【精品课件】聚合物电学性能
合集下载
第7章__聚合物的电讲解

3 高聚物的介电损耗 3 .1 交变电场与介电损耗 在交变电场中电介质消耗一部分电能而发热的 现象称为介电损耗。 非极性聚合物以电导损耗为主, 极性聚合物以偶极损耗为主.
在交流电场下的介电常数:
实数部分ε’表示与电场同相位的极化,反映电 能的储存,为实验测得的介电常数。虚数部 分ε’’是与电场相差900的极化,反映损耗的能 量,称为损耗因子
第7章 聚合物的电学性能
绝大多数高分子材料具有优良的电绝缘性能。 从日常的电线、电缆绝缘材料到电子附件的 绝缘包封材料均得到广泛的应用,其体积电 阻率范围宽达26个数量级。
高分子半导体、导体、超导体、光导体和 驻极体
聚合物的电学性能是指聚合物在外 加电场作用下的行为,包括在交变电 场中的介电性能,在弱电场中的导电 性能,在强电场中的电击穿及聚合物 表面的静电现象。
7.1 聚合物的介电性能 1 高分子的极化
在外加电场作用下聚合物分子中的电荷分 布发生变化,表现出使分子的偶极矩增大 的现象,称为极化。
极化方式: 电子极化:价电子发生位移 原子极化:原子核发生位移 偶极极化:产生分子取向 界面极化:电子或离子在两相界面上聚集
取向极化 被”冻结”,就 得到驻极体
非极性分子仅产生电子极化和原子极化,称为 变形极化或诱导极化
e电子极化率, a原子极化率
极性分子在电场中取向而产生取向偶极矩
极性分子除在外电场中产生的总偶极矩:
2 聚合物介电常数ε 介电常数ε衡量极化的程度。 介电常数是指电介质在电极极板间的电容c 与在真空中的电容co的比值,是一个无因 次量:
极化程度越大. 介电常数越大, 绝缘性能越差
2.1 高分子结构与 介电常数
2.1.1 高分子极性越大, 介电常数越大
聚合物电学性能

影响聚合物介电性能的因素
高聚物的分子结构
交变电场的频率
影响高聚物介电性的因素 温度 湿度 增塑剂
• 1. 结构因素是决定高聚物介电性的内在原因,包括是高聚物 分子极性大小和极性基团的密度,以及极性基团的可动性。 a. 分子极性 • 根据单体单元偶极矩的大小,可将高聚物大致归为四类
• 单体单元偶极矩增加,高分子极性增加,介电系数和介电损 耗增加。
• 高聚物的压电极化与热电极化力场可以是应变恒定或应力 恒定的,由此导致的电极化(P)改变可分别用压电系数 d和e表示
• 式中,d是压电应变系数,e是压电应力系数,A是电极面 积,P为电极化强度,X代表外应力,S代表应变,E是电 场强度,T是温度 • 由温度改变导致的焦电性可由焦电系数p表示
• 高聚物的压电极化与热电极化
位置发生了变化。极化所需时间约为10-13s,并伴有微量能量损耗;适用
对象:所有高聚物
电子极化和原子极化是由于分子中正负电荷中心发生位移或分子变形引起
的,所以统称为变形极化或诱导极化,其极化率不随温度变化而变化。
iii. 取向极化(又称偶极极化): 是指在外电场的作用下,极性分子沿电 场方向排列而发生取向。 由于极性分子沿外电场方向的转动需要克服本身的惯性和旋转阻力, 所以极化所需时间长,而且由于高分子运动单元可从小的侧基到整个大分 子链,所以完成取向极化所需的时间范围很宽,一般为10-9s,发生在低频 区域,适用对象:极性高聚物
第 7 章
聚合物的电学性能
第一节:聚合物的介电极化和介电松弛行为
第二节:聚合物的压电极化与焦电极化
莫芳
电学性质: 在外加电压或电场作用下的行为及其所表现出来的
各种物理现象,包括在交变电场中的介电性质、在
聚合物的电学、热学和光学性能—聚合物的电学性能(高分子物理课件)

导电高分子
表征材料电性能的另一个重主要参量是电导率。电导率的定义可以由欧姆定律给出:当施加的电场产生电流时,电流密度J正比于电场强度E,其比例常数,即为电导率σ,即:电导率σ= J(电流密度) /E(电场强度) 电导率与电阻率关系为σ=1/ρ,单位为西门子每米,即S/m。 电导率的大小反映了物质输送电流的能力。ρ愈小,σ愈大,材料导电性能就越好。
界面极化
PE能否发生取向极化?纯PE,界面极化能否发生?
思考题
介电性指在电场作用下,构成物质的带电粒子只能产生微观上的位移而不能进行宏观上的迁移的性质,宏观表现出对静电能的储蓄和损耗的性质,这是由于聚合物分子在电场作用下发生极化引起的,通常用介电系数ε和介电损耗表示。
二、聚合物的介电性能
例如喷涂在聚合物表面的抗静电剂,通过其亲水基团吸附空气中的水分子,会形成一层导电的水膜,使静电从水膜中跑掉。
在涤纶电影片基上涂敷抗静电剂烷基二苯醚磺酸钾,结果片基表面电阻率降低7~8个数量级。
另外,根据制造复合型导电高分子材料的原理,在聚合物基体中填充导电填料如炭黑、金属粉、导电纤维等也同样能起到抗静电作用。
相对于本征型导电高分子而言,这种复合材料的制备无论在理论上还是应用上都比较成熟,具有成型简便、重量轻、可在大范围内根据需要调节材料的电学和力学性能、成本低廉等优点,因而得以广泛开发应用。
复合型导电高分子的基体有:
常用的导电填料有:
碳类(石墨、炭黑、碳纤维ห้องสมุดไป่ตู้石墨纤维等)
金属类(金属粉末、箔片、丝、条或金属镀层的玻璃纤 维、玻璃珠等)
聚合物与聚合物摩擦时,介电系数大的聚合物带正电,介电系数小的带负电。另外聚合物的摩擦起电顺序与其逸出功顺序也基本一致,逸出功高者一般带负电。
表征材料电性能的另一个重主要参量是电导率。电导率的定义可以由欧姆定律给出:当施加的电场产生电流时,电流密度J正比于电场强度E,其比例常数,即为电导率σ,即:电导率σ= J(电流密度) /E(电场强度) 电导率与电阻率关系为σ=1/ρ,单位为西门子每米,即S/m。 电导率的大小反映了物质输送电流的能力。ρ愈小,σ愈大,材料导电性能就越好。
界面极化
PE能否发生取向极化?纯PE,界面极化能否发生?
思考题
介电性指在电场作用下,构成物质的带电粒子只能产生微观上的位移而不能进行宏观上的迁移的性质,宏观表现出对静电能的储蓄和损耗的性质,这是由于聚合物分子在电场作用下发生极化引起的,通常用介电系数ε和介电损耗表示。
二、聚合物的介电性能
例如喷涂在聚合物表面的抗静电剂,通过其亲水基团吸附空气中的水分子,会形成一层导电的水膜,使静电从水膜中跑掉。
在涤纶电影片基上涂敷抗静电剂烷基二苯醚磺酸钾,结果片基表面电阻率降低7~8个数量级。
另外,根据制造复合型导电高分子材料的原理,在聚合物基体中填充导电填料如炭黑、金属粉、导电纤维等也同样能起到抗静电作用。
相对于本征型导电高分子而言,这种复合材料的制备无论在理论上还是应用上都比较成熟,具有成型简便、重量轻、可在大范围内根据需要调节材料的电学和力学性能、成本低廉等优点,因而得以广泛开发应用。
复合型导电高分子的基体有:
常用的导电填料有:
碳类(石墨、炭黑、碳纤维ห้องสมุดไป่ตู้石墨纤维等)
金属类(金属粉末、箔片、丝、条或金属镀层的玻璃纤 维、玻璃珠等)
聚合物与聚合物摩擦时,介电系数大的聚合物带正电,介电系数小的带负电。另外聚合物的摩擦起电顺序与其逸出功顺序也基本一致,逸出功高者一般带负电。
第10章聚合物的电性能

1ae称原为子感电极应子化极极率化化。率率;;
e和 的a 值不随温度而变化,仅取决于分子中电子云和原子
的分布情况。电子极化和原子极化在所有电介质中(包括极性介质和 非极性介质)都存在。
第六页,编辑于星期一:十六点 三十分。
取向极化或偶极极化
极性分子本身具有永久偶极矩,通常状态下由于分子的热运 动,各偶极矩的指向杂乱无章,因此宏观平均偶极矩几乎为零。
根据上式,我们可以通过测量电介质介电系数 求得分 子极化 率 。另外实验得知,对非极性介质,介电系数 与介质的光折射
率n的平方相等, ,此式联系着介质n2的电学性能和光学性能。
第十四页,编辑于星期一:十六点 三十分。
2、介电损耗
电介质在交变电场中极化时,会因极化方向的变化而损 耗部分能量和发热,称介电损耗。
对非极性聚合物而言,电导损耗可能是主要的。 对极性聚合物的介电损耗而言,其主要部分为极化损耗。
已知分子极化速率很快。电子极化所需时间约
1秒0,15原 1子0极13
化需略大于
秒。但取向10极1化3 所需时间较长,对小分子约大于
秒,对大分子更长一些。10 9
第十六页,编辑于星期一:十六点 三十分。
极性电介质在交变电场中极化时,如果电场的交变频率很 低,偶极子转向能跟得上电场的变化,如图9-3(a),介电损 耗就很小。
实数部分 I R C0V * 与交变电压同相位,相当于流过 “纯电阻”的电流,这部分电流损耗能量。
第二十一页,编”电流与“电容”电流之比表征介质的介电损耗:
tg I R C0V * IC C0V *
(9-10)
式中δ称介电损耗角, t称g介电损耗正切。 tg 的物理意义是在每个交变电压周期中,介质损耗的能量
e和 的a 值不随温度而变化,仅取决于分子中电子云和原子
的分布情况。电子极化和原子极化在所有电介质中(包括极性介质和 非极性介质)都存在。
第六页,编辑于星期一:十六点 三十分。
取向极化或偶极极化
极性分子本身具有永久偶极矩,通常状态下由于分子的热运 动,各偶极矩的指向杂乱无章,因此宏观平均偶极矩几乎为零。
根据上式,我们可以通过测量电介质介电系数 求得分 子极化 率 。另外实验得知,对非极性介质,介电系数 与介质的光折射
率n的平方相等, ,此式联系着介质n2的电学性能和光学性能。
第十四页,编辑于星期一:十六点 三十分。
2、介电损耗
电介质在交变电场中极化时,会因极化方向的变化而损 耗部分能量和发热,称介电损耗。
对非极性聚合物而言,电导损耗可能是主要的。 对极性聚合物的介电损耗而言,其主要部分为极化损耗。
已知分子极化速率很快。电子极化所需时间约
1秒0,15原 1子0极13
化需略大于
秒。但取向10极1化3 所需时间较长,对小分子约大于
秒,对大分子更长一些。10 9
第十六页,编辑于星期一:十六点 三十分。
极性电介质在交变电场中极化时,如果电场的交变频率很 低,偶极子转向能跟得上电场的变化,如图9-3(a),介电损 耗就很小。
实数部分 I R C0V * 与交变电压同相位,相当于流过 “纯电阻”的电流,这部分电流损耗能量。
第二十一页,编”电流与“电容”电流之比表征介质的介电损耗:
tg I R C0V * IC C0V *
(9-10)
式中δ称介电损耗角, t称g介电损耗正切。 tg 的物理意义是在每个交变电压周期中,介质损耗的能量
聚合物的电学性能和热学性能

3
高分子物理
聚合物的电学性能和热学 性能
极化:在外电场作用下,电介质分子或某些基团中电荷分 布发生相应变化。 极化分为:电子极化、原子极化、偶极极化(取向极化) 电子极化:在外电场作用下,分子中各原子的价电子云发 生相对分子骨架的移动,分子的正负电荷中心的位置发生 变化 特点:电子云移动很小,极化时间极短 原子极化:在外电场作用下,分子骨架发生变形,使分子 中正负电荷中心发生相对位移
11 高分子物理 聚合物的电学性能和热学 性能
介电损耗为介电损耗角的正切值:
0 1 2 2
,
,,
( 0 ) 1 2 2
tgδ=ε ” /ε ’ 其中,ε0为静介电常数 ε∞为光频时介电常数
12
高分子物理
聚合物的电学性能和热学 性能
14
高分子物理
聚合物的电学性能和热学 性能
5)增塑剂 增塑剂使聚合物粘度下降,使取向极化容易,加增塑剂与 升高温度有相同作用。 6)杂质 极性杂质或导电杂质使电导电流增大,极化率增大,介电 损耗增大。如:水
15
高分子物理
聚合物的电学性能和热学 性能
3、聚合物的介电击穿 介电击穿现象:在强电场中,随电压升高,dU/dI减小, 电流比电压增加得更快,当dU/dI=0,即电压不变,电流 继续增大,材料突然从介电状态变为导电状态,有时伴随 物理破坏 dU/dI=0时的电压Ub称为击穿电压
6.2 聚合物的热学性能
6.2.1 聚合物的耐热性 升温:聚合物物理变化(软化、熔融)、化学变化(降解 、分解、氧化、交联等等) 聚合物耐热性:聚合物在特定环境下的热变形性和热稳定 性 耐热聚合物:1)软化点、熔点高,并保持材料的刚性和强 度,在外力作用下,蠕变慢,保持尺寸稳定性;2)高温 下不发生热分解等 耐热聚合物加工性较差
高分子物理——第七章:聚合物的电性能

通过试样表面的电流Is I 通过试样体积内的电流IV 相应R
Rs—表面电阻 RV—体积电阻
RV=V / IV
Rs=V /Is
s RV V d s — 测试电极的面积 d — 试样的厚度
b Rs s L b — 平行电极间距cm L — 平面电极的长度 cm
L s Rs b
V
对于具有特殊电磁功能的高分子的研究,对于
高分子半导体,导体,超导体,永磁体的探索
已取得了不同程度的进展。
一、高分子的介电性
绝大部分高聚物(特别是碳链高聚物)是绝缘 体,但在外电场作用下,由于分子极化,将引起的对 电性能的储存和损耗,这种性能称为介电性能。
在直流电场(静电场)储蓄电能,在交变电场 中损耗电能。介电性用ε(介电常数)和tgδ(介 电损耗)来表示,ε和tgδ愈小,介电性愈好。 材料的介电性来源于其中成分的极化。ε和tgδ 本质上是个极化问题,讨论聚合物的ε和tgδ时, 我们首先讨论聚合物的极化。
Eb的大小不仅取决于高分子本身的结构,还随外界 条件而变化,电极的形状和大小,升压速度,电场频率,T 和d都是影响Eb的因素。因此在测试Eb时,必须严格规定测 试条件,否则,测试结果将无法比较。
击穿试验是一种破坏性试验,为此在实际应用中往往 用耐压试验代替,即在聚合物试样上加一额定试验电压经过 一定时间后仍不发生击穿的就算合格产品。 聚合物击穿可以是电击穿,热击穿,化学击穿等形式, 通常不只是一种机理,可能是多种机理的综合结果。
式中,D1—电位移矢量与电场同相位部分;
D2—电位移矢量滞后于施加电场的部分。 令: D1 / E0
D2 / E0
式中, ε′—实测的介电系数,代表体系的储电能力 ε″—损耗因子,代表体系的耗能部分。
聚合物的电性能分析课件

静电性能实验
总结词
静电性能实验是研究聚合物静电现象的实验,通过测量聚合物的静电电压、电荷量等参数,评估聚合物材料的静 电性能。
详细描述
在静电性能实验中,常用的测量技术包括静电电压表、静电电荷计等。通过测量聚合物材料的静电电压和电荷量 ,可以了解聚合物材料的静电产生机制和消散特性。这些信息对于聚合物材料在电子器件、包装材料等领域的应 用具有指导意义。
聚合物的电性能分析 课件
目录
• 聚合物电学性能概述 • 聚合物的导电性能 • 聚合物的介电性能 • 聚合物的静电性能 • 聚合物电性能分析实验 • 聚合物电性能分析的应用前景
01
聚合物电学性能概述
聚合物电学性能的重要性
在电子、电力和能源等领域的应用
01
聚合物因其独特的电学性能,在电子器件、电力传输、能源存
电容器
利用聚合物薄膜作为电介质材料制造 电容器,具有小型化、轻量化、薄型 化的特点。
绝缘材料
聚合物的高绝缘性能使其成为优良的 绝缘材料,广泛应用于电线电缆、电 器设备等领域。
传感器
利用聚合物的介电性能变化,可以制 成传感器用于检测压力、温度、湿度 等物理量。
电子器件
在电子器件中,聚合物介电材料用于 制造集成电路、晶体管等微型电子元 件。
传感器
利用聚合物的导电性能,可以制作传 感器用于检测压力、温度、湿度等物 理量。
03
聚合物的介电性能
聚合物的介电机理
极化现象
聚合物分子在电场作用下发生取向极化,使电介质内部正负电荷 中心发生相对位移。
空间电荷极化
聚合物内部存在的空间电荷在电场作用下发生极化。
电子极化
聚合物分子中的电子云在电场作用下发生变形,导致正负电荷中 心分离。
高分子物理课件10聚合物的电学性能、热性能和光学性能

2.原子极化
➢ 分子骨架在外电场作用下发生变形造成的。
➢ 如CO2分子是直线形结构O=C=O,极化后变成
个
,分子中正负电荷中心发生了相对位移。
➢ 极化所需要的时间约为10-13s并伴有微量能量损耗。
10 聚合物的电学性能、热性能和光学性能
➢以上两种极化统称为变形极化或诱导极化。 其极化率不随温度变化而变化,聚合物在高频区 均能发生变形极化或诱导极化
➢ 对聚合物而言,取向极化的本质与小分子相同, 但具有不同运动单元的取向,从小的侧基到整个 分子链。
➢ 完成取向极化所需的时间范围很宽,与力学松弛 时间谱类似,也具有一个时间谱,称作介电松弛 谱。
10 聚合物的电学性能、热性能和光学性能
5.介电常数
10 聚合物的电学性能、热性能和光学性能
➢ 真空电容器的电容为
➢ 因此可在三方面采取适当的措施,消除已经产 生的静电。
10 聚合物的电学性能、热性能和光学性能
➢ 静电沿绝缘体表面消失的速度取决于绝缘体表面 电阻率的大小。
(1)提高空气的湿度 可以在亲水性绝缘体表面形成连续的水膜,加上 空气中的CO2和其他电离杂质的溶解,而大大提 高表面导电性。
(2)使用抗静电剂 它是一些阳离子或非离子型活性剂。通常用喷雾 或浸涂的办法涂布在高聚物表面,形成连续相, 以提高表面的导电性。有时为了延长作用的时间, 可将其加入塑料中,让它慢慢扩散到塑料表面而 起作用。
10 聚合物的电学性能、热性能和光学性能
(3)纤维纺丝工序上油的措施 给纤维表面涂上一层具有吸湿性的油剂,它吸收 空气中的水分而增加纤维的导电性,达到去静电 的效果。
(4)提高高聚物的体积电导率 最方便的方法是添加炭黑、金属细粉或导电纤维, 制成防静电橡皮或防静电塑料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*i
为实部,即通常实验测得的
为虚部,称介电损耗因素
介电损耗
tg
一般高聚物的介电损耗: tg102~104
式中δ称介电损耗角,tg介 电损耗正切。 tg的 物
理意义是在每个交变电压周期中,介质损耗的 能量与储存能量之比。 越小tg, 表示能量损耗 越小。理想电容器(即真空电容器) =0,tg无
• 热合PVC等极性材料是适宜的。而PE薄膜等非极 性材料就很难用高频热合。
• 轮胎经高频热处理消除内应力,可大幅度延长使 用寿命。
式中:Q 0为极板上的原有电荷, Q为 感应电荷。
□ 是衡量高聚物极化程度的宏观物理量。 表征电介质储存电荷和电能的能力,从上式 可以看出,介电常数越大,极板上产生的感 应电荷Qˊ和储存的电能越多。
介电系数在宏观上反映了电介质的极化程度,它与分
子极化率存在着如下的关系:
P ~12M 34N0
式中 P~、M、分别为电介质的摩尔极化率、分子量和密度,
电容器:介电损耗尽可能小,介电常数尽可能大, 介电强度很高
仪表绝缘:电阻率和介电强度高而介电损耗很低 绝缘材料
无线电遥控技术:优良的高频、超高频绝缘材 料
• 导电高分子的研究和应用 :分子链具有共轭π-电 子结构的聚合物,如聚乙炔、聚苯胺等,通过不 同的方式掺杂,可以具有半导体(电导率σ=10-10102 S•cm-1)甚至导体(σ=102-106 S•cm-1)的电导 率。
称为分子极化率。
E
按照极化机理不同,有电子极化率 ,a 原子极化率 和a 取向极
化率
e
u
=
2 0
3 KT
对于极性分子: aeu
( 0 为永久偶极矩)
对于非极性分子: a e
根据高聚物中各种基团的有效偶极矩,可以把高聚物按极性大小分为四类:
非极性:PE、PP、PTFE
弱极性:PS、NR
极性:PVC、PA、PVAc、PMMA
2、极化机理:
□ 电子极化:外电场作用下分子中各个原子或离子的价电子 云相对原子核的位移,使分子带上偶极矩 。极化过程所需的 时间极短,约为 10-13~10-15s
□ 原子极化:分子骨架在外电场作用下发生变形造成的,
使分子带上偶极矩 。如CO2分子是直线形结构O=C=O,极化 后变成个 , 分子中正负电荷中心发生了相对位移。极化 所需要的时间约为10-13s并伴有微量能量损耗。
• 电学性质的测量也成为研究聚合物结构与分子运 动的一种有效手段:非常灵敏地反映材料内部结 构的变化和分子运动状况
§10.2 聚合物介电性能
一、电介质的极化现象 二、极化机理 三、介电性能 四、影响介电性能的因素
介电性能:
指高聚物在电场作用下,表现出对 静电能的储存和损耗的性质,通常用 介电常数和介电损耗来表示。这是由
N0为阿佛加德罗常数。对非极性介质,此式称ClausiusMosotti方程;对极性介质,此式称Debye方程。
根据上式,我们可以通过测量电介质介电系数求得分子极化率。 另外实验得知,对非极性介质,介电系数与介质的光折射率n
的平方相等, n2,此式联系着介质的电学性能和光学性能。
2、介电损耗
• 定义:聚合物在交变电场中取向极化时,伴随着能量消耗,使介质本 身发热,这种现象称为聚合物的介电损耗。
以上两种极化统称为变形极化或诱导极化 其极化率不随温度变化而变化,聚合物在高频区均能发生变 形极化或诱导极化
• 偶极极化(取向极化):
是具有永久偶极矩的极性分子沿外场方向排列的现象。极 化所需要的时间长,一般为10-9s,发生于低频区域。
(a)无电场
(b)有电场
图1 偶极子在电场中取向
极化偶极矩 μ的大小,与外电场强度(E)有关,比例系数
于聚合物分子在电场作用下发生极化
引起的
一、聚合物电介质在外电场中的极化现象
1、介电极化
在外电场作用下,或多或少会引起价电子或原子核 的相对位移,造成了电荷的重新分布,称为极化。
• 主要有以下几种极化:(1)电子极化(2) 原子极化(3)偶极极化(4)界面极化。 前两种产生的偶极矩称诱导偶极矩,后一 种为永久偶极矩的取向极化。
• 产生原因: (1)电导损耗 :指电介质所含的含有导电载流子在电场作用下流动时,
因克服电阻所消耗的电能。这部分损耗在交变电场和恒定电场中都会 发生。由于通常聚合物导电性很差,故电导损耗一般很小。 (2)极化损耗 :这是由于分子偶极子的取向极化造成的。取向极化是一 个松弛过程,交变电场使偶极子转向时,转动速度滞后于电场变化速 率,使一部分电能损耗于克服介质的内粘滞阻力上,这部分损耗有时
能量损失。 正比于 ,故也常 用 表示材料tg介
电损耗的大小。
□ 应用
(1)聚合物作电工绝缘材料、电缆包皮、护套或 电容器介质材料:介电损耗越小越好。否则,不仅 消耗较多电能,还会引起材料本身发热,加速材料 老化破坏,引发事故。
(2)需要利用介电损耗进行聚合物高频干燥、塑 料薄膜高频焊接或大型聚合物制件高频热处理时, 则要求材料有较大的值。
是很大的。
问题:非极性polymer?极性polymer?
□ 介电损耗表征: 对于电介质电容器,在交流电场中,因电介质取向极化跟不上外加电场
的变化,发生介电损耗。由于介质的存在,通过电容器的电流与外加电压的
相位差不再是90常数来表示介电常数和介电损耗两方面的性质:
强极性:PVA、PET、PAN、酚醛树脂、氨基树脂
高聚物的有效偶极矩与所带基团的偶极矩不完全一致,结构对称性会导致偶极 矩部分或全部相互抵消。
二、聚合物的介电性能
1、介电常数
真空
介质电容器的电容C比真空
电容器C0的电容增加的倍数。
CQ/UQQ 0Q
电介
C0 Q 0/U Q 0 Q 0
质
图2 平行板电容器示意图
第10章 聚合物的电学性能
§10.1 聚合物电性能概述
是指聚合物在外加电压或电场作用下的行为 及其所表现出来的各种物理现象
介电性能:交变电场 导电性能:弱电场 击穿现象:强电场 静电现象:on the polymer surface
• 绝大多数聚合物是绝缘体,具有卓越的电绝缘 性能,其介电损耗和电导率低,击穿强度高, 为电器工业中不可缺少的介电材料和绝缘材料: