现代电子器件冷却知识讲解36页PPT
电子器件冷却技术_百度文库
第27卷第3期2005年8月低温物理学报CHINESEJOURNALOFLOWTEMPERATUREPHYSICSVol.27,No.3Aug.,2005电子器件冷却技术陈登科中国电子科技集团公司第十六研究所,安徽万瑞冷电科技有限公司,合肥230043文章讨论了电子冷却的对象和冷却方法;论述了微通道冷却、新型热管、热喷射、集成热路等新的冷却方法;介绍了介观制冷器、热电子发射制冷开发中的冷却/制冷技术.关键词:电子,冷却PACC:71201关于电子冷却技术冷却技术涉及到许多领域.在电子领域,冷却技术也已渗透到方方面面,从电子技术一产生就有了冷却问题.电子技术发展突飞猛进,冷却技术也伴随着它,始终起着基础的和保障的作用.1.1电子冷却的必要性对电子领域的冷却主要有以下原因:①带走器件的发热:电子器件对信息(这里“信息”可以是电流、电磁振荡、声、光等任何形式)的处理过程实质上是能量的转化过程.这总会伴随着发热,发热的根源是任何能量转化过程都不可能是100%的效率,不足100%部分的能量全部或大多数变成了热量,这部分热量不能让它累积在电子器件中,必须散发出去.电子器件向更小、更高速、更大功率密度方向发展,这些都意味着更大的热流密度,冷却越来越重要了.典型的例子如:三极管、功率器件、真空电子器件、IC、激光器等.图1示意的电子器件A把能量或带有能量的信号X1,Y1,...处理成能量或带有能量的信号X2,Y2,...;Q是散发出的热量;从能量的角度看,应满足以下关系EX1+EY1+…=EX2+EY2+…+Q(1)应该指出,Q永远大于0,即永远有热量需要散发.②降低器件的温度以提高与温度有关的器件性能.电子器件的工作温度往往对它的性能有很大影响,热噪声或暗电流是最明显的一个受温度影响的性能,例如在传感器件、红外探测器及各种光子探测器、放大器件、LNA等,高速数字器件中的情形就是这收稿日期:2004210215图1电子器件中信号与能量的关系© 1995-2006 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.256低温物理学报27卷样等.降温对电子器件起了一个热噪声抑制或隔断的作用.③冷却有利于提高器件的工作寿命.④某些电子器件的特性只有工作在一定温度以下才会出现.如超导电子器件是基于超导现象的器件,它必须工作在超导转变温度以下.1.2电子冷却对象根据被冷却对象的层次,可分为以下两种:①对电子整机或系统冷却,使整机或系统工作环境温度处于要求的范围内.这种方式不仅要冷却,有时也可能要加热,对温度的要求既要考虑到机器也要考虑到操作机器的人.所以把它叫作空气调节或者调温或恒温更恰当.它把整个系统当作对象,有时需要针对具体发热点采取调温措施.②对电子器件或模块冷却.这种方式针对性很强,哪里发热就冷却哪里,哪里需要冷却就冷却哪里.本文重点就谈这种情况并简称为电子冷却.1.3电子冷却的方法根据子冷却的温度和方法的不同,可以把它分成下表中几类:冷却方法名称含义散热把被冷却对象内部的发热传递到表面,进而传递到热沉、散发到外界.不需加入能量,冷却的动力来自被冷却对象与热沉的温差.电子整机或系统电子器件、组件或模块.雷达、通讯系统各种电子机箱、各种功率器件或功率模块制冷把被冷却对象的温度降到比热沉或环境温度低的温度.必须要加入能量才能进行电子整机或系统电子器件、组件或模块雷达、通讯系统、各种电子机箱、各种功率器件及模块,微电子器件如IC或DSP、光电子器件、真空电子器件①热电制冷器(半导体制冷器)②蒸汽压缩制冷机③气体制冷机④吸收式和吸附式制冷⑤热电子发射制冷器低温制冷把被冷却对象的温度降到热沉或环境温度低得多的温度.一般指120K以下的温度.必须要加入较大的能量才能进行电子器件红外器件、LNA、超导器件特点冷却对象冷却对象举例①气体低温制冷机如斯特林制冷机、GM制冷机、脉管制冷机、节流制冷器②采用低温液体或固体(如LN2LHe等)蒸发进行制冷③辐射制冷器(如太空用辐射制冷器④蒸汽压缩低温制冷机⑤固体制冷器如(绝热去磁制冷器,光学制冷器)冷却方法①自然对流散热器机箱散热②强制对流风扇;冷却液体循环③传导导热固体,导热液体、热管.④辐射被冷却对象表面采用高发射率材料,向外辐射散热.在实际中往往是以上几种方法组合使用.© 1995-2006 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.3期陈登科:电子器件冷却技术2572新概念冷却技术热量传递只有传导、对流和辐射三种手段,在绝大多数散热结构中不是只用一种传热手段,而是三种或两种手段组合使用.现有散热方法已比较成熟,为散热而设计制造的产品非常多,典型的有:各种热沉散热器);各种使传热介质扰动起来以产生对流的扰动源如风扇、泵;各种导热固体或液体等等.对这些产品的合理选用和搭配技术及对被冷却对象的热设计手段已较完善,然而,电子技术发展不断为散热提供新要求,这些要求主要有:①要求冷却产品体积重量更小,以便适应电子整机或器件体积重量越来越小的趋势;②要求冷却产品更高效,传热更快、传递温差更小,小的散热产品能带走更多的热量;③要求冷却产品使用更方便,包括安装方便、使用方便、使用能耗小、对被冷却对象的适应性好(不产生干扰等)等等.为此,产生了一批适应新的冷却要求的冷却技术,现论述如下:图2电子冷却的能量关系.(a)散热方式Ta>TcQc=Ein-Eout;(b)制冷方式Ta<TcQc=Ein-Eout+ErA2被冷对象;Ta2被冷却对象温度;B2散热通道;C2热沉(或环境);Tc2热沉(或环境)的温度;Ein、Eout2进和出被冷却对象的能量;Qc2传给热沉(或环境)的热量;Er2为实现制冷所必须加入的能量2.1微通道冷却技术微通道换热器是指在基体上用光刻或其它刻蚀法制成截面尺寸仅有几十到上百微米的槽道,换热介质在这些小槽道中流过与换热器基体并通过基体与别的换热介质进行换热.换热器的基体材料可以是金属、玻璃、硅或其它任何合适的材料.这种换热器的突出优点是:①换热系数大,换热效果很好.由于几何尺寸极小,流体流过通道时的流动状态与常规换热器有很大区别.雷诺数一般增大一个数量级,因而换热系数明显增大.换热介质与基体之间温差很小.②体积很小,特别适合电子器件的冷却.© 1995-2006 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.258低温物理学报27卷③制造工艺采用电子器件制造工艺,有利于降低成本、批量生产.④由于换热介质与基体间温差小,槽道间距离短,所以基体本身的导热系数对总的换热导数影响小,所以,基体导热系数差一些也影响不大,因此可以选用多种材料作换热器.图3是一种微型低温制冷器,它的换热器是在玻璃基体上通过光刻方法制成的,尺寸只有约7×1.5cm.该制冷器可以制冷在77K,用来冷却光电子器件或低温电子器件. 图4是对半导体激光器阵列采用微通道换热器冷却的示意图.微通道使激光器陈列基体的热场发生了很大变化.图3使用微通道换热器的低温制冷器图4微通道换热器用于冷却激光器阵列用于微通道的传热介质一般是经过纯化的空气、氮气、CO2、水等.微通道可使热流密度高达100~150W/cm2,而一般传统换热形式只能达到10~20W/cm2,它们的差距高达50倍,在散掉大热流的同时,表面温度只升高1/50.微通道换热技术用于多芯片组件,激光二极管陈列、雷达固态器件、高速数字器件等冷却.在光电子器件应用已较为成熟.现在的高功率激光器陈列需把0.001升体积内温度保持在100℃以下而散掉几百瓦的热,得用庞大的循环水冷却器.图5所示的微通道换热器散热能力可μm×达100W/cm2,采用微通道尺寸为50μ500m=宽×高有些研究者采用单掩膜方法制作成宽μμ×高=(5~10m)×(8~10m)的微通道.由于尺寸更小,其性能更佳.试验表明,空冷硅微通道热沉的热阻小于1cm2・K/W,水冷硅热沉的热阻小于0.1cm2・K/W,这意味着1cm2芯片上散热150W/cm2时水与芯片温差可维持在15℃以下.而液氮冷却硅微通道热沉的热阻小于0.05cm2・K/W.图5微通道换热器外形在单层微通道换热器趋于成熟的情况下,对双层微通道也进行了研究,后者有利于减少压力降,提高芯片温度均匀性而减少热应力.预计2005~2006年,高速IC的发热可能会达到200W/cm2,开发能适应此功率的微通道散热器已有了进展.2.2喷射换热器散热技术© 1995-2006 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.3期陈登科:电子器件冷却技术259微喷射换热是指从许多微孔中喷出换热介质到被冷却表面,介质与表面换热系数因强列扰动而保持在很高的水平上,在一定条件下,这种冷却方式的导热系数比铜高1000倍.图6是一个微喷咀的放大图,可看出扰动的强烈程度.图6微喷咀换热器图7集成热路2.3集成热路图7是一个由微通道冷凝器、微泵驱动、微喷射蒸发器组成的一个闭环冷却系统,这是种模块化微机械硅散热系统,研究者把它称为“集成热路”对应于集成电路.这种叫法反映了现今从系统上考虑解决IC及其它电子器件的散热与热管理问题,同时又从微观上,从热的原头上解决热问题的思路.针对电力电子器件(例如IGBT)研究的大功率集成热路,目标要达到散热流密度600W/cm2.有的研究者理论计算的散热能力可达1kW/cm2.2.4新型热管传热技术热管已广泛用于电子冷却领域.由于它传热温差小,传热量大,不需泵送传热介质,在电力电子器件,航空电子装置上已成熟使用.针对微电子器件和多芯片组件体积小特点,开发了一种埋入式微型陶磁热管.在芯片衬底里埋数个微热管,热管内注水,热管中毛细作用的芯是陶磁材料制成的,轴向开槽.制作工艺与现在的芯片衬底制造工艺完全兼容.这种热管导热系数比导热系数很高的金刚石还要好,更比现有的衬底材料导热系数导热系数好得多.笔记本电脑中的CPU冷却已有相当一部分用微型热管,一般直径3毫米左右,它与现有的风扇加热沉结构相比有明显的优点(见图8),针对电子冷却的特定要求,已开发了重力附助热管柔性回路热管,平板型电子冷却热管,微型空气对空气换热管等多种.直接埋入芯片硅衬底中的微型热管已经出现了,研究者把它称作“热播撒器”用来代替在集成电路中起导热作用的金刚石膜.图8笔记本电脑用热管散热器这种微型热管的体积已小到热管中蒸汽和液体界面尺寸跟热管的水力半径可比的程度.已开发了这种微型热管的稳态计算机模型以计算热管的传热量.© 1995-2006 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.260低温物理学报27卷3开发中的制冷技术3.1介观制冷器图9所示的是一个所谓介观制冷器,它厚度不足3mm但却包含了普通制冷装置中的压缩机、冷凝器、蒸发器、膨胀阀、控制器等所有部件,采用蒸汽压缩制冷循环,这可制成标准制冷模块,用于对任何表面式热源的制冷.图9介观制冷器(蒸汽压缩循环)图10是采用吸收式制冷原理的制冷器,它也具有普通吸收式制冷器的所有元件.图11是采用斯特林循环的介观制冷器,它包含压缩机、膨胀机、冷却器和相应的通道.工质总是以气体方式工作,不发生相变.以上这几种制冷器的压缩机、膨胀机、阀等运动部分都是采用微技术图10介观制冷器(吸收式循环)工艺制造,多数情况下采用硅材料制成.它们在MEMS、光电子器件,微电子器件冷却方面有广泛的用途.3.2热电子发射制冷技术固体受到加热内部电子的动能增大到一定程度时,一部分电子会克服逸出功而逸出,利用热电子发射原理制成的制冷器是全固态制冷器,甚至可以制成薄膜形式的制冷器.对膜薄式热电子发射制冷机已进行了大量的研究,因为它可以直接镀在光电子式微电子器件的表面,制造和使用都极图11介观制冷器(斯特林循环)为方便.热电子发射制冷与热电制冷(帕尔帖制冷)不同,后者是利用在不同材料组成的回路中© 1995-2006 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.3期陈登科:电子器件冷却技术261通直流电时会在其中接头处有吸热和放热现象的原理制成的.热电子发射制冷器效率可达长诺效率的60%~70%,而传统制冷方式只有30~50%,热电制冷器只有8%左右.在热电子发射制冷器中“,制冷工质”是质量电子,阴极和阳极被真空分开,当施加电压时,电子从阴极发射,穿过真空进入阳极.在阴极吸热,在阳极放热(见图12).热电子发射制冷管理与阴极射线管理是一样的,只是后者须将阴极加热到很高温度才能使用电子克服束发射出来,用的材料是通常功函数材料.而用作制冷时必须使用低功函数材料,使阴极在温度较低时也能发射电子(见图13).图12图134结论(1)电子冷却技术已得到了很大发展,为电子科技和产业发展奠定了基础;(2)为适应电子技术长足发展,已出现了许多新概念的冷却技术,其中微通道换热,微热管、微喷射、介观制冷器,微电子发射制冷器等已经或正在向成熟,它们对微电子技术的发展起着极为重要的推动作用.我们相信这些技术会更加完善提高,走向实用化和规模使用,同时还会出现更先进的冷却技术,以适应更先进的电子技术.© 1995-2006 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.262低温物理学报27卷NEWTECHNOLOGIESOFELECTRONICSCOOLINGCHENDENG2KEVacreeTechnologiesCo.,Ltd.,Hefei230043(Received15October,2004)Thispaperdiscussedtheelectronicsobjectsneedtobecoolingandcoolingmeth2ods.Somenew conceptcoolingmethodsandapparatus,suchasmicro2channel,inte2gratedheatcircuit,heatej ection,havebeenintroduced.Keywords:Electronics,CoolingPACC:7120© 1995-2006 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.。
电子元器件基础知识介绍PPT课件
三、电感
❖ 电感是用线圈制作的,它是由导线一圈一圈地绕在 绝缘管上,导线彼此相互绝缘,而绝缘管可以是空 心的,也可以包含铁芯或磁粉芯,简称电感。用 “L”表示,单位亨(H)、毫亨(mH)、微亨 (μH)。它的作用多是扼流滤波和滤除高频杂波, 它的外形有很多种:有的像电阻、有的像二极管、 有的一看上去就是线圈。
电子元器件知识简介
单志友
❖ 我们锐锢商城售后服务主要接触的是电焊 机、电动工具、空压机等电器设备的维修, 这些设备都离不开电子元器件;因此,学 习和掌握常用元器件的性能、用途、质量 判别方法,对提高维修能力将起重要的保 证作用。电阻、电容、电感、二极管、三 极管等都是电子电路常用的器件。
一、电阻
❖ 4,阻值和误差的标注方法
❖ 电容上数码标示479为47*10^(-1)=4.7pF。而标志是0或000的电 阻器,表示是跳线,阻值为0Ω。数码法标示时,电阻单位为欧 姆,电容单位为pF,电感一般不用数码标示。
❖ 阻值和误差的标注方法
❖ a.直标法—将电阻器的主要参数和技术性能用数字或字母直接 标注在电阻体上. eg: 5.1k Ω 5% 5.1k Ω J
❖ 4,电容器的主要参数和应用
❖ a.标称电容量(CR) 电容器产品标出的电容量值。 ❖ b.类别温度范围 电容器设计所确定的能连续工作的环境温度范围,该范围 取决于它相应类别的温度极限值,如上限类别温度、下限 类别温度、额定温度(可以连续施加额定电压的最高环境温 度)等。 ❖ c.额定电压(UR) 在下限类别温度和额定温度之间的任一温度下,可以连续 施加在电容器上的最大直流电压或最大交流电压的有效值 或脉冲电压的峰值。 ❖ d.损耗角正切(tanδ) 在规定频率的正弦电压下,电容器的损耗功率除以电容器 的无功功率。
现代电子器件的冷却知识讲解
一、笔记本电脑CPU的冷却
• 随着笔记本电脑性能的提高,其所采 用的部件运行频率越来越高,相应所产生 的热量也越来越大,使得系统稳定性大受 影响。现在竞争的战火已经燃烧到了笔记 本电脑相关的各个领域,厂商们为了在竞 争中胜出,都提高了笔记本电脑的技术含 量,尤其是在散热方面的技术,真所谓 “八仙过海,各显神通”。下面,我们就 来看看笔记本电脑CPU的散热技术。
这些损耗使芯片产生内部功率损耗即内损耗。内 损耗引起芯片温度升高,而芯片温度高低除与器件内 损耗大小有关外还与芯片到外界环境的传热结构、材 料和器件冷却方式以及环境温度等有关。器件的芯片 温度无论在稳态还是在瞬态都不允许超过器件的最高 允许结温,否则,将会引起器件电的或热的不稳定而 导致器件失效。因此设法减小器件的内部损耗、改善 传热条件,对保证器件长期可靠运行有极其重要的作 用。
•
晶体管的制工艺也是造成CPU发热的原因。
CPU内部核心由硅晶体管组成,硅晶体管的栅极
氧化物绝缘层制作得越薄,晶体管开关状态转换
速度越快的能耗,已经成为目前CPU 能耗的最大来源之一。
• 英特尔公司公司研制一种称为“高K栅极绝缘 体”的材料,这种新型晶体管的栅极电流泄漏会
• 笔记本电脑CPU的冷却已有相当一部分采 用微型热管解决,一般微型热管的直径为3 mm 左右,它与现有的风扇加热沉结构相比有明显 的优点。针对电子冷却的特定要求,现已开发 了重力辅助热管、柔性回路热管、平板型电子 冷却热管和微型空气对空气换热管等多种微型 管。直接埋入芯片硅衬底中的微型热管已经开 发,可代替在集成电路中起导热作用的金刚石 膜。
• 微热管是随着微电子技术的发展而发展起 来的一门新兴技术。随着电子元件集成密度的 增加,其产生热量的散逸变得困难。电子元件 除了对最高温度有要求外,对温度的均匀性也 提出了要求。作为一项很有发展前景的技术, 微型热管正是应用于电子元件中,以提高热量 的导出率和温度的均匀化。由于其尺寸小,可 减小流动系统中的无效体积,降低能耗和试剂 用量,而且响应快,因此有着广阔的应用前景。 例如,流体的微量配给、药物的微量注射、微 集成电路的冷却及微小卫星的推进等。
现代电子器件冷却方法课件
专门研究此类冷却系统的Cryotech公司,利用绝缘流体的沸腾冷却正处与开发、应用阶段。
但随着超大规模集成电路的发展,计算机芯片的功耗已经到了160W,热流密度已经到了100 W/cm2。
强
迫
空
气
冷
却
技
术
能够解决电子器件过热问题的热设计早已引起国内外研单位的高度重视,并且得到了很大的发展。
可见研制高效的冷却系统,满足高密度组装的结构形式,以获取更大的冷却能力,也越来越迫在眉睫。
强
迫 空
铝型材料电子散热器(片)
气
冷
却
技
术
在目前使用的冷却剂中要想完全满足上述的基本要求,还是比较困难的。
低温冷却技术(直接或间接相变冷却),为计算机冷却开辟了一个新领域,是在特定条件下提高机器性能的有效手段。
在IBM内部及由其资助的大学相变冷却的研究主要集中在防止或控制池沸热滞,扩大池沸热流密度,提高强制对流、向下流动的液膜
能够解决电子器件过热问题的热设计早已引起国内外研单位的高度重视,并且得到了很大的发展。
电子器件特征尺寸不断减小,芯片的集成度、封装密度以及工作频率不断提高,这些都使芯片的热流密度迅速升高。
低温冷却技术(直接或间接相变冷却),为计算机冷却开辟了一个新领域,是在特定条件下提高机器性能的有效手段。
在IBM内部及由其资助的大学相变冷却的研究主要集中在防止或控制池沸热滞,扩大池沸热流密度,提高强制对流、向下流动的液膜
热传送、液流沸腾、液流冲击。
在目前使用的冷却剂中要想完全满足上述的基本要求,还是比较困难的。
但随着超大规模集成电路的发展,计算机芯片的功耗已经到了160W,热流密度已经到了100 W/cm2。
能够解决电子器件过热问题的热设计早已引起国内外研单位的高度重视,并且得到了很大的发展。
冷却系统介绍ppt课件
最终实现增压空气的温度降低。
;.
15
导风罩结构及工作原理:
导风罩用来改善风扇效率,使尽可能多的冷却空气流经冷却模块,并使流经冷却模 块芯子的空气分配比较均匀,并限制发动机罩内空气的回流。目前导风罩主要有环 形导风罩、箱式导风罩及C型导风罩。
流速逐渐增大时,散热器的散热性能增加接近正比线性关系。散热器散热性能对外部空气流 速敏感。
;.
9
散热器的换热过程:
冷却液的循环将热量带出发动机; 经强制对流换热将热量传递到散热器散热管;
散热管经热传导将热量传递到散热管外壁及散 热带表面;
管、带表面经二次强制对流换热,将热量传递 到外界空气。
;.
7
铜散热器与铝散热器的对比: 铜散热器
铝散热器
软钎焊,焊接强度为8~10kg /mm2
硬钎焊,焊接强度为9.5~13kg /mm2
咬缝管,焊缝也采用软钎焊
铜散热器母材的熔点为1083℃,焊接材料 的熔点为450℃
高频焊管,焊缝强度甚至高于母材
铝散热器母材的熔点为660℃,焊接材料 的熔点为562-600℃
b. 护板为金属冲压成型,连接于上下水室 之间,与外围零部件相连接。
;.
3
散热器芯体由散热管及波形散热带组成,散热管为扁管并与 波形散热带相间地焊在一起
散热器芯子和水室是通过机械咬边的方式连接的,将主片城 墙咬紧水室边缘,促使主片凹槽内的EPDM橡胶压缩,从而达 到密封的效果;
;.
4
散热管种类及其排布方式:
环形导风罩及其安装
;.
16
箱式导风罩由三部分组成:护风圈、 橡胶密封圈、风扇护圈三部分。护 风圈固定在散热器上,风扇护圈固 定在发动机上,两者之间由橡胶密 封圈连接。由于风扇与风扇护圈都 固定于发动机上,处于同一振动激 励。导风罩与风扇之间不存在相互 运动风罩由C型护圈及矩形箱体组成,C型护圈与风扇环形结构配合,可以防止风扇后部
经典很全很全电子元器件知识讲解 ppt课件
4.封裝:表示电阻的形状体积的代号,例如: 1206, 0805,0603,0402, 0201。0603表示长,宽是 60Mil,30Mil. (1.6 x 0.8mm)
Mil密耳是英制长度单位(1mil=0.0254mm)
5.最高工作温度范围:Temperature operating max
PPT课件
15
电位器除了与电阻器一样有标称值(E6系列)、 额定功率和误差外,还有阻值的变化规律。所 谓变化规律是指轴的旋转角度与电阻值变化关 系的规律。
图1-1 电位器阻值随转角变化曲线
PPT课件
16
①直线型电位器(X):阻值随转轴角度均匀变化的。适用 于电阻值均匀调节的电路;如分压器、偏流调节电路,示波 器的聚焦电位器、万用表调零电位器,其线性精度为+2%、 +l%、+0.3%、+0.05%。 ②指数型电位器(Z):阻值开始时变化小,以后变化逐渐 加快,近似指数规律。适用于音量控制电路。如收音机、电 视机音量调节,其特点是,先细调后粗调。
缺点:有电感,体积大,不宜作
阻值较大的电阻。
PPT课件
10
排阻 排阻:又分并阻和串阻。并阻(RP)计
算方法如(471表示470Ω)。其內部
结构如图 1﹐所以说如果一个排阻是由n 个电阻构成的,那么它就有n+1只引脚, 一般来说,最左边的那个是公共引脚。
它在排阻上一般用一个带颜色点标出来。 串阻(RN)与并阻的区別是串阻的各个 R电P1 阻彼此分离﹐如图 2。
125 ℃.最高工作温度1P2P5T课度件 .
12
PPT课件
13
采用四位数表示:第一第二第三位为有效数, 第四位为有效数后“0”的个数。精密度为±1 % 如图电阻标示为“8222”,则该电阻为
第六章 电机的冷却 ppt课件
我们在研究流体运动时, —般都采用欧拉提出的连续性, 即流体是一种连续介质的假设,认为流体的分子之间没有空隙。 (二)流体的压缩性
根据流体在压力的作用下其体积改变的程度不同,流体可分为 可压缩的和不可压缩的两种。例如当压力从1个大气压增至100个 大气压时,水的体积只改变0.5%,而空气的体积 却几乎只有原来的1%。因此相对来说,空气是可压缩的流体, 而水是不可压缩的流体。但是在用空气作为冷却介质的电机中, 空气的流速不大,压力的变化也不大,体积的变化约为5%,在 这种条件下,也可把空气当作不可压缩的流体来处埋。
h
p
g
1 2
2g
C1
(6—8)
式(6-8)表示在运动过程中理想流体的全压头维持不变,但 静压头与动压头之间是可以互相转化的。例如,高压静止 的流体可以转化为低压高速的流体,反之亦然。
五、实际流体在管道中运动时的损耗
伯努利方程是对理想流体推导出来的,实际的流体总是存在
着粘滞性,管道对于流体也存在着各种形式的阻力,因此当流
七,流阻或风阻的串联和并联 气体通过管道时,一般要产生不止一种损耗,即经过
几个风阻,它们可能互相串联,并联或串并联。 在计算和研究通风问题时,往往用风阻联结图来代替
实在的管道,这种联结图称为风路图。如图
z1为入口风阻 z2为扩大风阻 z3为转弯风阻 z4为缩小风阻 z5为出口风阻 如果管道较长,还需要 考虑与管壁的摩擦,即 加上摩擦风阻z6(图中未 画出)。
(三)流体的粘滞性 所有的流体都不可避免具合一定的粘滞性,它表现为一种
电控发动机冷却系统PPT优秀课件
2.2.2 冷却液控制单元 ①作用 • 依据控制单元的指令改变冷 却液的循环路线 • 控制散热器中冷却液的流量 • 调节冷却强度
主要部件2-1
2.2 电控冷却系统的主要部件
2.2.1 冷却液分配单元体
2.2.2 冷却液控制单元 ①作用 • 依据控制单元的指令改变冷 却液的循环路线 • 控制散热器中冷却液的流量 • 调节冷却强度 ②安装位置
比较2-1
2.4.1 两个系统的区别 2.4.2 电控冷却系的特点
①改变了传统冷却系的循环 ②根据发动机的负荷控制冷却循环
③部分负荷时,获得良好的燃油经济性
比较22
2.4 两种系统的比较
2.4.1 两个系统的区别 2.4.2 电控冷却系的特点
①改变了传统冷却系的循环 ②根据发动机的负荷控制冷却循环
2.1.2 电控部分的组成
输入
处理
输出
电开传 位感 计关器
(控
微制
机 )
单 元
( 风 扇 )
执 行 器
主要部件1
2.2 电控冷却系统的主要部件 2.2.1 冷却液分配单元体
主要部件1-0
2.2 电控冷却系统的主要部件
2.2.1 冷却液分配单元体 ①作用 • 连接系统各用水部件 • 是相关部件安装的基础件
2.3 控制原理
2.3.1 特性图 2.3.2 实际调整值的确定 2.3.2 控制电路 ①冷却液温度传感器的
控制电路
控制原理0-6
2.3 控制原理
2.3.1 特性图 2.3.2 实际调整值的确定 2.3.2 控制电路 ①冷却液温度传感器的
控制电路
②风扇的控制电路
控制原理0-7
现代电子器件的冷却知识讲解
大幅减少,且从原极到漏极的电流泄漏也很低。 由于这种晶体管泄漏电流的减少,CPU能耗就可 以大幅度降低,相应的CPU发热量也就大大减少, CPU芯片中晶体管的运行速度也将大幅度提高。
二、电力电子器件的冷却
电力电子器件(Power Electronic Device)又称为功率半 导体器件,用于电能变换和电能控制电路中的大功率(通常指 电流为数十至数千安,电压为数百伏以上)电子器件。又称功 率电子器件。20世纪50年代,电力电子器件主要是汞弧闸流 管和大功率电子管。60年代发展起来的晶闸管,因其工作可 靠、寿命长、体积小、开关速度快,而在电力电子电路中得 到广泛应用。70年代初期,已逐步取代了汞弧闸流管。80年 代,普通晶闸管的开关电流已达数千安,能承受的正、反向 工作电压达数千伏。在此基础上,为适应电力电子技术发展 的需要,又开发出双向晶闸管、光控晶闸管、逆导晶闸管等 一系列派生器件,以及双极型功率晶体管、静电感应晶闸管、 功能组合模块和功率集成电路等新型电力电子器件。
CPU散热帮手—散热板
• 这是一种基本的散热方法。一般 来说,散热板面积越大,传导效 率越高,就越能有效散发热量。 比较常见的情况是在主机板的底 部和上部各配一块金属散热板; 在CPU的位置,有协助散热的 系统,以释放CPU产生的热量。 另外,和散热板结合使用的一种 十分普遍的技术,是在键盘的下 方放一块尺寸与和键盘基本相同 的薄散热铝板,在铝板上附有一 根高导热率的铜导管,它可以将 笔记本电脑内部主要发热区域的 热量均匀散布到整个铝板上,并 通过散热孔将热量散布到电脑外。
电子产品的热设计包括:线路设计、元件散热、电路 板散热设计、整机通风与散热设计。
电子产品中使用的电子元件的工作寿命与工作温度有
最直接的关系,从一般意义上来说,功率元件选择不当或 电子元器件的散热设计不良,是导致电子设备发生故障, 乃至永久失效的重要原因之一。