人教版八年级下册数学18.2.1 第1课时 矩形的性质导学案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十八章平行四边形
漂市一中钱少锋
18.2.1 矩形
第1课时矩形的性质
学习目标:1.理解矩形的概念,知道矩形与平行四边形的区别与联系;
2.会证明矩形的性质,会用矩形的性质解决简单的问题;
3.掌握直角三角形斜边中线的性质,并会简单的运用.
重点:理解矩形的概念,知道矩形与平行四边形的区别与联系;掌握直角三
角形斜边中线的性质,并会简单的运用.
难点:会证明矩形的性质,会用矩形的性质解决简单的问题.
一、知识回顾
1.平行四边形是什么?它有哪些性质?
2.你还记得长方形是什么吗?
二、新知预习
1.如图,现有一个活动的平行四边形,使它的一个内角变化,当内角变化为
90°时,这是我们学过的哪个图形?
2.自主学习:
(1)矩形的定义:有一个角是直角的平行四边形叫做_________,也就是长方
形.
(2)矩形是特殊的平行四边形,平行四边形_________是矩形.
三、自学自测
1.矩形是常见的图形,你能举出一些生活中的实例吗?
自主学习
教学备注
学生在课前
完成自主学
习部分
配套PPT讲
授
1.情景引入
(见幻灯片
3-4)
2.探究点1新
知讲授
(见幻灯片
5-19)
2.矩形是特殊的平行四边形,你能根据平行四边形的性质,说出3条矩形的性
质吗?
四、我的疑惑
____________________________________________________________
一、要点探究
探究点1:矩形的性质
思考因为矩形是平行四边形,所以它具有平行四边形的所有性质,由于它有
一个角为直角,它是否具有一般平行四边形不具有的一些特殊性质呢?
活动准备素材:直尺、量角器、橡皮擦、课本、铅笔盒等.
(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四
个角度数和对角线的长度,并记录测量结果.
AC BD ∠BAD ∠ADC ∠ABC ∠BCD
橡皮擦
课本
桌子
(2)根据测量的结果,你有什么猜想?
猜想1 矩形的四个角都是_________.
猜想2 矩形的对角线__________.
证一证如图,四边形ABCD是矩形,∠B=90°.
求证:∠B=∠C=∠D=∠A=90°.
证明:∵四边形ABCD是矩形,
课堂探究
教学备注
2.探究点1新知
讲授
(见幻灯片
5-19)
∴∠B____∠D,∠C____∠A, AB____DC.
∴∠B+∠C=_____°.
又∵∠B = 90°,
∴∠C =____°.
∴∠B=∠C=∠D=∠A =_____°.
如图,四边形ABCD是矩形,∠ABC=90°,对角线AC与DB相较于点O.
求证:AC=DB.
证明:∵四边形ABCD是矩形,
∴AB____DC,∠ABC=∠DCB=_____°,
在△ABC和△DCB中,
∵AB=DC,∠ABC=∠DCB,BC CB,
∴△ABC____△DCB.
∴AC____DB.
思考请同学们拿出准备好的矩形纸片,折一折,观察并思考. 矩形是不是轴对称图形?如果是,那么对称轴有几条?
要点归纳:矩形除了具有平行四边形所有性质,还具有的性质有:
1.矩形的四个角都是_______.矩形的对角线________.
2.矩形是_________图形,它有_____条对称轴.
几何语言述:
在矩形ABCD中,对角线AC与DB相交于点O.
∠ABC=∠BCD=∠CDA=∠DAB =90°,AC=DB
典例精析
例1如图,在矩形ABCD中,E是BC上一点,AE=AD,DF⊥AE ,垂足为F.求证:DF=DC.
例2如图,将矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD 于点E,AD=8,AB=4,求△BED的面积.
对训练
1.如图,在形ABCD中,对角线AC,BD交于点O,下列说法错误的是()
A.AB∥DC B.AC=BD
C.AC⊥BD D.OA=OB
2.如图,EF过形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴
影部分的面积是矩形ABCD面积的_________.
3.如图,在矩形ABCD中,AE⊥BD于E,∠DAE:∠BAE=3:1,求∠BAE和∠EAO 教学备注
2.探究点1新
知讲授
(见幻灯片
5-19)
第1题图第2题图
的度数.
探究点2:直角三角形斜边上的中线的性质
活动 如图,一张矩形纸片,画出两条对角线,沿着对角线AC 剪去一半
.
问题 Rt △ABC 中,BO 是一条怎样的线段?它的长度与斜边AC 有什么关系? 猜想 直角三角形斜边上的中线等于斜边的________.
证一证 如图,在Rt △ABC 中,∠ABC=90°,BO 是AC 上的中线.
1
.
2BO AC 求证:
证明:延长BO 至D, 使OD=BO,连接AD 、DC.
∵AO=OC, BO=OD ,
∴四边形ABCD 是____________.
∵∠ABC=90°,
∴平行四边形ABCD 是________,
∴AC_______BD , ∴BO=_____BD=_____AC.
要点归纳:直角三角形的性质:直角三角形斜边上的_______等于斜边的________. 典例精析
教学备注
配套PPT 讲授 3.探究点2新知讲授
(见幻灯片20-25)