《结构力学习题集》(含答案)
结构力学-习题集(含答案)
《结构力教》课程习题集之阳早格格创做一、单选题1. 直矩图肯定爆收突变的截里是(D).A.有集结力效率的截里;B.剪力为整的截里;C.荷载为整的截里;D.有集结力奇效率的截里.2. 图示梁中C截里的直矩是(D).A.12kN.m(下推);B.3kN.m(上推);C.8kN.m(下推);D.11kN.m(下推).3. 静定结构有变温时,(C).A.无变形,无位移,无内力;B.有变形,有位移,有内力;C.有变形,有位移,无内力;D.无变形,有位移,无内力.4. 图示桁架a杆的内力是(D).A.2P;B.-2P;C.3P;D.-3P.5. 图示桁架,各杆EA 为常数,除收座链杆中,整杆数为( A ).A.四根;B.二根;C.一根;D.整根.6. 图示梁A 面的横背位移为(背下为正)( C ).A.)24/(3EI Pl ;B.)16/(3EI Pl ;C.)96/(53EI Pl ;D.)48/(53EI Pl .7. 静定结构的内力估计与( A ).无关;相对付值有关;千万于值有关;无关,I 有关.8. 图示桁架,整杆的数目为:(C ).;;;.9. 图示结构的整杆数目为(C ).;;;.10. 图示二结构及其受力状态,它们的内力切合(B ).A.直矩相共,剪力分歧;B.直矩相共,轴力分歧;C.直矩分歧,剪力相共;D.直矩分歧,轴力分歧.11. 刚刚结面正在结构爆收变形时的主要特性是(D ).A.各杆不妨绕结面结心自由转化;B.稳定形;C.各杆之间的夹角可任性改变;D.各杆之间的夹角脆持稳定.12. 若荷载效率正在静定多跨梁的基础部分上,附属部分上无荷载效率,则(B).A.基础部分战附属部分均有内力;B.基础部分有内力,附属部分不内力;C.基础部分无内力,附属部分有内力;D.不通过估计,无法推断.13. 图示桁架C 杆的内力是(A).A.P;B.-P/2;C.P/2;.14. 用单位荷载法供二截里的相对付转角时,所设单位荷载应是(D).A.一对付大小相等目标好异的集结荷载;B.集结荷载;C.直矩;D.一对付大小相等目标好异的力奇.15. 用图乘法供位移的需要条件之一是:(B).A.单位荷载下的直矩图为背去线;B.结构可分为等截里直杆段;C.所有杆件EI为常数且相共;D.结构必须是静定的.16. 普遍正在画制效率线时,所施加的荷载是一个(B).A.集结力奇;B.指背稳定的单位移动集结力;C.单位力奇;D.集结力.17. 下图中各图乘截止精确的是(D).A. B. C. D.S=y0 S=1y1+2y2 S=y0 S=y018. 图示伸臂梁,B收座左侧截里'B的剪力效率线精确的是(A).A. B.C. D.19. 利用机动法做静定梁效率线的本理是(A).A.真功本理;B.叠加本理;C.仄稳条件;D.变形条件.20. 图示伸臂梁的效率线为哪个量值的效率线(C).A.QA F左;B.QA F;C.QA F右;D.RA F.21. 图示结构,超静定次数为( B ).A.9;B.12;C.15;D.20.22. 力法圆程中的系数δki表示的是基础结构由(B).A.X i爆收的沿X k目标的位移;B.X i=1爆收的沿X k目标的位移;C.X i=1爆收的沿X i目标的位移;D.X k=1爆收的沿X i目标的位移.23. 对付称结构正在对付称荷载效率下,其(A).A.直矩图战轴力图对付称,剪力图阻挡付称,变形与位移对付称;B.直矩图战轴力图对付称,剪力图对付称;变形与位移阻挡付称;C.直矩图战轴力图对付称,剪力图对付称,变形与位移对付称;D.直矩图战轴力图对付称,剪力图阻挡付称,变形与位移阻挡付称.24. 力法的基础已知力是通过变形协做条件决定的,而位移法基础已知量是通过( A )条件决定的.A.仄稳;B.物理;C.图乘法;D.变形协做.25. 图示结构,超静定次数为(A).A.4;B.5;C.6;D.7.26. 图示结构的超静定次数为( C ).A.3;B.4;C.5;D.6.27. 挨启对接三个刚刚片的复铰,相称于去掉( C )个拘束?A.2;B.3;C.4;D.5.28. 图示结构C截里不为整的是( D ).A.横背位移;B.直矩;C.轴力;D.转角.29. 力法的基础已知量是( A ).A.多余已知力;B.收座反力;C.独力的结面线位移;D.角位移.30. 对付于下图所示结构,下列叙述精确的是( D ).A.A面线位移为整;B.AB杆无直矩;C. AB杆无剪力;D. AB杆无轴力.31. 位移法典范圆程中主系数一定( B ).A.等于整;B.大于整;C.小于整;D.大于等于整.32. 正在位移法中,将铰接端的角位移,滑动收撑端的线位移动做基础已知量( B ).A.千万于不可;B.不妨,但是不必;C.一定条件下不妨;D.必须.33. 估计刚刚架时,位移法的基础结构是( C ).A.单跨静定梁的集中体;B.静定刚刚架;C.单跨超静定梁的集中体;D.超静定铰结体.34. 正在位移法基础圆程中,k ij代表( A ).⊿j=1时,由于⊿j=1正在附加拘束i处爆收的拘束力;⊿i=1时,由于⊿i=1正在附加拘束j处爆收的拘束力;C.⊿j=1时,正在附加拘束j处爆收的拘束力;D.⊿i=1时,正在附加拘束i处爆收的拘束力.35. 位移法的基础已知量是( C ).A.收座反力;B.杆端直矩;C.独力的结面位移;D.多余已知力.二、推断题36. 有多余拘束的体系一定是几许稳定体系.(X)37. 形成二元体的链杆不妨是复链杆.(√)38. 每一个无铰启关框皆有3个多余拘束.(√)39. 如果体系的估计自由度等于其本量自由度,那么该体系不多余拘束.(√)40. 若体系的估计自由度小于大概等于整,则该体系一定是几许稳定体系.(X)41. 对付于静定结构,改变资料的本量大概者改变横截里的形状战尺寸,不会改变其内力分散,也不会改变其变形战位移.(X)42. 下图所示二相共的对付称刚刚架,启受的荷载分歧,但是二者的收座反力是相共的.(X)43. 温度改变,收座移动战制制缺面等果素正在静定结构中均引起内力.(X)44. 图示结构火仄杆件的轴力战直矩均为0.(X)45. 正在荷载效率下,刚刚架战梁的位移主假如由于各杆的蜿蜒变形引起.(√)46. 用机动法做得下图(a)所示结构Q左效率线如图(b)所示.b(X)47. 效率线的正背号仅表示本量的内力(大概反力)与假设的目标是可普遍.(√)48. 静定结构指定量值的效率线经常由直线段组成的合线,合面位于铰结面战欲供截里处.(√)49. 荷载的临界位子必定有一集结力效率正在效率线顶面,若有一集结力效率正在效率线顶面也必为一荷载的临界位子.(X)50. 一组集结移动荷载效率下,简收梁的千万于最大直矩不可能出当前跨中截里.(X)51. 力法的基础体系是不唯一的,且不妨是可变体系.(X)52. n次超静定结构,任性去掉n个多余拘束均可动做力法基础结构.(X)53. 图(a)对付称结构可简化为图(b)去估计.(X)54. 下图所示结构的超静定次数是n=8.(X)55. 超静定结构正在荷载效率下的内力估计与各杆刚刚度相对付值有关.(√)56. 超静定结构正在收座移动、温度变更效率下会爆收内力.(√)57. 超静定结构中的杆端力矩只与决于杆端位移.(X)58. 位移法的基础结构有多种采用.(X)59. 位移法是估计超静定结构的基础要领,不克不迭供解静定结构.(X)60. 位移法圆程的物理意思是结面位移的变形协做圆程.(X)三、估计题161. 供下图所示刚刚架的直矩图.62. 用结面法大概截里法供图示桁架各杆的轴力.63. 请用叠加法做下图所示静定梁的M 图.64. 做图示三铰刚刚架的直矩图.65. 做图示刚刚架的直矩图.四、估计题266. 用机动法做下图中E M 、L QB F 、R QB F 的效率线.67. 做图示结构F M 、QF F 的效率线.68. 用机动法做图示结构效率线L Q B F F M ,.69. 用机动法做图示结构R Q B C F M ,的效率线.70. 做图示结构QB F 、E M 、QE F 的效率线.五、估计题371. 用力法做下图所示刚刚架的直矩图.72. 用力法供做下图所示刚刚架的M 图.73. 利用力法估计图示结构,做直矩图.74. 用力法供做下图所示结构的M 图,EI=常数.75. 用力法估计下图所示刚刚架,做M 图.六、几许构制分解 76.77.78.79.80.81.82.83.84.85.七、估计题4(略)……问案一、单选题1. D2. D3. C4. D5. A6. C7. A8. C9. C10. B11. D12. B14. D15. B16. B17. D18. A19. A20. C21. B22. B23. A24. A25. A26. C27. C28. D29. A30. D31. B32. B34. A35. C二、推断题36. Х37.√38.√39.√40. Х41. Х42. Х43. Х44. Х45.Ö46. Х47.√48.√49. Х50. Х51. Х53. Х54. Х55.√56.√57. Х58. Х59. Х60. Х三、估计题161. 解:与完齐为钻研对付象,由0A M =∑,得2220yB xB aF aF qa +-= (1)(2分)与BC 部分为钻研对付象,由0C M =∑,得yB xB aF aF =,即yB xB F F =(2)(2分)由(1)、(2)联坐解得23xB yB F F qa ==(2分) 由0x F =∑有 20xA xB F qa F +-= 解得 43xA F qa =-(1分)由0y F =∑有 0yA yB F F += 解得 23yA yB F F qa =-=-(1分) 则2224222333D yB xB M aF aF qa qa qa =-=-=()(2分)直矩图(3分)62. 解:(1)推断整杆(12根).(4分)(2)节面法举止内力估计,截止如图.每个内力3分(3×3=9分)63. 解:(7分)(6分)64. 解:由0B M=∑,626P RA F F =⨯,即2P RA F F =(↓)(2分) 由0y F =∑,2P RB RA F F F ==(↑)(1分)与BE 部分为断绝体0E M =∑,66yB RBF F =即2P yB F F =(←)(2分) 由0x F =∑得2PyA F F =(←)(1分)故63DE DA yA PM M F F ===(内侧受推)(2分) 63CB CE yB P M M F F ===(中侧受推)(2分)(3分)65. 解:(1)供收座反力.对付完齐,由0x F =∑,xA F qa =(←)(2分)0A M =∑,22308RC F a qa qa ⨯--=,178RC F qa =(↑)(2分)(2)供杆端直矩.0AB DC M M ==(2分)2BA BC xA M M F a qa ==⨯=(内侧受推)(2分)2248CB CD a a qa M M q ==⨯⨯=(中侧受推)(2分) (3分)四、估计题266. 解:(1)C M 的效率线(4分)(2)L QB F 的效率线(4分)(2)R QB F 的效率线(4分)67. 解:(1)F M 的效率线(6分)(2)QF F 的效率线(6分)68. 解:F M 效率线(6分)L Q B F 效率线(6分)69. 解:Q Bc F M ,效率线(6分) R Q B c F M ,效率线(6分)70. 解:(1)QB F 的效率线.(4分)E M 的效率线.(4分)QE F 的效率线.(4分)五、估计题371. 解:(1)本结构为一次超静定结构,与基础体系如图(a )所示.(2分)(2)典型圆程11110P X δ+∆=(2分)(3)画制P M 、1M 分别如图(b )、(c )所示.(3分)(a ) (b )(c ) (d )(4)用图乘法供系数战自由项.333111433l l l EI EI δ=+=(2分)232112217()22336P l Pl Pl Pl l Pl EI EI-⨯∆=++⨯=-(2分) (5)解圆程得1178P X =(1分) (6)利用11P M M X M =+画制直矩图如图(d )所示.(2分)72. 解:1)采用基础体系(2分)那是一次超静定刚刚架,可去掉B 端火仄拘束,得到如下图所示的基础体系.2)列力法圆程(2分)3)画制基础体系的Mp 图战单位直矩图,估计系数、自由项(6分,Mp 图战单位直矩图各2分,系数每个1分,截止过失得一半分)解圆程得: 1128ql X =(1分) 做M 图:11PX MM M =+(3分) 73. 解:(2分) (3分)(1分)(2*4=8分)74. 解:与基础体系如图(2分)列力法基础圆程:11110p X δ+∆=(2分)1M 图(1.5分) p M 图(1.5分)3113l EI δ= (2分) 418p ql EI ∆=-(2分)代进力法圆程得 138ql X =(1分) M 图(2分)75. 解:(1)采用基础体系如图(a )所示(2分)(a )(2)列力法圆程.11112210P X X δδ++∆=(1分)21122220P X X δδ++∆=(1分) (3)分别做P M 、1M 战2M 图(1*3=3分) (4)供系数战自由项.2241111315()32428Pqa a qa a a a qa EI EI ∆=-⋅⋅⋅+⋅⋅=-⋅(1分) 422111()224P qa qa a a EI EI ∆=-⋅⋅⋅=-(1分)3111124()233a a a a a a a EI EIδ=⋅⋅⋅+⋅⋅=(1分) 322112()233a a a a EI EI δ=⋅⋅⋅=(分)3122111()22a a a a EI EI δδ==⋅⋅⋅=(分)将上述数据代进基础圆程得137X qa =,2328X qa =(1分)(5)利用叠加法做直矩图如图.(2分)六、几许构制分解76. 图中,刚刚片AB、BE、DC由不共线的三个铰B、D、E对接,组成一个大刚刚片,再战天基前提用不相接也不齐仄止的三链杆贯串,组成不多余拘束的几许稳定体系(5分).77. 如图所示的三个刚刚片通过不正在共背去线上的A、B、C三个铰二二贯串形成无多余拘束的夸大刚刚片,正在此前提上依次减少二元体(1,2)、(3,4)、(5,6)、(7,8)组成无多余拘束的几许稳定体系.(5分)78. 如图所示的三个刚刚片通过共背去线上的A、B、C三个铰二二贯串形成了瞬变体系.(5分)79. 如图刚刚片Ⅰ、Ⅱ、Ⅲ通过不共线的三铰二二贯串组成了无多余拘束的几许稳定体系.(5分)80. 如图依次裁撤二元体(1,2)、(3,4)、剩下刚刚片Ⅰ战天里刚刚片Ⅱ通过一铰战不过该铰的链杆组成了几许稳定体系,故本量系是无多余拘束的几许稳定体系.(5分)81. 如图刚刚片Ⅰ、Ⅱ、Ⅲ通过不共线的三铰二二贯串组成了无多余拘束的几许稳定体系.(5分)82. 如图刚刚片Ⅰ、Ⅱ、Ⅲ通过不共线的三铰二二贯串组成了无多余拘束的几许稳定体系.(5分)83. 如图以铰接三角形ABC为基础刚刚片,并依次减少二元体(1,2)、(3,4)、(5,6)、(7,8)、(9,10)产死夸大刚刚片,其战天里刚刚片通过铰A战节面B 处链杆组成了几许稳定体系,11杆为多余拘束,故本量系为含有1个多余拘束的几许稳定体系.(5分)84. 如图依次裁撤二元体(1,2)、(3,4)、(5,6),刚刚片Ⅱ战天里刚刚片Ⅰ通过相接于共一面的三根链杆组成了瞬变体系.(5分)85. 如图依次裁撤二元体(1,2)、(3,4)、(5,6)、(7,8)、(9,10)、(11,12)后只剩下天里刚刚片,故本量系是无多余拘束的几许稳定体系.(5分)七、估计题4(略)……。
同济大学推荐结构力学习题集 含答案
第一章 平面体系的几何组成分析
一、判断题:
1、在任意荷载下,仅用静力平衡方程即可确定全部反力和内力的体系是几何不变 体系。 2、图中链杆 1 和 2 的交点 O 可视为虚铰。
1
O
2
二、分析题:对下列平面体系进行几何组成分析。
3、
4、
C
B
D
C
B
D
A
5、
A
6、
A
B
A
B
C
D
E
7、
5
1
2
3
25、
26、
27、
28、
—— 3 ——
29、
《结构力学》习题集 (上册)
30、
31、
32、
33、
A
B
C
F D
E
三、在下列体系中添加支承链杆,使之成为无多余约束的几何不变体系。
34、
35、
第二章 静定结构内力计算
—— 4 ——
《结构力学》习题集 (上册)
一、判断题:
1、静定结构的全部内力及反力,只根据平衡条件求得,且解答是唯一的。
P
44、
ql
l
a
q
l
l
l
45、
46、
—— 9 ——
ql 2 l
《结构力学》习题集 (上册)
ql
3m
3m 10kN
3m
3m
47、
20kN 4× 2m=8m
48、
2m 2m
m C
EB 4m
D
2m A
4m
2m
49、
16kN . m
50、
结构力学习题集及答案
第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。
2、按虚力原理所建立的虚功方程等价于几何方程。
3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。
4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;;B.D.C.M =1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。
6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。
M kM p21y 1y 2**ωω( a )M 17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。
8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。
aa9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。
二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。
qlll /211、求图示静定梁D 端的竖向位移 ∆DV 。
EI = 常数 ,a = 2m 。
a a a10kN/m12、求图示结构E 点的竖向位移。
EI = 常数 。
ll l l /32 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。
求D 点的竖向位移。
P 3m3m3m14、求图示刚架B 端的竖向位移。
q15、求图示刚架结点C 的转角和水平位移,EI = 常数 。
q16、求图示刚架中D点的竖向位移。
EI =常数。
l ll/217、求图示刚架横梁中D点的竖向位移。
EI=常数。
18、求图示刚架中D点的竖向位移。
E I = 常数。
qll l/2219、求图示结构A、B两截面的相对转角,EI=常数。
l/23l/320、求图示结构A、B两点的相对水平位移,E I = 常数。
ll21、求图示结构B点的竖向位移,EI = 常数。
结构力学习题集
第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。
2、按虚力原理所建立的虚功方程等价于几何方程。
3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。
4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;;B.D.C.=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。
6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。
M kM p21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。
8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。
aa9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。
二、计算题:10、求图示结构铰A两侧截面的相对转角ϕA,EI = 常数。
ql l l/211、求图示静定梁D端的竖向位移∆DV。
EI = 常数,a = 2m 。
10kN/ma a a14、求图示刚架B端的竖向位移。
q15、求图示刚架结点C的转角和水平位移,EI = 常数。
q17、求图示刚架横梁中D点的竖向位移。
EI=常数。
21、求图示结构B点的竖向位移,EI = 常数。
l l23、求图示刚架C点的水平位移 CH,各杆EI = 常数。
4m4m3m2kN/m27、求图示桁架中D点的水平位移,各杆EA 相同。
aD30、求图示结构D点的竖向位移,杆AD的截面抗弯刚度为EI,杆BC的截面抗拉(压)刚度为EA。
a331、求图示结构D点的竖向位移,杆ACD的截面抗弯刚度为EI,杆BC抗拉刚度为EA 。
39、图示刚架杆件截面为矩形,截面厚度为h , h/l = 1/ 20 ,材料线膨胀系数为 α,求C 点的竖向位移。
CA-3-3+t+t ttl40、求图示结构B 点的水平位移。
结构力学习题集及答案
第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。
2、按虚力原理所建立的虚功方程等价于几何方程。
3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。
4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;;B.D.C.M =1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。
6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。
M kM p21y 1y 2**ωω( a )M 17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。
8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。
9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。
二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。
q11、求图示静定梁D 端的竖向位移 ∆DV 。
EI = 常数 ,a = 2m 。
10kN/m12、求图示结构E 点的竖向位移。
EI = 常数 。
ll l /32 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。
求D 点的竖向位移。
P14、求图示刚架B 端的竖向位移。
q15、求图示刚架结点C 的转角和水平位移,EI = 常数 。
q16、求图示刚架中D点的竖向位移。
EI =常数。
l/217、求图示刚架横梁中D点的竖向位移。
EI=常数。
18、求图示刚架中D点的竖向位移。
E I = 常数。
qll l/l/2219、求图示结构A、B两截面的相对转角,EI=常数。
l/23l/320、求图示结构A、B两点的相对水平位移,E I = 常数。
ll21、求图示结构B点的竖向位移,EI = 常数。
ll22、图示结构充满水后,求A 、B 两点的相对水平位移。
《结构力学习题集》(下)-结构的动力计算习题及答案
第九章 结构的动力计算一、判断题:1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。
2、仅在恢复力作用下的振动称为自由振动。
3、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。
4、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。
5、图示刚架不计分布质量和直杆轴向变形,图a 刚架的振动自由度为2,图b 刚架的振动自由度也为2。
6、图示组合结构,不计杆件的质量,其动力自由度为5个。
7、忽略直杆的轴向变形,图示结构的动力自由度为4个。
8、由于阻尼的存在,任何振动都不会长期继续下去。
9、设ωω,D 分别为同一体系在不考虑阻尼和考虑阻尼时的自振频率,ω与ωD 的关系为ωω=D 。
二、计算题:10、图示梁自重不计,求自振频率ω。
l l /411、图示梁自重不计,杆件无弯曲变形,弹性支座刚度为k ,求自振频率ω。
l /2l /212、求图示体系的自振频率ω。
l l0.5l 0.513、求图示体系的自振频率ω。
EI = 常数。
ll 0.514、求图示结构的自振频率ω。
l l15、求图示体系的自振频率ω。
EI =常数,杆长均为l 。
16、求图示体系的自振频率ω。
杆长均为l 。
17、求图示结构的自振频率和振型。
l /2l /2l /18、图示梁自重不计,W EI ==⨯⋅2002104kN kN m 2,,求自振圆频率ω。
B2m2m19、图示排架重量W 集中于横梁上,横梁EA =∞,求自振周期ω。
EIEIW20、图示刚架横梁∞=EI 且重量W 集中于横梁上。
求自振周期T 。
EIEIWEI 221、求图示体系的自振频率ω。
各杆EI = 常数。
a aa22、图示两种支承情况的梁,不计梁的自重。
求图a 与图b 的自振频率之比。
l /2l/2(a)l /2l /2(b)23、图示桁架在结点C 中有集中重量W ,各杆EA 相同,杆重不计。
求水平自振周期T 。
结构力学-习题集(含答案)
《结构力学》课程习题集西南科技大学成人、网络教育学院版权所有习题【说明】:本课程《结构力学》(编号为06014)共有单选题,判断题,计算题1,计算题2,计算题3,计算题4,几何构造分析等多种试题类型,其中,本习题集中有[计算题4]等试题类型未进入。
一、单选题1.弯矩图肯定发生突变的截面是()。
A.有集中力作用的截面;B.剪力为零的截面;C.荷载为零的截面;D.有集中力偶作用的截面。
2.图示梁中C截面的弯矩是()。
4m2m4mA.12kN.m(下拉);B.3kN.m(上拉);C.8kN.m(下拉);D.11kN.m(下拉)。
3.静定结构有变温时,()。
A.无变形,无位移,无内力;B.有变形,有位移,有内力;C.有变形,有位移,无内力;D.无变形,有位移,无内力。
4.图示桁架a杆的内力是()。
A.2P;B.-2P;C.3P;D.-3P。
5.图示桁架,各杆EA为常数,除支座链杆外,零杆数为()。
A.四根;B.二根;C.一根;D.零根。
Pal = a P PP66. 图示梁A 点的竖向位移为(向下为正)( )。
A.)24/(3EI Pl ;B.)16/(3EI Pl ;C.)96/(53EI Pl ;D.)48/(53EI Pl 。
PEI EI A l/l/2227. 静定结构的内力计算与( )。
A.EI 无关;B.EI 相对值有关;C.EI 绝对值有关;D.E 无关,I 有关。
8. 图示桁架,零杆的数目为:( )。
A.5;B.10;C.15;D.20。
9. 图示结构的零杆数目为( )。
A.5;B.6;C.7;D.8。
10. 图示两结构及其受力状态,它们的内力符合( )。
A.弯矩相同,剪力不同;B.弯矩相同,轴力不同;C.弯矩不同,剪力相同;D.弯矩不同,轴力不同。
PPll11. 刚结点在结构发生变形时的主要特征是( )。
A.各杆可以绕结点结心自由转动;B.不变形;C.各杆之间的夹角可任意改变;D.各杆之间的夹角保持不变。
《结构力学习题集》平面体系的几何组成分析附答案
平面体系的几何组成分析一、判断题:1、在任意荷载下,仅用静力平衡方程即可确定全部反力和内力的体系是几何不变体系。
2、图中链杆1和2的交点O 可视为虚铰。
O二、分析题:对下列平面体系进行几何组成分析。
3、 4、CDBCDB5、 6、A CDBEABCDE7、 8、ABCD GE FA BCDEFGHK11、 12、1234513、 14、15、 16、17、 18、1245321、 22、123456781234523、 24、12345625、 26、27、 28、31、32、33、BA CFDE三、在下列体系中添加支承链杆,使之成为无多余约束的几何不变体系。
34、35、平面体系的几何组成分析(参考答案)1、(O)2、(X)3、7、9、10、11、13、14、17、18、19、20、22、23、25、27、28、30、31、32、33、均是无多余约束的几何不变体系。
4、8、12、29、均是几何瞬变体系。
5、15、均是几何可变体系。
6、21、24、26、均是有一个多余约束的几何不变体系。
16、是有两个多余约束的几何不变体系。
《结构力学习题集》
第一章 平面体系的几何组成分析一、判断题:1、在任意荷载下,仅用静力平衡方程即可确定全部反力和内力的体系是几何不变体系。
2、图中链杆1和2的交点O 可视为虚铰。
O二、分析题:对下列平面体系进行几何组成分析。
3、 4、CDBCDB5、 6、A CDBEABCDE7、 8、ABCD GE FA BCDEFGHK11、 12、1234513、 14、15、 16、17、 18、1245321、 22、123456781234523、 24、12345625、 26、27、 28、31、32、33、BA CFDE三、在下列体系中添加支承链杆,使之成为无多余约束的几何不变体系。
34、35、第二章 静定结构内力计算一、判断题:1、静定结构的全部内力及反力,只根据平衡条件求得,且解答是唯一的。
2、静定结构受外界因素影响均产生内力,内力大小与杆件截面尺寸无关。
3、静定结构的几何特征是几何不变且无多余约束。
4、图(a)所示结构||M C =0。
aa(a)BCa aAϕ2a2 (b)5、图(b)所示结构支座A 转动ϕ角,M AB = 0, R C = 0。
6、荷载作用在静定多跨梁的附属部分时,基本部分一般内力不为零。
7、图(c)所示静定结构,在竖向荷载作用下,AB 是基本部分,BC 是附属部分。
ABC(c)8、图(d)所示结构B 支座反力等于P /2()↑。
(d)9、图(e)所示结构中,当改变B 点链杆的方向(不通过A 铰)时,对该梁的影响是轴力有变化。
AB(e)10、在相同跨度及竖向荷载下,拱脚等高的三铰拱,水平推力随矢高减小而减小。
11、图(f)所示桁架有9根零杆。
(f)a a a a(g)12、图(g)所示桁架有:N1=N2=N3= 0。
13、图(h)所示桁架DE杆的内力为零。
a a(h)(i)14、图(i)所示对称桁架在对称荷载作用下,其零杆共有三根。
15、图(j)所示桁架共有三根零杆。
(j)3m3m3m(k)16、图(k)所示结构的零杆有7根。
结构力学习题集及答案
第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。
2、按虚力原理所建立的虚功方程等价于几何方程。
3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只和杆件相对刚度有关。
4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:C A.;;C B.CD.M CC.=1=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。
6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。
Mk M p21y 1y 2**ωω ABP =1ϕ( a )A BCM =1δ(b)7、图a 、b 两种状态中,粱的转角ϕ和竖向位移δ间的关系为:δ=ϕ 。
8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。
BAaaaB9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。
二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。
qlll /2A11、求图示静定梁D 端的竖向位移 ∆DV 。
EI = 常数 ,a = 2m 。
a a a10kN/mD12、求图示结构E 点的竖向位移。
EI = 常数 。
ll l /32 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。
求D 点的竖向位移。
M CDAP B 3m3m3m14、求图示刚架B 端的竖向位移。
q lEI2EIAB15、求图示刚架结点C 的转角和水平位移,EI = 常数 。
lABC16、求图示刚架中D点的竖向位移。
EI = 常数 。
llPDl/217、求图示刚架横梁中D点的竖向位移。
EI = 常数 。
aD aa18、求图示刚架中D 点的竖向位移。
E I = 常数 。
qDlll/l/2219、求图示结构A、B两截面的相对转角,EI = 常数 。
(完整版)结构力学-习题集(含答案)
A.绝对不可; B.可以,但不必; C.一定条件下可以; D.必须。
33. 计算刚架时,位移法的基本结构是( C )。
A.单跨静定梁的集合体;
B.静定刚架;
C.单跨超静定梁的集合体; D.超静定铰结体。
34. 在位移法基本方程中,kij 代表( A )。
A.只有⊿j=1 时,由于⊿j=1 在附加约束 i 处产生的约束力;
54. 下图所示结构的超静定次数是 n=8。( X )
55. 超静定结构在荷载作用下的内力计算与各杆刚度相对值有关。( √ ) 56. 超静定结构在支座移动、温度变化影响下会产生内力。( √ ) 57. 超静定结构中的杆端力矩只取决于杆端位移。( X ) 58. 位移法的基本结构有多种选择。( X ) 59. 位移法是计算超静定结构的基本方法,不能求解静定结构。( X ) 60. 位移法方程的物理意义是结点位移的变形协调方程。( X )
由
Fy
0
, FRB
FRA
FP 2
( )(1
分)
取 BE 部分为隔离体
ME
0 , 6FyB
6FRB
即 FyB
FP 2
( )(2 分)
由
Fx
0
得
FyA
FP 2
(
)(1
分)
三、计算题 1 61. 解:
第 14 页 共 26 页
2qa2/3
q
D 2qa2/3 C
2qa2/3
B q(2a)2/8 = qa2/2
FxB
FxA A
FyB
FyA
取整体为研究对象,由 M A 0,得
2aFyB aFxB 2qa2 0 (1)(2 分)
取 BC 部分为研究对象,由 MC 0 ,得
结构力学课后练习题+答案
2cm
A CB 2cm 2cm
42、求图示结构 A 点竖向位移(向上为正) AV 。
M EI
EI A
a
EI
EI = ∞ 1
3 EI
K = a3
a
a
43、求图示结构 C 点水平位移 CH ,EI = 常数。
M B
2l
C 6 EI k=
l3
A l
44、求图示结构 D 点水平位移 DH 。EI= 常数。
a/ 2 D
a
A
c1
A'
a
B B'
aห้องสมุดไป่ตู้
c2
35、图示结构 B 支座沉陷 = 0.01m ,求 C 点的水平位移。
C l
A
B
l/2 l/2
—— 25 ——
《结构力学》习题集
36、结构的支座 A 发生了转角 和竖向位移 如图所示,计算 D 点的竖向位移。
A
D
l
l l/ 2
37、图示刚架 A 支座下沉 0.01l ,又顺时针转动 0.015 rad ,求 D 截面的角位移。
P
P
l
l
l
l
18、用力法计算图示结构并作弯矩图。
—— 31 ——
100 kN C EI
《结构力学》习题集
100 kN D
2 EI A
2 EI
4m
B
1m
6m
1m
19、已知 EI = 常数,用力法计算并作图示对称结构的 M 图。
q
q
EA=
l
l
l
20、用力法计算并作图示结构的 M 图。EI =常数。
a
P q
结构力学课后练习题+答案
第三章 静定结构的位移计算
一、判断题:
1、虚位移原理等价于变形谐调条件,可用于求体系的位移。 2、按虚力原理所建立的虚功方程等价于几何方程。 3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内 力,但会有位移且位移只与杆件相对刚度有关。 4、求图示梁铰 C 左侧截面的转角时,其虚拟状态应取:
P 2I
I
I
6m
2I
I
I
6m
8m
25、用力法计算图示结构并作 M 图。EI =常数。
20 kN
4m
3m
4m
3m
26、用力法计算图示结构并作 M 图。EI =常数。
P
P
l
l /2 l /2
l
l /2 l /2
27、利用对称性简化图示结构,建立力法基本结构(画上基本未知量)。E =常数。
—— 33 ——
B A
l
2l
23、求图示刚架 C 点的水平位移 CH ,各杆 EI = 常数 。
2kN/m C
3m
4m
4m
24、求图示刚架 B 的水平位移 BH ,各杆 EI = 常数 。
7kN/m
B
q
4m
3m 4m
25、求图示结构 C 截面转角。已知 :q=10kN/m , P=10kN , EI = 常数 。
8、用力法作图示结构的 M 图。
28 kN 3
C
4kN/m
EI 3m
A
EI
B
3m
9、用力法作图示排架的 M 图。已知 A = 0.2 m2 ,I = 0.05 m4 ,弹性模量为 E0 。
—— 29 ——
同济大学推荐结构力学习题集含答案
P 3m
2m
(j) 16、图(k)所示结构的零杆有 7 根。 17、图(l)所示结构中,CD 杆的内力 N1 = P 。
P PP
C
a
D 4a
(l)
18、图(m)所示桁架中,杆 1 的轴力为 0。
P
3m
3m
3m (k)
P P/2 P /2
1
4a
(m)
—— 6 ——
《结构力学》习题集 (上册)
二、作图题:作出下列结构的弯矩图(组合结构要计算链杆轴力)。
M =1
A.
B.
C
;
C
M =1
M =1
C.
C
D. ;
C
5、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形 体系。
6、已知 M p 、 M k 图,用图乘法求位移的结果为: (ω 1 y1 + ω 2 y2 ) / ( EI ) 。
ω 1
Mp * ω2*
y 2
y 1
Mk
P =1
A
26、
4m 2m 2m q
2a
28、
a 2a
a
P a
aa
29、
30、
—— 7 ——
《结构力学》习题集 (上册)
m0
a
a
P
P
a
a a/2 a/2
a
a /2 a /2
31、
P
q = P/a
P
B
A
aa
a 1.5 a 1.5 a
33、
m
l
l
l
l
35、
40kN/m
CD
3m
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。
2、按虚力原理所建立的虚功方程等价于几何方程。
3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。
4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;;B.D.C.=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。
6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。
M kM p21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。
8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。
9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。
二、计算题:10、求图示结构铰A两侧截面的相对转角ϕA,EI = 常数。
q11、求图示静定梁D端的竖向位移∆DV。
EI = 常数,a = 2m 。
10kN/m12、求图示结构E点的竖向位移。
EI = 常数。
q13、图示结构,EI=常数,M=⋅90kN m, P = 30kN。
求D点的竖向位移。
P14、求图示刚架B端的竖向位移。
q15、求图示刚架结点C的转角和水平位移,EI = 常数。
q16、求图示刚架中D点的竖向位移。
EI = 常数 。
l/217、求图示刚架横梁中D点的竖向位移。
EI = 常数 。
18、求图示刚架中D 点的竖向位移。
E I = 常数 。
qlll/219、求图示结构A、B两截面的相对转角,EI = 常数 。
l/23l/320、求图示结构A 、B 两点的相对水平位移,E I = 常数。
21、求图示结构B 点的竖向位移,EI = 常数 。
ll22、图示结构充满水后,求A 、B 两点的相对水平位移。
E I = 常数 ,垂直纸面取1 m 宽,水比重近似值取10 kN / m 3。
23、求图示刚架C 点的水平位移 ∆CH ,各杆EI = 常数 。
4m3m 2kN/m24、求图示刚架B 的水平位移 ∆BH ,各杆 EI = 常数 。
3m 4m4mq7kN/m25、求图示结构C 截面转角。
已知 :q=10kN/m , P =10kN , EI = 常数 。
P26、求图示刚架中铰C两侧截面的相对转角。
27、求图示桁架中D点的水平位移,各杆EA 相同。
D28、求图示桁架A、B两点间相对线位移∆AB,EA=常数。
a一a一a一29、已知babauuuu]2/)([sindcossin2⎰=,求圆弧曲梁B点的水平位移,EI=常数。
ABR30、求图示结构D点的竖向位移,杆AD的截面抗弯刚度为EI,杆BC的截面抗拉(压)刚度为EA。
a331、求图示结构D点的竖向位移,杆ACD的截面抗弯刚度为EI,杆BC抗拉刚度为EA 。
32、求图示结构S杆的转角ϕS。
( EI = 常数,EA EI a=/2)。
aaa a33、刚架支座移动与转动如图,求D点的竖向位移。
/40034、刚架支座移动如图,c1= a / 2 0 0 ,c2= a /3 0 0 ,求D点的竖向位移。
35、图示结构B支座沉陷∆= 0.01m ,求C点的水平位移。
36、结构的支座A 发生了转角θ和竖向位移∆如图所示,计算D 点的竖向位移。
θADl/ll 237、图示刚架A 支座下沉 0.01l ,又顺时针转动 0.015 rad ,求D 截面的角位移。
D0.015radAh0.01lll38、图示桁架各杆温度均匀升高t oC ,材料线膨胀系数为α,求C 点的竖向位移。
a39、图示刚架杆件截面为矩形,截面厚度为h , h/l = 1/ 20 ,材料线膨胀系数为 α,求C点的竖向位移。
CA-3-3+t+t t tl40、求图示结构B 点的水平位移。
已知温变化t 110=℃,t 220=℃ ,矩形截面高h=0.5m ,线膨胀系数a = 1 / 105。
t 1t 2t 4mB141、图示桁架由于制造误差,AE 长了1cm ,BE 短了1 cm ,求点E 的竖向位移。
A CB E2cm42、求图示结构A 点竖向位移(向上为正)∆AV 。
A43、求图示结构C 点水平位移∆CH ,EI = 常数。
2EI l 3=644、求图示结构D 点水平位移 ∆DH 。
EI= 常数。
l EI l =33lk45、BC 为一弹簧,其抗压刚度为 k ,其它各杆EA = 常数,求A 点的竖向位移。
第四章超静定结构计算——力法一、判断题:1、判断下列结构的超静定次数。
(1)、(2)、(a)(b)(3)、(4)、(5)、(6)、(7)、(a)(b)2、力法典型方程的实质是超静定结构的平衡条件。
3、超静定结构在荷载作用下的反力和内力,只与各杆件刚度的相对数值有关。
4、在温度变化、支座移动因素作用下,静定与超静定结构都有内力。
=。
5、图a结构,取图b为力法基本结构,则其力法方程为δ111X c(a)(b)X16、图a 结构,取图b 为力法基本结构,h 为截面高度,α为线膨胀系数,典型方程中∆12122t a t t l h =--()/()。
t 21t l Ah(a)(b)X 17、图a 所示结构,取图b 为力法基本体系,其力法方程为。
(a)(b)1二、计算题:8、用力法作图示结构的M 图。
3mm9、用力法作图示排架的M 图。
已知 A = 0.2m 2,I = 0.05m 4,弹性模量为E 0。
q10、用力法计算并作图示结构M 图。
EI =常数。
a a11、用力法计算并作图示结构的M 图。
ql /212、用力法计算并作图示结构的M 图。
q 3 m 4 m13、用力法计算图示结构并作出M 图。
E I 常数。
(采用右图基本结构。
)l 2/3l /3/3l /314、用力法计算图示结构并作M图。
EI =常数。
3m3m15、用力法计算图示结构并作M 图。
EI =常数。
2m2m 2m2m16、用力法计算图示结构并作M 图。
EI =常数。
l lql l17、用力法计算并作图示结构M 图。
E I =常数。
18、用力法计算图示结构并作弯矩图。
161kN m m m m19、已知EI = 常数,用力法计算并作图示对称结构的M 图。
l l20、用力法计算并作图示结构的M 图。
EI =常数。
a a21、用力法作图示结构的 M 图 。
EI = 常数。
2q l22、用力法作M 图。
各杆EI 相同,杆长均为 l 。
23、用力法计算图示结构并作M 图。
EI = 常数。
4m 2kN24m mm24、用力法计算并作出图示结构的M 图。
E = 常数。
25、用力法计算图示结构并作M 图。
EI =常数。
20kN3m 4m 3m26、用力法计算图示结构并作M 图。
EI =常数。
ll /2l /2l /2l /227、利用对称性简化图示结构,建立力法基本结构(画上基本未知量)。
E =常数。
l l28、用力法计算图示结构并作M 图。
E =常数。
ll l /2/2/229、已知EA 、EI 均为常数,用力法计算并作图示结构M 图。
l l30、求图示结构A 、D 两固定端的固端力矩,不考虑轴力、剪力的影响。
ll /231、选取图示结构的较简便的力法基本结构。
EI =常数。
6m 6m32、选择图示结构在图示荷载作用下,用力法计算时的最简便的基本结构。
P33、用力法求图示桁架杆AC 的轴力。
各杆EA 相同。
a D34、用力法求图示桁架杆BC 的轴力,各杆EA 相同。
a D35、用力法计算图示桁架中杆件1、2、3、4的内力,各杆EA 常数。
d d d36、用力法求图示桁架DB 杆的内力。
各杆EA 相同。
4 m 4 m 4 m4 m37、用力法作图示结构杆AB 的M 图。
各链杆抗拉刚度EA 1相同。
梁式杆抗弯刚度为EI EI a EA ,=21100,不计梁式杆轴向变形。
a38、用力法计算并作出图示结构的M 图。
已知EI =常数,EA =常数。
a a a a a39、用力法计算并作图示结构M 图,其中各受弯杆EI=常数,各链杆EA EI l =()42。
40、图示结构支座A 转动θ,EI =常数,用力法计算并作M 图。
l A θ41、图a 所示结构EI =常数,取图b 为力法基本结构列出典型方程并求∆1c 和∆2c 。
lc (a)c(b)42、用力法计算图示超静定梁并作M 图。
E =常数。
l /2=1I2ϕI l /243、用力法计算并作图示结构由支座移动引起的M 图。
EI =常数。
cl l l44、用力法计算并作图示结构由支座移动引起的M 图。
EI =常数。
l /245、用力法作图示结构的M 图。
EI =常数,截面高度h 均为1m ,t = 20℃,+t 为温度升高,-t 为温度降低,线膨胀系数为α。
6m -t +t -t46、用力法计算图示结构由于温度改变引起的M 图。
杆件截面为矩形,高为h ,线膨胀系数为α。
l EI+10-10CC47、用力法计算并作图示结构的M 图,已知:α=0.00001及各杆矩形截面高h EI ==⨯⋅0321052.,m kN m 。
6m +10EI +30+10C CC EI48、图示连续梁,线膨胀系数为α,矩形截面高度为h ,在图示温度变化时,求M B 的值。
EI 为常数。
l CCl -10+20B C -1049、已知EI =常数,用力法计算,并求解图示结构由于AB 杆的制造误差(短∆)所产生的M 图。
aa /2/2ABEA=o o50、求图示单跨梁截面C 的竖向位移∆C V 。
l l /2/251、图示等截面梁AB ,当支座A 转动θA ,求梁的中点挠度f C 。
l θC EI BA f C/2l /2A52、用力法计算并作图示结构M 图。
E I =常数,K EI l ϕ=。
53、图b 为图a 所示结构的M 图,求B 点的竖向位移。
EI 为常数。
ql ql 23ql 26ql 28(a) (b) M 图54、求图示结构中支座E 的反力R E ,弹性支座A 的转动刚度为k 。
ll l55、用力法作图示梁的M 图。
EI =常数,已知B 支座的弹簧刚度为k 。
B Al1k=EI/l356、用力法计算图示结构并作M 图。
EI =常数,k EIa353。
aa第五章 超静定结构计算——位移法一、判断题:1、判断下列结构用位移法计算时基本未知量的数目。
(1) (2) (3)(4) (5) (6)EIEIEIEI 2EI EI EIEIEA EA ab EI=EI=EI=244422、位移法求解结构内力时如果P M 图为零,则自由项1P R 一定为零。
3、位移法未知量的数目与结构的超静定次数有关。