《直线和平面垂直》PPT课件.ppt
合集下载
直线与平面垂直的判定与性质(共26张PPT)
直线与平面垂直的判定与性 质(共26张ppt)
目 录
• 直线与平面垂直的判定 • 直线与平面垂直的性质 • 直线与平面垂直的证明 • 直线与平面垂直的应用 • 总结与展望 • 参考文献
01
直线与平面垂直的判定
直线与平面垂直的定义
01
直线与平面垂直是指直线与平面 内的任意一条直线都垂直。
02
如果一条直线与平面内的任意一 条直线都垂直,则这条直线与该 平面垂直。
建筑设计
在建筑设计中,直线与平面垂直的应用非常重要, 如确定建筑物的垂直度和水平面等。
机械制造
在机械制造中,直线与平面垂直的应用可以帮助 制造出精确的机械部件。
道路建设
在道路建设中,直线与平面垂直的应用可以帮助 确保道路的平直度和坡度等。
05
总结与展望
总结直线与平面垂直的判定与性质
判定方法 通过直线与平面内两条相交直线垂直来判定直线与平面垂直。
通过直线与平面内无数条直线垂直来判定直线与平面垂直。
总结直线与平面垂直的判定与性质
• 通过直线与平面垂直的性质定理来判定直线与平面垂直。
总结直线与平面垂直的判定与性质
01
性质定理
02
03
04
直线与平面垂直,则该直线与 平面内任意一条直线都垂直。
直线与平面垂直,则该直线所 在的所有直线都与该平面垂直
证明
假设有一条直线l与平面α垂直,那么直线l与平面α内的任意一条直线m都垂直。 由于直线l与平面α内的直线m都垂直,所以它们之间的夹角为90°,即直线l与平 面α内的任意一条直线都垂直。
直线与平面垂直的性质推论
推论1
证明
推论2
证明
如果一条直线与平面内的两 条相交直线都垂直,那么这
目 录
• 直线与平面垂直的判定 • 直线与平面垂直的性质 • 直线与平面垂直的证明 • 直线与平面垂直的应用 • 总结与展望 • 参考文献
01
直线与平面垂直的判定
直线与平面垂直的定义
01
直线与平面垂直是指直线与平面 内的任意一条直线都垂直。
02
如果一条直线与平面内的任意一 条直线都垂直,则这条直线与该 平面垂直。
建筑设计
在建筑设计中,直线与平面垂直的应用非常重要, 如确定建筑物的垂直度和水平面等。
机械制造
在机械制造中,直线与平面垂直的应用可以帮助 制造出精确的机械部件。
道路建设
在道路建设中,直线与平面垂直的应用可以帮助 确保道路的平直度和坡度等。
05
总结与展望
总结直线与平面垂直的判定与性质
判定方法 通过直线与平面内两条相交直线垂直来判定直线与平面垂直。
通过直线与平面内无数条直线垂直来判定直线与平面垂直。
总结直线与平面垂直的判定与性质
• 通过直线与平面垂直的性质定理来判定直线与平面垂直。
总结直线与平面垂直的判定与性质
01
性质定理
02
03
04
直线与平面垂直,则该直线与 平面内任意一条直线都垂直。
直线与平面垂直,则该直线所 在的所有直线都与该平面垂直
证明
假设有一条直线l与平面α垂直,那么直线l与平面α内的任意一条直线m都垂直。 由于直线l与平面α内的直线m都垂直,所以它们之间的夹角为90°,即直线l与平 面α内的任意一条直线都垂直。
直线与平面垂直的性质推论
推论1
证明
推论2
证明
如果一条直线与平面内的两 条相交直线都垂直,那么这
直线与平面垂直的判定PPT课件
例题二:求点到直线的距离
方法一
利用点到直线的距离公式,通过计算 点到直线上任意一点的向量在直线方 向向量上的投影长度,从而得出点到 直线的距离。
方法二
利用向量的叉积,通过计算点到直线上 两个点的向量与直线方向向量的叉积的 模,再除以直线方向向量的模,从而得 出点到直线的距离。
例题三:解决实际问题中的应用
方法三:结合图形进行判断
• 步骤 • 观察图形中已知直线与平面的位置关系; • 如果看起来垂直,则可以直接判断已知直线与平面垂直。 • 注意:以上三种方法都可以用来判断一条直线是否与一个平
面垂直,但具体使用哪种方法需要根据题目的具体情况来决 定。同时,在实际应用中,还需要注意一些特殊情况的处理, 例如当已知直线在平面内或与平面平行时,需要采用其他方 法进行判断。
点到直线距离公式可以用来辅助判断直线与平面是否垂直。
03
直线与平面垂直的判定方 法
方法一:利用定义直接判断
定义:如果一条直线与一个平面内的任意 一条直线都垂直,那么这条直线与这个平 面垂直。
如果都垂直,则已知直线与平面垂直。
步骤
验证已知直线与这两条相交直线是否垂直;
在平面内任意取两条相交直线;
方法二:利用判定定理进行判断
直线与平面垂直 的判定PPT课件
目录
• 直线与平面垂直的基本概念 • 直线与平面垂直的判定定理 • 直线与平面垂直的判定方法 • 直线与平面垂直的应用举例 • 直线与平面垂直的拓展延伸
01
直线与平面垂直的基本概 念
直线与平面的位置关系
01
02
03
直线在平面内
直线上的所有点都在平面 内。
直线与平面相交
步骤
验证这两条直线是否垂直;
(完整版)《直线与平面垂直的判定》ppt课件
l
符号表示:
P
m ,n
mn
m nP
l
l m, l n
定理补充 “平面内”,“相交”,“垂直”三个条件必不可少
简记为:线线垂直
线面垂直
例1 如图,已知a∥b,a⊥α,求证:b⊥α.
分析:在平面内作两条相交直线.
证明:在平面 内作两条相交 a
b
直线m,n.
因为直线 a ,
根据直线与平面垂直的定义知 m
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
BD,CD都在桌面内,BD∩CD=D, AD⊥CD,AD⊥BD,
直线AD所在的A直线与桌面垂直
l
B
D
C
P
mn
直线和平面垂直的判定定理
一条直线与一个平面内的两条相交直线都垂直,
则该直线与此平面垂直.
直线也是垂直的.
C1 C
α
B1 B
直线和平面垂直的定义
如果直线l与平面α内的任意一条直线都垂直, 我们就说直线l与平面α互相垂直,记作l⊥α.
l
平面α的垂线
A
直线l的垂面 垂足
直线和平面垂直的画法 注:画直线与水平平面垂直时,通常把直线画成 与表示P
α
思考2 若直线与平面内的无数条直线垂直,则直
符号表示:
P
m ,n
mn
m nP
l
l m, l n
定理补充 “平面内”,“相交”,“垂直”三个条件必不可少
简记为:线线垂直
线面垂直
例1 如图,已知a∥b,a⊥α,求证:b⊥α.
分析:在平面内作两条相交直线.
证明:在平面 内作两条相交 a
b
直线m,n.
因为直线 a ,
根据直线与平面垂直的定义知 m
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
A
B
D
C
BD,CD都在桌面内,BD∩CD=D, AD⊥CD,AD⊥BD,
直线AD所在的A直线与桌面垂直
l
B
D
C
P
mn
直线和平面垂直的判定定理
一条直线与一个平面内的两条相交直线都垂直,
则该直线与此平面垂直.
直线也是垂直的.
C1 C
α
B1 B
直线和平面垂直的定义
如果直线l与平面α内的任意一条直线都垂直, 我们就说直线l与平面α互相垂直,记作l⊥α.
l
平面α的垂线
A
直线l的垂面 垂足
直线和平面垂直的画法 注:画直线与水平平面垂直时,通常把直线画成 与表示P
α
思考2 若直线与平面内的无数条直线垂直,则直
直线与平面垂直判定完整版课件
绘制图表,将实验数据 可视化展示,便于分析 和比较。
03
分析实验数据,总结直 线与平面垂直的判定方 法和规律。
04
根据实验结果,评估实 验方法的准确性和可靠 性,并提出改进意见。
06
课程总结与回顾
知识点梳理
01
直线与平面垂直的定义
如果直线$l$与平面$alpha$内的任意一条直线都垂直,那么我们就说
角的范围
异面直线所成角的取值范围是 (0, 90°]。
异面直线所成角求解方法
01
02
03
平移法
将两条异面直线平移到同 一个起点上,然后用余弦 定理或三角函数求解。
向量法
建立空间直角坐标系,将 异面直线的方向向量表示 出来,然后通过向量的夹 角公式求解。
投影法
将一条直线投影到另一条 直线上,通过投影长度和 原长度之间的关系,利用 三角函数求解。
易错点提示
忽略直线与平面内两条相交直线 都垂直的条件,只考虑与其中一
条直线垂直或平行的情况。
在证明直线与平面垂直时,未明 确说明平面内的两条相交直线, 或者错误地认为只要与平面内无
数条直线垂直即可。
符号使用不规范,如将直线与平 面垂直的符号误写为平行或相交
等。
下一讲预告
下一讲我们将继续深入学习空间几何中的直线与平面的位置关系,包括直线与平面 平行的判定和性质等内容。
确定未知量
根据题目要求,确定需要求解 的未知量。
建立方程
利用已知条件和几何性质,建 立关于未知量的方程。
求解方程
解方程得到未知量的值,注意 解的合理性。
解答题规范步骤和答案
画出图形
根据题意画出相应 的图形,标注已知 量和未知量。
直线与平面垂直的判定定理 ppt课件
l
l m,l n
m
,
n
l
//
mA
mI n A
n
②该定理作用:“线线垂直线面垂直”
③应用该定理,关键是证明在平面内有两条相交直线与已知直线
垂直,至于这两条直线是否与已知直线有公共点则是无关紧要的.
例 如图,已知 a//b,a,求证:b.
证明:在平面 内作两条相交直线m,n.
因为直线 a,
又QB1D1I DD1=D1
A1
A 1C 1面 D B B 1D 1
A 1 C 1 B D 1 , A 1 C 1 D B 1
D
C1 B1
C
另证: QDD1 面A1B1C1D1,DD1 面DBB1D1
面A1B1C1D1 面DBB1D1
A
B
又Q面A1B1C1D1I 面DBB1D1 B1D1,
且A1C1 面A1B1C1D1,A1C1 B1D1
C C1
B
α
B1
1.直线与平面垂直的定义
(1)如果一条直线 l和一个平面内的任意一条直线都垂直, 则称直线 l与平面互相垂直,记作 l . 直线 l 叫做平面 的垂线,平面 叫做直线 l的垂面.
它们惟一的公共点P叫做垂足.
画法:通常把直线画成与表示平面的 平行四边形的一边垂直.
注1: ①定义中的“任意一条直线”与“所有直线”是同义词,但与 “无数条直线”不同.
A1C1 面DBB1D1
小结论: 正方体中,面的对角线垂直于过另一条面的对角线的对角面; 正方体中,异面的体对角线和面对角线互相垂直.
练 如图为直四棱柱A B C D A 'B 'C 'D '(侧棱与底面垂直
直线与平面垂直的判定定理与性质定理ppt课件
24
7. 如图,在△ABC中,∠ACB=90°,AB=8,∠ABC=60°,PC⊥平 面ABC,PC=4,M是AB上的一个动点,则PM的最小值为________.
M
25
11. 如图,在△ABC中,∠ABC=90°,D是AC的中点,S是△ABC 所在平面外一点,且SA=SB=SC. (1)求证:SD⊥平面ABC; (2)若AB=BC,求证:BD⊥平面SAC.
6
②二面角的平面角
如图,过二面角 α-l-β 的棱 l 上一点 O 在两个半平面内分别 作 BO⊥l,AO⊥l,则__∠__A_O_B__就叫做二面角 α-l-β 的平面角. ③二面角的范围 设二面角的平面角为 θ,则 θ∈_[_0_,__π_]__.
π ④当 θ=___2_____时,二面角叫做直二面角.
7
2.学会三种垂直关系的转化
在证明两平面垂直时一般先从现有的直线中寻找平面的垂 线,若图中不存在这样的直线,则可通过作辅助线来解决.如 有平面垂直时,一般要用性质定理,在一个平面内作交线的 垂线,使之转化为线面垂直,然后进一步转化为线线垂直.
8
1.(2015·高考浙江卷)设 α,β是两个不同的平面,l,m 是
质 个平面的两
定 条直线 理 __平__行____
符号语言
a⊥α b⊥α
⇒a∥
b
3
2.平面与平面垂直的判定定理与性质定理
文字语言
图形语言
一个平面过另一 判定 个平面的_垂_线__,
定理 则这两个平面互
相垂直
两个平面互相垂
直,则一个平面
性质 定理
内垂直于_交__线___
的直线垂直于另
一个平面
符号语言
16
3.如图,在四棱锥 P-ABCD 中,AB∥CD,AB⊥AD, CD=2AB,平面 PAD⊥底面 ABCD,PA⊥AD,E 和 F 分别是 CD 和 PC 的中点.求证: (1)PA⊥底面 ABCD; (2)BE∥平面 PAD; (3)平面 BEF⊥平面 PCD.
7. 如图,在△ABC中,∠ACB=90°,AB=8,∠ABC=60°,PC⊥平 面ABC,PC=4,M是AB上的一个动点,则PM的最小值为________.
M
25
11. 如图,在△ABC中,∠ABC=90°,D是AC的中点,S是△ABC 所在平面外一点,且SA=SB=SC. (1)求证:SD⊥平面ABC; (2)若AB=BC,求证:BD⊥平面SAC.
6
②二面角的平面角
如图,过二面角 α-l-β 的棱 l 上一点 O 在两个半平面内分别 作 BO⊥l,AO⊥l,则__∠__A_O_B__就叫做二面角 α-l-β 的平面角. ③二面角的范围 设二面角的平面角为 θ,则 θ∈_[_0_,__π_]__.
π ④当 θ=___2_____时,二面角叫做直二面角.
7
2.学会三种垂直关系的转化
在证明两平面垂直时一般先从现有的直线中寻找平面的垂 线,若图中不存在这样的直线,则可通过作辅助线来解决.如 有平面垂直时,一般要用性质定理,在一个平面内作交线的 垂线,使之转化为线面垂直,然后进一步转化为线线垂直.
8
1.(2015·高考浙江卷)设 α,β是两个不同的平面,l,m 是
质 个平面的两
定 条直线 理 __平__行____
符号语言
a⊥α b⊥α
⇒a∥
b
3
2.平面与平面垂直的判定定理与性质定理
文字语言
图形语言
一个平面过另一 判定 个平面的_垂_线__,
定理 则这两个平面互
相垂直
两个平面互相垂
直,则一个平面
性质 定理
内垂直于_交__线___
的直线垂直于另
一个平面
符号语言
16
3.如图,在四棱锥 P-ABCD 中,AB∥CD,AB⊥AD, CD=2AB,平面 PAD⊥底面 ABCD,PA⊥AD,E 和 F 分别是 CD 和 PC 的中点.求证: (1)PA⊥底面 ABCD; (2)BE∥平面 PAD; (3)平面 BEF⊥平面 PCD.
直线与平面垂直的判定PPT课件
2.3.1 直线与平面垂直的判定
(1)判定定理
学习目标
1、理解直线与平面垂直的定义; 2、掌握直线与平面垂直的判定定理内容及其
应用; 3、应用直线与平面垂直的判定定理解决问题。
• 重点:线面垂直的判定定理内容及其应用。 • 难点:线面垂直的判定定理内容及论证过程 。
Yesterday once more
2.已知:正方体中,AC是面对角线,BD′是与AC 异面的体对角线。
求证:AC⊥BD′
证明:连接BD
∵正方体ABCD-A’B’C’D’
∴DD’⊥平面ABCD,∴DD’ ⊥AC ∵AC、BD 正方形ABCD的为对角线
D’
∴AC⊥BD
A’
∵DD’∩BD=D
∴AC⊥平面D’DB
∴BD平面D’DB,
D
∴AC⊥BD’
A′C⊥B′D′?
A′
D′
B′ C′
A
D
B C
知识盘点
1、线面垂直的定义: 2、线面垂直的判定定理: 3、数学思想方法:转化的思想。
课后作业
• P67—练习1 • P74—习题B组2,4
课后作业
1、如图,圆O所在一平面为 ,AB是圆O的直径,
C是圆周上一点,且PA⊥AC, PA⊥AB, P
求证:(1)PA⊥BC (2)BC⊥平面PAC
• 空间中直线与平面的位置关系:
直线在平面外 a⊂/ α
文字 语言
图形
语言
符号 语言 交点 情况
直线在平面α内
a α
a⊂α 有无数个交点
直线与平面α平行 直线与平面α相交
a α
a
A α
a∥α
a∩α=A
无交点
有且只有一个交点
(1)判定定理
学习目标
1、理解直线与平面垂直的定义; 2、掌握直线与平面垂直的判定定理内容及其
应用; 3、应用直线与平面垂直的判定定理解决问题。
• 重点:线面垂直的判定定理内容及其应用。 • 难点:线面垂直的判定定理内容及论证过程 。
Yesterday once more
2.已知:正方体中,AC是面对角线,BD′是与AC 异面的体对角线。
求证:AC⊥BD′
证明:连接BD
∵正方体ABCD-A’B’C’D’
∴DD’⊥平面ABCD,∴DD’ ⊥AC ∵AC、BD 正方形ABCD的为对角线
D’
∴AC⊥BD
A’
∵DD’∩BD=D
∴AC⊥平面D’DB
∴BD平面D’DB,
D
∴AC⊥BD’
A′C⊥B′D′?
A′
D′
B′ C′
A
D
B C
知识盘点
1、线面垂直的定义: 2、线面垂直的判定定理: 3、数学思想方法:转化的思想。
课后作业
• P67—练习1 • P74—习题B组2,4
课后作业
1、如图,圆O所在一平面为 ,AB是圆O的直径,
C是圆周上一点,且PA⊥AC, PA⊥AB, P
求证:(1)PA⊥BC (2)BC⊥平面PAC
• 空间中直线与平面的位置关系:
直线在平面外 a⊂/ α
文字 语言
图形
语言
符号 语言 交点 情况
直线在平面α内
a α
a⊂α 有无数个交点
直线与平面α平行 直线与平面α相交
a α
a
A α
a∥α
a∩α=A
无交点
有且只有一个交点
直线与平面垂直课件(共22张PPT)
请你动手操作并思考:
(1)折痕AD与桌面垂直吗?
(2)如何翻折才能使折痕AD与桌面垂直?
探究:如图8.6-10,准备一块三角形的纸片ABC,过∆ABC 的顶点A翻折纸片, 得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD,DC 与桌面接触).
请你动手操作并思考:
(1)折痕AD与桌面垂直吗? (2)如何翻折才能使折痕AD与桌面垂直? 追问2:如何验证折痕AD与桌面垂直?
BD,CD
m= DB DC 则 m AD = DB AD DC AD =0 即 AD m ,所以 AD
2.线面垂直的判定定理:一条直线与平面内的两条相交直线垂直, 那么直线与该平面垂直.
l
①图形语言:
P
mn
lm
②符号语言: l n
mn P
l
m , n
③本质:线线垂直→线面垂直
垂直,则直线垂直于(×平)面.
1.线面垂直的定义:如果直线l与平面α内的任意一条直线都垂直, 则直线l与平面α互相垂直,
记作l⊥α.
追问2:临江门大桥的斜拉索所在直线与桥面垂直吗?
结论 1:平面 内存在一条直线与直线 l 不垂直 则直线 l 与平面 不垂直.
1.线面垂直的定义:如果直线l与平面α内的任意一条直线都垂直, 则直线l与平面α互相垂直,
古希腊数学家欧几里得《几何原本》中线面垂直的定义: 若一条直线垂直于平面上与该直线相交的所有直线,则该直线与平面垂直.
A
α
B
B
追问1:地面上不经过点B的直线与旗杆所在直线
满足垂直关系吗?
1.线面垂直的定义:如果直线l与平面α内的任意一条直线垂直,
则直线l与平面α互相垂直,
记作l⊥α.
平面的垂线
(1)折痕AD与桌面垂直吗?
(2)如何翻折才能使折痕AD与桌面垂直?
探究:如图8.6-10,准备一块三角形的纸片ABC,过∆ABC 的顶点A翻折纸片, 得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD,DC 与桌面接触).
请你动手操作并思考:
(1)折痕AD与桌面垂直吗? (2)如何翻折才能使折痕AD与桌面垂直? 追问2:如何验证折痕AD与桌面垂直?
BD,CD
m= DB DC 则 m AD = DB AD DC AD =0 即 AD m ,所以 AD
2.线面垂直的判定定理:一条直线与平面内的两条相交直线垂直, 那么直线与该平面垂直.
l
①图形语言:
P
mn
lm
②符号语言: l n
mn P
l
m , n
③本质:线线垂直→线面垂直
垂直,则直线垂直于(×平)面.
1.线面垂直的定义:如果直线l与平面α内的任意一条直线都垂直, 则直线l与平面α互相垂直,
记作l⊥α.
追问2:临江门大桥的斜拉索所在直线与桥面垂直吗?
结论 1:平面 内存在一条直线与直线 l 不垂直 则直线 l 与平面 不垂直.
1.线面垂直的定义:如果直线l与平面α内的任意一条直线都垂直, 则直线l与平面α互相垂直,
古希腊数学家欧几里得《几何原本》中线面垂直的定义: 若一条直线垂直于平面上与该直线相交的所有直线,则该直线与平面垂直.
A
α
B
B
追问1:地面上不经过点B的直线与旗杆所在直线
满足垂直关系吗?
1.线面垂直的定义:如果直线l与平面α内的任意一条直线垂直,
则直线l与平面α互相垂直,
记作l⊥α.
平面的垂线
直线与平面垂直课件(共17张PPT)
线与平面垂直吗?
(2)如果一条直线与一个平面内的 无数条直线 都垂直,那么这条
直线与平面垂直吗?
l
任意一条直线
α P. …
线不在多, 所有直线 相交则灵
4.概念辨析,巩固新知
小结:证明线面垂直的方法:线线垂直 线面垂直
1.定义: 任意一条直线
所有直线 无限
2.判定定理: 两条相交直线
有限
线不在多, 相交则灵
3.操作确认,探究定理
当且仅当 折痕 AD 是 BC 边上的高时,AD 所在直线与桌面所在平面垂直.
二、直线与平面垂直的判定定理
文字语言:一条直线与一个平面内的 两条相交直线 都垂直,则该
直线与此平面垂直.
线线垂直 线面垂直
图形语言:
符号语言:
4.概念辨析,巩固新知
思考:
两条相交直线
(1)如果一条直线与一个平面内的 两条直线 垂直,那么这条直
又
m ∩ n=P,
∴ b⊥α .
5.推理论证,定理应用
练习 如图,在三棱锥 S-ABC 中,∠ACB = 90°, SA⊥平面ABC .
求证:BC⊥平面SAC .
S
证明:
线面垂直 线线垂直 A来自B C线线垂直 线面垂直
6.渗透文化,拓展延申
刘徽,是魏晋期间伟大的数学家,中国 古典数学理论的奠基人之一。
4.数学文化 的渗透
7.课堂小结,课后思考
1.如果要检验一根新旗杆与地面是否垂直, 你有什么好方法吗? 2.我们通过直观感知和操作确认,已经 从直观上得出了线面垂直的判定定理, 你能从理论上用所学的知识解释它吗?
谢谢观看,再见!
8.6.2 直线与平面垂直
1.复习引入,类比研究
直线与平面垂直的判定-PPT课件
作业
P41 习题1-6 A组 第7题
正确的是( B)
A.(1)(3)(4)
BHale Waihona Puke (1)(4)C.(1)D.都正确
3.有一根旗杆AB高8m,它的顶端A挂有一条长
10m的绳子,拉紧绳子并把它的下端放在地面上
的两点(和旗杆脚不在同一条直线上)C、D,如果
这两点都和旗杆脚B的距离是6m,那么旗杆就和
地面垂直,为什么?
A
C
BD
课堂小结
判定定理的 简单应用 线面垂直的 判定定理 线面垂直的 定义
直线与平面的 一条边垂直
l
P
如果一条直线垂直于一个平面内
的无数条直线,那么这条直线是否
与这个平面垂直?
A
不一定
C C
B B
那我们如何判定直线与平面垂直呢?
动手实践
α
设想把书中的一页取掉,那么这种性质改变吗? 换个角度再想,要想这种性质不变,至少保留 多少页才合适?
直线与平面垂直的判定定理
一条直线与一个平面内的两条相交直线都垂直,则
√ 直,则直线与此平面垂直
定理应用
例1、如图所示,在RtAB中C, B,点90P0 为 所在A平B面C外一点, 平面 P.A 问 四面A体BC 共有几个PA直B角C 三角形?
注意:
直线与平面之间的垂直关系,可以相互转化, 当线垂直面时,线就会垂直平面内的所有线; 当一条直线垂直于一个平面内的相交直线时, 这条直线就垂直于这个平面.
该直线与此平面垂直.
线不在多,
重在相交
l
la
b
Aa
l b a
l
b
a b A
思想: 直线与平面垂直
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、直线与平面垂直判定定理:
一条直线与一个平面内的两条相交直线都垂直, 则该直线与此平面垂直.
la l b a b a b A
l
l
b
A
a
作用: 判定直线与平面垂直.
记忆:线线垂直,则线面垂直
(2)a , b a b a b , a (3)
如果直线 l 与平面 内的任意一条直线都垂直, 我们说直线 l 与平面 互相垂直, 记作 l .
平面 的垂线
垂足
l
P
直线 l 的垂面
三.定理探索:线面垂直
线线垂直
判断1:如果一条直线和平面内的无数条直线都 假命题,一组平行线; 垂直,那么这条直线就垂直于这个平面. 判断2:如果一条直线和平面内的所有直线都垂 直,那么这条直线就垂直于这个平面. 真命题,操作困难; 判断3:如果一条直线和平面内的一条直线垂直, 那么这条直线就垂直于这个平面. 假命题; 判断4:如果一条直线和平面内的两条直线都垂 假命题; 直,那么这条直线就垂直于这个平面.
一.问题引入
直线与平面的位置关系有 哪几种? 直线与平面的位置关系有 哪几种?
直线与平面的位置关系有 哪几种? 复习 :直线与平面的位置关系有 哪几种 ?
线在面内
线 面 位置关系
线面平行 线面相交
垂直 斜交
√
线面垂直的实例
线 面 垂 直 最 重 要
不然倒掉
万 丈 高 楼 平 地 起
回顾复习:
两条相交
真命题,用来判定线面 垂直;
四.线面垂直的判定
如果一条直线和平面α内两相交直线都垂直,那么 判定定理 这条直线就垂直于这个平面. 已知:m 、n是α内的两条相交直线 ,l∩α=B ,且l⊥m,l⊥n。 求证:l⊥α 。
使AB = A' B
则AC=A'C, AD=A'D
l A 线段AA'的垂 直平分面
a b
b’
α
O
则过一点O有两条直线b与b 这与过一点有且只有一条直线 与已知平面垂直矛盾 可见假设不成立 a //b
线面垂直的性质定理: 垂直于同一平面的两直线互相平行。
图形语言:
a
b
α
符号语言:
a ,b a // b
例2.已知l ,l ,求证a // . 证明:设l =A,l =B 在内过点A取两条直线a和b l l =A l与a确定一个平面 B l 且B b A 与 相交,设 =c
S
F
G
D
E
B
C
A
四、直线和平面所成的角:
如图所示,一条直线PA和平面 相交,但不垂直,这 条直线叫这个平面的斜线,斜线和平面的交点A叫做斜足。 过斜线上斜足以外的一点P向平面引垂线PO ,过垂 足O和斜足A的直线AO叫做斜线在这个平面上的射影。 斜线和射影所成的锐角叫做这条直线和平面所成的角。
b
1、定义
a 都有l a l
lm l n l (m, n ) m n P
2、判定定理
3、推论
a //b, a b
思考:在空间,过一点,有几条直线与已 知平面垂直?过一点,有几个平面与已知直线 垂直?
线面垂直的性质:
b
例题
例1. 有一根旗杆AB高8米,它的顶端A 挂有一条长10米的绳子,拉紧绳子并把 它的下端放在地面上的两点(和旗杆不在 同一条直线上) C、D,如果这两点都和 旗杆脚B的距离是6米,那么这旗杆就和 地面是垂直的,为什么?
A
C
B
D
例2. 如图, PA垂直圆O所在平面, AB是圆O的直径, C是圆周上一点, 求证:BC⊥PC。
P
A
H
C
D
B
线面垂直 线线垂直
例4. 在正方体AC1中,取DD1的中 点E,AC和BD交于O点。 求证:OB1⊥面EAC D1 A1 B1 C1
E
D
O A Bຫໍສະໝຸດ C例5:已知ABCD为矩形,SA 平面ABCD, 过A点作 AE SB于E,过E作EF SC于F, (1)求证:AF SC; (2)若平面AEF SD G,求证:AG SD。
β B α l A a
C
例4 如图,已知 PA 矩形ABCD所 在平面,M、N分别是AB、PC的中点 求证: (1) MN CD; (2)若 PDA 45,求证:MN 面PCD
P E N A M B D
PA
C
例3: 已 知 P是ABC所 在 平 面 外 一 点 , PA、PB、PC 两两垂直, H是ABC的 垂 心 , 求 证 : PH 平 面ABC
△ACD≌ △A'CD (SSS) ∠ACE = ∠A'CE △ACE≌ △A'CE (SAS) AE=A'E ∴ g是AA'的 中垂线, 即 l⊥ g ∴ l⊥ α
C E
m
n
B
D
α
g
A’
定理的用法:
m , n , m n P l lm, ln
线不在多, 重在相交!
例1:过一点和已知平面垂直的直线只有一条.
P
B
B
a
A P
a
A
线 面 垂 直 的 唯 一 性
例2:过一点和已知直线垂直的平面只有一个.
例1.已知a ,b ,求证a //b.
证明: (反证法) 假设a与b不平行 b , 设求b =O过点O作b// a , b
l l a,同理l c 在平面 中:l a,l c a //c 又a ,c a //,同理b // 又a b=A //
a
B
c
理论迁移
例3 如图,已知 l , CA , 于点A,CB 于点B, a , a AB, 求证:a // l .
P
A C
O
B
例3 求证:如果两条平行直线中的一条垂直于一个平面,那 么另一条也垂直于这个平面. 已知:a//b,a 求证;b 证明:设m是内的任意一条直线
a
m
a a m m b m a // b b m b m