≌△CQP,理由见解析;②V7.5

Q

(厘米/秒);(2)点P、Q

在AB边上相遇,即经过了80

3

秒,点P与点Q第一次在AB边上相遇.

【解析】

【分析】

(1)①先求出t=1时BP=BQ=6,再求出PC=10=BD,再根据∠B=∠C证得

△BPD≌△CQP;

②根据V P≠V Q,使△BPD与△CQP全等,所以CQ=BD=10,再利用点P的时间即可得到点Q的运动速度;

(2)根据V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设运动x

秒,即可列出方程15

6220

2

x x,解方程即可得到结果.

【详解】

(1)①因为t=1(秒),

所以BP=CQ=6(厘米)

∵AB=20,D为AB中点,

∴BD=10(厘米)

又∵PC=BC﹣BP=16﹣6=10(厘米)∴PC=BD

∵AB=AC,

∴∠B=∠C,

在△BPD与△CQP中,

BP CQ B C PC BD =⎧⎪∠=∠⎨⎪=⎩

, ∴△BPD ≌△CQP (SAS ),

②因为V P ≠V Q ,

所以BP ≠CQ ,

又因为∠B =∠C ,

要使△BPD 与△CQP 全等,只能BP =CP =8,即△BPD ≌△CPQ ,

故CQ =BD =10.

所以点P 、Q 的运动时间84663

BP t (秒), 此时107.54

3Q CQ V t (厘米/秒).

(2)因为V Q >V P ,只能是点Q 追上点P ,即点Q 比点P 多走AB +AC 的路程

设经过x 秒后P 与Q 第一次相遇,依题意得

1562202x x , 解得x=803

(秒) 此时P 运动了8061603

(厘米) 又因为△ABC 的周长为56厘米,160=56×2+48, 所以点P 、Q 在AB 边上相遇,即经过了

803秒,点P 与点Q 第一次在AB 边上相遇. 【点睛】

此题考查三角形全等的证明,三角形与动点相结合的解题方法,再证明三角形全等时注意顶点的对应关系是证明的关键.

2.如图,AB=12cm ,AC ⊥AB ,BD ⊥AB ,AC=BD=9cm ,点P 在线段AB 上以3 cm/s 的速度,由A 向B 运动,同时点Q 在线段BD 上由B 向D 运动.

(1)若点Q 的运动速度与点P 的运动速度相等,当运动时间t=1(s ),△ACP 与△BPQ 是否全等?说明理由,并直接判断此时线段PC 和线段PQ 的位置关系;

(2)将 “AC ⊥AB ,BD ⊥AB ”改为“∠CAB=∠DBA ”,其他条件不变.若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能使△ACP 与△BPQ 全等. (3)在图2的基础上延长AC ,BD 交于点E ,使C ,D 分别是AE ,BE 中点,若点Q 以(2)中的运动速度从点B 出发,点P 以原来速度从点A 同时出发,都逆时针沿△ABE 三边运动,求出经过多长时间点P 与点Q 第一次相遇.

【答案】(1)△ACP ≌△BPQ ,理由见解析;线段PC 与线段PQ 垂直(2)1或

32

(3)9s 【解析】

【分析】

(1)利用SAS 证得△ACP ≌△BPQ ,得出∠ACP=∠BPQ ,进一步得出

∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可; (2)由△ACP ≌△BPQ ,分两种情况:①AC=B P ,AP=BQ ,②AC=BQ ,AP=BP ,建立方程组求得答案即可.

(3)因为V Q <V P ,只能是点P 追上点Q ,即点P 比点Q 多走PB+BQ 的路程,据此列出方程,解这个方程即可求得.

【详解】

(1)当t=1时,AP=BQ=3,BP=AC=9,

又∵∠A=∠B=90°,

在△ACP 与△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩

∴△ACP ≌△BPQ (SAS ),

∴∠ACP=∠BPQ ,

∴∠APC+∠BPQ=∠APC+∠ACP=90°,

∠CPQ=90°,

则线段PC 与线段PQ 垂直.

(2)设点Q 的运动速度x,

①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,

912t t xt

=-⎧⎨=⎩, 解得31

t x =⎧⎨=⎩, ②若△ACP ≌△BPQ ,则AC=BQ ,AP=BP ,

912xt t t =⎧⎨=-⎩

解得

6

3

2

t

x

=

=

⎪⎩

综上所述,存在

3

1

t

x

=

=

6

3

2

t

x

=

=

⎪⎩

使得△ACP与△BPQ全等.

(3)因为V Q<V P,只能是点P追上点Q,即点P比点Q多走PB+BQ的路程,设经过x秒后P与Q第一次相遇,

∵AC=BD=9cm,C,D分别是AE,BD的中点;

∴EB=EA=18cm.

当V Q=1时,

依题意得3x=x+2×9,

解得x=9;

当V Q=3

2

时,

依题意得3x=3

2

x+2×9,

解得x=12.

故经过9秒或12秒时P与Q第一次相遇.

【点睛】

本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的性质与运算.

3.已知△ABC中,AB=AC,点P是AB上一动点,点Q是AC的延长线上一动点,且点P从B运动向A、点Q从C运动向Q移动的时间和速度相同,PQ与BC相交于点D,若

AB=82,BC=16.

(1)如图1,当点P为AB的中点时,求CD的长;

(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,设

BE+CD=λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.

【答案】(1)4;(2)8

【解析】

【分析】

相关文档
最新文档