江苏省四校2020届高三12月联考数学试题版含答案

合集下载

新高考数学考点12 y=Asin(wx+φ)的图像与性质考点分类讲义练习题附解析1

新高考数学考点12 y=Asin(wx+φ)的图像与性质考点分类讲义练习题附解析1

考点12 y=Asin(wx+φ)的图像与性质1、了解三角函数的周期性,画出 y =sin x , y =cos x , y =tan x 的图像,并能根据图像理解正弦函数、余弦函数在[ 0 ,2π ],正切函数的性质(如单调性、最大值和最小值、图像与 x 轴的交点等)2. 了解三角函数 y = A sin ( ωx + φ )的实际意义及其参数 A , ω ,φ 对函数图像变化的影响;能画出 y = A sin (ωx +φ )的简图,能由正弦曲线 y =sin x 通过平移、伸缩变换得到 y = A sin ( ωx + φ )的图像 .3. 会用三角函数解决一些简单的实际问题,体会三角函数是描述周期变化现象的重要函数模型 .1. 三角函数的图像与性质是高考中的必考点,对这部分内容的考查,高考中大多以中、低档题为主,主要集中于对函数的周期、图像、单调性、值域(或最值)等几个方面的考查 . 要解决此类问题,要求学生熟练地掌握三角函数的图像,及正弦函数、余弦函数、正切函数的最基本的性质,并能运用这些性质去熟练地解题 .2. 利用三角函数的性质解决问题时,要重视化归思想的运用,即将复杂的三角函数转化为基本的正弦、余弦、正切函数来处理1、函数 f ( x ) = A sin ( ωx + φ )的图像的平移和伸缩变换以及根据图像确定 A , ω ,φ 问题是高考的热点,题型多样,难度中低档,主要考查识图、用图的能力,同时考查利用三角公式进行三角恒等变换的能力 . 2、要牢牢记住函数 f ( x ) = A sin ( ωx + φ )的图像和性质。

1、【2020年江苏卷】.将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.【答案】524x π=-【解析】3sin[2()]3sin(2)6412y x x πππ=-+=- 72()()122242k x k k Z x k Z πππππ-=+∈∴=+∈当1k =-时524x π=-故答案为:524x π=-2、【2020年全国1卷】设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A. 10π9 B.7π6 C. 4π3D. 3π2【答案】C【解析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭, 将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω=== 故选:C3、【2020年全国3卷】16.关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称. ③f (x )的图像关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③【解析】对于命题①,152622f π⎛⎫=+= ⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误. 故答案为:②③.4、【2020年天津卷】8.已知函数()sin 3f x x π⎛⎫=+ ⎪⎝⎭.给出下列结论: ①()f x 的最小正周期为2π;②2f π⎛⎫⎪⎝⎭是()f x 的最大值; ③把函数sin y x =的图象上所有点向左平移3π个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是 A. ① B. ①③C. ②③D. ①②③【答案】B【解析】因为()sin()3f x x π=+,所以周期22T ππω==,故①正确;51()sin()sin 122362f ππππ=+==≠,故②不正确; 将函数sin y x =的图象上所有点向左平移3π个单位长度,得到sin()3y x π=+的图象, 故③正确. 故选:B.5、【2020年山东卷】.下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A. πsin(3x +)B. πsin(2)3x - C. πcos(26x +)D. 5πcos(2)6x - 【答案】BC【解析】由函数图像可知:22362T πππ=-=,则222T ππωπ===,所以不选A, 当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈, 解得:()223k k ϕππ=+∈Z ,即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭ 故选:BC.6、【2019年高考全国Ⅰ卷理数】函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称,排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D . 7、【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③【答案】C 【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误. 当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .8、【2019年高考全国Ⅱ卷理数】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |【答案】A【解析】作出因为sin ||y x =的图象如下图1,知其不是周期函数,排除D ; 因为cos cos y x x ==,周期为2π,排除C ;作出cos2y x =图象如图2,由图象知,其周期为π2,在区间(4π,2π)单调递增,A 正确; 作出sin 2y x =的图象如图3,由图象知,其周期为π2,在区间(4π,2π)单调递减,排除B ,故选A .图1图2图39、【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④【答案】D【解析】①若()f x 在[0,2π]上有5个零点,可画出大致图象, 由图1可知,()f x 在(0,2π)有且仅有3个极大值点.故①正确;②由图1、2可知,()f x 在(0,2π)有且仅有2个或3个极小值点.故②错误;④当()f x =sin (5x ωπ+)=0时,5x ωπ+=k π(k ∈Z ),所以ππ5k x ω-=, 因为()f x 在[0,2π]上有5个零点,所以当k =5时,π5π52πx ω-=≤,当k =6时,π6π52πx ω-=>,解得1229510ω≤<,10、【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2-B . CD .2【答案】C【解析】∵()f x 为奇函数,∴(0)sin 0,=π,,0,f A k k k ϕϕ==∴∈∴=Z 0ϕ=; 又12π()sin,2π,122g x A x T ωω=∴==∴2ω=,又π()4g =2A =,∴()2sin 2f x x =,3π()8f =故选C. 11、【2018年高考江苏卷】已知函数()ππsin 2()22y x =+-<<ϕϕ的图象关于直线π3x =对称,则ϕ的值是________. 【答案】π6-【解析】由题意可得2sin π13⎛⎫+=± ⎪⎝⎭ϕ,所以2πππππ()326k k k +=+=-+∈Z ,ϕϕ,因为ππ22-<<ϕ,所以π0,.6k ==-ϕ 【名师点睛】由对称轴得2πππππ()326k k k +=+=-+∈Z ,ϕϕ,再根据限制范围求结果.函数()sin y A x B =++ωϕ(A >0,ω>0)的性质:(1)max min ,y A B y A B =+=-+; (2)最小正周期2πT =ω;(3)由()ππ2x k k +=+∈Z ωϕ求对称轴; (4)由()ππ2π2π22k x k k -+≤+≤+∈Z ωϕ求增区间;由()π3π2π2π22k x k k +≤+≤+∈Z ωϕ求减区间.12、【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++的值域. 【答案】(1)π2θ=或3π2;(2)[1-+. 【解析】(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+, 故2sin cos 0x θ=, 所以cos 0θ=. 又[0,2π)θ∈, 因此π2θ=或3π2. (2)2222ππππsin sin 124124y fx f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 2136212sin 22222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎫⎝⎭⎝⎭=+=--⎪⎪⎝⎭π1223x ⎛⎫=-+ ⎪⎝⎭.因此,函数的值域是[1+.题型一 三角函数的性质1、(2020届山东省枣庄市高三上学期统考)设函数2sin cos ()(,0)x x xf x a R a ax +=∈≠,若(2019)2f -=,(2019)f =( )A .2B .-2C .2019D .-2019【答案】B 【解析】因为2sin cos ()x x xf x ax +=,所以22sin()cos()sin cos ()()x x x x x xf x f x ax ax---+-==-=-, 因此函数()f x 为奇函数,又(2019)2f -=,所以(2019)(2019)2f f =--=-. 故选B2、(2020届山东省枣庄市高三上学期统考)已知函数()cos()(0)f x x ωϕω=+>的最小正周期为π,且对x ∈R ,()3f x f π⎛⎫⎪⎝⎭恒成立,若函数()y f x =在[0,]a 上单调递减,则a 的最大值是( )A .π6B .π3C .2π3D .5π6【答案】B 【解析】因为函数()()cos f x x ωϕ=+的最小正周期为π,所以22πωπ==,又对任意的x ,都使得()3f x f π⎛⎫≥ ⎪⎝⎭, 所以函数()f x 在3x π=上取得最小值,则223k πϕππ+=+,k Z ∈, 即2,3k k Z πϕπ=+∈,所以()cos 23f x x π⎛⎫=+ ⎪⎝⎭, 令222,3k x k k Z ππππ≤+≤+∈,解得,63k x k k Z ππππ-+≤≤+∈ ,则函数()y f x =在0,3π⎡⎤⎢⎥⎣⎦上单调递减,故a 的最大值是3π. 故选B3、(2020届山东省潍坊市高三上期中)已知函数()sin cos f x x x =+,则( ) A .()f x 的最小正周期为πB .()y f x =图象的一条对称轴方程为4x π=C .()f x 的最小值为2-D .()f x 的0,2π⎡⎤⎢⎥⎣⎦上为增函数【答案】B 【解析】()sin cos )4f x x x x π=+=+,对A ,()f x ∴的最小正周期为2π,故A 错误;对B ,()42f ππ==()y f x ∴=图象的一条对称轴方程为4x π=,故B 正确;对C ,()f x 的最小值为,故C 错误; 对D ,由[0,]2x π∈,得3[,]444x πππ+∈,则()f x 在[0,]2π上先增后减,故D 错误. 故选:B .4、(2020届山东实验中学高三上期中)已知函数()sin 2f x a x x =的图象关于直线12x π=-对称,若()()124f x f x ⋅=-,则12a x x -的最小值为( )A .4π B .2π C .πD .2π【答案】B 【解析】()f x 的图象关于直线12x π=-对称,(0)()6f f π∴=-,即-1a =,则()sin 222sin 26f x x x x π⎛⎫=-=- ⎪⎝⎭,12()()4f x f x =-,1()2f x ∴=,2()2f x =-或1()2f x =-,2()2f x =,即1()f x ,2()f x 一个为最大值,一个为最小值, 则12||x x -的最小值为2T, T π=,12||x x ∴-的最小值为2π, 即12a x x -的最小值为2π.故选:B .5、(2020届山东省滨州市三校高三上学期联考)设函数()sin 23f x x π⎛⎫=- ⎪⎝⎭,则下列结论正确的是( )A .π-是()f x 的一个周期B .()f x 的图像可由sin 2y x =的图像向右平移3π得到 C .()f x π+的一个零点为6x π=D .()y f x =的图像关于直线1712x π=对称 【答案】ACD 【解析】()sin 23f x x π⎛⎫=- ⎪⎝⎭的最小正周期为π,故π-也是其周期,故A 正确;()f x 的图像可由sin 2y x =的图像向右平移6π得到,故B 错误;()77()()sin sin 066323f f ππππππ⎛⎫+==-== ⎪⎝⎭,故C 正确; sin sin 17175()1262sin 132f πππππ⎛⎫⎛⎫⎛⎫-=== ⎪ =⎪ ⎪⎝⎭⎝⎭⎝⎭,故D 正确. 故选:ACD6、.(2020届江苏省南通市如皋市高三下学期二模)已知函数()()()sin 0f x x ωϕω=+>,将函数()y f x =的图象向右平移π4个单位长度后,所得图象与原函数图象重合,则ω的最小值等于__________.【答案】4【解析】由题得12=,4,()42n n n Z ππωω⨯⨯∴=∈, 因为0>ω,所以ω的最小值等于4.故答案为:47、(2020届江苏南通市高三基地学校第一次大联考数学试题)已知函数()2sin()(0)3f x x πωω=+>的图象关于点,02π⎛⎫⎪⎝⎭对称,则ω的最小值为_____. 【答案】43. 【解析】由题意可得,32k k Z ππωπ⨯+=∈,求得22,3k k Z ω=-∈, 又0>ω,则ω的最小值为43, 故答案为:43. 8、(2019南京学情调研)已知函数f(x)=2sin (2x +φ)⎝⎛⎭⎫-π2<φ<π2的图像关于直线x =π6对称,则f(0)的值为________.【答案】. 1【解析】由题意,f ⎝⎛⎭⎫π6=2sin ⎝⎛⎭⎫2×π6+φ=±2,即sin ⎝⎛⎭⎫π3+φ=±1,又因为-π2<φ<π2, -π6<π3+φ<5π6,所以π3+φ=π2,即φ=π6,所以f(x)=2sin ⎝⎛⎭⎫2x +π6,f(0)=1.9、(2019苏锡常镇调研)函数()cos()(0)3f x x πωω=->的图像关于直线2x π=对称,则ω的最小值为 .【答案】.32【解析】解法1:根据余弦函数的图像及性质,令ππωk x =-3,Z k ∈得ωππk x +=3,令23πωππ=+k 得k 232+=ω,Z k ∈,又因为0>ω,所以当0=k 时ω取得最小值为.32 解法2:由条件可得1)2(±=πf ,即1)32cos(±=-πωπ,则ππωπk =-32,Z k ∈,解得k 232+=ω,Z k ∈,又因为0>ω,所以当0=k 时ω取得最小值为.32解后反思:利用整体思想,结合三角函数的图像及性质是解决这类问题的关键!10、(2019苏州期初调查) 已知函数f(x)=sin (2x +φ)(0≤φ<π)的一条对称轴是x =-512π,则φ=________.【答案】 π3【解析】因为函数f(x)的一条对称轴是x =-512π,所以2×⎝⎛⎭⎫-5π12+φ=k π+π2,k ∈Z ,则φ=k π+4π3,k ∈Z ,又因为0≤φ<π,所以φ=π3.11、(2019南京、盐城二模)若函数f(x)=2sin (ωx +φ)(ω>0,0<φ<π)的图像经过点⎝⎛⎭⎫π6,2,且相邻两条对称轴间的距离为π2,则f ⎝⎛⎭⎫π4的值为________.【答案】.3【解析】由相邻两条对称轴间的距离为π2,知其最小正周期T =2×π2=π,从而得ω=2πT =2ππ=2,又f(x)=2sin (2x +φ)的图像经过点⎝⎛⎭⎫π6,2,所以2sin ⎝⎛⎭⎫π3+φ=2,解得φ=2k π+π6(k ∈Z ),又因为0<φ<π,所以φ=π6,故f (x )=2sin ⎝⎛⎭⎫2x +π6,即有f ⎝⎛⎭⎫π4=2sin 2π3= 3.题型二 三角函数图像的变换1、(2020届山东师范大学附中高三月考)为了得函数23y sin x π⎛⎫=+ ⎪⎝⎭的图象,只需把函数2y sin x =的图象( ) A .向左平移6π个单位 B .向左平移3π单位 C .向右平移6π个单位 D .向右平移3π个单位【答案】A 【解析】不妨设函数2y sin x =的图象沿横轴所在直线平移ϕ个单位后得到函数23y sin x π⎛⎫=+⎪⎝⎭的图象. 于是,函数2y sin x =平移ϕ个单位后得到函数,sin 2()y x ϕ=+,即sin(22)y x ϕ=+, 所以有223k πϕπ=+,6k πϕπ=+,取0k =,6π=ϕ.答案为A . 2、(2020届山东省枣庄、滕州市高三上期末)将曲线()cos 2y f x x =上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移4π个单位长度,得到曲线cos 2y x =,则6f π⎛⎫= ⎪⎝⎭( )A .1B .-1C D .【答案】D 【解析】把cos 2y x =的图象向左平移4π个单位长度,得cos 2()cos(2)sin 242y x x x ππ=+=+=-的图象,再把所得图象各点的横坐标变为原来的12倍,纵坐标不变,得图象的函数式为sin(22)sin 4y x x =-⨯=-, sin 42sin 2cos 2()cos 2y x x x f x x =-=-=,∴()2sin 2f x x =-,∴()2sin63f ππ=-=.故选:D.3、(2020届山东省潍坊市高三上学期统考)将函数()πsin 23f x x ⎛⎫=+ ⎪⎝⎭的图像向右平移()0a a >个单位得到函数()πcos 24g x x ⎛⎫=+ ⎪⎝⎭的图像,则a 的值可以为( )A .5π12B .7π12C .19π24D .41π24【答案】C【解析】由题意知,3()cos(2)sin(2)44g x x x ππ=+=+,其图像向左平移a 个单位得到函数3()sin(22)4f x x a π=++, 而函数()πsin 23f x x ⎛⎫=+⎪⎝⎭,所以有32243a k πππ+=+5224a k ππ=-+,取1k =得1924a π=.答案选C.4、(2020届浙江省宁波市余姚中学高考模拟)函数f(x)=sin(wx +φ)(w >0,φ<2π)的最小正周期是π,若将该函数的图象向右平移6π个单位后得到的函数图象关于直线x =2π对称,则函数f(x)的解析式为( )A .f(x)=sin(2x +3π) B .f(x)=sin(2x -3π) C .f(x)=sin(2x +6π) D .f(x)=sin(2x -6π) 【答案】D【解析】因为函数()()f x sin ωx φ=+的最小正周期是π,所以2ππω=,解得ω2=,所以()()f x sin 2x φ=+, 将该函数的图像向右平移π6个单位后,得到图像所对应的函数解析式为ππy sin 2x φsin 2x φ63⎡⎤⎛⎫⎛⎫=-+=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由此函数图像关于直线πx 2=对称,得: πππ2φk π232⨯+-=+,即πφk π,k Z 6=-∈,取k 0=,得πφ6=-,满足πφ2<,所以函数()f x 的解析式为()πf x sin 2x 6⎛⎫=-⎪⎝⎭,故选D. 5、(2020·蒙阴县实验中学高三期末)关于函数()22cos cos(2)12f x x x π=-+-的描述正确的是( )A .其图象可由2y x =的图象向左平移8π个单位得到 B .()f x 在(0,)2π单调递增C .()f x 在[]0,π有2个零点D .()f x 在[,0]2π-的最小值为【答案】ACD【解析】由题:()22cos cos(2)1cos 2sin 2)24f x x x x x x ππ=-+-=+=+,由2y x =的图象向左平移8π个单位,得到)))84y x x ππ=+=+,所以选项A 正确;令222,242k x k k Z πππππ-≤+≤+∈,得其增区间为3[,],88k k k Z ππππ-+∈ ()f x 在(0,)8π单调递增,在(,)82ππ单调递减,所以选项B 不正确;解()0,2,4f x x k k Z ππ=+=∈,得:,28k x k Z ππ=-∈,[0,]x π∈, 所以x 取37,88ππ,所以选项C 正确;3[,0],2[,],sin(2)[24444x x x πππππ∈-+∈-+∈-,()[f x ∈, 所以选项D 正确. 故选:ACD6、(2020届山东省枣庄市高三上学期统考)将函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度得到()g x 图象,则下列判断正确的是( ) A .函数()g x 在区间,122ππ⎡⎤⎢⎥⎣⎦上单调递增 B .函数()g x 图象关于直线712x π=对称 C .函数()g x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 D .函数()g x 图象关于点,03π⎛⎫⎪⎝⎭对称 【答案】ABD【解析】函数()sin 23f x x π⎛⎫=+⎪⎝⎭的图像向右平移2π个单位长度得到()ππsin 223g x x ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦2πsin 23x ⎛⎫=- ⎪⎝⎭.由于7π7π2ππsin sin 112632g ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,故7π12x =是()g x 的对称轴,B 选项正确. 由于π2π2πsin sin 00333g ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,故,03π⎛⎫ ⎪⎝⎭是()g x 的对称中心,D 选项正确.由π2ππ2232x -≤-≤,解得π7π1212x ≤≤,即()g x 在区间π7π,1212⎡⎤⎢⎥⎣⎦上递增,故A 选项正确、C 选项错误. 故选:ABD.7、(2019无锡期末) 已知直线y =a(x +2)(a>0) 与函数 y =|cos x|的图像恰有四个公共点A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),D(x 4,y 4), 其中 x 1<x 2<x 3<x 4,则x 4+1tan x 4=________. 【答案】-2【解析】根据图形可得直线y =a(x +2)与函数y =-cos x 的图像相切于点(x 4,-cos x 4),其中x 4∈⎝⎛⎭⎫π4,π.因为y =sin x ,由导数的几何意义可得a =sin x 4=-cos x 4-0x 4+2,化简得x 4+1tan x 4=-2.8、(2020届江苏省南通市高三下学期3月开学考试)将函数()πsin 6f x x ω⎛⎫=- ⎪⎝⎭(0>ω)的图象向左平移π3个单位长度后,所得图象关于直线πx =对称,则ω的最小值为______. 【答案】12【解析】将函数f (x )=sin (ωx 6π-)(ω>0)的图象向左平移3π个单位后,可得函数y =sin (ωx 36πωπ+-)的图象,再根据所得图象关于直线x =π对称,可得ωπ36πωπ+-=k π2π+,k ∈Z , ∴当k =0时,ω取得最小值为12, 故答案为12.题型三 三角函数的解析式1、(2020届山东省滨州市高三上期末)已知函数()2sin(2)f x x ϕ=+的图象过点,26A π⎛⎫⎪⎝⎭,则( )A .把()y f x =的图象向右平移6π个单位得到函数2sin 2y x =的图象 B .函数()f x 在区间,02π⎛⎫- ⎪⎝⎭上单调递减C .函数()f x 在区间[]0,2π内有五个零点D .函数()f x 在区间0,3π⎡⎤⎢⎥⎣⎦上的最小值为1 【答案】D【解析】因为函数()2sin(2)f x x ϕ=+的图象过点,26A π⎛⎫⎪⎝⎭, 所以2sin 23πϕ⎛⎫+= ⎪⎝⎭,因此2,32k k Z ππϕπ+=+∈,所以2,6k k Z πϕπ=+∈,因此()2sin(2)2sin 222sin 266f x x x k x ππϕπ⎛⎫⎛⎫=+=++=+ ⎪ ⎪⎝⎭⎝⎭;A 选项,把()y f x =的图象向右平移6π个单位得到函数2sin 26y x π⎛⎫=- ⎪⎝⎭的图象,故A 错; B 选项,由3222,262k x k k Z πππππ+≤+≤+∈得2,63k x k k Z ππππ+≤≤+∈,即函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的单调递减区间是:2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,故B 错; C 选项,由()2sin 206f x x π⎛⎫=+= ⎪⎝⎭得2,6x k k Z ππ+=∈,即,122k x k Z ππ=-+∈, 因此[]0,2x π∈,所以5111723,,,12121212x ππππ=,共四个零点,故C 错; D 选项,因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以52,666x πππ⎡⎤+∈⎢⎥⎣⎦,因此1sin 2,162x π⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,所以[]2sin 21,26x π⎛⎫+∈ ⎪⎝⎭,即()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的最小值为1,故D 正确;故选:D.2、(2020·浙江温州中学3月高考模拟)已知()sin()f x A x ωφ=+(0,04,)2A πωφ><<<)过点1(0,)2,且当6x π=时,函数()f x 取得最大值1.(1)将函数()f x 的图象向右平移6π个单位得到函数()g x ,求函数()g x 的表达式; (2)在(1)的条件下,函数2()()()2cos 1h x f x g x x =++-,求()h x 在[0,]2π上的值域.【答案】(1)()sin(2)6g x x π=-;(2)[1,2]-.【解析】 (1)由函数()f x 取得最大值1,可得1A =,函数过10,2⎛⎫ ⎪⎝⎭得12sin φ=,,26ππφφ<= 12,6662f k k Z ππππωπ⎛⎫=⇒+=+∈ ⎪⎝⎭,∵04ω<<,∴2ω=()26f x sin x π⎛⎫=+ ⎪⎝⎭,()266g x f x sin x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭.(2) ()22226h x x cos x sin x π⎛⎫=+=+⎪⎝⎭, 710,,2,21266626x x sin x πππππ⎡⎤⎛⎫∈≤+≤-≤+≤ ⎪⎢⎥⎣⎦⎝⎭,12226sin x π⎛⎫-≤+≤ ⎪⎝⎭,值域为[]1,2-.。

江苏省苏州市昆山市四校联考2023-2024学年八年级上学期10月月考数学试题

江苏省苏州市昆山市四校联考2023-2024学年八年级上学期10月月考数学试题

江苏省苏州市昆山市四校联考2023-2024学年八年级上学期10月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列四个图案中,不是轴对称图形的是()A .B .C .D .2.如图,在ABC 中,5AC =,7BC =,9AB =,用图示尺规作图的方法在边AB 上确定一点D .则ACD 的周长为().A .12B .14C .16D .213.到三角形三条边的距离相等的点是三角形的()交点A .三个内角平分线B .三边垂直平分线C .三条中线D .三条高线4.如图,在Rt △ACB 中,∠C =90°,AD 平分∠BAC ,若BC =15,BD =10,则点D 到AB 的距离是()A .15B .10C .8D .55.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN BC 交AB于M ,交AC 于N ,若BM +CN =9,则线段MN 的长为()A .6B .7C .8D .96.已知 ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断 ABC 是直角三角形的是()A .∠A-∠B =∠CB .∠A ∶∠B ∶∠C =3∶4∶5C .(b +c )(b -c )=a 2D .a =7,b =24,c =257.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x ,y 表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是()A .①②B .①②③C .①②④D .①②③④8.如图,四边形ABCD 中,40A ∠=︒,90B D ∠=∠=︒,M ,N 分别是AB ,AD 上的点,当CMN 的周长最小时,则MCN ∠的度数为()A .40︒B .80︒C .90︒D .100︒二、填空题16.如图,在 ABC中,AB三、解答题17.如图,在规格为88⨯的边长为1个单位的正方形网格中(每个小正方形的边长为1),ABC 的三个顶点都在格点上,且直线m 、n 互相垂直.(1)画出ABC 关于直线n 的对称图形A B C ''' ;(2)直线m 上存在一点P ,使APB △的周长最小;在直线m 上作出该点P ;(保留画图痕迹)18.如图,在ABC 中,90B ∠=︒,AC 的垂直平分线交BC 于点D ,交AC 于点E ,且AB BD =.求CAD ∠的度数.19.如图,在△ABC 中,AB=AC ,BD=CD ,DE ⊥AB ,DF ⊥AC ,垂足分别为点E 、F ,求证:DE=DF .20.如图,在ABC 中,点是AB 的中点,连接EF 四、计算题21.如图,在四边形ABCD 中,4AB =,12BC =,13CD =,3AD =,90A ∠=︒,求四边形ABCD 的面积.五、问答题22.有一架秋千,当它静止时,踏板离地的垂直高度0.5m DE =,将它往前推送2m (水平距离2m BC =)时,秋千的踏板离地的垂直高度 1.5m BF =,秋千的绳索始终拉得很直,求绳索AD 的长度.六、计算题23.已知,如图长方形ABCD 中,3cm AB =,9cm AD =,将此长方形折叠,使点B 与点D 重合,折痕为EF ,求BEF △的面积.七、解答题24.在Rt ABC △中,90C ∠=︒,A ∠、B ∠、C ∠的边分别为a 、b 、c .(1)若:3:4a b =,10c =,求a ,b 的值.(2)若4c a -=,16b =,求a 的值.25.已知:如图,在四边形ABCD 中,∠ABC=∠ADC=90°,点E 是AC 的中点,点F 是BD 的中点.(1)求证:EF ⊥BD ;(2)若∠BED=90°,求∠BCD 的度数.(3)若∠BED=α,直接写出∠BCD 的度数.(用含α的代数式表示)八、作图题26.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的双腰分割线,称这个三角形为双腰三角形.(1)如图1,三角形内角分别为80︒,25︒,75︒,请你画出这个三角形的双腰分割线,并标出每个等腰三角形各角的度数.(2)如图2,ABC 中,2B C ∠=∠,线段AC 的垂直平分线交AC 于点E ,交BC 于点D .求证:AD 是ABC 的一条双腰分割线.(3)如图3,已知ABC 中,64B ∠=︒,AD 是三角形ABC 的双腰分割线,且AB AD =.①求∠C 的度数.②若3AB =,5AC =,求BC 的长.九、解答题27.如图1,△ABC 中,CD ⊥AB 于点D ,且BD :AD :CD =2:3:4,(1)试说明△ABC 是等腰三角形;(2)已知S △ABC =90cm 2,如图2,动点P 从点B 出发以每秒1cm 的速度沿线段BA 向点A 运动,同时动点Q 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点P 运动的时间为t (秒),①若△DPQ 的边与BC 平行,求t 的值;②若点E 是边AC 的中点,问在点P 运动的过程中,△PDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.。

2020届江苏省四校2017级高三下学期4月联考数学试卷(含附加题)及答案

2020届江苏省四校2017级高三下学期4月联考数学试卷(含附加题)及答案

2020届江苏省四校2017级高三下学期4月联考数学试卷★祝考试顺利★参考公式:一组数据12,,,n x x x L 的方差为:2211(),ni i s x x n ==-∑其中x 是数据12,,,n x x x L 的平均数. 一、填空题:本大题共14小题,每小题5分,共70分。请把答案填写在答题卡相应位置上.1.已知集合A={x|-1<x≤1}, B={-1,0,1},则A∩B=___.2.已知复数z 满足(1-i)z=|1+i|(i 为虚数单位),则z 的实部为____.3.若一组样本数据8, 9, x, 9, 10的平均数为9,则该组数据的方差为__.4.根据如图所示伪代码,最后输出的i 的值为____.5.从2名男同学和3名女同学中选2人参加某项活动,则至少有1名女同学被选中的概率为____.6.双曲线2213y x -=的准线方程为____. 7.已知*){}(n a n ∈N )为等差数列,其公差为-2,且6a 是2a 与8a 的等比中项,n S 为{}n a 的前n 项和,则10S 的值为_____.8.已知函数21()ln 2f x x x ax =-+,若函数f(x)在区间(1,2)上存在极值,则实数a 的取值范围为____.9.给出下列命题:①如果一个平面经过另一个平面的垂线,那么这两个平面相互垂直;②如果一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;③如果两条平行直线中的一条垂直于直线m,那么另一条直线也与直线m 垂直;④如果两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中真命题的序号是_____.10. 已知函数()2cos()(0,0)2f x x πωϕωϕ=+><<的图象过点(0,2),且在区间[0,]2π上单调递减,则ω的最大值为____11. 在平面直角坐标系xOy 中,已知圆22:(2)4,C x y -+=点A 是直线x-y+2=0上的一个动点,直线AP,AQ 分别切圆C 于P,Q 两点,则线段PQ 长的取值范围为_____.12. 已知正实数x, y 满足2()1,xy x y -=则x+y 的最小值为____.13. 如图,在梯形ABCD 中,AB//CD 且DC=2AB=2BC,E 为BC 的中点, AC 与DE 交于点O.若125,CB CD OA OD ⋅=⋅u u u r u u u r u u u r u u u r 则∠BCD 的余弦值为____.14. 已知周期为6的函数f(x)满足f(4+x)= f(4-x),当x ∈[1,4]时,ln (),x f x x =则当323a e <≤时(e 为自然对数的底数),关于x 的不等式2()()0f x af x -<在区间[1,15]上的整数解的个数为_____.二、解答题:本大题共6小题,共90分。请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。15. (本小题满分14分)如图,在四棱锥P- ABCD 中,底面ABCD 是菱形,M 为PC 的中点。(1)求证:PA//平面BDM;(2)若PA=PC,求证:平面PBD ⊥平面ABCD.。

高考数学母题解密专题06 双曲线附答案解析(江苏专版)

高考数学母题解密专题06 双曲线附答案解析(江苏专版)

(a>0,b>0)与直线 y= 3 x 无交点,则离心率 e 的取值范围是________.
7.(江苏省南通市 2020 届高三下学期 6 月模拟考试数学试题)已知离心率 e 2 的双曲
x2 线 D: a2
y2 b2
1(a
0,b 0) 的左、右焦点分别为 F1 , F2 ,虚轴的两个端点分别为
双曲线 C 的渐近线方程为 y x ,且它的一个焦点为 F ( 2,0) ,则双曲线 C 的一条准
线与两条渐近线所成的三角形的面积为______. 4.(2020 届江苏省七市(南通、泰州、扬州、徐州、淮安、连云港、宿迁)高三下学期
第三次调研考试数学试题)在平面直角坐标系 xOy 中,已知抛物线 y2=4x 的准线是双
bc c
b



b
3 c , 因 此 a2 c2 b2 c2 3 c2 1 c2 , a 1 c ,
2
44
2
e 2.
【 名 师 点 睛 】 ( 1) 已 知 双 曲 线 方 程
x2 a2
y2 b2
1(a
0, b
0) 求


线

x2 y2 0 y b x ;
a2 b2
a
(2)已知渐近线 y mx 可设双曲线方程为 m2 x2 y2 ( 0) ;
(三)求双曲线的离心率一般有两种方法:
(1)由条件寻找 a, c 满足的等式或不等式,一般利用双曲线中 a,b,c 的关系
c2
a2
b2
将双曲线的离心率公式变形,即 e
c a
1 b2 a2
1
,注意区分
1
b2 c2
双曲线中 a,b,c 的关系与椭圆中 a,b,c 的关系,在椭圆中 a2 b2 c2 ,而在双

【精选】2024.1~2新高考新结构地区、名校卷21套(解析版)

【精选】2024.1~2新高考新结构地区、名校卷21套(解析版)

精选2024.1~2新高考新结构地区、名校卷21套解析版目录浙江省温州市2024届高三上学期期末考试数学试题 1浙江省温州市第五十一中学2024届高三上学期期末数学试题 12浙江省丽水第二高级中学2024届高三第二学期开学检测试卷数学试题 26江西省南昌市第二中学2024届高三“九省联考”考后适应性测试数学试题(一) 37江西省南昌市江西师范大学附属中学2024届高三下学期开学考数学试题 52江西省抚州市临川第一中学2024届高三“九省联考”考后适应性测试数学试题(一) 69江苏省四校联合2024届高三新题型适应性考试数学试题 85江苏省南通市如皋市2024届高三上学期1月诊断测试数学试题 97江苏省南通市新高考2024届高三适应性测试数学试题 107江苏省南京市南京师大附中2024届高三寒假模拟测试数学试题 120安徽省合肥市第一中学2024届高三上学期期末质量检测数学试题 136湖南省长沙市雅礼中学2024届高三月考数学试题(六) 148湖南省长沙市长郡中学2024届高三寒假作业检测(月考六)数学试题 163安徽省蚌埠市2024届高三年级第三次教学质量检查考试数学试题 176重庆市巴蜀中学校2024届高考适应性月考卷(六)数学试题 182湖南省长沙市长郡中学2024届高三一模数学试题 196广东省深圳市2024届高三第一次调研考试数学试卷 197湖北省武汉市2024届高中毕业班二月调研考试数学试题 213东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)2023-2024学年高三下学期第一次联合模拟考数学试题 227湖南省师范大学附属中学2023-2024学年高三月考(六)数学试题 241山东省日照市校际联合考试2024届高三一模数学试题 256浙江省温州市2024届高三上学期期末考试数学试题第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

江苏省淮安市2020届高三期中联考数学(理科)试题及参考答案

江苏省淮安市2020届高三期中联考数学(理科)试题及参考答案

2020届高三11月联合调研测试 2019.11数学I 理科注意事项1.本试卷共4页,包含填空题(共14题)、解答题(共6题),满分为160分,考试时间为120分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、考试证号等用书写黑色字迹的0.5毫米签字笔填写在答题卡上. 3.作答试题必须用书写黑色字迹的0.5毫米签字笔写在答题卡上的指定位置,在其它位置作答一律无效.如有作图需要,可用2B 铅笔作答,并请加黑、加粗,描写清楚.―、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡...上. 1.全集{1,2,3,4,5}U =,集合{1,3,4}A =,{3,5}B =,则C ()U A B ⋂=________. 2.已知向量(2,)a m =,(1,2)b =-,且a b ⊥,则实数m 的值是________. 3.函数ln(1)y x =++的定义域为________. 4.已知单位向量a ,b 的夹角为120,则|2|a b -的值是________.5.已知等比数列{}n a 满足2124a a +=,235a a =,则该数列的前5项和为________.6.“a b >”是“22a b>”的________条件(从“充分不必要”,“必要不充分”,“充要”和“既不充分也不必要”)7.设函数()sin()f x A x ωϕ=+(A ,ω,ϕ为常数,且0A >,0ω>,0ϕπ<<)的部分图象如图所示,则ϕ的值为________.8.在ABC 中,如果sin :sin :sin 2:3:4A B C =,那么tan C =________. 9.已知函数()|4|f x x x =-,则不等式(2)(2)f x f ≤的解集为________.10.已知函数()f x 是定义在R 上的偶函数,且对于任意的x ∈R 都有(4)()(2)f x f x f +=+,(1)4f =,则(3)(10)f f +=________.11.如图,在梯形ABCD 中,AB CD ∥,2CD =,4BAD π∠=,若2AB AC AB AD ⋅=⋅,则AD AC ⋅=________.12.在ABC中,BC =,tan 3tan A B =,则tan 2C B ⎛⎫+= ⎪⎝⎭________.13.已知正项等比数列{}n a 的前n 项和为n S .若9362S S S =+,则631S S +取得最小值时,9S 的值为________.14.已知函数()ln f x x x =,2()(12)2g x x a x a =-+++,若不等式()()f x g x ≤的解集中恰有两个整数,则实数a 的取值范围是________.二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.) 15.(本小题满分14分)已知a ,b ,c 分别是ABC 内角A ,B ,C 的对边,且满足22()b c a bc -=-. (1)求角A 的大小;(2)若3a =,sin 2sin C B =,求ABC 的面积. 16.(本小题满分14分)在如图所示的平面直角坐标系中,已知点(1,0)A 和点(1,0)B -,1OC =,且AOC=x ∠,其中O 为坐标原点.(1)若34x π=,设点D 为线段OA 上的动点,求||OC OD +的最小值; (2)若0,2x π⎡⎤∈⎢⎥⎣⎦,向量m BC =,(1cos ,sin 2cos )n x x x =--,求m n ⋅的最小值及对应的x 值. 17.(本小题满分14分)一个玩具盘由一个直径为2米的半圆O 和一个矩形ABCD 构成,1AB =米,如图所示.小球从A 点出发以5 V 的速度沿半圆O 轨道滚到某点E 处后,经弹射器以6 V 的速度沿与点E 切线垂直的方向弹射到落袋区BC 内,落点记为F .设AOE θ∠=弧度,小球从A 到F 所需时间为T .(1)试将T 表示为θ的函数()T θ,并写出定义域; (2)当θ满足什么条件时,时间T 最短. 18.(本小题满分16分)已知集合M 是满足下列性质的函数()f x 的全体;在定义域内存在实数t ,使得(2)()(2)f t f t f +=+. (1)判断()32f x x =+是否属于集合M ,并说明理由; (2)若2()lg2af x x =+属于集合M ,求实数a 的取值范围; (3)若2()2xf x bx =+,求证:对任意实数b ,都有()f x M ∈. 19.(本小题满分16分)已知函数3()3||f x x x a =+-,a ∈R .(1)当1a =时,求曲线()y f x =在2x =处的切线方程; (2)当[1,1]x ∈-时,求函数()f x 的最小值;(3)已知0a >,且任意1x ≥有2()(1)15ln f x a f a a x +-+…,求实数a 的取值范围. 20.(本小题满分16分)给定数列{}n a ,若满足1a a =(0a >且1a ≠),对于任意的*,n m ∈N ,都有m n n m a a a -=,则称数列{}n a 为“指数型数列”.(1)已知数列{}n a 的通项公式为4nn a =,试判断数列{}n a 是不是“指数型数列”;(2)已知数列{}n a 满足112a =,()*1123n n n n a a a a n +-=+∈N ,证明数列11n a ⎧⎫+⎨⎬⎩⎭为等比数列,并判断数列11n a ⎧⎫+⎨⎬⎩⎭是否为“指数型数列”,若是给出证明,若不是说明理由; (3)若数列{}n a 是“指数型数列”,且()*112a a a a +=∈+N ,证明数列{}n a 中任意三项都不能构成等差数列.数学II (附加题)解答时应写出文字说明,证明过程或演算步骤. 21.(本小题满分10分)已知矩阵0123A ⎡⎤=⎢⎥⎣⎦,2018B ⎡⎤=⎢⎥⎣⎦,求1A B -. 22.(本小题满分10分)已知矩阵1214A ⎡⎤=⎢⎥-⎣⎦,向量53α⎡⎤=⎢⎥⎣⎦,计算5A α. 23.(本小题满分10分)已知四棱锥P ABCD -的底面为直角梯形,AB CD ∥,90DAB ︒∠=,PA ⊥底面ABCD ,且112PA AD DC AB ====,M 是PB 的中点.(1)求AC 与PB 所成角的余弦值;(2)求平面AMC 与平面BMC 所成二面角(锐角)的余弦值. 24.(本小题满分10分)直三棱柱111ABC A B C -中,AB AC ⊥,2AB =,4AC =,12AA =,BD DC λ=.(1)若1λ=,求直线1DB 与平面11AC D 所成角的正弦值; (2)若二面角111B AC D --的大小为60,求实数λ的值.理科参考答案1.{1,2,4,5} 2.1 3.(1,2)- 45.31 6.充要 7.3π8.9.{|1}x x ≤+ 10.4 11.12 12.2+13.3 14.ln 2104ln 216,23--⎡⎫⎪⎢⎣⎭15.解:(1)∵22()b c a bc -=-,可得:222b c a bc +-=,∴由余弦定理可得:2221cos 222b c a br A bc bc +-==-, 又∵(0,)A π∈,∴3A π=;(2)由sin 2sin C B =及正弦定理可得2c b =,∵3a =,3A π=,∴由余弦定理可得2222222cos 3a b c bc A b c bc b =+-=+-=,∴解得:b =c =,∴11sin 2222ABCSbc A ==⨯=16.解:(I )设(,0)(01)D t t ≤≤,又22C ⎛⎫⎪ ⎪⎝⎭所以,22OC OD t ⎛+=-+ ⎝⎭所以22211||122OC OD t t +=-++=-+ 21(01)22t t ⎛=-+≤≤ ⎝⎭所以当2t =时,||OC OD +最小值为2. (II )由题意得(cos ,sin )C x x ,(cos 1,sin )m BC x x ==+则221cos sin 2sin cos 1cos2sin 2m n x x x x x x ⋅=-+-=--124x π⎛⎫=-+ ⎪⎝⎭因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以52444x πππ≤+≤ 所以当242x ππ+=时,即8x π=时,sin 24x π⎛⎫+⎪⎝⎭取得最大值1所以8x π=时,1224m n x π⎛⎫⋅=-+ ⎪⎝⎭取得最小值1-所以m n ⋅的最小值为1-8x π=17.试题解析:解:(1)过O 作OG BC ⊥于G ,则1OG =,1sin sin OG OF θθ==,11sin EF θ=+,AB θ=. 所以11()5656sin 6AE EF T v v v v v θθθ=+=++,3,44ππθ⎡⎤∈⎢⎥⎣⎦. (2)11()56sin 6T vv vθθθ=++, 22221cos 6sin 5cos (2cos 3)(3cos 2)()56sin 30sin 30sin T v v v v θθθθθθθθθ'-+-=-==-.记02cos 3θ=,03,44ππθ⎡⎤∈⎢⎥⎣⎦,故当2cos 3θ=时,时间T 最短. 18.解:(1)当()32f x x =+时,方程(2)()(2)38310f t f t f t t +=+⇔+=+此方程无解,所以不存在实数t ,使得(2)()(2)f t f t f +=+, 故()32f x x =+不属于集合M ﹒ (2)由2()lg 2af x x =+,属于集合M ,可得 方程22lglg lg (2)226a a ax x =++++有实解()22(2)262a x x ⎡⎤⇔++=+⎣⎦有实解2(6)46(2)0a x ax a ⇔-++-=有实解,若6a =时,上述方程有实解;若6a ≠时,有21624(6)(2)0a a a ∆=---≥,解得1212a -≤≤+,故所求a 的取值范围是[12-+.(3)当2()2xf x bx =+时,方程(2)()(2)f x f x f +=+⇔2222(2)24432440x x x b x bx b bx -++=+++⇔⨯+-=,令()3244xg x bx =⨯+-,则()g x 在R 上的图像是连续的,当0b ≥时,(0)10g =-<,(1)240g b =+>,故()g x 在(0,1)内至少有一个零点当0b <时,(0)10g =-<,11320b g b ⎛⎫=⨯> ⎪⎝⎭,故()g x 在1,0b ⎛⎫⎪⎝⎭内至少有一个零点故对任意的实数b ,()g x 在R 上都有零点,即方程(2)()(2)f x f x f +=+总有解, 所以对任意实数b ,都有()f x M ∈.19.解:(1)当1x >时,3()33f x x x =+-,(2)11f =.由2()33f x x '=+,得(2)15f '=.所以()y f x =在2x =处的切线方程为15(2)11y x =-+即15190x y --=. (2)①当1a ≤-时,得3()33f x x x a =+-,因为2()330f x x '=+>, 所以()f x 在[1,1]-单调递增,所以min ()(1)43f x f a =-=--. ②当1a ≥时,得3()33f x x x a =-+,因为2()330f x x '=-≤, 所以()f x 在[1,1]-单调递减,所以min ()(1)23f x f a ==-+.③当11a -<<时,3333,1,()33,1,x x a a x f x x x a x a ⎧+-<<=⎨-+-<≤⎩由①②知:函数()f x 在(1,)a -单调递减,(,1)a 单调递增,所以3min ()()f x f a a ==,综上,当1a ≤-,min ()43f x a =--;当11a -<<时,3min ()f x a =;当1a ≥时,min ()23f x a =-+.(3)当0a >,且任意1x ≥有2()(1)15ln f x a f a a x +-+≥, 即对任意1x ≥有323()315ln (1)30x a x a x a ++--+-≥. 设323()()315ln (1)3g x x a x a x a =++--+-,则(1)0g =,2215()3()3a g x x a x'=++-.设2215()()3()3a h x g x x a x'==++-,因为0a >,1x ≥,所以2215()6()0a h x x a x'=++>,所以()h x 在[1,)+∞单调递增,所以()(1)h x h ≥,即22()(1)3(1)315(1)(21)g x g a a a a ''≥=++-=--+, ①当(1)0g '≥即01a <≤时,所以()0g x '≥恒成立,所以()g x 在[1,)+∞单调递增,此时()(1)0g x g ≥=,满足题意. ②当(1)0g '<即1a >时,因为2()121533(1)(41)0g a a a a a '=-+=-->,且()g x '在[1,)+∞单调递增,所以存在唯一的01x >,使得()00g x '=,因此当01x x <<时()0g x '<;当0x x >时()0g x '>;所以()g x 在()01,x 单调递减,()0,x +∞单调递增. 所以()0(1)0g x g <=,不满足题意. 综上,01a <≤.20.解:(1)数列{}n a ,444n mn m n m n m b b b -+==⨯=,所以数列{}n b 是“指数型数列” (2)数列11n a ⎧⎫+⎨⎬⎩⎭是“指数坚数列”11111311232131n n n n n n n n a a a a a a a a +-+-⎛⎫=+⇒=+⇒+=+ ⎪⎝⎭, 所以11n a ⎧⎫+⎨⎬⎩⎭是等比数列, 11111133n n n a a -⎛⎫+=+⨯= ⎪⎝⎭,111113331m n n m n n n m a a a --⎛⎫⎛⎫⎛⎫++===+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭所以数列11n a ⎧⎫+⎨⎬⎩⎭是“指数型数列” (III )若数列{}n a 是“指数型数列”,由定义得:11112nn n mn m n n n a a a a a a a a a a --+⎛⎫=⇒=⇒== ⎪+⎝⎭假设数列{}n a 中存在三项s a ,t a ,u a 成等差数列,不妨设s t u <<则2t s u a a a =+,得:11122222t s ut s u a a a a a a a a a +++⎛⎫⎛⎫⎛⎫=+⇒=+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭整理得:2(1)(2)(2)(1)t su s u s u s a a a a ----++=+++(*)若a 为偶数时,右边为偶数,(1)u sa -+为奇数,则左边为奇数,(*)不成立;若a 为奇数时,右边为偶数,(2)u sa -+为奇数,则左边为奇数,(*)不成立;所以,对任意的*a ∈N ,(*)式不成立.数学II (附加题)21.解:∴1312210A -⎡⎤-⎢⎥=⎢⎥⎣⎦,∴154220A B -⎡⎤-⎢⎥=⎢⎥⎣⎦22.已知矩阵1214A ⎡⎤=⎢⎥-⎣⎦,向量53α⎡⎤=⎢⎥⎣⎦,计算5A α. 解:因为212()5614f λλλλλ--==-+-,由()0f λ=,得2λ=或3λ=.当2λ=时,对应的一个特征向量为121α⎡⎤=⎢⎥⎣⎦; 当3λ=时,对应的一个特征向量为211α⎡⎤=⎢⎥⎣⎦. 设521311m n ⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,解得2,1.m n =⎧⎨=⎩所以55521371221311307A α⎡⎤⎡⎤⎡⎤=⨯+⨯=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 23.解:建立如图所示的空间直角坐标系,则(0,0,0)A ,(1,0,0)D ,(0,0,1)P ,(0,2,0)B ,(1,1,0)C ,10,1,2M ⎛⎫ ⎪⎝⎭. (2)因(1,1,0)AC =,(0,2,1)PB =-,∴||2AC =,||5PB =,2AC PB ⋅=,∴10cos ,||||AC PB AC PB AC PB ⋅<>==⋅. (3)设平面AMC 的一个法向量为()111,,n x y z =, 则1n AM ⊥,∴()11111111,,0,1,022n AM x y z y z ⎛⎫⋅=⋅=+= ⎪⎝⎭,又1n AC ⊥,∴()111111,,(1,1,0)0n AC x y z x y ⋅=⋅=+=, 取11x =,得11y =-,12z =,故1(1,1,2)n =-. 同理可得面BMC 的一个法向量为2(1,1,2)n =. ∵1212122cos ,3||||6n n n n n n ⋅<>===,∴平面AMC 与平面BMC 所成二面角(锐角)的余弦值为23. 24.解:分别以AB ,AC ,1AA 所在直线为x ,y ,z 轴建立空间直角坐标系.则(0,0,0)A ,(2,0,0)B ,(0,4,0)C ,1(0,0,2)A ,1(2,0,2)B ,1(0,4,2)C(1)当1λ=时,D 为BC 的中点,所以(1,2,0)D ,1(1,2,2)DB =-,11(0,4,0)AC =,1(1,2,2)AD =-,设平面11AC D 的法向量为1(,,)n x y z =则4020y x z =⎧⎨-=⎩,所以取1(2,0,1)n =,又111111cos ,||||3DB n DB n DB n ⋅<>=== 所以直线1DB 与11AC D (2)∵BD DC λ=,∴24,,011D λλλ⎛⎫⎪++⎝⎭,∴11(0,4,0)AC =,124,,211A D λλλ⎛⎫=- ⎪++⎝⎭, 设平面11AC D 的法向量为1(,,)n x y z =,则402201y x z λ=⎧⎪⎨-=⎪+⎩, 所以取1(1,0,1)n λ=+.又平面111A B C 的一个法向量为2(0,0,1)n =,由题意得121|cos ,|2n n <>=,12=,解得1λ=-或1λ=(不合题意,舍去), 所以实数λ1-.。

2022-2023学年江苏省连云港市海州区四校高一年级上册学期期中联考数学试题【含答案】

2022-2023学年江苏省连云港市海州区四校高一年级上册学期期中联考数学试题【含答案】

2022-2023学年江苏省连云港市海州区四校高一上学期期中联考数学试题一、单选题1.命题“1x ∀≥,21x ≥”的否定是( ) A .1x ∃≥,21x < B .1x ∃<,21x ≥ C .1x ∃≥,21x ≥ D .1x ∃<,21x <【答案】A【分析】直接用存在量词否定全称命题即可得到答案. 【详解】因为用存在量词否定全称命题,所以命题“1x ∀≥,21x ≥”的否定是“1x ∃≥,21x <”. 故选:A2.已知集合3=<2A x x ⎧⎫⎨⎬⎩⎭,{}=12>0B x x -,则( )A .1=<2AB x x ⋂⎧⎫⎨⎬⎩⎭B .A B =∅C .1=<2A B x x ⋃⎧⎫⎨⎬⎩⎭D .A B ⋃=R【答案】A【分析】根据集合交集,并集定义计算即可.【详解】由题可知1{|}2B x x =<1{|}2A B x x ⋂=<,A 正确,B 错误;3{|}2A B x x ⋃=<,C 错误,D 错误.故选:A3.不等式23180x x -++<的解集为( ) A .{6x x >或3}x <- B .{}36x x -<< C .{3x x >或6}x <- D .{}63x x -<<【答案】A【分析】根据二次不等式的解法求解即可.【详解】23180x x -++<可化为23180x x -->, 即()()630x x -+>,即6x >或3x <-. 所以不等式的解集为{6x x >或3}x <-. 故选:A4.如图,已知集合R U =,集合{}1,2,3,4,5A =,()(){}|120B x x x =+-≤,则图中阴影部分表示的集合的子集的个数为( )A .3B .4C .7D .8【答案】D【分析】先求得图中阴影部分表示的集合,再根据该集合中元素个数即可求出该集合子集个数. 【详解】{}{}(1)(2)012B x x x x x =+-≤=-≤≤,则{R1UB B x x ==<-或}2x >,图中阴影部分表示的集合为{}()1,2,3,4,5U A B ={1x x <-或}{}23,4,5x >=;集合{}3,4,5的子集有328=(个)则图中阴影部分表示的集合的子集个数为8. 故选:D 5.“14m <”是“关于x 的方程()20x x m m ++=∈R 有实数根”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】求出当方程()20x x m m ++=∈R 有实数根时,实数m 的取值范围,利用集合的包含关系判断可得出结论.【详解】若关于x 的方程()20x x m m ++=∈R 有实数根,则140m ∆=-≥,解得14m ≤,因为14m m ⎧⎫<⎨⎬⎩⎭ 14m m ⎧⎫≤⎨⎬⎩⎭,因此,“14m <”是“关于x 的方程()20x x m m ++=∈R 有实数根”的充分不必要条件. 故选:A.6.已知0.20.32log 0.2,2,0.2a b c ===,则 A .a b c << B .a c b << C .c<a<b D .b<c<a【答案】B【分析】运用中间量0比较,a c ,运用中间量1比较,b c【详解】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=则01,c a c b <<<<.故选B . 【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题. 7.设a >0,则4a a a++的最小值为( )A .B .2C .4D .5【答案】D【分析】根据基本不等式可求解.【详解】0a >,44115a a a a a +∴+=++≥+,当且仅当a =2时取等号, 所以4a a a++的最小值为5. 故选:D.8.为了衡量星星的明暗程度,公元前二世纪古希腊天文学家喜帕恰斯提出了星等这个概念.星等的数值越小,星星就越亮.1850年,由于光度计在天体光度测量的应用,英国天文学家普森又提出了亮度的概念,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足()12212.5lg lg m m E E -=-,其中星等为k m 的星的亮度为()1,2k E k =.已知小熊座的“北极星”与大熊座的“玉衡”的星等分别为2.02和1.77,且当x 较小时,2101 2.3 2.7x x x ≈++,则“玉衡”与“北极星”的亮度之比大约为( ) A .1.28 B .1.26C .1.24D .1.22【答案】B【分析】理解题意,把已知数据代入公式计算12E E 即可. 【详解】由题意()212.02 1.77 2.5lg lg E E -=-,可得12lg 0.1E E =, 0.1212101 2.30.1 2.70.1 1.257 1.26E E ∴=≈+⨯+⨯=≈. 故选:B.二、多选题9.已知,,,a b c m R ∈,则下列推证中不正确的是( ) A .22>⇒>a b am bm B .a b a b c c>⇒> C .22ac bc a b >⇒> D .2211,0a b ab a b>>⇒< 【答案】ABD【分析】利用不等式的基本性质即可判断出结论. 【详解】解:A .0m =时不成立. B .0c <时不成立.C .22ac bc >,两边同除以2c ,可得a b >,正确.D .由22a b >,0ab >,取2,1a b =-=-,可得11a b>,不成立. 故选ABD .【点睛】本题考查了不等式的基本性质,属于基础题.10.设{}220A x x x =--=,{}10B x mx =-=,若A B B =,则实数m 的值可以为( )A .12B .-1C .0D .12-【答案】ABC【解析】由A B B =可得B A ⊆,求出集合A ,讨论0m =和0m ≠,即可得m 的值.【详解】{}()(){}{}2|20|2101,2A x x x x x x =--==-+==-,由A B B =可得B A ⊆, 当0m =时,B =∅,满足B A ⊆, 所以0m =符合题意;当0m ≠时,{}1|10B x mx B m ⎧⎫=-===⎨⎬⎩⎭,若B A ⊆,则11m =-或12m =,可得:1m =-或12m =, 综上所述:实数m 的值可以为:1-,0,12; 故选:ABC.【点睛】易错点睛:若B A ⊆,分B =∅和B ≠∅两种情况讨论分析. 11.已知实数a 满足14a a -+=,下列选项中正确的是( ) A .2214a a -+=B.1a a --=C.1122a a -+=D .332211223a a a a--+=+【答案】ACD【分析】由14a a -+=结合完全平方公式分别求出各个选项式子的值,即可判断正误. 【详解】14a a -+=,()2122216a a a a --∴+=++=,2214a a -∴+=,故选项A 正确;()()2211244412a a a a ---=+-=-=,1a a -∴-=±B 错误;2111222426a a a a --⎛⎫+=++=+= ⎪⎝⎭,1122a a ∴+=C 正确; 31133113311331112222222222222233333a a a a aa a a a a a a a a a a --------⎛⎫⎛⎫+=+++=++++++ ⎪ ⎪=⎝⎭⎝⎭,且1122a a +=3322a a-+=+3322a a ∴+=332211223a a a a--+∴==+,故选项D 正确. 故选:ACD12.下列说法中,以下是真命题的是( ).A .存在实数0x ,使200240x x +-=+B .所有的素数都是奇数C .至少存在一个正整数,能被5和7整除.D .三条边都相等的三角形是等边三角形 【答案】ACD【分析】举例证明选项AC 正确;举反例否定选项B ;依据等边三角形定义判断选项D. 【详解】选项A :当0x 时,200240x x +-=+成立.判断正确;选项B :2是素数,但是2不是奇数.判断错误; 选项C :正整数35和70能被5和7整除. 判断正确; 选项D :三条边都相等的三角形是等边三角形. 判断正确. 故选:ACD三、填空题13.已知}{31,,2a a ∈-则实数a 的值为_____________ 【答案】5【分析】根据集合中元素的确定性讨论3a =和23a -=,再结合元素互异性即可求解. 【详解】因为}{31,,2a a ∈-,当3a =时,那么21a -=,不满足集合元素的互异性,不符合题意, 当23a -=时,5a =,此时集合为}{1,5,3符合题意, 所以实数a 的值为5, 故答案为:5.14.若a =b a b +的值为__________. 【答案】1【分析】利用根式的性质进行求解.【详解】因为3πa =-,2ππ2b =-=-,所以1a b +=. 故答案为:1.15.若命题“x ∃∈R ,2210x ax -+≤”是假命题,则实数a 的取值范围是______. 【答案】11a -<<.【分析】由原命题的否定是真命题,结合一元二次不等式恒成立可得.【详解】命题“x ∃∈R ,2210x ax -+≤”是假命题,则其否定x ∀∈R ,2210x ax -+>是真命题, 所以2440a ∆=-<,解得11a -<<. 故答案为:11a -<<.16.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若不相等的两个正实数,a b 满足4a b +=,且11t a b+>恒成立,则实数t 的取值范围是__________.【答案】(,1)-∞【分析】先利用基本不等式求出11a b+的最小值,再利用不等式11t a b +>恒成立进行求解.【详解】因为0a >,0b >,且4a b +=,所以111111()()(2)44b aa b a b a b a b+=++=++1(214≥+=(当且仅当4b aa b a b ⎧=⎪⎨⎪+=⎩,即2a b ==时取“=”), 因为11t a b+>恒成立,所以1t <.故答案为:(,1)-∞.四、解答题17.化简下列式子并求值: (1)7lg142lg lg7lg183-+-;(2)0.5232027492(0.2)(0.081)8925--⎛⎫⎛⎫-+⨯- ⎪ ⎪⎝⎭⎝⎭. 【答案】(1)0 (2)89-【分析】(1)将式子用对数运算公式log log log ,log log log ,c c c c c c aab a b a b b=+=-log log b c c a b a =等展开合并化简即可求值;(2)将式子用分数指数幂运算公式11,mmn a a a -===,进行化简求值即可.【详解】(1)解:原式为7lg142lg lg7lg183-+-()()lg2lg72lg7lg3lg7lg2lg9=+--+-+lg2lg72lg72lg3lg7lg22lg3=+-++--0=;(2)原式为0.5232027492(0.2)(0.081)8925--⎛⎫⎛⎫-+⨯- ⎪ ⎪⎝⎭⎝⎭2225125⨯-= 47193=-+ 89=-.18.已知集合{}2210,R A xax x a =++=∈∣. (1)若A 中只有一个元素,求a 的值; (2)若A 中至少有一个元素,求a 的取值范围. 【答案】(1)0a =或1a = (2){}|1a a ≤【分析】(1)针对0a =和0a ≠两种情况分类讨论,再转化为一元一次方程和一元二次方程分别得出a 的值即可(2)确定A 中有两个元素,可转化为一元二次方程两个不相等实数根进行求解,再结合第一问一个元素的情况即可得出a 的取值范围【详解】(1)由题意,当0a =时,210x +=,得12x =-,集合A 只有一个元素,满足条件;当0a ≠时,2210ax x ++=为一元二次方程,440a ∆=-=,得1a =,集合A 只有一个元素=1x -,∴A 中只有一个元素时0a =或1a =.(2)由A 中至少有一个元素包含两种情况,一个元素和两个元素,A 中有两个元素时,0a ≠并且440a ∆=->,得1a <且0a ≠,再结合A 中一个元素的情况,∴a 的取值范围为{}|1a a ≤. 19.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,且B ≠∅. (1)若命题p :“x B ∀∈,x A ∈”是真命题,求实数m 的取值范围; (2)若命题q :“x A ∃∈,x B ∈”是真命题,求实数m 的取值范围。

江苏省四校(常州北郊中学等)2022-2023学年高三下学期4月阶段性测试数学试题(原卷版)

江苏省四校(常州北郊中学等)2022-2023学年高三下学期4月阶段性测试数学试题(原卷版)

2022-2023学年第二学期高三阶段性测试2023.4无锡市辅仁高级中学、江阴高中、宜兴一中、常州市北郊中学一、选择题:本题共8小题,每小题5分,共40分.1.已知复数z 满足()()31i 1i z -+=-,z=()A.B.C.D.2.设R U =,已知两个非空集合M ,N 满足()U M N ⋂=∅ð,则()A.RM N ⋂= B.M N⊆ C.N M⊆ D.RM N ⋃=3.大约公元前300年,欧几里得在他所著《几何原本》中证明了算术基本定理:每一个比1大的数(每个比1大的正整数)要么本身是一个素数,要么可以写成一系列素数的乘积,如果不考虑这些素数在乘积中的顺序,那么写出来的形式是唯一的,即任何一个大于1的自然数N (N 不为素数)能唯一地写成1212k aaak N p p p =⋅⋅⋅L (其中i p 是素数,i a 是正整数,1i k ≤≤,12k p p p <<<L ),将上式称为自然数N 的标准分解式,且N 的标准分解式中有12k a a a +++ 个素数.从120的标准分解式中任取3个素数,则一共可以组成不同的三位数的个数为()A .6B.13C.19D.604.已知多项式()()562560125621x x a a x a x a x a x -+-=+++⋅⋅⋅++,则1a =()A.11B.74C.86D.1-5.勒洛三角形是一种典型的定宽曲线,以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形就是勒洛三角形.在如图所示的勒洛三角形中,已知2AB =,P 为弧AC 上的点且45PBC ∠=︒,则BP CP ⋅的值为()A.4 B.4+ C.4- D.4+6.在三棱锥A BCD -中,AB ⊥平面BCD ,224BC CD CD AB BC ⊥===,,则三棱锥A BCD -的外接球的表面积与三棱锥A BCD -的体积之比为()A.3π4B.3π2C.2πD.9π7.已知πsin 4sin 0,,21cos 4cos 2ααααα⎛⎫∈= ⎪+-⎝⎭,则tan 2α=()A.5 B.3C.15D.8.已知函数()ln x x xϕ=.设s 为正数,则在()2(),,(2)s s s ϕϕϕ中()A.()2sϕ不可能同时大于其它两个B.(2)s ϕ可能同时小于其它两个C.三者不可能同时相等D.至少有一个小于4二、选择题:本题共4小题,每小题5分,共20分.9.甲袋中装有4个白球,2个红球和2个黑球,乙袋中装有3个白球,3个红球和2个黑球.先从甲袋中随机取出一球放入乙袋,再从乙袋中随机取出一球.用1A ,2A ,3A 分别表示甲袋取出的球是白球、红球和黑球,用B 表示乙袋取出的球是白球,则()A.1A ,2A ,3A 两两互斥B.()213P B A =C.3A 与B 是相互独立事件D.()13P B =10.已知经过点()2,4P 的圆C 的圆心坐标为()0,t (t 为整数),且与直线-=0l y 相切,直线:20m ax y a ++=与圆C 相交于A 、B 两点,下列说法正确的是()A.圆C 的标准方程为()2242x y +-=B.若PA PB ⊥,则实数a 的值为2-C.若AB =,则直线m 的方程为20x y -+=或7140x y -+=D.弦AB 的中点M 的轨迹方程为()()22125x y ++-=11.已知函数()y f x =的导函数()y f x '=,且()()()12f x x x x x =---',12x x <,则()A.2x 是函数()y f x =的一个极大值点B.()()12f x f x <C.函数()y f x =在1223x x x +=处切线的斜率小于零 D.1202x x f +⎛⎫>⎪⎝⎭12.如图1,在ABC 中,90ACB ∠=︒,AC =2CB =,DE 是ABC 的中位线,沿DE 将ADE V 进行翻折,连接AB ,AC 得到四棱锥A BCED-(如图2),点F 为AB 的中点,在翻折过程中下列结论正确的是()A.当点A 与点C 重合时,三角形ADE3π2⎛++ ⎝B.四棱锥A BCED -的体积的最大值为32C.若三角形ACE 为正三角形,则点F 到平面ACD 的距离为32D.若异面直线AC 与BD 所成角的余弦值为34,则A 、C 两点间的距离为三、填空题:本题共4小题,每小题5分,共20分.请将答案写在答题卡相应的位置上.13.在平面直角坐标系中,抛物线28y x =-的焦点为F ,准线为l ,P 为抛物线上一点,过点P 作PA l ⊥,交准线l 于点A .若PF AF =,则OP 的长为_________.14.已知函数()()π2sin 22f x x ϕϕ⎛⎫=+<⎪⎝⎭,将()f x 的图像向右平移π8个单位长度后的函数()g x 的图像,若()g x 为偶函数,则函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上的值域为___________.15.已知数列{}n a 的前n 项和为n S ,1a m =,22(1)n n na S n n =+-,若对任意N n *∈,等式2nnS k S =恒成立,则m =_______.16.如图1所示,双曲线具有光学性质:从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线()2222:10,0x y E a b a b-=>>的左、右焦点分别为1F ,2F ,从2F 发出的光线经过图2中的A 、B 两点反射后,分别经过点C 和D ,且3cos 5BAC ∠=-,AB BD ⊥,则E 的离心率为__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知等比数列{}n a 的前n 项和为n S ,且11a =,6328S S =,数列{}n b 满足()33log 1n n b a =+.(1)求数列{}n a 和{}n b 的通项公式;(2)若对任意的*n ∈N ,3n n b a λ<恒成立,求实数λ的取值范围.18.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,满足()221sin 3S a b C =-.(1)证明sin 2sin A B=(2)求所有正整数k ,m 的值,使得c mb =和tan tan A k C =同时成立19.如图,在四棱锥P ABCD-中,底面ABCD是边长为2的菱形,△PAD为等边三角形,平面PAD⊥平面ABCD,PB BC⊥.(1)求点A到平面PBC的距离;(2)E为线段PC上一点,若直线AE与平面ABCD所成的角的正弦值为3010,求平面ADE与平面ABCD夹角的余弦值.20.互花米草是禾本科草本植物,其根系发达,具有极高的繁殖系数,对近海生态具有较大的危害.为尽快消除互花米草危害,2022年10月24日,市政府印发了《莆田市互花米草除治攻坚实施方案》,对全市除治攻坚行动做了具体部署.某研究小组为了解甲、乙两镇的互花米草根系分布深度情况,采用按比例分层抽样的方法抽取样本.已知甲镇的样本容量12m =,样本平均数18x =,样本方差2119s =;乙镇的样本容量18n =,样本平均数36y =,样本方差2270s =.(1)求由两镇样本组成的总样本的平均数z 及其方差2S ;(2)为营造“广泛发动、全民参与”的浓厚氛围,甲、乙两镇决定进行一次“互花米草除治大练兵”比赛,两镇各派一支代表队参加,经抽签确定第一场在甲镇举行.比赛规则:每场比赛直至分出胜负为止,胜方得1分,负方得0分,下一场在负方举行,先得2分的代表队获胜,比赛结束.当比赛在甲镇举行时,甲镇代表队获胜的概率为35,当比赛在乙镇举行时,甲镇代表队获胜的概率为12.假设每场比赛结果相互独立.甲镇代表队的最终得分记为X ,求()E X .参考数据:2222212183888,183623328,28.8829.44,1210.81399.68,187.2933.12⨯=⨯==⨯=⨯=.21.已知曲线22:163x y E +=,直线:l y x m =+与曲线E 交于y 轴右侧不同的两点,A B .(1)求m 的取值范围;(2)已知点P 的坐标为()2,1,试问:APB △的内心是否恒在一条定直线上?若是,请求出该直线方程;若不是,请说明理由.22.已知函数()2e xf x ax =-,R a ∈.(1)若e2a ≤,证明:()f x 在()0,∞+上单调递增.(2)若()()ln f x F x a x x=+存在两个极小值点12,x x ()12x x <.①求实数a 的取值范围;②试比较()1F x 与()2F x 的大小.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017届高三“四校联考”试卷
数学Ⅰ
一、填空题:本大题共14小题,每小题5分,共70分,请把答案填在答题卡的相应位置上..
1.全集{}1,2,3,4,5,集合{}1,3,4A =,则U C A = .
2.设复数z a bi =+(,,a b R i ∈为虚数单位),若()2z i i -=,则a b +的值为 .
3.函数
y =的定义域为 .
4.棱长均为1的正四棱锥的体积为 .
5.已知实数,x y 满足不等式组0,,40,y y x x y ≥⎧⎪≤⎨⎪+-≤⎩
,则2z x y =-的最大值为 .
6.若“2,20x R x x a ∃∈++≤”是假命题,则实数a 的取值范围是 .
7.将函数()2sin 6f x x π⎛⎫=+
⎪⎝⎭
的图象至少向右平移 个单位,所得图象恰好关于坐标原点对称.
8.已知等差数列{}n c 的首项为11c =,若{}23n c +为等比数列,则2017c = . 9.在平面直角坐标系xoy 中,设双曲线()22
2210,0x y a b a b
-=>>的焦距为()20c c >,当,a b 任意变化时,a b c
+的最大值是 . 10.已知()()tan 2,tan 3αβαβ+=-=,则
sin 2cos 2αβ=的值为 . 11已知函数()224f x x x =-+定义域为[],a b ,其中a b <,值域[]3,3a b ,则满足条件
(),a b 的数组为 .
12.在平面直角坐标系xoy 中,已知圆22:2C x y +=,直线20x by +-=与圆C 交于A,B 两点,且3OA OB OA OB +≥-,则b 的取值范围为 .
13.已知函数()31log 1
x f x x +=-,平行四边形ABCD 四个顶点都在函数()f x 的图象上,且
()52,1,,24A B ⎛⎫ ⎪⎝⎭
,则平行四边形ABCD 的面积为 . 14.已知数列{}n x 各项为正整数,满足1,21,n n n n
n x x x x x +⎧⎪=⎨⎪+⎩为偶数,为奇数,,若343x x +=,则1x 所
有可能的取值集合为 .
二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程.
15.(本题满分14分)
在三角形ABC 中,角A,B,C 的对边分别为,,a b c ,已知3, 2.b c ==
(1)若2cos 3a C =,求a 的值;
(2)若cos 1cos c C b B
=+,求cos C 的值. 16.(本题满分14分)
如图,在四面体ABCD 中,AD=BD,90ABC ∠=,点E,F 分别为棱AB,AC 上的点,若点G 为棱AD 的中点,且平面EFG//平面BCD ,求证:
(1)BC=2EF;
(2)平面EFD ⊥平面ABC.
17.(本题满分16分)
图1是某种称为“凹槽”的机械部件的示意图,图
2是凹槽的横截面(阴影部分)示意图,其中四边形ABCD
是矩形,弧CmD 是半圆,凹槽的横截面的周长为4,若
凹槽的强度T 等于横截面的面积S 与边AB 的乘积,设
2,.AB x BC y ==
(1)写出y 关于x 的函数表达式,并指出x 的取值范围;
(2)求当x 取何值时,凹槽的强度最大.
18.(本题满分16分)
如图,在平面直角坐标系xoy 中,椭圆
()2222:10x y C a b a b
+=>>3A,B 分别为椭圆C 的上顶点,右顶点,过坐标原点的直线交椭
圆C 于D,E 两点,交AB 于M 点,其中点E 在第一象限,设直线DE 的斜率为.k
(1)当12
k =时,证明直线DE 平分线段AB; (2)已知点()0,1A ,则
①若6ADM AEM S S ∆∆=,求k ;
②求四边形ADBE 的最大值.
19.(本题满分16分)
已知数列{}n a 满足121
0,8a a ==,且对任意,m n N *∈都有
()2212113
24n n m n a a a m n -++-+=+-
(1)求35,a a ;
(2)设2121n n n b a a -+=+,
①求数列{}n b 的通项公式; ②设数列11n n b b +⎧⎫
⎨⎬⎩⎭
的前n 项和为n S ,是否存在正整数,p q ,且1p q <<,使得
1,,p q S S S 成等比数列?若存在求出,p q 的值,若不存在,说明理由.
20.(本题满分16分)
已知()()ln .f x ax x a R =-∈
(1)当2a =时,求()f x 的单调区间;
(2)函数()f x 有两个零点12,x x ,且12x x <
①求a 的取值范围;
②实数m 满足12ln ln x x m +>,求m 的最大值.
2017届高三“四校联考”试卷
数学Ⅱ(附加题)
21【选做题】本题包括A,B,C,D 四个小题,请选定其中两题,并在相应答题区域内作答,若多做,则按作答的前两题评分,解题时,应写出文字说明,证明过程和演算步骤. A[选修4—1:几何证明选讲](本题满分10分)
如图已知凸四边形ABCD 的顶点在一个圆周上,另一个
圆的圆心O 在AB 上,且四边形ABCD 的其余三边相切,
点E 在边AB 上,且AE=AD.
求证:O,E,C,D 四点共圆.
B[选修4—2:矩阵与变换](本题满分10分)
在直角坐标xoy 中,设点(),5P x 在矩阵1234M ⎡⎤
=⎢⎥⎣⎦
对应的变换下得到点()2,Q y y -,求1x M y -⎡⎤
⎢⎥⎣⎦.
C.[选修4—4:坐标系与参数方程](本题满分10分)
已知极坐标系中的曲线2cos sin ρθθ=与曲线sin 24πρθ⎛⎫+
= ⎪⎝⎭
交于A,B 两点, 求AB 线段的长.
D.[选修4—5:不等式选讲](本题满分10分) 已知0,0x y >>,求证:22
.x y xy x y
+=+ 【必做题】第22、23题,每题10分,共计20分,请在答题卡的指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
22、在直角坐标xoy 中,已知定点()8,0A -,M,N 分别是x 轴、y 轴上的点,点P 在直线MN 上满足0,0.NM NP AM MN +=⋅=
(1)求动点P 的轨迹方程;
(2)设F 是P 点的轨迹的一个焦点,C,D 为轨迹在第一象限内的任意两点,直线FC 、FD 的斜率分别为12,k k ,且满足120k k +=,求证:直线CD 过定
点.
23.(本小题10分)
已知函数()()0sin ax
f x e bx c =+,设()n f x 为()1n f x -的导数.n N *∈
(1)求()()()123,,f x f x f x ;
(2)求()n f x 的表达式,并证明你的结论.。

相关文档
最新文档