算法设计与分析实验报告

合集下载

算法设计与分析的实验报告

算法设计与分析的实验报告

实验一递归与分治策略一、实验目的1.加深学生对分治法算法设计方法的基本思想、基本步骤、基本方法的理解与掌握;2.提高学生利用课堂所学知识解决实际问题的能力;3.提高学生综合应用所学知识解决实际问题的能力。

二、实验内容1、①设a[0:n-1]是已排好序的数组。

请写二分搜索算法,使得当搜索元素x不在数组中时,返回小于x的最大元素位置i和大于x的最小元素位置j。

当搜索元素在数组中时,i和j相同,均为x在数组中的位置。

②写出三分搜索法的程序。

三、实验要求(1)用分治法求解上面两个问题;(2)再选择自己熟悉的其它方法求解本问题;(3)上机实现所设计的所有算法;四、实验过程设计(算法设计过程)1、已知a[0:n-1]是一个已排好序的数组,可以采用折半查找(二分查找)算法。

如果搜索元素在数组中,则直接返回下表即可;否则比较搜索元素x与通过二分查找所得最终元素的大小,注意边界条件,从而计算出小于x的最大元素的位置i和大于x的最小元素位置j。

2、将n个元素分成大致相同的三部分,取在数组a的左三分之一部分中继续搜索x。

如果x>a[2(n-1)/3],则只需在数组a的右三分之一部分中继续搜索x。

上述两种情况不成立时,则在数组中间的三分之一部分中继续搜索x。

五、实验结果分析二分搜索法:三分搜索法:时间复杂性:二分搜索每次把搜索区域砍掉一半,很明显时间复杂度为O(log n)。

(n代表集合中元素的个数)三分搜索法:O(3log3n)空间复杂度:O(1)。

六、实验体会本次试验解决了二分查找和三分查找的问题,加深了对分治法的理解,收获很大,同时我也理解到学习算法是一个渐进的过程,算法可能一开始不是很好理解,但是只要多看几遍,只看是不够的还要动手分析一下,这样才能学好算法。

七、附录:(源代码)二分搜索法:#include<iostream.h>#include<stdio.h>int binarySearch(int a[],int x,int n){int left=0;int right=n-1;int i,j;while(left<=right){int middle=(left+right)/2;if(x==a[middle]){i=j=middle;return 1;}if(x>a[middle])left=middle+1;else right=middle-1;}i=right;j=left;return 0;}int main(){ int a[10]={0,1,2,3,4,5,6,7,8,9};int n=10;int x=9;if(binarySearch(a,x,n))cout<<"找到"<<endl;elsecout<<"找不到"<<endl;return 0;}实验二动态规划——求解最优问题一、实验目的1.加深学生对动态规划算法设计方法的基本思想、基本步骤、基本方法的理解与掌握;2.提高学生利用课堂所学知识解决实际问题的能力;3.提高学生综合应用所学知识解决实际问题的能力。

算法设计与分析实验报告三篇

算法设计与分析实验报告三篇

算法设计与分析实验报告一实验名称统计数字问题评分实验日期2014 年11 月15 日指导教师姓名专业班级学号一.实验要求1、掌握算法的计算复杂性概念。

2、掌握算法渐近复杂性的数学表述。

3、掌握用C++语言描述算法的方法。

4.实现具体的编程与上机实验,验证算法的时间复杂性函数。

二.实验内容统计数字问题1、问题描述一本书的页码从自然数1 开始顺序编码直到自然数n。

书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。

例如,第6 页用数字6 表示,而不是06 或006 等。

数字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1,2, (9)2、编程任务给定表示书的总页码的10 进制整数n (1≤n≤109) 。

编程计算书的全部页码中分别用到多少次数字0,1,2, (9)三.程序算法将页码数除以10,得到一个整数商和余数,商就代表页码数减余数外有多少个1—9作为个位数,余数代表有1—余数本身这么多个数作为剩余的个位数,此外,商还代表1—商本身这些数出现了10次,余数还代表剩余的没有计算的商的大小的数的个数。

把这些结果统计起来即可。

四.程序代码#include<iostream.h>int s[10]; //记录0~9出现的次数int a[10]; //a[i]记录n位数的规律void sum(int n,int l,int m){ if(m==1){int zero=1;for(int i=0;i<=l;i++) //去除前缀0{ s[0]-=zero;zero*=10;} }if(n<10){for(int i=0;i<=n;i++){ s[i]+=1; }return;}//位数为1位时,出现次数加1//位数大于1时的出现次数for(int t=1;t<=l;t++)//计算规律f(n)=n*10^(n-1){m=1;int i;for(i=1;i<t;i++)m=m*10;a[t]=t*m;}int zero=1;for(int i=0;i<l;i++){ zero*= 10;} //求出输入数为10的n次方int yushu=n%zero; //求出最高位以后的数int zuigao=n/zero; //求出最高位zuigaofor(i=0;i<zuigao;i++){ s[i]+=zero;} //求出0~zuigao-1位的数的出现次数for(i=0;i<10;i++){ s[i]+=zuigao*a[l];} //求出与余数位数相同的0~zuigao-1位中0~9出现的次数//如果余数是0,则程序可结束,不为0则补上所缺的0数,和最高位对应所缺的数if(yushu==0) //补上所缺的0数,并且最高位加1{ s[zuigao]++;s[0]+=l; }else{ i=0;while((zero/=10)>yushu){ i++; }s[0]+=i*(yushu+1);//补回因作模操作丢失的0s[zuigao]+=(yushu+1);//补回最高位丢失的数目sum(yushu,l-i-1,m+1);//处理余位数}}void main(){ int i,m,n,N,l;cout<<"输入数字要查询的数字:";cin>>N;cout<<'\n';n = N;for(i=0;n>=10;i++){ n/=10; } //求出N的位数n-1l=i;sum(N,l,1);for(i=0; i<10;i++){ cout<< "数字"<<i<<"出现了:"<<s[i]<<"次"<<'\n'; }}五.程序调试中的问题调试过程,页码出现报错。

《算法设计与分析》实验报告实验一...

《算法设计与分析》实验报告实验一...

《算法设计与分析》实验报告实验一递归与分治策略应用基础学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期第九周一、实验目的1、理解递归的概念和分治法的基本思想2、了解适用递归与分治策略的问题类型,并能设计相应的分治策略算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:以下题目要求应用递归与分治策略设计解决方案,本次实验成绩按百分制计,完成各小题的得分如下,每小题要求算法描述准确且程序运行正确。

1、求n个元素的全排。

(30分)2、解决一个2k*2k的特殊棋牌上的L型骨牌覆盖问题。

(30分)3、设有n=2k个运动员要进行网球循环赛。

设计一个满足要求的比赛日程表。

(40分)提交结果:算法设计分析思路、源代码及其分析说明和测试运行报告。

三、设计分析四、算法描述及程序五、测试与分析六、实验总结与体会#include "iostream"using namespace std;#define N 100void Perm(int* list, int k, int m){if (k == m){for (int i=0; i<m; i++)cout << list[i] << " ";cout << endl;return;}else{for (int i=m; i<k; i++){swap(list[m], list[i]);Perm(list, k, m+1);swap(list[m], list[i]);}}}void swap(int a,int b){int temp;temp=a;a=b;b=temp;}int main(){int i,n;int a[N];cout<<"请输入排列数据总个数:";cin>>n;cout<<"请输入数据:";for(i=0;i<n;i++){cin>>a[i];}cout<<"该数据的全排列:"<<endl;Perm(a,n,0);return 0;}《算法设计与分析》实验报告实验二递归与分治策略应用提高学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期一、实验目的1、深入理解递归的概念和分治法的基本思想2、正确使用递归与分治策略设计相应的问题的算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:从以下题目中任选一题完成,要求应用递归与分治策略设计解决方案。

算法课设实验报告(3篇)

算法课设实验报告(3篇)

第1篇一、实验背景与目的随着计算机技术的飞速发展,算法在计算机科学中扮演着至关重要的角色。

为了加深对算法设计与分析的理解,提高实际应用能力,本实验课程设计旨在通过实际操作,让学生掌握算法设计与分析的基本方法,学会运用所学知识解决实际问题。

二、实验内容与步骤本次实验共分为三个部分,分别为排序算法、贪心算法和动态规划算法的设计与实现。

1. 排序算法(1)实验目的:熟悉常见的排序算法,理解其原理,比较其优缺点,并实现至少三种排序算法。

(2)实验内容:- 实现冒泡排序、快速排序和归并排序三种算法。

- 对每种算法进行时间复杂度和空间复杂度的分析。

- 编写测试程序,对算法进行性能测试,比较不同算法的优劣。

(3)实验步骤:- 分析冒泡排序、快速排序和归并排序的原理。

- 编写三种排序算法的代码。

- 分析代码的时间复杂度和空间复杂度。

- 编写测试程序,生成随机测试数据,测试三种算法的性能。

- 比较三种算法的运行时间和内存占用。

2. 贪心算法(1)实验目的:理解贪心算法的基本思想,掌握贪心算法的解题步骤,并实现一个贪心算法问题。

(2)实验内容:- 实现一个贪心算法问题,如活动选择问题。

- 分析贪心算法的正确性,并证明其最优性。

(3)实验步骤:- 分析活动选择问题的贪心策略。

- 编写贪心算法的代码。

- 分析贪心算法的正确性,并证明其最优性。

- 编写测试程序,验证贪心算法的正确性。

3. 动态规划算法(1)实验目的:理解动态规划算法的基本思想,掌握动态规划算法的解题步骤,并实现一个动态规划算法问题。

(2)实验内容:- 实现一个动态规划算法问题,如背包问题。

- 分析动态规划算法的正确性,并证明其最优性。

(3)实验步骤:- 分析背包问题的动态规划策略。

- 编写动态规划算法的代码。

- 分析动态规划算法的正确性,并证明其最优性。

- 编写测试程序,验证动态规划算法的正确性。

三、实验结果与分析1. 排序算法实验结果:- 冒泡排序:时间复杂度O(n^2),空间复杂度O(1)。

算法分析与设计实验报告合并排序快速排序

算法分析与设计实验报告合并排序快速排序

算法分析与设计实验报告:合并排序与快速排序一、引言算法是计算机科学中非常重要的一部分,它涉及到解决问题的方法和步骤。

合并排序和快速排序是两种经典而常用的排序算法。

本文将对这两种排序算法进行分析和设计实验,通过对比它们的性能和效率,以期得出最优算法。

二、合并排序合并排序是一种分治算法,它将原始数组不断分解为更小的数组,直到最后细分为单个元素。

然后,再将这些单个元素两两合并,形成一个有序数组。

合并排序的核心操作是合并两个有序的数组。

1. 算法步骤(1)将原始数组分解为更小的子数组,直到每个子数组只有一个元素;(2)两两合并相邻的子数组,同时进行排序,生成新的有序数组;(3)重复步骤(2),直到生成最终的有序数组。

2. 算法性能合并排序的最优时间复杂度为O(nlogn),其中n为待排序数组的长度。

无论最好情况还是最坏情况,合并排序的复杂度都相同。

合并排序需要额外的存储空间来存储临时数组,所以空间复杂度为O(n)。

三、快速排序快速排序也是一种分治算法,它将原始数组根据一个主元(pivot)分成两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元。

然后,递归地对这两个子数组进行排序,最后得到有序数组。

快速排序的核心操作是划分。

1. 算法步骤(1)选择一个主元(pivot),可以是随机选择或者固定选择第一个元素;(2)将原始数组根据主元划分为两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元;(3)递归地对这两个子数组进行快速排序;(4)重复步骤(2)和(3),直到每个子数组只有一个元素,即得到最终的有序数组。

2. 算法性能快速排序的平均时间复杂度为O(nlogn),其中n为待排序数组的长度。

最坏情况下,当每次选择的主元都是最小或最大元素时,时间复杂度为O(n^2)。

快速排序是原地排序,不需要额外的存储空间,所以空间复杂度为O(1)。

四、实验设计为了验证合并排序和快速排序的性能和效率,我们设计以下实验:1. 实验目的:比较合并排序和快速排序的时间复杂度和空间复杂度。

算法分析与设计实验报告

算法分析与设计实验报告

算法分析与设计实验报告算法分析与设计实验报告一、引言算法是计算机科学的核心,它们是解决问题的有效工具。

算法分析与设计是计算机科学中的重要课题,通过对算法的分析与设计,我们可以优化计算机程序的效率,提高计算机系统的性能。

本实验报告旨在介绍算法分析与设计的基本概念和方法,并通过实验验证这些方法的有效性。

二、算法分析算法分析是评估算法性能的过程。

在实际应用中,我们常常需要比较不同算法的效率和资源消耗,以选择最适合的算法。

常用的算法分析方法包括时间复杂度和空间复杂度。

1. 时间复杂度时间复杂度衡量了算法执行所需的时间。

通常用大O表示法表示时间复杂度,表示算法的最坏情况下的运行时间。

常见的时间复杂度有O(1)、O(log n)、O(n)、O(n log n)和O(n^2)等。

其中,O(1)表示常数时间复杂度,O(log n)表示对数时间复杂度,O(n)表示线性时间复杂度,O(n log n)表示线性对数时间复杂度,O(n^2)表示平方时间复杂度。

2. 空间复杂度空间复杂度衡量了算法执行所需的存储空间。

通常用大O表示法表示空间复杂度,表示算法所需的额外存储空间。

常见的空间复杂度有O(1)、O(n)和O(n^2)等。

其中,O(1)表示常数空间复杂度,O(n)表示线性空间复杂度,O(n^2)表示平方空间复杂度。

三、算法设计算法设计是构思和实现算法的过程。

好的算法设计能够提高算法的效率和可靠性。

常用的算法设计方法包括贪心算法、动态规划、分治法和回溯法等。

1. 贪心算法贪心算法是一种简单而高效的算法设计方法。

它通过每一步选择局部最优解,最终得到全局最优解。

贪心算法的时间复杂度通常较低,但不能保证得到最优解。

2. 动态规划动态规划是一种将问题分解为子问题并以自底向上的方式求解的算法设计方法。

它通过保存子问题的解,避免重复计算,提高算法的效率。

动态规划适用于具有重叠子问题和最优子结构的问题。

3. 分治法分治法是一种将问题分解为更小规模的子问题并以递归的方式求解的算法设计方法。

算法与分析实验报告

算法与分析实验报告

算法与分析实验报告一、引言算法是现代计算机科学中的核心概念,通过合理设计的算法可以解决复杂的问题,并提高计算机程序的执行效率。

本次实验旨在通过实际操作和数据统计,对比分析不同算法的执行效率,探究不同算法对于解决特定问题的适用性和优劣之处。

二、实验内容本次实验涉及两个经典的算法问题:排序和搜索。

具体实验内容如下:1. 排序算法- 冒泡排序- 插入排序- 快速排序2. 搜索算法- 顺序搜索- 二分搜索为了对比不同算法的执行效率,我们需要设计合适的测试用例并记录程序执行时间进行比较。

实验中,我们将使用随机生成的整数数组作为排序和搜索的测试数据,并统计执行时间。

三、实验步骤1. 算法实现与优化- 实现冒泡排序、插入排序和快速排序算法,并对算法进行优化,提高执行效率。

- 实现顺序搜索和二分搜索算法。

2. 数据生成- 设计随机整数数组生成函数,生成不同大小的测试数据。

3. 实验设计- 设计实验方案,包括测试数据的规模、重复次数等。

4. 实验执行与数据收集- 使用不同算法对随机整数数组进行排序和搜索操作,记录执行时间。

- 多次重复同样的操作,取平均值以减小误差。

5. 数据分析与结果展示- 将实验收集到的数据进行分析,并展示在数据表格或图表中。

四、实验结果根据实验数据的收集与分析,我们得到以下结果:1. 排序算法的比较- 冒泡排序:平均执行时间较长,不适用于大规模数据排序。

- 插入排序:执行效率一般,在中等规模数据排序中表现良好。

- 快速排序:执行效率最高,适用于大规模数据排序。

2. 搜索算法的比较- 顺序搜索:执行时间与数据规模成线性关系,适用于小规模数据搜索。

- 二分搜索:执行时间与数据规模呈对数关系,适用于大规模有序数据搜索。

实验结果表明,不同算法适用于不同规模和类型的问题。

正确选择和使用算法可以显著提高程序的执行效率和性能。

五、实验总结通过本次实验,我们深入了解了不同算法的原理和特点,并通过实际操作和数据分析对算法进行了比较和评估。

算法设计与分析实验报告(中南民族大学)

算法设计与分析实验报告(中南民族大学)

院系:计算机科学学院专业:年级:课程名称:算法设计与分析基础班号:组号:指导教师:年月日实验结果及分析1.求最大数2.递归法与迭代法性能比较递归迭代3.改进算法1.利用公式法对第n项Fibonacci数求解时可能会得出错误结果。

主要原因是由于double类型的精度还不够,所以程序算出来的结果会有误差,要把公式展开计算。

2.由于递归调用栈是一个费时的过程,通过递归法和迭代法的比较表明,虽然递归算法的代码更精简更有可读性,但是执行速度无法满足大数问题的求解。

3.在当前计算机的空间较大的情况下,在一些速度较慢的问题中,空间换时间是一个比较周全的策略。

实验原理(算法基本思想)定义:若A=(a ij), B=(b ij)是n×n的方阵,则对i,j=1,2,…n,定义乘积C=A⋅B 中的元素c ij为:1.分块解法通常的做法是将矩阵进行分块相乘,如下图所示:二.Strassen解法分治法思想将问题实例划分为同一问题的几个较小的实例。

对这些较小实例求解,通常使用递归方法,但在问题规模足够小时,也会使用另一种算法。

如果有必要,合并这些问题的解,以得到原始问题的解。

求解矩阵相乘的DAC算法,使用了strassen算法。

DAC(A[],B[],n){If n=2 使用7次乘法的方法求得解ElseDivide(A)//把A分成4块Divide(B)//把B分成4块调用7次strassen算法求得解的4块合并这4块得到解并返回}伪代码Serial_StrassenMultiply(A, B, C) {T1 = A0 + A3;T2 = B0 + B3;StrassenMultiply(T1, T2, M1);T1 = A2 + A3;StrassenMultiply(T1, B0, M2);T1 = (B1 - B3);StrassenMultiply (A0, T1, M3);T1 = B2 - B0;StrassenMultiply(A3, T1, M4);T1 = A0 + A1;StrassenMultiply(T1, B3, M5);T1 = A2 – A0;T2 = B0 + B1;StrassenMultiply(T1, T2, M6);T1 = A1 – A3;T2 = B2 + B3;StrassenMultiply(T1, T2, M7);C0 = M1 + M4 - M5 + M7C1 = M3 + M5C2 = M2 + M4C3 = M1 - M2 + M3 + M6}实验结果及分析时间复杂度1.分块相乘总共用了8次乘法,因而需要Θ(n log28)即Θ(n3)的时间复杂度。

算法设计与分析:递归与分治法-实验报告(总8页)

算法设计与分析:递归与分治法-实验报告(总8页)

算法设计与分析:递归与分治法-实验报告(总8页)实验目的:掌握递归与分治法的基本思想和应用,学会设计和实现递归算法和分治算法,能够分析和评价算法的时间复杂度和空间复杂度。

实验内容:1.递归算法的设计与实现3.算法的时间复杂度和空间复杂度分析实验步骤:1)递归定义:一个函数或过程,在其定义或实现中,直接或间接地调用自身的方法,被成为递归。

递归算法是一种控制结构,它包含了解决问题的基础情境,也包含了递归处理的情境。

2)递归特点:递归算法具有以下特点:①依赖于递归问题的部分解被划分为若干较小的部分。

②问题的规模可以通过递推式递减,最终递归终止。

③当问题的规模足够小时,可以直接求解。

3)递归实现步骤:①确定函数的定义②确定递归终止条件③确定递归调用的过程4)经典实例:斐波那契数列递推式:f(n) = f(n-1) + f(n-2)int fib(int n) {if (n <= 0)return 0;else}5)优化递归算法:避免重复计算例如,上述斐波那契数列的递归算法会重复计算一些中间结果,影响效率。

可以使用动态规划技术,将算法改为非递归形式。

int f1 = 0, f2 = 1;for (int i = 2; i <= n; i++) {f1 = f2;使用循环避免递归,重复计算可以大大减少,提高效率。

1)分治算法的定义:将原问题分解成若干个规模较小且类似的子问题,递归求解子问题,然后合并各子问题得到原问题的解。

2)分治算法流程:②将问题分解成若干个规模较小的子问题。

③递归地解决各子问题。

④将各子问题的解合并成原问题的解。

3)分治算法实例:归并排序归并排序是一种基于分治思想的经典排序算法。

排序流程:②分别对各子数组递归进行归并排序。

③将已经排序好的各子数组合并成最终的排序结果。

实现源代码:void mergeSort(int* arr, int left, int right) {if (left >= right)while (i <= mid && j <= right)temp[k++] = arr[i] < arr[j] ? arr[i++] : arr[j++];temp[k++] = arr[i++];1) 时间复杂度的概念:指完成算法所需的计算次数或操作次数。

算法设计与分析实验报告

算法设计与分析实验报告

算法设计与分析实验报告实验一全排列、快速排序【实验目的】1. 掌握全排列的递归算法。

2. 了解快速排序的分治算法思想。

【实验原理】一、全排列全排列的生成算法就是对于给定的字符集,用有效的方法将所有可能的全排列无重复无遗漏地枚举出来。

任何n个字符集的排列都可以与1~n的n个数字的排列一一对应,因此在此就以n 个数字的排列为例说明排列的生成法。

n个字符的全体排列之间存在一个确定的线性顺序关系。

所有的排列中除最后一个排列外,都有一个后继;除第一个排列外,都有一个前驱。

每个排列的后继都可以从它的前驱经过最少的变化而得到,全排列的生成算法就是从第一个排列开始逐个生成所有的排列的方法。

二、快速排序快速排序(Quicksort)是对冒泡排序的一种改进。

它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

【实验内容】1.全排列递归算法的实现。

2.快速排序分治算法的实现。

【实验结果】1. 全排列:2. 快速排序:实验二最长公共子序列、活动安排问题【实验目的】1. 了解动态规划算法设计思想,运用动态规划算法实现最长公共子序列问题。

2. 了解贪心算法思想,运用贪心算法设计思想实现活动安排问题。

【实验原理】一、动态规划法解最长公共子序列设序列X=和Y=的一个最长公共子序列Z=,则:i. 若xm=yn,则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列;ii. 若xm≠yn且zk≠xm ,则Z是Xm-1和Y的最长公共子序列;iii. 若xm≠yn且z k≠yn ,则Z是X和Yn-1的最长公共子序列。

其中Xm-1=,Yn-1=,Zk-1=。

最长公共子序列问题具有最优子结构性质。

由最长公共子序列问题的最优子结构性质可知,要找出X=和Y=的最长公共子序列,可按以下方式递归地进行:当xm=yn时,找出Xm-1和Yn-1的最长公共子序列,然后在其尾部加上xm(=yn)即可得X和Y的一个最长公共子序列。

算法设计与分析实验报告

算法设计与分析实验报告

实验一找最大和最小元素与归并分类算法实现(用分治法)一、实验目的1.掌握能用分治法求解的问题应满足的条件;2.加深对分治法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。

二、实验内容1、找最大和最小元素输入n 个数,找出最大和最小数的问题。

2、归并分类将一个含有n个元素的集合,按非降的次序分类(排序)。

三、实验要求(1)用分治法求解问题(2)上机实现所设计的算法;四、实验过程设计(算法设计过程)1、找最大和最小元素采用分治法,将数组不断划分,进行递归。

递归结束的条件为划分到最后若为一个元素则max和min都是这个元素,若为两个取大值赋给max,小值给min。

否则就继续进行划分,找到两个子问题的最大和最小值后,比较这两个最大值和最小值找到解。

2、归并分类使用分治的策略来将一个待排序的数组分成两个子数组,然后递归地对子数组进行排序,最后将排序好的子数组合并成一个有序的数组。

在合并过程中,比较两个子数组的首个元素,将较小的元素放入辅助数组,并指针向后移动,直到将所有元素都合并到辅助数组中。

五、源代码1、找最大和最小元素#include<iostream>using namespace std;void MAXMIN(int num[], int left, int right, int& fmax, int& fmin); int main() {int n;int left=0, right;int fmax, fmin;int num[100];cout<<"请输入数字个数:";cin >> n;right = n-1;cout << "输入数字:";for (int i = 0; i < n; i++) {cin >> num[i];}MAXMIN(num, left, right, fmax, fmin);cout << "最大值为:";cout << fmax << endl;cout << "最小值为:";cout << fmin << endl;return 0;}void MAXMIN(int num[], int left, int right, int& fmax, int& fmin) { int mid;int lmax, lmin;int rmax, rmin;if (left == right) {fmax = num[left];fmin = num[left];}else if (right - left == 1) {if (num[right] > num[left]) {fmax = num[right];fmin = num[left];}else {fmax = num[left];fmin = num[right];}}else {mid = left + (right - left) / 2;MAXMIN(num, left, mid, lmax, lmin);MAXMIN(num, mid+1, right, rmax, rmin);fmax = max(lmax, rmax);fmin = min(lmin, rmin);}}2、归并分类#include<iostream>using namespace std;int num[100];int n;void merge(int left, int mid, int right) { int a[100];int i, j,k,m;i = left;j = mid+1;k = left;while (i <= mid && j <= right) {if (num[i] < num[j]) {a[k] = num[i++];}else {a[k] = num[j++];}k++;}if (i <= mid) {for (m = i; m <= mid; m++) {a[k++] = num[i++];}}else {for (m = j; m <= right; m++) {a[k++] = num[j++];}}for (i = left; i <= right; i++) { num[i] = a[i];}}void mergesort(int left, int right) { int mid;if (left < right) {mid = left + (right - left) / 2;mergesort(left, mid);mergesort(mid + 1, right);merge(left, mid, right);}}int main() {int left=0,right;int i;cout << "请输入数字个数:";cin >> n;right = n - 1;cout << "输入数字:";for (i = 0; i < n; i++) {cin >> num[i];}mergesort(left,right);for (i = 0; i < n; i++) {cout<< num[i];}return 0;}六、运行结果和算法复杂度分析1、找最大和最小元素图1-1 找最大和最小元素结果算法复杂度为O(logn)2、归并分类图1-2 归并分类结果算法复杂度为O(nlogn)实验二背包问题和最小生成树算法实现(用贪心法)一、实验目的1.掌握能用贪心法求解的问题应满足的条件;2.加深对贪心法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。

算法设计与分析实验报告

算法设计与分析实验报告

算法设计与分析实验报告教师:学号:姓名:实验一:串匹配问题实验目的:(1) 深刻理解并掌握蛮力法的设计思想;(2) 提高应用蛮力法设计算法的技能;(3) 理解这样一个观点: 用蛮力法设计的算法, 一般来说, 经过适度的努力后, 都可以对算法的第一个版本进行一定程度的改良, 改进其时间性能。

三、实验要求:( 1) 实现BF 算法;(2 ) 实现BF 算法的改进算法: KMP 算法和BM 算法;(3 ) 对上述3 个算法进行时间复杂性分析, 并设计实验程序验证分析结果。

#include "stdio.h"#include "conio.h"#include <iostream>//BF算法int BF(char s[],char t[]){ int i; int a; int b; int m,n; m=strlen(s); //主串长度n=strlen(t); //子串长度printf("\n*****BF*****算法\n");for(i=0;i<m;i++){ b=0; a=i; while(s[a]==t[b]&&b!=n){a++; b++; }if(b==n){ printf("查找成功!!\n\n"); return 0;}}printf("找不到%s\n\n",t); return 0; }//前缀函数值,用于KMP算法int GETNEXT(char t[],int b){ int NEXT[10]; NEXT[0]=-1;int j,k; j=0; k=-1; while(j<strlen(t)){if ((k==-1)||(t[j]==t[k])){j++;k++;NEXT[j]=k; }else k=NEXT[k];}b=NEXT[b];return b;}//KMP算法int KMP(char s[],char t[]){int a=0; int b=0;int m,n; m=strlen(s); //主串长度n=strlen(t); //子串长度printf("\n*****KMP算法*****\n");while(a<=m-n){while(s[a]==t[b]&&b!=n){a++;b++; }if(b==n){printf("查找成功!!\n\n");return 0;}b=GETNEXT(t,b);a=a-b;if(b==-1) b++;}printf("找不到%s\n\n",t);return 0; } //滑动距离函数,用于BM算法int DIST(char t[],char c){ int i=0,x=1;int n; n=strlen(t);while(x&&i!=n-1){if(t[i]==c)x=0;else i++;}if(i!=n-1)n=n-1-i;return n; } //BM算法结果分析与体会:glibc里的strstr函数用的是brute-force(naive)算法,它与其它算法的区别是strstr不对pattern(needle)进行预处理,所以用起来很方便。

关于算法的实验报告(3篇)

关于算法的实验报告(3篇)

第1篇一、实验目的1. 理解快速排序算法的基本原理和实现方法。

2. 掌握快速排序算法的时间复杂度和空间复杂度分析。

3. 通过实验验证快速排序算法的效率。

4. 提高编程能力和算法设计能力。

二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 2019三、实验原理快速排序算法是一种分而治之的排序算法,其基本思想是:选取一个基准元素,将待排序序列分为两个子序列,其中一个子序列的所有元素均小于基准元素,另一个子序列的所有元素均大于基准元素,然后递归地对这两个子序列进行快速排序。

快速排序算法的时间复杂度主要取决于基准元素的选取和划分过程。

在平均情况下,快速排序的时间复杂度为O(nlogn),但在最坏情况下,时间复杂度会退化到O(n^2)。

四、实验内容1. 快速排序算法的代码实现2. 快速排序算法的时间复杂度分析3. 快速排序算法的效率验证五、实验步骤1. 设计快速排序算法的C++代码实现,包括以下功能:- 选取基准元素- 划分序列- 递归排序2. 编写主函数,用于生成随机数组和测试快速排序算法。

3. 分析快速排序算法的时间复杂度。

4. 对不同规模的数据集进行测试,验证快速排序算法的效率。

六、实验结果与分析1. 快速排序算法的代码实现```cppinclude <iostream>include <vector>include <cstdlib>include <ctime>using namespace std;// 生成随机数组void generateRandomArray(vector<int>& arr, int n) {srand((unsigned)time(0));for (int i = 0; i < n; ++i) {arr.push_back(rand() % 1000);}}// 快速排序void quickSort(vector<int>& arr, int left, int right) { if (left >= right) {return;}int i = left;int j = right;int pivot = arr[(left + right) / 2]; // 选取中间元素作为基准 while (i <= j) {while (arr[i] < pivot) {i++;}while (arr[j] > pivot) {j--;}if (i <= j) {swap(arr[i], arr[j]);i++;j--;}}quickSort(arr, left, j);quickSort(arr, i, right);}int main() {int n = 10000; // 测试数据规模vector<int> arr;generateRandomArray(arr, n);clock_t start = clock();quickSort(arr, 0, n - 1);clock_t end = clock();cout << "排序用时:" << double(end - start) / CLOCKS_PER_SEC << "秒" << endl;return 0;}```2. 快速排序算法的时间复杂度分析根据实验结果,快速排序算法在平均情况下的时间复杂度为O(nlogn),在最坏情况下的时间复杂度为O(n^2)。

算法设计与分析实验报告

算法设计与分析实验报告

算法设计与分析报告学生姓名学号专业班级指导教师完成时间目录一、课程内容 (3)二、算法分析 (3)1、分治法 (3)(1)分治法核心思想 (3)(2)MaxMin算法分析 (3)2、动态规划 (4)(1)动态规划核心思想 (4)(2)矩阵连乘算法分析 (5)3、贪心法 (5)(1)贪心法核心思想 (5)(2)背包问题算法分析 (6)(3)装载问题算法分析 (7)4、回溯法 (7)(1)回溯法核心思想 (7)(2)N皇后问题非递归算法分析 (7)(3)N皇后问题递归算法分析 (8)三、例子说明 (9)1、MaxMin问题 (9)2、矩阵连乘 (10)3、背包问题 (10)4、最优装载 (10)5、N皇后问题(非递归) (11)6、N皇后问题(递归) (11)四、心得体会 (12)五、算法对应的例子代码 (12)1、求最大值最小值 (12)2、矩阵连乘问题 (13)3、背包问题 (15)4、装载问题 (17)5、N皇后问题(非递归) (19)6、N皇后问题(递归) (20)一、课程内容1、分治法,求最大值最小值,maxmin算法;2、动态规划,矩阵连乘,求最少连乘次数;3、贪心法,1)背包问题,2)装载问题;4、回溯法,N皇后问题的循环结构算法和递归结构算法。

二、算法分析1、分治法(1)分治法核心思想当要求解一个输入规模为n,且n的取值相当大的问题时,直接求解往往是非常困难的。

如果问题可以将n个输入分成k个不同子集合,得到k个不同的可独立求解的子问题,其中1<k≤n, 而且子问题与原问题性质相同,原问题的解可由这些子问题的解合并得出。

那末,这类问题可以用分治法求解。

分治法的核心技术1)子问题的划分技术.2)递归技术。

反复使用分治策略将这些子问题分成更小的同类型子问题,直至产生出不用进一步细分就可求解的子问题。

3)合并技术.(2)MaxMin算法分析问题:在含有n个不同元素的集合中同时找出它的最大和最小元素。

算法分析与设计实验报告

算法分析与设计实验报告

算法分析与设计实验报告1. 引言算法是计算机科学中的核心概念之一,它为解决问题提供了一种清晰、有效的方法。

本实验报告旨在通过分析与设计一个特定算法的实验过程,来加深对算法的理解和应用。

2. 实验背景在现代社会中,算法的应用无处不在。

无论是搜索引擎的排序算法,还是社交媒体的推荐算法,都离不开算法的支持。

因此,学习算法的分析与设计,对于计算机科学相关领域的学生来说具有重要的意义。

3. 实验目的本实验的主要目的是通过分析与设计一个特定算法,加深对算法的理解和应用。

通过实际操作,学生将能够熟悉算法的设计过程,并能够分析算法的效率和复杂性。

4. 实验步骤4.1 确定算法目标在开始实验之前,我们需要明确算法的目标。

在本实验中,我们将设计一个排序算法,用于对一组数字进行排序。

4.2 了解算法原理在设计算法之前,我们需要对目标算法的原理进行深入了解。

在本实验中,我们将选择经典的冒泡排序算法作为实现对象。

冒泡排序算法的基本思想是通过比较相邻的元素,并根据需要交换位置,使得每一轮循环都能使最大(或最小)的元素“冒泡”到数组的末尾。

通过多次迭代,最终实现整个数组的排序。

4.3 实现算法在了解算法原理后,我们将根据算法的步骤逐步实现。

具体步骤如下:1.遍历待排序数组,从第一个元素开始。

2.比较当前元素与下一个元素的大小。

3.如果当前元素大于下一个元素,则交换它们的位置。

4.继续比较下一个元素,直到遍历完整个数组。

5.重复上述步骤,直到没有需要交换的元素。

4.4 测试算法在实现算法之后,我们需要对其进行测试,以验证其正确性和效率。

我们可以准备一组随机的数字作为输入,并对算法进行测试。

通过比较输入和输出结果,我们可以判断算法是否正确。

同时,我们还可以通过计算算法的时间复杂性和空间复杂性来评估其效率。

在本实验中,我们将使用时间复杂性分析来评估算法的效率。

4.5 分析与总结通过测试和分析,我们将得出算法的执行时间和空间复杂性。

算法分析与设计实验报告 完整版

算法分析与设计实验报告 完整版

《算法分析与设计》课程实验实验报告专业:计算机科学与技术班级:姓名:学号:完成时间:2009年6月15日实验一算法实现一一、实验目的与要求熟悉C/C++语言的集成开发环境;通过本实验加深对分治法、贪心算法的理解。

二、实验内容:掌握分治法、贪心算法的概念和基本思想,并结合具体的问题学习如何用相应策略进行求解的方法。

三、实验题1. 【伪造硬币问题】给你一个装有n个硬币的袋子。

n个硬币中有一个是伪造的。

你的任务是找出这个伪造的硬币。

为了帮助你完成这一任务,将提供一台可用来比较两组硬币重量的仪器,利用这台仪器,可以知道两组硬币的重量是否相同。

试用分治法的思想写出解决问题的算法,并计算其时间复杂度。

2.【找零钱问题】一个小孩买了价值为33美分的糖,并将1美元的钱交给售货员。

售货员希望用数目最少的硬币找给小孩。

假设提供了数目有限的面值为25美分、10美分、5美分、及1美分的硬币。

给出一种找零钱的贪心算法。

四、实验步骤理解算法思想和问题要求;编程实现题目要求;上机输入和调试自己所编的程序;验证分析实验结果;整理出实验报告。

五、实验程序1.伪造硬币问题源程序://c语言实现#include<stdio.h>#include<stdlib.h>#include<math.h>#define N 100#define N1 12//只能判断是否相等的天平void solve(int coin[],int count,int first,int last) {if (count==2) {printf("无法判断\n");return;}if (first==last) {//只有一个硬币时候printf("假币的序号为%d, 假币的重量为%d\n", first, coin[first]);}else if(last-first==1){ //如果只剩下两个硬币(此时count不为)if (first > 0) { //不是最开始的硬币if (coin[first] == coin[0]) //如果第first和第个相等,说明first 位置不是伪币solve(coin,count,first+1,last);else//否则,说明first位置是伪币solve(coin,count,first,last-1);}else if(last<count-1){ //不是最后的硬币if (coin[first]==coin[count-1]) //如果第first和最后一个相等,说明last位置不是伪币solve(coin,count,first+1,last);else//否则,说明first位置是伪币solve(coin,count,first,last-1);}}else if (first<last){int temp=(last-first+1)/3; //将硬币分为三组int sum1=0, sum2=0;for(int i=0;i<temp;i++){sum1+=coin[first+i];sum2+=coin[last-i];}if (sum1==sum2){ //两边的总重相等,在中间,递归solve(coin,count,first+temp,last-temp);}else {//在两边,不在中间if (sum1==coin[first+temp]*temp){ //左边的和中间的相等,在右边,递归solve(coin,count,last-temp+1,last);}else {solve(coin,count,first,first+temp-1); //右边的和中间的相等,在左边,递归}}}}void main() {int i;int coin[N]; //定义数组coin用来存放硬币重量for(i=0;i<N;i++) //初始化数组coin[i]=0; //所用硬币初始值为coin[N1]=1; //第N1个设置为,即伪币int cnt = N;printf("硬币个数:%d\n",cnt);solve(coin,cnt,0,cnt-1);}2找零钱问题(1)零钱个数无限制的时候:源程序://c语言实现#include<stdio.h>main(){int T[]={25,10,5,1};int a[5];int money,i,j;printf("输入钱数:\n");scanf("%d",&money);for(i=0;i<4;i++){a[i]=money/T[i];money=money%T[i];}printf("找钱结果:\n硬币:\t");for(i=0;i<=3;i++){printf("%d\t|\t",T[i]);}printf("\n个数:\t");for(i=0;i<=3;i++){printf("%d\t|\t",a[i]);}printf("\n");return(0);}(2)当零钱个数有个数限制的时候:源程序://c语言实现#include<stdio.h>main(){int T[]={25,10,5,1}; //硬币的面值int a[5]; //用来记录找钱的个数int count[]={1,2,10,1000}; //各个面值硬币的个数int money,i;printf("输入钱数:\n");scanf("%d",&money);for(i=0;i<4;i++){if(money>T[i]*count[i]){ //当剩余钱数大于当前硬币总值a[i]=count[i]; //当前硬币个数取现有的最大值money=money-T[i]*count[i];}else{a[i]=money/T[i];money=money%T[i];}}printf("找钱结果:\n硬币:\t");for(i=0;i<=3;i++){printf("%d\t|\t",T[i]);}printf("\n\n个数:\t");for(i=0;i<=3;i++){printf("%d\t|\t",a[i]);}printf("\n");return(0);}六、实验结果1伪造硬币问题运行结果:硬币个数:100假币的序号为12, 假币的重量为1截图:2找零钱问题(1、硬币个数无限制)运行结果:输入钱数:67找钱结果:硬币: 25 | 10 | 5 | 1 |个数: 2 | 1 | 1 | 2 |截图:3找零钱问题(2、硬币个数有限制,其中硬币个数限制分别为1,2,10和1000。

算法分析与设计实验报告

算法分析与设计实验报告

算法分析与设计实验报告算法分析与设计实验报告⼀.实验⽬的1掌握回溯法解题的基本思想以及算法设计⽅法;2.掌握动态规则法和分⽀限界法的基本思想和算法设计⽅法;3掌握深度优先遍历法的基本思想及运⽤;4.进⼀步的对N皇后问题,⼦集和数问题,0-1背包问题做深⼊的了解。

⼆.实验内容1.实现求n 皇后问题和⼦集和数问题的回溯算法。

2.⽤动态规划的⽅法实现0/1背包问题。

3.⽤分⽀限界法实现0/1背包问题。

4.⽤深度优化的⽅法遍历⼀个图,并判断图中是否有回路存在,如果有,请输出回路。

三.实验设计1. N 皇后问题:我是采取了尊循 top-down design 的顺序来设计整个算法和程序。

采⽤ OOP 的思想,先假设存在⼀个 · 表⽰棋盘格局的类 queens ,则定义回溯函数 solve_from(queens configuration),configuration 表⽰当前棋盘格局,算法不断扩展棋盘的当前格局(找到下⼀个⾮冲突位置),当找到⼀个解决⽅案时打印该⽅案。

该递归函数采⽤回溯法求出所有解。

main 函数调⽤ solve_from 时传递的实参是⼀个空棋盘。

对于模拟棋盘的 queens 类,我们可以定义三个数据成员: 1.size :棋盘的边长,即⼤⼩ .2. count :已放置的互不冲突的皇后数 3.array[][]:布尔矩阵,true 表⽰当前格有皇后这⾥需要稍加思考以便稍后可以简化程序:因为每⾏只能放⼀个皇后,从上到下,从左到右放,那么 count 个皇后占⽤的⾏为 0——count -1。

所以count 还表⽰下⼀个皇后应该添加在哪⼀⾏。

这样,和 remove 操作的⼊⼝参数就只需要提供列号就⾏了, add 降低了耦合度:)下⾯是程序运⾏结果:2.⼦集和数问题:本设计利⽤⼤⼩固定的元组来研究回溯算法,在此情况下,解向量的元素X (i )取1或0值,它表⽰是否包含了权数W (i ).⽣成图中任⼀结点的⼉⼦是很容易的。

算法设计及实验报告

算法设计及实验报告

算法设计及实验报告实验报告1 递归算法一、实验目的掌握递归算法的基本思想;掌握该算法的时间复杂度分析;二、实验环境电脑一台,Turbo C 运行环境三、实验内容、步骤和结果分析以下是四个递归算法的应用例子:用C语言实现1.阶乘:main(){int i,k;scanf("%d\n",&i);k= factorial(i);printf("%d\n",k);}int factorial(int n){ int s;if(n==0) s=1;else s=n*factorial(n-1); //执行n-1次return s;}阶乘的递归式很快,是个线性时间,因此在最坏情况下时间复杂度为O(n)。

2.Fibonacci 数列:main(){int i,m;scanf("%d\n",&i);m=fb(i);printf("%d",m);}int fb(int n){int s;if(n<=1)return 1;else s=fb(n-1)+fb(n-2);return s;}Fibonacci数列则是T(n)=T(n-1)+T(n-2)+O(1)的操作,也就是T(n)=2T(n)+O(1),由递归方程式可以知道他的时间复杂度T(n)是O(2n),该数列的规律就是不停的赋值,使用的内存空间也随着函数调用栈的增长而增长。

3.二分查找(分治法)#include<stdio.h>#define const 8main(){int a[]={0,1,2,3,4,5,6,7,8,9};int n=sizeof(a);int s;s=BinSearch(a,const,n);printf("suo cha de shu shi di %d ge",s);}BinSearch(int a[],int x,int n){int left,right,middle=0;left=0;right=n-1;whlie(left<=right){middle=(left+right)/2;if(x==a[middle]) return middle;if(x>a[middle]) left=middle+1;else right=middle-1;}return -1;}二分搜索算法利用了元素间的次序关系,采用分治策略,由上程序可知,每执行一次while循环,数组大小减少一半,因此在最坏情况下,while循环被执行了O(logn)次。

算法设计与分析 实验报告

算法设计与分析 实验报告

算法设计与分析实验报告算法设计与分析实验报告一、引言在计算机科学领域,算法设计与分析是非常重要的研究方向。

本次实验旨在通过实际案例,探讨算法设计与分析的方法和技巧,并验证其在实际问题中的应用效果。

二、问题描述本次实验的问题是求解一个整数序列中的最大子序列和。

给定一个长度为n的整数序列,我们需要找到一个连续的子序列,使得其和最大。

三、算法设计为了解决这个问题,我们设计了两种算法:暴力法和动态规划法。

1. 暴力法暴力法是一种朴素的解决方法。

它通过枚举所有可能的子序列,并计算它们的和,最终找到最大的子序列和。

然而,由于需要枚举所有子序列,该算法的时间复杂度为O(n^3),在处理大规模数据时效率较低。

2. 动态规划法动态规划法是一种高效的解决方法。

它通过定义一个状态转移方程,利用已计算的结果来计算当前状态的值。

对于本问题,我们定义一个一维数组dp,其中dp[i]表示以第i个元素结尾的最大子序列和。

通过遍历整个序列,我们可以利用状态转移方程dp[i] = max(dp[i-1]+nums[i], nums[i])来计算dp数组的值。

最后,我们返回dp数组中的最大值即为所求的最大子序列和。

该算法的时间复杂度为O(n),效率较高。

四、实验结果与分析我们使用Python编程语言实现了以上两种算法,并在相同的测试数据集上进行了实验。

1. 实验设置我们随机生成了1000个整数作为测试数据集,其中包含正数、负数和零。

为了验证算法的正确性,我们手动计算了测试数据集中的最大子序列和。

2. 实验结果通过对比实验结果,我们发现两种算法得到的最大子序列和是一致的,验证了算法的正确性。

同时,我们还对两种算法的运行时间进行了比较。

结果显示,暴力法的运行时间明显长于动态规划法,进一步证明了动态规划法的高效性。

五、实验总结通过本次实验,我们深入了解了算法设计与分析的方法和技巧,并通过实际案例验证了其在解决实际问题中的应用效果。

我们发现,合理选择算法设计方法可以提高算法的效率,从而更好地解决实际问题。

《算法设计与分析》课程实验报告 (分治法(三))

《算法设计与分析》课程实验报告 (分治法(三))

《算法设计与分析》课程实验报告实验序号:04实验项目名称:实验4 分治法(三)一、实验题目1.邮局选址问题问题描述:在一个按照东西和南北方向划分成规整街区的城市里,n个居民点散乱地分布在不同的街区中。

用x 坐标表示东西向,用y坐标表示南北向。

各居民点的位置可以由坐标(x,y)表示。

街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。

居民们希望在城市中选择建立邮局的最佳位置,使n个居民点到邮局的距离总和最小。

编程任务:给定n 个居民点的位置,编程计算邮局的最佳位置。

2.最大子数组问题问题描述:对给定数组A,寻找A的和最大的非空连续子数组。

3.寻找近似中值问题描述:设A是n个数的序列,如果A中的元素x满足以下条件:小于x的数的个数≥n/4,且大于x的数的个数≥n/4 ,则称x为A的近似中值。

设计算法求出A的一个近似中值。

如果A中不存在近似中值,输出false,否则输出找到的一个近似中值4.循环赛日程表问题描述:设有n=2^k个运动员要进行网球循环赛。

现要设计一个满足以下要求的比赛日程表:每个选手必须与其他n-1个选手各赛一次,每个选手一天只能赛一次,循环赛一共进行n-1天。

二、实验目的(1)进一步理解分治法解决问题的思想及步骤(2)体会分治法解决问题时递归及迭代两种不同程序实现的应用情况之差异(3)熟练掌握分治法的自底向上填表实现(4)将分治法灵活于具体实际问题的解决过程中,重点体会大问题如何分解为子问题及每一个大问题涉及哪些子问题及子问题的表示。

三、实验要求(1)写清算法的设计思想。

(2)用递归或者迭代方法实现你的算法,并分析两种实现的优缺点。

(3)根据你的数据结构设计测试数据,并记录实验结果。

(4)请给出你所设计算法的时间复杂度的分析,如果是递归算法,请写清楚算法执行时间的递推式。

四、实验过程(算法设计思想、源码)1.邮局选址问题(1)算法设计思想根据题目要求,街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法设计与分析课程实验项目目录学生姓名:学号:*实验项目类型:演示性、验证性、综合性、设计性实验。

*此表由学生按顺序填写。

本科实验报告专用纸课程名称算法设计与分析成绩评定实验项目名称蛮力法指导教师实验项目编号 201 实验项目类型设计实验地点机房学生姓名学号学院信息科学技术学院数学系信息与计算科学专业级实验时间 2012年 3月 1 日~6月30日温度24℃1.实验目的和要求:熟悉蛮力法的设计思想。

2.实验原理和主要内容:实验原理:蛮力法常直接基于问题的描述和所涉及的概念解决问题。

实验内容:以下题目任选其一1).为蛮力字符串匹配写一段可视化程序。

2).写一个程序,实现凸包问题的蛮力算法。

3).最著名的算式谜题是由大名鼎鼎的英国谜人给出的: S END+MORE MONEY. 这里有两个前提假设:第一,字母和十进制数字之间一一对应,也就是每个字母只代表一个数字,而且不同的字母代表不同的数字;第二,数字0不出现在任何数的最左边。

求解一个字母算术意味着找到每个字母代表的是哪个数字。

请注意,解可能并不是唯一的,不同人的解可能并不相同。

3.实验结果及分析:(将程序和实验结果粘贴,程序能够注释清楚更好。

)本科实验报告专用纸(附页)该算法程序代码如下:#include "" #include ""int main(int argc, char* argv[]) {int x[100],y[100];int a,b,c,i,j,k,l,m,n=0,p,t1[100],num; int xsat[100],ysat[100];printf("请输入点的个数:\n"); scanf("%d",&num); getchar();clock_t start,end; start=clock();printf("请输入各点坐标:\n");for(l=0;l<num;l++){24℃一个程序,实现快速排序算法。

用该算法处理一批输入样本。

2).Tromino 谜题:Tromino 是一个由棋盘上的三个邻接方块组成的L 形瓦片。

我们的问题是,如何用Tromino 覆盖一个缺少了一个方块(可以在棋盘上的任何位置),的22n n 棋盘。

除了这个缺失的方块,Tromino 应该覆盖棋盘上的所有方块,而且不能有重叠。

为此问题设计一个分治算法。

1. 实验结果及分析:(将程序和实验结果粘贴,程序能够注释清楚更好。

)本科实验报告专用纸(附页)该算法程序代码如下:#include ""void swap(int *x,int *y) {int t;t=*x;*x=*y;*y=t; }int partition(int A[100],int l,int r){int p,i,j;p=A[l];i=l;j=r+1;do{do{i=i+1;if(i>j)break;}while(A[i]<p);do{j=j-1;if(j<i)break;}while(A[j]>p);swap(&A[i],&A[j]);}while(i<j);swap(&A[i],&A[j]);24℃用深度或广度优先查找,设计一个程序,对于一个给定的图,它能够输出每一个连通分量的顶点,并且能输出图的回路,或者返回一个消息表明图是无环的。

2).设计一个程序实现两种拓扑排序算法:DFS算法和减一算法并做一个实验来比较它们的运行时间。

3).编写程序实现选择问题,即求一个n个数列表的第k个最小元素。

1.实验结果及分析:(将程序和实验结果粘贴,程序能够注释清楚更好。

)本科实验报告专用纸(附页)算法程序代码如下:#include""int main(){int QSort(int [],int,int);int a[11];int k;printf("请输入一个11个数的数列:\n");for(k=0;k<11;k++)scanf("%d",&a[k]);QSort(a,0,10); }int QSort(int a[],int left,int right){ int i,j,temp,m=6;i=left;j=right;temp=a[left];if(left>right)return 0;while(i!=j){ while(a[j]>=temp && j>i)j--;if(j>i) a[i++]=a[j];while(a[i]<=temp && j>i)i++;本科实验报告专用纸(附页)if(j>i)a[j--]=a[i]; }a[i]=temp;if(i>m)QSort(a,left,i-1); 24℃24℃求总金额等于n的硬币的最少个数,并输出每种硬币的找零数量。

要求测试数据:硬币面额{d1,d2,…,dm} ={1,5,10,21,25},找零金额n=273。

1.实验结果及分析:(将程序和实验结果粘贴,程序能够注释清楚更好。

)该算法程序如下:#include <>int main(){int d[3],i,n;int ZL(int [],int);printf("输入4种硬币面额:\n");for(i=0;i<=3;i++)本科实验报告专用纸(附页){scanf("%d",&d[i]);}printf("输入要找零的金额:\n");scanf("%d",&n);ZL(d,n);}int ZL(int d[],int n){int a,b,c,k;a=n;for(k=3;k>=0;k--){c=a/d[k];b=a-c*d[k];a=b;printf("面值为%d的找零个数为%d个\n",d[k],c);}}程序运行结果如下:2.教师评语、评分:本科实验报告专用纸课程名称算法设计与分析成绩评定实验项目名称贪婪算法指导教师实验项目编号206实验项目类型验证或设计实验地点机房学生姓名学号学院信息科学技术学院数学系信息与计算科学专业级实验时间 2012年 3月 1 日~6月30日温度24℃1.实验目的和要求:熟悉贪婪算法的设计思想。

2.实验原理和主要内容:实验原理:贪婪法在解决问题的策略上目光短浅,只根据当前已有的信息就做出选择,而且一旦做出了选择,不管将来有什么结果,该选择都不会改变。

换言之,贪婪法并不是从整体最优考虑,它所做出的选择只是在某种意义上的局部最优。

实验内容:以下题目任选其一1).编写程序实现Prim算法。

2).数列极差问题:在黑板上写了N个正整数作成的一个数列,进行如下操作:每一次擦去其中的两个数a和b,然后在数列中加入一个数a×b+1,如此下去直至黑板上剩下一个数,在所有按这种操作方式最后得到的数中,最大的记作max,最小的记作min,求该数列的极差M=max-min。

利用贪婪算法编写程序实现数列极差问题。

3.实验结果及分析:(将程序和实验结果粘贴,程序能够注释清楚更好。

)本科实验报告专用纸(附页)该算法程序如下:#include <>#include <>#define N 6void sort(int a[])//用蛮力法将数列按从小到大的顺序排列{int i,j,k,t;for(i=0;i<N-1;i++){k=i;for(j=i+1;j<N;j++)if(a[j]<a[k])k=j;t=a[k];a[k]=a[i];a[i]=t;}}int Max(int a[])//计算数列中a*b+1的最大值{int i,j,t,m,n,b[N];for(i=0;i<N;i++)b[i]=a[i];for(j=1;j<N;j++){t=b[j-1]*b[j]+1;for(m=j+1;m<=N;m++){if(t<b[m]||m==N){for(n=j;n<m-1;n++)b[n]=b[n+1];b[m-1]=t;break;}}}return b[N-1];}int Min(int a[])//计算数列中a*b+1的最小值{int i,t;t=a[N-2];for(i=N-2;i>=0;i--){t=t*a[i]+1;}本科实验报告专用纸(附页)return t;}void main(){ oid sort(int a[]);int Max(int a[]);int Min(int a[]);int a[N],i,max,min,M;printf("请输入一个数组:\n");for(i=0;i<N;i++)scanf("%d",&a[i]);sort(a);printf("排序后的数组为:\n");for(i=0;i<N;i++)printf("%d ",a[i]);printf("\n");max=Max(a);printf("最大值为: %d\n",max);min=Min(a);printf("最小值为: %d\n",min);M=max-min;printf("该数组的极差为:%d\n",M);}运行结果如下:4.教师评语、评分:。

相关文档
最新文档