什么是风力发电机低电压穿越技术定义
风力发电低电压穿越技术分析
风力发电低电压穿越技术分析发表时间:2019-07-22T11:36:41.073Z 来源:《当代电力文化》2019年第5期作者:姜世浩[导读] 低电压穿越技术是指,风力电网出现故障,或被干扰时,风力发电机能够在网运行,并仍能够提供与电网无功功率,从而帮助电网恢复正常的过程,而这个过程中,电网需要“穿越”这个低压时间,即低压穿越技术。
华电山东乳山新能源有限公司 264500【摘要】随着现代科学技术的不断发展,风力发电行业的发展也越来越快速,风力风电机的建设,也坐落于国家的大部分区域中。
低电压穿越技术是指,风力电网出现故障,或被干扰时,风力发电机能够在网运行,并仍能够提供与电网无功功率,从而帮助电网恢复正常的过程,而这个过程中,电网需要“穿越”这个低压时间,即低压穿越技术。
通过该技术的实施,可以一定程度上,保障电网的安全,保障电网运输电力安全。
【关键词】风力发电;低压穿越技术;电网随着我国经济的不断发展,风力发电技术也日趋完善。
风力发电机建设的规模也越来越大。
通过风力发电技术的完善,及风机的广泛建设,不仅促进了我国风力发电行业的快速发展,也使相关区域的电力资源更为充沛。
低压穿越技术,是风力机组电网中,常见的电力维稳技术,通过该技术的应用,也使风力发电运行,更为稳定。
随着我国将加大对风力发电行业的投入,进行风电机组的低压穿越技术研究,也十分必要。
本文对风力发电低电压穿越技术进行分析,希望为相关部门提供参考。
1.我国风电并网低电压穿越相关规定不同国家或地区根据电网状况不同,所提出的低电压穿越要求不尽相同。
我国根据实际电网结构及风电发展情况制定了风电场接入电网技术规定,其中,对风电机组低电压穿越能力也做出了详细的规定。
只有当电网电压跌落低于规定曲线以后才允许风力发电机脱网,当电压在凹陷部分时,发电机应提供无功功率。
2.不同类型风机电压跌落暂态现象当前市场上主要风机类型可分为三类,即直接并网的定速异步发电机、同步直驱式风力发电机和双馈异步式风力发电机。
低电压穿越技术(2011-9-28)
风力发电低电压穿越技术1. 低电压穿越技术的提出在风电场容量相对较小并且分散接入时,系统故障时风电场退出运行不会对系统稳定造成影响。
随着风电装机容量在系统中所占比例增加,风电场的运行对系统稳定性的影响将不容忽视。
世界各国电力系统对风电场接入电网时的要求越来越严格,甚至以火电机组的标准对风电场提出要求。
包括低电压穿越(Low Voltage Ride Through ,LVRT )能力,无功控制能力,甚至是有功功率控制能力等,其中LVRT 被认为是对风电机组设计制造技术的最大挑战。
2. 低电压穿越的定义及要求定义:低电压穿越(LVRT ),指在风力发电机并网点电压跌落的时候,风机能够保持并网,甚至向电网提供一定的无功功率,支持电网恢复,直到电网恢复正常,从而“穿越”这个低电压时间(区域)。
要求①:我国对于风电装机容量占其他电源总容量比例大于5%的省(区域)级电网,要求该电网电机组能够保证不脱网连续运行。
3. LVRT 国内外研究现状风力发电系统,根据发电机转速,可以分为失速型与变速恒频型,其中变速恒频又可以分为双馈型和直驱型;根据传动链组成,可以分为有齿轮箱和直接驭动型;有齿轮箱又可以分为多级齿轮+高速发电机型与单级齿轮+低速发电机型。
目前市场上风机类型可概括为三类,即直接并网的定速异步机FSIG(fixed speed induction generator)、同步直驱式风机PMSG(permanent magnetic synchronous generator)和双馈异步式风机DFIG(doubly-fed induction generator)。
这三种机型, FSIG 属于淘汰机型,以后的发展趋势是PMSG 和DFIG 。
①目前,各国对低电压穿越的要求不同,其中在行业中影响最大的是德国的E.ON 标准。
②低电压穿越特性曲线主要是由故障期间的电压最低值(即低电压穿越曲线中U/UN 的最小值)电压最低点的时间长度和故障恢复时间来决定。
风机低电压穿越标准
风机低电压穿越标准风机低电压穿越标准是风力发电系统中重要的技术要求和规范,旨在确保风力发电机组在电网故障或电压跌落时能够安全、稳定地运行。
下面将详细介绍风机低电压穿越标准的定义、目的、实现方法和实际应用。
一、定义风机低电压穿越标准是指风力发电机组在电网电压跌落时,能够保持并网运行,并且不发生停机或脱网等异常情况的能力要求。
在风力发电系统中,由于风速的不稳定性和电网的复杂性,经常会出现电网电压跌落的情况。
如果风力发电机组不能在低电压情况下保持稳定运行,将会对电网的稳定性和电力系统的可靠性造成严重影响。
因此,风机低电压穿越标准是衡量风力发电机组性能的重要指标之一。
二、目的风机低电压穿越标准的目的是为了确保风力发电机组在电网故障或电压跌落时能够持续供电,减少对电网的冲击和影响,同时避免风力发电机组的停机和脱网等情况发生,提高电力系统的可靠性和稳定性。
此外,风机低电压穿越标准还有助于保护风力发电机组的设备和部件,延长其使用寿命。
三、实现方法为了满足风机低电压穿越标准的要求,需要在风力发电机组的控制系统和结构设计等方面进行优化和完善。
以下是实现风机低电压穿越的常用方法:1.控制系统优化:通过对风力发电机组的控制系统进行优化,可以提高其在低电压情况下的运行稳定性。
例如,可以采用矢量控制方法,通过调节励磁电流来控制发电机的输出电压,使其在低电压情况下保持稳定运行。
2.增加储能装置:在风力发电机组中增加储能装置,如超级电容器、飞轮储能等,可以在电网故障或电压跌落时提供一定的电能支持,保证风力发电机组的正常运行。
3.采用变换器技术:通过采用变换器技术,可以实现对发电机输出电压的稳定控制,使其在低电压情况下保持稳定运行。
常用的变换器包括DC/DC变换器和AC/DC变换器等。
4.加强电网支撑:加强电网的支撑能力,提高电网的稳定性,可以有效降低电网故障和电压跌落的发生率,从而减少对风力发电机组的冲击和影响。
四、实际应用风机低电压穿越标准在实际应用中具有重要的意义和作用。
浅析双馈式风力发电机低电压穿越技术
浅析双馈式风力发电机低电压穿越技术双馈式风力发电机是一种常见的风力发电机类型,其具有低启动转矩、高风能利用率和良好的可调谐性等特点,因此在风力发电行业中得到了广泛的应用。
双馈式风力发电机在发电过程中可能会遇到低电压穿越的问题,这种情况在风力发电系统中并不少见,因此针对双馈式风力发电机低电压穿越技术的研究和分析具有重要的意义。
双馈式风力发电机低电压穿越技术主要是指当风速下降,风力发电机所受的风能也会减小,导致风力发电机输出电压下降,当输出电压降至一定水平以下时,会影响风力发电机的正常运行,甚至会导致系统的停机。
研究双馈式风力发电机在低电压工况下的性能和运行特性对于提高风力发电系统的可靠性和稳定性具有重要的意义。
双馈式风力发电机低电压穿越技术涉及到的主要问题是风力发电机的控制策略和控制逻辑。
在低电压工况下,风力发电机需要根据实际情况采取相应的控制策略,以保证风力发电机的正常运行并最大限度地利用风能。
一种常见的控制策略是采用双馈风力发电机转子侧变流器的控制方式,即通过调节转子侧变流器的参数来调整转子的功率因数,以保证风力发电机在低电压工况下仍能保持较高的输出功率和效率。
双馈式风力发电机低电压穿越技术还涉及到风力发电机的电气保护和安全控制。
在低电压工况下,风力发电机容易发生电气故障和过载现象,因此需要采取相应的电气保护措施来保护风力发电机的安全运行。
还需要针对低电压穿越情况制定相应的安全控制策略,以避免因电压过低导致的系统故障和停机情况。
针对双馈式风力发电机低电压穿越技术的研究还需要对其性能进行分析和评估。
通过对双馈式风力发电机在低电压工况下的功率特性、效率特性和稳定性进行分析和评估,可以为风力发电系统的设计和运行提供重要的参考依据。
还可以通过对双馈式风力发电机在低电压工况下的性能进行模拟和仿真研究,来验证控制策略和电气保护措施的有效性和可靠性。
双馈式风力发电机低电压穿越技术是风力发电领域的重要研究方向,其研究对于提高风力发电系统的可靠性和稳定性具有重要的意义。
风电机组低电压穿越能力
低电压穿越能力(Low voltage ride through capability),就是指风力发电机的端电压降低到一定值的情况下不脱离电网而继续维持运行,甚至还可为系统提供一定无功以帮助系统恢复电压的能力。
具有低电压穿越能力的风力发电机可躲过保护动作时间,故障切除后恢复正常运行。
这可大大减少风电机组在故障时反复并网次数,减少对电网的冲击。
具有低电压穿越能力可保证风电机组在电网故障电压降低的情况下 ,尽最大可能与电网连接 ,保持发电运行能力,减少电网波动。
一般 230 kV 或更高电压等级线路的故障,在 6 个周波(120 ms)内被切除 ,电压恢复到正常水平的 15 %需要 100 ms ,恢复到正常水平的 75 %或者更高水平则需要1 s ,LVRT功能是要风电机组在故障电压短时间消失期间 ,保持持续运行的能力 ,如此后电压仍处在低压 ,风电机组将被低压保护装置切除。
低电压穿越能力的具体实现方式目前实现低电压穿越能力的方案一般有三种:1).采用了转子短路保护技术,2).引入新型拓扑结构,3).采用合理的励磁控制算法。
1、转子短路保护技术(crowbar电路)这是目前一些风电制造商采用得较多的方法,其在发电机转子侧装有crowbar电路,为转子侧电路提供旁路,在检测到电网系统故障出现电压跌落时,闭锁双馈感应发电机励磁变流器,同时投入转子回路的旁路(释能电阻)保护装置,达到限制通过励磁变流器的电流和转子绕组过电压的作用,以此来维持发电机不脱网运行(此时双馈感应发电机按感应电动机方式运行)。
2、新型拓扑结构包括以下几种:1).新型旁路系统 2).并联连接网侧变流器 3).串联连接网侧变流器3、采用新的励磁控制策略从制造成本的角度出发,最佳的办法是不改变系统硬件结构,而是通过修改控制策略来达到相同的低电压穿越效果:在电网故障时,使发电机能安全度越故障,同时变流器继续维持在安全工作状态。
风力发电低电压穿越技术浅析
风力发电低电压穿越技术浅析摘要:随着工业化的进程加快,能源问题日趋尖锐化,世界各国都在开发新的可再生能源,利用风力发电也在全球范围内日趋盛行。
我国的风电的装机容量在近几年内也获得了快速地增长。
低电压穿越是风里电网中的重要技术,我国的风力电网系统的快速发展对低电压穿越技术提出了新的要求和挑战。
关键词:风力发电系统;低电压;穿越1低电压穿越概述低电压穿越即LVRT,指在电网发生故障或者电压下跌时,在一定的下跌范围内风机能够保持并网不脱落,向电网提供无功功率,直到电网恢复正常,从而“穿越”这个低电压时间或低电压区域。
具体来说,当电压发生故障时,风发机组在这段时间内地控制不能引起电网的相位变化和功率波动。
电网电压发生跌落的这段时间,电网只管输电系统的短路电流而忽视风电场内部的短路电流。
可以这么说,低电压的穿越技术是决定一个风电系统技术高低的重要指标。
世界各个国家和地区根据其电网状况不同,对低电压穿越技术的指标提出的要求不同。
技术指标的制定往往为各国关注的焦点,特别是发达国家将其作为经济发展的战略重点。
德国的输电系统运营商E.on公司在2003年提出了低电压穿越的概念,2006年制定了并网标准。
由于德国北部的风机密度高,对LVRT的要求如下:当电压跌落至15%~45%时,要求风机一直提供无功支持,并能保持并网至少625ms。
而在电压跌落至90%以上,风机一直保持并网运行。
我国在2009年制订了风电场并网标准。
当电网跌落低于额定电压的1/5,风力发电机保持与电网相连接,并保持运行625ms,风电场并网点电压跌落后,三秒钟之内能还原至90%的额定电压。
2 LVRT技术在风力发电低压穿越中的应用(1)已建成风电场的改造对于已经建成的风电场,如果不具有LVRT能力,必须适应当前的并网规则要求,对风电场进行改造,目前有几种方案可供选择:在风电场采用动态无功补偿装置,动态提供风电机组暂态过程所消耗的无功,以恢复机端电压;安装可控串补效限制风电场机端输出电流,提高风电场机端电压;利用串联制动电阻在电网故障时提升风电机组端电压,并吸收过剩有功功率,进而提高风电场LVRT能力;安装超导储能装置,提高风电场机端电压。
低电压穿越的含义
1低电压穿越的含义这个指标的含义大抵是说在电网电压由于一些严重故障原因(比如某相短路),跌落不低于电网原始电压的20%时,风力发电机组要能够持续地发出无功以维持电网电压至少625ms,超过625ms 时风力发电机组可以出于保护理由脱离电网。
这个标准是国际上一个很普遍并且不很严格的一个标准。
国家电网《风电场接入电网技术规定》7月30日一经发布,即一石激起千层浪,风电企业以往清一色接受“政策支持”的状况开始改变,“政策宠儿”不得不直面行业发展的“高标准、严要求”,而风电“全额收购时代”的结束,正成为行业面临的第一道关卡。
而且,《规定》似乎只是个开头,中国证券报记者了解到,未来光伏发电等其他新能源发展也必须跨过技术“门槛”。
虽然全国性风电并网标准还没有出台的时间表,专家也预期该标准的落实尚待时日,但可以确定的是,《规定》将对风电上下游产业链带来冲击,设备商可能进一步集中,而技术和价格将是最为关键的两把“筛子”。
并网标准提高国家电网的《风电场接入电网技术规定》提到,风电厂在任何运行方式下,应保证其无功功率有一定的调节容量;当风电场并网点的电压偏差在正负10%之间时,风电场内的风电机组应能正常运行;风电场内的风电机组应具有在并网点电压跌至20%额定电压时能够维持并网运行0.625秒的低电压穿越能力。
想请教一下电气方面专家:1.针对《风电场接入电网技术规定》提到风电场内的风电机组应具有在并网点电压跌至20%额定电压时能够维持并网运行0.625秒的低电压穿越能力的技术指标含义?2.针对并网运行0.625秒的低电压穿越能力主要关键技术在哪部分?3.目前的机型有哪几家厂商可以做到?2、对行业的影响风电产业有发展基础在全球能源供应环境相对复杂的今天,风能作为一种清洁的永续能源,没有燃料的价格风险,发电成本稳定,不存在碳排放等环境因素的顾虑,已经在全球范围受到重视。
过去的十年时间里,全球风电装机一直保持着每年近30%的增速,而我国近几年来风电装机增长速度更是超过了70%,是全球增速最快的市场。
浅析双馈式风力发电机低电压穿越技术
浅析双馈式风力发电机低电压穿越技术双馈式风力发电机是现代风力发电系统中常用的一种发电机类型。
它采用双回路结构,在主回路中,由于受制于转子功率控制器的限制,风力发电机输出功率只能达到额定功率的一部分。
而在副回路中,通过转子功率控制器和电力电子器件,将风力发电机的剩余功率变成电网中的有功电能注入。
这种结构能够提高风力发电机的转子利用率,提高发电效率。
低电压穿越技术是双馈式风力发电机的一项重要技术。
当电网电压下降到很低的电压水平时,风力发电机的输出电压也将跟随下降,甚至低于电网的电压水平,导致电网无法接受发电机的输电。
为了解决这个问题,双馈式风力发电机采用了低电压穿越技术。
低电压穿越技术是指在电网电压降低到一定程度时,通过改变转子功率控制器的控制策略,使风力发电机调整输出电压,能够维持在一个较低的电压水平,以保持与电网的连接稳定。
有两种主要的低电压穿越技术:无功电压提升和有功限制。
无功电压提升是通过转子功率控制器调整转子侧电容的容量,改变发电机输出电压和功率因数的关系。
当电网电压下降时,转子功率控制器会主动提高转子侧的电容容量,从而改变发电机的功率因数,将发电机的无功功率提高,而有功功率相对减少。
这样可以使发电机的输出电压维持在一个较低的水平,保持与电网的连接稳定。
低电压穿越技术的实施需要转子功率控制器具备较高的响应速度和精度,以便能够及时调整发电机的输出电压。
还需要合理的控制算法和保护措施,以保证风力发电机和电网的安全运行。
双馈式风力发电机低电压穿越技术是提高风力发电机转子利用率和发电效率的重要手段。
它能够在电网电压下降时,通过调节发电机的输出电压和功率因数,维持与电网的连接稳定。
这对于风力发电系统的安全运行具有重要意义。
浅谈风电场低电压穿越技术
浅谈风电场低电压穿越技术摘要:低电压穿越能力:是指在风机并网点电压跌落时,风机能够保持并网,对过电压、过电流进行抑制技术,甚至向电网提供一定的无功功率,支持电网恢复正常,从而“穿越”这个低电压时段。
关键词:浅谈;风电场;低电压;穿越技术一.规程与标准根据《国家能源局关于加强风电场并网运行管理的通知》(国能新能【2011】182号),风电机组应严格按照《风电机组并网检测管理暂行办法》的要求,具备低电压穿越的能力,并通过有关机构的检测认证;对于风电装机容量占其他电源总容量比例大于5%的省(区域)级电网,该电网区域内运行的风电场应具有低电压穿越能力。
《风电场接入电力系统技术规范》(GB/T 19963—2000)中对风电场低电压穿越能力的基本要求:(1)风电场内的风电机组具有并网点电压跌至20﹪额定电压时能够保证不脱网连续运行625ms的能力。
(2)风电场发生跌落后2s内能够恢复到额定电压的90﹪时,风电场内的风电机组能够保证不脱网连续运行。
二.发生低电压穿越的原因针对电网故障引起的故障,通常可以分为电网单相接地故障、电网两相接地故障、电网两相相间短路故障以及电网三相相间短路故障引起的电压跌落,根据电力系统运行经验表明,在各种类型的电网故障中,单相接地故障占大多数,容易引起不对称故障电路,而对于我们风力发电场,除了考虑电网电压的波动,还应该分析风电场集电线路和风机所对应的箱变等可以引起风电机组网侧电压波动的因素。
三.永磁同步风力发电机组实现低电压穿越的原理1. 永磁直驱同步风力发电系统永磁直驱同步风力发电系统是一种新型发电系统,采用风轮直接驱动多极低速永磁同步发电机发电,然后通过全功率变流器变换电路,将电能转换后并入电网。
2.全功率变流器全功率变流器是由发电机侧变流器和网侧变流器两个三相PWM电压型变流器构成,发电机侧变流器实现对永磁同步发电机的控制,网侧变流器实现输出并网,输出有功、无功功率的解耦和直流侧电压控制,永磁直驱同步风力发电系统依靠全功率变流器实现高性能控制。
风电机组低电压穿越简介
ABB变频器9台,IGBT保护阀值1250V,软件 版本AJXC2320,出厂日期2011.01
ABB变频器低电压穿越图
日立变频器24台,IGBT保护阀值1300V,软 件版本6.13,出厂日期2012.01
日立变频器低电压穿越图
风电机组低电压穿越简介
电机并网点电压跌落的时候,风电机组能够保持并网,甚 至向电网提供一定的无功功率,支持电网恢复,直到电网恢复正常, 从而“穿越”这个低电压时间(区域)。 • 二、电网对低电压穿越有什么要求?
• 风电场内的风电机组具有在并网点电压跌至20%额定电压时能够保证 不脱网连续运行625ms的能力。 • 风电场并网点电压在发生跌落后2s内能够恢复到额定电压的90%时, 风电场内的风电机组能够保证不脱网连续运行。 • 对电网故障期间没有切出电网的风电场,其有功功率在电网故障切除 后应快速恢复,以至少10%额定功率/秒的功率变化率恢复至故障前的 值。
风力发电机组低电压穿越技术探析
风力发电机组低电压穿越技术探析摘要:近年来,随着科技水平的不断提高,风力发电技术体系日益成熟,风电产业规模呈现出爆发式增长态势。
但在接入电网出现运行故障、电压异常波动时,将会对风电系统与风力发电机组的运行状态造成影响,可能出现风电机组脱网解列问题,对发电企业造成严重的损失。
因此,本文围绕风力发电机组低电压穿越技术的应用问题进行探讨,希望通过改善风电机组低电压穿越性能,解决这一问题。
关键词:风力发电机组;低电压穿越技术;应用一、风力发电机组低电压穿越技术概述1.技术原理风电机组低电压穿越技术是当风力发电系统所接入电网出现各类运行故障、电压跌落现象时,将会实时向所接入电网提供无功功率支撑,以此做到对电网正常运行状态的快速恢复,在短时间内将跌落的电压值调整至安全范围,避免风电机组出现局部或是大规模脱网现象。
根据低电压穿越技术要求可知,在电网电压异常波动时,如若实时电压值、故障发生时间处于风机跳闸区域时,将会对风电机组采取必要的脱网解列措施,避免风电机组受到外部因素影响出现损坏问题。
而在实时电压值、故障发生时间保持在曲线上方区域时,会持续向所接入电网提供无功功率,风电机组将保持并网运行状态。
2.技术标准现阶段,在应用低电压穿越技术时,为取得应有的技术作用,保障风电机组运行安全稳定,必须满足不脱网运行、具备无功支持以及有功恢复使用功能的技术应用标准,具体如下。
(1)不脱网运行。
在风电场运行过程中,如若实时并网点电压值稳定保持在相应电压轮廓线上方区域中,要求风电机组稳定保持为并网运行状态,禁止风电机组出现脱网解列现象。
在电网电压脱落后,风电机组将在一定时间内仍旧保持并网运行状态,提供无功功率补偿,将电网电压值快速提升至额定值。
如若电网电压值在一定时间没有得到有效恢复、处于电压轮廓线下方区域时,将风电机组从电网中切出。
(2)无功支持。
根据技术实际应用情况来看,在出现电网三相电压对称跌落、并网点电压小于额定值90%现象时,都将对所接入电网提供无功电流,起到控制电网稳定运行、快速恢复正常电压值的作用。
浅析双馈式风力发电机低电压穿越技术
浅析双馈式风力发电机低电压穿越技术双馈式风力发电机低电压穿越技术是指在风力发电系统中,当受到低电压影响时,通过双馈式风力发电机的技术手段,依然可以保持正常运行,并尽可能减小对发电机的影响。
这项技术在提高风力发电机稳定性和可靠性方面具有重要意义。
接下来,我们将对双馈式风力发电机低电压穿越技术进行一定的浅析。
一、双馈式风力发电机简介双馈式风力发电机是目前常见的一种风力发电机结构。
它的主要特点是在转子上设置两套独立的绕组,分别是定子绕组和转子绕组。
传统风力发电机通常采用固定磁极和定子绕组的方式,工作在同步运转模式下。
而双馈式风力发电机通过在转子上设置绕组,实现了外接转子发电机的结构,使得发电机在一定程度上具有了可调节的功率特性,从而提高了风能的利用效率。
二、双馈式风力发电机低电压穿越技术的意义在风力发电系统中,由于风速的不稳定性以及外部环境等因素的影响,往往会出现电网电压下降的情况。
当电网电压下降至发电机的额定电压以下时,传统的固定磁极风力发电机会出现失速现象,无法继续正常发电。
而双馈式风力发电机通过其独特的结构和控制方式,可以相对灵活地应对低电压情况,尽可能减小对发电机的影响,保持正常运行。
三、双馈式风力发电机低电压穿越技术的实现方式1. 转子侧功率控制当发电机所接电网电压下降时,可以通过控制变流器改变转子侧功率的输出,以实现对电网电压的支撑。
变流器可以根据电网电压的变化,调整转子侧的功率输出,保持发电机继续运行。
这种方式可以避免发电机失速,延长发电机的寿命,提高系统的可靠性。
2. 电网电压感应控制另一种方式是通过感应电网电压的变化,实现对发电机的控制。
当电网电压下降时,发电机系统可以通过感应电网电压的变化,调整转子侧功率输出,进而保持系统的稳定运行。
这种方式相对简单,成本较低,适用于一些对控制精度要求不高的场合。
四、双馈式风力发电机低电压穿越技术的优势1. 提高了系统的稳定性和可靠性双馈式风力发电机低电压穿越技术,使得发电机在电网电压下降的情况下仍然可以保持正常运行,大大提高了系统的稳定性和可靠性。
什么是风力发电机低电压穿越技术定义
什么是风力发电机低电压穿越技术定义2011/05/04 07:37:20来源:中国风力发电网我要投稿小型发电系统在确定的时间内承受一定限值的电网低电压而不退出运行的能力。
低电压穿越(Low voltage ride through,LVRt)低电压过渡能力:Low Voltage Ride Through ,LVRT ;Fault Ride Through ,FRT曾称“低电压穿越”。
定义:小型发电系统在确定的时间内承受一定限值的电网低电压而不退出运行的能力。
一、风力发电机低电压穿越技术1、问题的提出对于变频恒速双馈风力发电机,在电网电压跌落的情况下,由于与其配套的电力电子变流设备属于AC/DC/AC型,容易在其转子侧产生峰值涌流,损坏变流设备,导致风力发电机组与电网解列。
在以前风力发电机容量较小的时候,为了保护转子侧的励磁装置,就采取与电网解列的方式,但目前风力发电的容量都很大,与电网解列后会影响整个电网的稳定性,甚至会产生连锁故障。
于是,根据这种情况,国外的专家就提出了风力发电低电压穿越的问题。
2、LVRT概念的解释当电网发生故障时,风电场需维持一段时间与电网连接而不解列,甚至要求风电场在这一过程中能够提供无功以支持电网电压的恢复即低电压穿越。
目前对于风力发电低电压运行标准,主要以德国e.on netz公司提出的为参考。
双馈风力发电机由于其自身机构特点,实现LVRT存在以下几方面的难点:1)确保故障期间转子侧冲击电流与直流母线过电压都在系统可承受范围之内;2)所采取的对策应具备各种故障类型下的有效性;3)控制策略须满足对不同机组、不同参数的适应性;4)工程应用中须在实现目标的前提下尽量少地增加成本。
3、电网电压跌落后DFIG运行的暂态过程分析(感觉这部分内容需要理论推导)在电网电压跌落情况下,风电机组中的双馈感应发电机会导致转子侧过流,同时转子侧电流的迅速增加会导致转子励磁变流器直流侧电压升高,发电机励磁变流器的电流以及有功和无功都会产生振荡。
低电压穿越
风电并网低压穿越的相关规定:
2、电网电压跌落时FSIG、PMSG、DFIG的暂态特 性
电压跌落(Voltage Dip)也称电压骤降、电压 下跌或电压凹陷,是供电系统的一种较为突出的电能 质量问题,指电网电压均方根值在短时间突然下降的 事件,电气与电子工程师协会(IEEE),将其定义为下降 到额定值的90%~10%。 • 大电机启动引起的电压跌落 • 电机的再加速引起的电压跌落 • 电网故障引起的电压跌落(2)PMSG的LVRT实现源自①故障时间短且电压跌落幅值小
适当地增大直流侧电容的容量,提高直流电容的 额定电压,这样在电压跌落的时候,可以把直流母线的 电压限定值调高,使功率不平衡发生时,过剩的能量能 在电容上得到暂时的缓冲,以储存多余的能量,并且允 许网侧的逆变器电流增大,以输出更多的能量,最终达 到两侧的功率基本平衡。
(1)FSIG和DFIG的暂态特性
(2)同步直驱式风机(PMSG)的电压跌落暂态特性
PMSG定子经变流器与电网相接,发电机和电网不存在 直接耦合。
3.不同类型风机的LVRT实现方法
(1)FSIG的LVRT实现
FSIG在电网电压跌落时最大的问题就是电磁转矩 的衰减使得转速上升。 ①判断故障后快速变桨以改变机械转矩,从而降低转 速; ②安装一个静态无功补偿器,来对各种功率等级无功 进行实时补偿; ③通过采用静态同步补偿器来调节电压,该方法也能 使FISG低电压穿越能力得到提高,而且该方法的补偿 电流不会随着电压的下降而下降。
②故障时间长的深度电压跌落
增加Crowbar保护电路以吸收掉多余的能量,从而 达到所期望的目的。具体方法如下:
a.发电机定子侧Crowbar保护方案
b.直流侧基于耗能型Crowbar的过电压保护方案
低电压穿越(LVRT)
低电压穿越能力是当电力系统中风电装机容量比例较大时,电力系统故障导致电压跌落后,风电场切除会严重影响系统运行的稳定性,这就要求风电机组具有低电压穿越(Low V oltage Ride Through,LVRT)能力,保证系统发生故障后风电机组不间断并网运行。
风电机组应该具有低电压穿越能力:a)风电场必须具有在电压跌至20%额定电压时能够维持并网运行620ms的低电压穿越能力;b)风电场电压在发生跌落后3s内能够恢复到额定电压的90%时,风电场必须保持并网运行;c)风电场升压变高压侧电压不低于额定电压的90%时,风电场必须不间断并网运行。
风电机组低电压穿越(LVRT)能力的深度对机组造价影响非常大,根据实际系统对风电机组进行合理的LVRT能力设计很有必要。
对变速风电机组LVRT原理进行了理论分析,对多种实现方案进行了比较。
在电力系统仿真分析软件DIgSILENT/PowerFactory中建立双馈变速风电机组及LVRT功能模型。
以地区电网为例,详细分析系统故障对风电机组机端电压的影响,依据不同的风电场接入方案计算风电机组LVRT能力的电压限值,对风电机组进行合理的LVRT能力设计。
结果表明,风电机组LVRT能力的深度主要由系统接线和风电场接入方案决定。
设计风电机组LVRT能力时,机组运行曲线的电压限值应根据具体接入方案进行分析计算。
解决:需要改动控制系统,变流器和变桨系统。
国内的标准将是20%电压,625ms,接近awea的标准。
针对不同的发电机类型有不同的实现方法,最早采用也是最普遍的方案是采用CROWBAR,有的已经安装在变频器之中,根据不同的系统要求选择低电压穿越能力的大小,即电压跌落深度和时间,具体要求根据电网标准要求。
风电制造商采用得较多的方法,在发电机转子侧装有crowbar电路,为转子侧电路提供旁路,在检测到电网系统故障出现电压跌落时,闭锁双馈感应发电机励磁变流器,同时投入转子回路的旁路(释能电阻)保护装置,达到限制通过励磁变流器的电流和转子绕组过电压的作用,以此来维持发电机不脱网运行(此时双馈感应发电机按感应电动机方式运行)。
风力发电机低电压穿越原理
风力发电机低电压穿越原理
风力发电机低电压穿越(LVRT)的原理主要是在电网发生故障或电压跌落时,风力发电机组能够保持并网状态,并向电网提供无功功率,从而支持电网恢复正常运行。
具体来说,当电网发生故障或电压跌落时,风力发电机组通过控制策略,能够快速检测到电网的状态变化,并实时向电网提供无功功率支撑。
这样做的目的是在短时间内将跌落的电压值调整至安全范围,避免风电机组出现局部或是大规模脱网现象。
风力发电机组低电压穿越的实现依赖于先进的控制系统和算法,能够快速响应电网的故障或电压跌落,并进行相应的控制和调节。
同时,还需要保证风电机组的机械和电气系统在低电压穿越过程中的安全和稳定性。
以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询风力发电领域专家。
浅析双馈式风力发电机低电压穿越技术
浅析双馈式风力发电机低电压穿越技术
双馈式风力发电机是目前广泛应用于风力发电场的一种发电机。
其特点是通过转子上
布置的双馈转换器将风能转化为电能。
在发电过程中,双馈转换器可以实现对转子和线路
的双重控制,提高了发电机的效率和可靠性。
在风力发电场中,由于复杂的环境和风能波动的影响,双馈式风力发电机可能会出现
低电压情况。
低电压会导致发电机无法正常工作,影响发电场的稳定运行。
为了解决这个
问题,研究人员提出了低电压穿越技术。
低电压穿越技术是指在低电压情况下,通过改变双馈转换器的运行模式,使发电机能
够继续运行并输出电能。
目前常用的低电压穿越技术主要有两种:定子电流反向控制和转
子电流反向控制。
定子电流反向控制是指在低电压情况下,通过改变双馈转换器中的定子电流方向,使
发电机能够继续工作。
具体来说,当发电机检测到低电压时,控制系统会将定子电流反向,从而改变发电机的工作模式。
这种方法可以在低电压情况下提供一定的电压和功率输出,
但是由于改变了定子电流方向,会增加发电机的损耗和热量。
双馈式风力发电机低电压穿越技术是目前解决发电场低电压问题的有效途径。
不论是
定子电流反向控制还是转子电流反向控制,都可以使发电机在低电压情况下继续运行,并
提供一定的电压和功率输出。
不同的控制方案各有优劣,需要根据具体情况选择合适的技
术方案。
低电压穿越综述
(1)FSIG和DFIG的暂态特性
Байду номын сангаас
(2)同步直驱式风机(PMSG)的电压跌落暂态特性
PMSG定子经变流器与电网相接,发电机和电网不存在 直接耦合。
3.不同类型风机的LVRT实现方法
(1)FSIG的LVRT实现
FSIG在电网电压跌落时最大的问题就是电磁转矩 的衰减使得转速上升。 ①判断故障后快速变桨以改变机械转矩,从而降低转 速; ②安装一个静态无功补偿器,来对各种功率等级无功 进行实时补偿; ③通过采用静态同步补偿器来调节电压,该方法也能 使FISG低电压穿越能力得到提高,而且该方法的补偿 电流不会随着电压的下降而下降。
风电并网低压穿越的相关规定:
2、电网电压跌落时FSIG、PMSG、DFIG的暂态特 性
电压跌落(Voltage Dip)也称电压骤降、电压 下跌或电压凹陷,是供电系统的一种较为突出的电能 质量问题,指电网电压均方根值在短时间突然下降的 事件,电气与电子工程师协会(IEEE),将其定义为下降 到额定值的90%~10%。 • 大电机启动引起的电压跌落 • 电机的再加速引起的电压跌落 • 电网故障引起的电压跌落
(3) DFIG的LVRT实现
①基于双馈风机定子电压动态补偿的控制策略
Lm Ls Lr L2 m r s I r s ( Ls1 Lr1 ) I r Ls Ls
②定子侧方法
定子侧加电阻阵列
电网侧串联变换器
③直流母线上方法
(a)直流 Crowbar
(b)带 UPS 的直流Crowbar
1、低电压穿越技术的定义 2、FSIG、PMSG、DFIG在电网电压跌落时的 暂态特性 3、不同类型风机的LVRT实现方法
1、低电压穿越技术
低电压穿越技术
低电压穿越技术一、低电压穿越技术概述随着风力发电在电网中所占比例的增加,电网公司要求风力发电系统需像传统发电系统一样,在电网发生故障时具有继续并网运行的能力。
电网发生故障引起电压跌落会给风力发电机组带来一系列暂态过程(如转速升高、过电压和过电流等),当风力发电在电网中占有较大比例时,机组的解列会增加系统恢复难度,甚至使故障恶化。
因此目前新的电网规则要求当电网发生短路故障时风力发电机组能够保持并网,甚至能够向电网提供一定的无功功率支持,直到电网恢复正常,这个过程被称为风力发电机组“穿越”了这个低电压时间(区域),即低电压穿越(Low Voltage Ride Through,LVRT)。
1.风力发电机组故障穿越并网要求各国相继提出了越来越严格的故障穿越标准,要求机组在电网故障情况下能够按照标准规定的时间继续并网运行。
图4-26为德国、英国、美国和丹麦4国故障穿越标准中电网电压跌落程度与风电机组需持续并网运行的时间的规定。
图4-26 各国故障穿越标准各国制定的故障穿越标准中,除包含图4-26所示的并网时间要求外,一般都包含以下4个方面的规定:(1)公共耦合点的电网电压有效值的跌落程度与要求机组继续并网运行时间长短的关系。
(2)电网线电压有效值的跌落程度与输出无功功率的关系。
(3)故障切除后,有功功率的恢复速率。
(4)频率的波动与输出有功功率的关系。
我国国家电网公司制定了风力发电机组低电压穿越标准。
标准规定:风电场内的风电机组具有在并网点电压跌至20%额定电压时能保持并网运行625ms的低电压穿越能力,如图4-27所示。
风电场并网点电压在发生跌落2s内能够恢复到额定电压90%时,风电场内的风电机组能够保持不脱网运行。
2.关于双馈风力发电机的低电压穿越的特殊性图4-27 中国的低电压穿越标准与其他机型相比,双馈异步风力发电机在电压跌落期间面临的威胁最大。
电压跌落出现的暂态转子过电流、过电压会损坏电力电子器件,而电磁转矩的衰减也会导致转速的上升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么是风力发电机低电压穿越技术定义2011/05/04 07:37:20来源:中国风力发电网我要投稿小型发电系统在确定的时间内承受一定限值的电网低电压而不退出运行的能力。
低电压穿越(Low voltage ride through,LVRt)低电压过渡能力:Low Voltage Ride Through ,LVRT ;Fault Ride Through ,FRT曾称“低电压穿越”。
定义:小型发电系统在确定的时间内承受一定限值的电网低电压而不退出运行的能力。
一、风力发电机低电压穿越技术1、问题的提出对于变频恒速双馈风力发电机,在电网电压跌落的情况下,由于与其配套的电力电子变流设备属于AC/DC/AC型,容易在其转子侧产生峰值涌流,损坏变流设备,导致风力发电机组与电网解列。
在以前风力发电机容量较小的时候,为了保护转子侧的励磁装置,就采取与电网解列的方式,但目前风力发电的容量都很大,与电网解列后会影响整个电网的稳定性,甚至会产生连锁故障。
于是,根据这种情况,国外的专家就提出了风力发电低电压穿越的问题。
2、LVRT概念的解释当电网发生故障时,风电场需维持一段时间与电网连接而不解列,甚至要求风电场在这一过程中能够提供无功以支持电网电压的恢复即低电压穿越。
目前对于风力发电低电压运行标准,主要以德国e.on netz公司提出的为参考。
双馈风力发电机由于其自身机构特点,实现LVRT存在以下几方面的难点:1)确保故障期间转子侧冲击电流与直流母线过电压都在系统可承受范围之内;2)所采取的对策应具备各种故障类型下的有效性;3)控制策略须满足对不同机组、不同参数的适应性;4)工程应用中须在实现目标的前提下尽量少地增加成本。
3、电网电压跌落后DFIG运行的暂态过程分析(感觉这部分内容需要理论推导)在电网电压跌落情况下,风电机组中的双馈感应发电机会导致转子侧过流,同时转子侧电流的迅速增加会导致转子励磁变流器直流侧电压升高,发电机励磁变流器的电流以及有功和无功都会产生振荡。
这是因为双馈感应发电机在电网电压瞬间跌落的情况下,定子磁链不能跟随定子端电压突变,从而会产生直流分量,由于积分量的减小,定子磁链几乎不发生变化,而转子继续旋转,会产生较大的滑差,这样便会引起转子绕组的过压、过流。
如果电网出现的是不对称故障的话,会使转子过压与过流的现象更加严重,因为在定子电压中含有负序分量,而负序分量可以产生很高的滑差。
过流会损坏转子励磁变流器,而过压会使发电机的转子绕组绝缘击穿。
二、低电压穿越技术的具体实现目前的低电压穿越技术一般有三种方案:一种是采用了转子短路保护技术,二种是引入新型拓扑结构,三是采用合理的励磁控制算法。
本周我主要看了前两种,以下分别介绍。
1、转子短路保护技术(crowbar电路)这是目前一些风电制造商采用得较多的方法,其在发电机转子侧装有crowbar电路,为转子侧电路提供旁路,在检测到电网系统故障出现电压跌落时,闭锁双馈感应发电机励磁变流器,同时投入转子回路的旁路(释能电阻)保护装置,达到限制通过励磁变流器的电流和转子绕组过电压的作用,以此来维持发电机不脱网运行(此时双馈感应发电机按感应电动机方式运行)。
目前比较典型的crowbar电路有如下几种:(1)混合桥型crowbar电路,如图1所示,每个桥臂有控制器件和二极管串联而成。
(2)IGBT型crowbar电路,如图2所示,每个桥臂由两个二极管串联,直流侧串入一个IGBT器件和一个吸收电阻。
(3)带有旁路电阻的crowbar电路,如图3所示,出现电网电压跌落时,通过功率开关器件将旁路电阻连接到转子回路中,这就为电网故障期间所产生的大电流提供了一个旁路,从而达到限制大电流,保护励磁变流器的作用。
2、引入新型拓扑结构如图4所示,这种结构与传统的软启动装置类似,在双馈感应发电机定子侧与电网间串联反并可控硅电路。
在正常运行时,这些可控硅全部导通,在电网电压跌落与恢复期间,转子侧可能出现的最大电流随电压跌落的幅度的增大而增大,为了承受电网故障电压大跌落所引起的的转子侧大电流冲击,转子侧励磁变流器选用电流等级较高的大功率IGBT器件,这样来保证变流器在电网故障时不与转子绕组断开时的安全。
电网电压跌落再恢复时,转子侧最大电流可能会达到电压跌落前的几倍。
因此,当电网电压跌落严重时,为了避免电压回升时系统在转子侧所产生的大电流,在电压回升以前,将双馈感应发电机通过反并可控硅电路与电网脱网。
脱网以后,转子励磁变流器重新励磁双馈感应发电机,电压一旦回升到允许的范围之内,双馈感应发电机便能迅速地与电网达到同步。
再通过开通反并可控硅电路使定子与电网连接。
这样可以减小对IGBT耐压、耐流的要求。
对于短时间内能够接受大电流的IGBT模块,可以减少双馈感应发电机的脱网运行时间。
转子侧大功率馈入直流侧会导致直流侧电容电压的升高,而直流侧的耐压等级依赖于直流侧电容的大小,因此直流侧设计crowbar电路,在直流侧安装电阻来作吸收电路,将直流侧电压限制在允许范围内。
这种方式的不足之处是:该方案需要增加系统的成本和控制的复杂性。
考虑到定子故障电流中的直流分量,需要可控硅器件能通过门极关断,这要求很大的门极负驱动电流,驱动电路太复杂。
这里的可控硅串联电路如果采用穿透型IGBT的话,IGBT必须串联二极管。
而采用非穿透型IGBT的话,通态损耗会很大。
理论上,如果利用接触器来代替可控硅开关的话,虽通态时无损耗,但断开动作时间太长。
而且由于该方案在输电系统故障时发电机脱网运行,因此对电网恢复正常运行起不到积极的支持作用。
通常双馈感应发电机的背靠背式励磁变流器采用如图5a所示的与电网并联方式,这意味着励磁变流器能向电网注入或吸收电流。
为了提高系统的低电压穿越能力,文献提到了一种新的连接方式如图5b,即将变流器与电网进行串联连接,比如,变流器通过发电机定子端的串联变压器实现与电网串联连接,则双馈感应发电机定子端的电压为网侧电压和变流器输出的电压之和。
这样便可以通过控制变流器的电压来控制定子磁链,有效的抑制由于电网电压跌落所造成的磁链振荡,从而阻止转子侧大电流的产生,减小系统受电网扰动的影响,达到强化电网的目的。
但这种方式将增加系统许多成本,控制也比较复杂。
低电压穿越能力是当电力系统中风电装机容量比例较大时,电力系统故障导致电压跌落后,风电场切除会严重影响系统运行的稳定性,这就要求风电机组具有低电压穿越(Low V oltage Ride Through,LVRT)能力,保证系统发生故障后风电机组不间断并网运行。
风电机组应该具有低电压穿越能力:a)风电场必须具有在电压跌至20%额定电压时能够维持并网运行620ms的低电压穿越能力;b)风电场电压在发生跌落后3s内能够恢复到额定电压的90%时,风电场必须保持并网运行;c)风电场升压变高压侧电压不低于额定电压的90%时,风电场必须不间断并网运行。
风电机组低电压穿越(LVRT)能力的深度对机组造价影响很大,根据实际系统对风电机组进行合理的LVRT能力设计很有必要。
对变速风电机组LVRT原理进行了理论分析,对多种实现方案进行了比较。
在电力系统仿真分析软件DIgSILENT/PowerFactory中建立双馈变速风电机组及LVRT功能模型。
以地区电网为例,详细分析系统故障对风电机组机端电压的影响,依据不同的风电场接入方案计算风电机组LVRT能力的电压限值,对风电机组进行合理的LVRT能力设计。
结果表明, 风电机组LVRT能力的深度主要由系统接线和风电场接入方案决定。
设计风电机组LVRT能力时,机组运行曲线的电压限值应根据具体接入方案进行分析计算。
解决:需要改动控制系统,变流器和变桨系统。
我国的标准将是20%电压,625ms,接近awea的标准。
针对不同的发电机类型有不同的实现方法,最早采用也是最普遍的方案是采用CROWBAR,有的已经安装在变频器之中,根据不同的系统要求选择低电压穿越能力的大小,即电压跌落深度和时间,具体要求根据电网标准要求。
风电制造商采用得较多的方法,其在发电机转子侧装有crowbar电路,为转子侧电路提供旁路,在检测到电网系统故障出现电压跌落时,闭锁双馈感应发电机励磁变流器,同时投入转子回路的旁路(释能电阻)保护装置,达到限制通过励磁变流器的电流和转子绕组过电压的作用,以此来维持发电机不脱网运行(此时双馈感应发电机按感应电动机方式运行)。
也就是在变流器的输出侧接一旁路CRAWBAR,先经过散热电阻,再进入三相整流桥,每一桥臂上为晶闸管下为一二极管,直流输出经铜排短接.当低电压发生后,无功电流均有加大,有功电流有短时间的震荡,过流在散热电阻上以热的形式消耗,按照不同的标准,能坚持的时间要根据电压跌落值来确定。
当然,在直流环节上也要有保护装置.详细就不讨论.具体的讨论再联系。
FRT的实物与图片可供大家参考。
但是大家所提到的FRT只是老式的,新式是在直流环节有保护装置,但输出侧仍是无源CRAWBAR。
crowbar触发以后,按照感应电动机来运行,这个只能保证发电机不脱网,而不能向电网提供无功,支撑电网电压。
现在LVRT能提供电网支撑的风机很少,这个是LVRT最高的level。
德国已经制定标准了。
最后还是得增加转子变频器的过流能力。
另外,控制系统要嵌入动态电压暂降补偿器,当有暂降时瞬时将电压补偿上去,先保住控制系统不跳。
ABB号称采用了一种ACtive CROWBAR来实现低压穿越功能。
低电压穿越(LVRT),指在风力发电机并网点电压跌落的时候,风机能够保持并网,甚至向电网提供一定的无功功率,支持电网恢复,直到电网恢复正常,从而“穿越”这个低电压时间(区域)。
LVRT是对并网风机在电网出现电压跌落时仍保持并网的一种特定的运行功能要求。
不同国家(和地区)所提出的LVRT要求不尽相同。
目前在一些风力发电占主导地位的国家,如丹麦、德国等已经相继制定了新的电网运行准则,定量地给出了风电系统离网的条件(如最低电压跌落深度和跌落持续时间),只有当电网电压跌落低于规定曲线以后才允许风力发电机脱网,当电压在凹陷部分时,发电机应提供无功功率。
这就要求风力发电系统具有较强的低电压穿越(LVRT)能力,同时能方便地为电网提供无功功率支持,但目前的双馈型风力发电技术是否能够应对自如,学术界尚有争论,而永磁直接驱动型变速恒频风力发电系统已被证实在这方面拥有出色的性能。