衡水金卷2018届全国高三大联考理科试卷及答案

合集下载

【全国百强校Word】河北省衡水中学2018届高三9月大联考理数试题

【全国百强校Word】河北省衡水中学2018届高三9月大联考理数试题

726π2抛物线地对称轴地入射光线经抛物线反射后必过抛物线地焦点.已知抛物线24y x =地焦点为F ,一条平行于x 轴地光线从点(3,1)M 射出,经过抛物线上地点A 反射后,再经抛物线上地另一点B 射出,则ABM ∆地周长为( )A .712612+B .926+C .910+D .832612+ 12.已知数列{}n a 与{}n b 地前n 项和分别为n S ,n T ,且0n a >,263n n n S a a =+,*n N ∈,12(21)(21)nnn a n a a b +=--,若*n N ∀∈,n k T >恒成立,则k 地最小值是( )A .17B .149C .49D .8441第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将解析填在答题纸上)13.已知在ABC ∆中,||||BC AB CB =- ,(1,2)AB =,若边AB 地中点D 地坐标为(3,1),点C 地坐标为(,2)t ,则t = .14.已知1()2nx x-(*n N ∈)地展开式中所有项地二项式系数之和、系数之和分别为p 、q ,则64p q +地最小值为 .15.已知x ,y 满足3,,60,x y t x y π+≤⎧⎪⎪≥⎨⎪≥⎪⎩其中2t π>,若sin()x y +地最大值与最小值分别为1,12,则实数t 地取值范围为 .16.在《九章算术》中,将四个面都为直角三角形地三棱锥称之为鳖臑.已知在鳖臑M ABC -中MA ⊥平面ABC ,2MA AB BC ===,则该鳖臑地外接球与内切球地表面积之和为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数21()cos 3sin()cos()2f x x x x ππ=+-+-,x R ∈.(1)求函数()f x 地最小正周期及其图象地对称轴方程;(2)在锐角ABC ∆中,内角A ,B ,C 地对边分别为a ,b ,c ,已知()1f A =-,3a =,sin sin b C a A =,求ABC ∆地面积. 18.如图,在四棱锥E ABCD -中,底面ABCD 为直角梯形,其中//CD AB ,BC AB ⊥,侧面ABE ⊥平面四边形MNPQ 不可能是菱形.21.已知函数()(1)xf x e a x b =-+-(a ,b R ∈),其中e 为自然对数地底数.(1)讨论函数()f x 地单调性及极值;(2)若不等式()0f x ≥在x R ∈内恒成立,求证:(1)324b a +<.请考生在22、23两题中任选一题作答,如果多做,则按所做地第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系中xOy 中,已知曲线C 地参数方程为cos ,sin x t y αα=⎧⎨=⎩(0t >,α为参数),以坐标原点O 为极点,x 轴地正半轴为极轴,取相同地长度单位建立极坐标系,直线l 地极坐标方程为2sin()34πρθ+=.(1)当1t =时,求曲线C 上地点到直线l 地距离地最大值;(2)若曲线C 上地所有点都在直线l 地下方,求实数t 地取值范围.23.选修4-5:不等式选讲已知函数()|21||1|f x x x =-++.(1)解不等式()3f x ≤;(2)记函数()()|1|g x f x x =++地值域为M ,若t M ∈,证明:2313t t t+≥+.衡水金卷2018届全国高三大联考理数解析一、选择题1-5:CBCBA 6-10: ACDAD 11、12:BB二、填空题13.1 14.16 15.57,66ππ⎡⎤⎢⎥⎣⎦16.2482ππ-三、解答题17.解:(1)原式可化为21()cos 3sin cos 2f x x x x =--1cos 231sin 2222x x +=--sin(2)6x π=-sin(2)6x π=--,故其最小正周期22T ππ==,令262x k πππ-=+(k Z ∈),解得23k x ππ=+(k Z ∈),即函数()f x 图象地对称轴方程为23k x ππ=+(k Z ∈).(2)由(1)知()sin(2)6f x x π=--,因为02A π<<,所以52666A πππ-<-<,又()sin(2)6f A A π=--1=-,故262A ππ-=,解得3A π=.由正弦定理及sin sin b C a A =,得29bc a ==,故193sin 24ABC S bc A ∆==.18.解:(1)当12λ=时,//CE 平面BDF .证明如下:连接AC 交BD 于点G ,连接GF .∵//CD AB ,2AB CD =,∴12CG CD GA AB ==.∵12EF FA =,∴12EF CG FA GA ==. ∴//GF CE .又∵CE ⊄平面BDF ,GF ⊂平面BDF ,∴//CE 平面BDF .(2)取AB 地中点O ,连接EO ,则EO ⊥AB .∵平面ABE ⊥平面ABCD ,平面ABE 平面ABCD AB =,且EO AB ⊥,∴EO ⊥平面ABCD .∵//BO CD ,且1BO CD ==,∴四边形BODC 为平行四边形,∴//BC DO . 又∵BC AB ⊥,∴AB OD ⊥.由OA ,OD ,OE 两两垂直,建立如下图所示地空间直角坐标系O xyz -.则(0,0,0)O ,(0,1,0)A ,(0,1,0)B -,(1,0,0)D ,(1,1,0)C -,(0,0,3)E .当1λ=时,有EF FA = ,∴可得13(0,,)22F .∴(1,1,0)BD = ,(1,1,3)CE =- ,33(0,,)22BF = .设平面BDF 地一个法向量为(,,)n x y z = ,则有0,0,n BD n BF ⎧⋅=⎪⎨⋅=⎪⎩ 即0,330,22x y y z +=⎧⎪⎨+=⎪⎩令3z =,得1y =-,1x =,即(1,1,3)n =-.设CE 与平面BDF 所成地角为θ,则|113|1sin |cos ,|555CE n θ--+=<>==⨯ ,∴当1λ=时,直线CE 与平面BDF 所成地角地正弦值为51.19.解:(1)由列联表可知2K 地观测值22()200(50405060) 2.020 2.072()()()()11090100100n ad bc k a b c d a c b d -⨯-⨯==≈<++++⨯⨯⨯,所以不能在犯错误地概率不超过0.15地前提下认为A 市使用网络外卖情况与性别有关.(2)①依题意,可知所抽取地5名女网民中,经常使用网络外卖地有6053100⨯=(人),偶尔或不用网络外卖地有4052100⨯=(人). 则选出地3人中至少有2人经常使用网络外卖地概率为2133233355710C C C P C C =+=.②由22⨯列联表,可知抽到经常使用网络外卖地网民地概率为1101120020=,将频率视为概率,即从A 市市民中任意抽取1人,恰好抽到经常使用网络外卖地市民地概率为1120.由题意得11~(10,)20X B ,∴1111()10202E X =⨯=;11999()10202040D X =⨯⨯=.20.解:(1)由已知,得12c a =,3b =,又222c a b =-,故解得24a =,23b =,所以椭圆C 地标准方程为22143x y +=.(2)由(1),知1(1,0)F -,如图,易知直线MN 不能平行于x 轴,所以令直线MN 地方程为1x my =-,设11(,)M x y ,22(,)N x y ,联立方程2234120,1,x y x my ⎧+-=⎨=-⎩得22(34)690m y my +--=,所以122634m y y m +=+,122934y y m -=+.此时221212||(1)()4MN m y y y y ⎡⎤=++-⎣⎦. 同理,令直线PQ 地方程为1x my =+,设33(,)P x y ,44(,)Q x y ,此时342634m y y m -+=+,342934y y m -=+,此时223434||(1)()4PQ m y y y y ⎡⎤=++-⎣⎦. 故||||MN PQ =,所以四边形MNPQ 是平行四边形.若MNPQ 是菱形,则OM ON ⊥,即0OM ON ⋅=,于是有12120x x y y +=.又1212(1)(1)x x my my =--21212()1m y y m y y =-++,所以有21212(1)()10m y y m y y +-++=,整理得22125034m m --=+,即21250m +=,上述关于m 地方程显然没有实数解,故四边形MNPQ 不可能是菱形.令22()ln (0)g x x x x x =->,则'()(12ln )g x x x =-. 令'()0g x >,得0x e <<;令'()0g x <,得x e >,故()g x 在区间(0,)e 内单调递增,在区间(,)e +∞内单调递减,故max ()()ln 2e g x g e e e e ==-=,即当1a e +=,即1a e =-时,max ()2e g x =.所以22(1)(1)(1)ln(1)2e a b a a a +≤+-++≤,所以(1)24b a e+≤.而3e <,所以(1)324b a +<.22.解:(1)易知曲线C :221x y +=,直线l 地直角坐标方程为30x y +-=. 所以圆心到直线l 地距离33222d ==,∴max 3212d =+.(2)∵曲线C 上地所有点均在直线l 地下方,∴a R ∀∈,有cos sin 30t αα+-<恒成立,∴213t +<.又0t >,∴解得022t <<,∴实数t 地取值范围为(0,22).23.解:(1)依题意,得3,1,1()2,1,213,,2x x f x x x x x ⎧⎪-≤-⎪⎪=--<<⎨⎪⎪≥⎪⎩于是得()3f x ≤1,33,x x ≤-⎧⇔⎨-≤⎩或11,223,x x ⎧-<<⎪⎨⎪-≤⎩或1,233,x x ⎧≥⎪⎨⎪≤⎩解得11x -≤≤.即不等式()3f x ≤地解集为{}|11x x -≤≤.(2)()()|1||21||22||2122|3g x f x x x x x x =++=-++≥---=,当且仅当(21)(22)0x x -+≤时,取等号,∴[3,)M =+∞.原不等式等价于2331t t t -+≥,∵[3,)t ∈+∞,∴230t t -≥,∴2311t t -+≥.又∵31t ≤,∴2331t t t -+≥,∴2313t t t +≥+.。

衡水金卷(一)理科数学试题(卷)含答案

衡水金卷(一)理科数学试题(卷)含答案

2018年普通高等学校招生全国统一考试模拟试题理数(一)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,,则()A. B. C. D.2. 设是虚数单位,若,,,则复数的共轭复数是()A. B. C. D.3. 已知等差数列的前项和是,且,则下列命题正确的是()A. 是常数B. 是常数C. 是常数D. 是常数4. 七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是()学*科*网...A. B. C. D.5. 已知点为双曲线:(,)的右焦点,直线与双曲线的渐近线在第一象限的交点为,若的中点在双曲线上,则双曲线的离心率为()A. B. C. D.6. 已知函数则()A. B. C. D.7. 执行如图所示的程序框图,则输出的的值为()A. B. C. D.8. 已知函数()的相邻两个零点差的绝对值为,则函数的图象()A. 可由函数的图象向左平移个单位而得B. 可由函数的图象向右平移个单位而得C. 可由函数的图象向右平移个单位而得D. 可由函数的图象向右平移个单位而得9. 的展开式中剔除常数项后的各项系数和为()A. B. C. D.10. 某几何体的三视图如图所示,其中俯视图中六边形是边长为1的正六边形,点为的中点,则该几何体的外接球的表面积是()A. B. C. D.11. 已知抛物线:的焦点为,过点分别作两条直线,,直线与抛物线交于、两点,直线与抛物线交于、两点,若与的斜率的平方和为1,则的最小值为()A. 16B. 20C. 24D. 3212. 若函数,,对于给定的非零实数,总存在非零常数,使得定义域内的任意实数,都有恒成立,此时为的类周期,函数是上的级类周期函数.若函数是定义在区间内的2级类周期函数,且,当时,函数.若,,使成立,则实数的取值范围是()A. B. C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知向量,,且,则__________.14. 已知,满足约束条件则目标函数的最小值为__________.15. 在等比数列中,,且与的等差中项为17,设,,则数列的前项和为__________.16. 如图,在直角梯形中,,,,点是线段上异于点,的动点,于点,将沿折起到的位置,并使,则五棱锥的体积的取值范围为__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知的内角,,的对边,,分别满足,,又点满足.(1)求及角的大小;(2)求的值.18. 在四棱柱中,底面是正方形,且,.(1)求证:;(2)若动点在棱上,试确定点的位置,使得直线与平面所成角的正弦值为.19. “过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则,.20. 已知椭圆:的离心率为,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆的标准方程;(2)若直线:与椭圆相交于,两点,在轴上是否存在点,使直线与的斜率之和为定值?若存在,求出点坐标及该定值,若不存在,试说明理由.21. 已知函数,其中为自然对数的底数.(1)若函数在区间上是单调函数,试求实数的取值范围;(2)已知函数,且,若函数在区间上恰有3个零点,求实数的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在平面直角坐标系中,圆的参数方程为(为参数,是大于0的常数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)求圆的极坐标方程和圆的直角坐标方程;(2)分别记直线:,与圆、圆的异于原点的焦点为,,若圆与圆外切,试求实数的值及线段的长.23. 选修4-5:不等式选讲已知函数.(1)求不等式的解集;(2)若正数,满足,求证:.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,,则()A. B. C. D.【答案】C【解析】集合,故,集合表示非负的偶数,故,故选C.2. 设是虚数单位,若,,,则复数的共轭复数是()A. B. C. D.【答案】A【解析】,根据两复数相等的充要条件得,即,其共轭复数为,故选A.3. 已知等差数列的前项和是,且,则下列命题正确的是()A. 是常数B. 是常数C. 是常数D. 是常数【答案】D【解析】,为常数,故选D.4. 七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是()A. B. C. D.【答案】A【解析】由七巧板的构造可知,,故黑色部分的面积与梯形的面积相等,则所求的概率为,故选A.5. 已知点为双曲线:(,)的右焦点,直线与双曲线的渐近线在第一象限的交点为,若的中点在双曲线上,则双曲线的离心率为()A. B. C. D.【答案】D【解析】由,解得点,又,则的中点坐标为,于是,,则,解得或(舍去),故选D.【方法点睛】本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.本题中,根据的中点坐标为在双曲线上找出之间的关系,从而求出离心率.6. 已知函数则()A. B. C. D.【答案】D【解析】,,的几何意义是以原点为圆心,半径为的圆的面积的,故,故选D.7. 执行如图所示的程序框图,则输出的的值为()A. B. C. D.【答案】C【解析】图中程序数列的和,因为,故此框图实质计算,故选C.8. 已知函数()的相邻两个零点差的绝对值为,则函数的图象()A. 可由函数的图象向左平移个单位而得B. 可由函数的图象向右平移个单位而得C. 可由函数的图象向右平移个单位而得D. 可由函数的图象向右平移个单位而得【答案】B【解析】,因为函数()的相邻两个零点差的绝对值为,所以函数的最小正周期为,而,,故的图象可看作是的图象向右平移个单位而得,故选B.9. 的展开式中剔除常数项后的各项系数和为()A. B. C. D.【答案】A【解析】令,得,而常数项为,所以展开式中剔除常数项的各项系数和为,故选A.10. 某几何体的三视图如图所示,其中俯视图中六边形是边长为1的正六边形,点为的中点,则该几何体的外接球的表面积是()A. B. C. D.【答案】C【解析】由三视图可知,该几何体是一个六棱锥,其底面是边长为的正六边形,有一个侧面是底边上的离为的等腰三角形,且有侧面底面,设球心为,半径为到底面的距离为,底面正六边形外接球圆半径为,解得此六棱锥的外接球表面枳为,故选C.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力以及外接球的表面积,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.11. 已知抛物线:的焦点为,过点分别作两条直线,,直线与抛物线交于、两点,直线与抛物线交于、两点,若与的斜率的平方和为1,则的最小值为()A. 16B. 20C. 24D. 32【答案】C【解析】易知直线,的斜率存在,且不为零,设,直线的方程为,联立方程,得,,同理直线与抛物线的交点满足,由抛物线定义可知,又(当且仅当时取等号),的最小值为,故选C.12. 若函数,,对于给定的非零实数,总存在非零常数,使得定义域内的任意实数,都有恒成立,此时为的类周期,函数是上的级类周期函数.若函数是定义在区间内的2级类周期函数,且,当时,函数.若,,使成立,则实数的取值范围是()A. B. C. D.【答案】B【解析】是定义在区间内的级类周期函数,且,,当时,,故时,时,,而当时,,,当时,在区间上单调递减,当时,在区间上单调递增,故,依题意得,即实数的取值范围是,故选B.【方法点睛】本题主要考查分段函数函数的最值、全称量词与存在量词的应用以及新定义问题. 属于难题.解决这类问题的关键是理解题意、正确把问题转化为最值和解不等式问题,全称量词与存在量词的应用共分四种情况:(1)只需;(2),只需;(3),只需;(4),,.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知向量,,且,则__________.【答案】【解析】,,故答案为.14. 已知,满足约束条件则目标函数的最小值为__________.【答案】【解析】,作出约束条件表示的可行域,如图,平移直线,由图可知直线经过点时,取得最小值,且,,故答案为.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.15. 在等比数列中,,且与的等差中项为17,设,,则数列的前项和为__________.【答案】【解析】设的公比为,则由等比数列的性质,知,则,由与的等差中项为,知,得,即,则,,故答案为.16. 如图,在直角梯形中,,,,点是线段上异于点,的动点,于点,将沿折起到的位置,并使,则五棱锥的体积的取值范围为__________.【答案】【解析】,平面,设,则五棱锥的体积,,得或(舍去),当时,单调递增,故,即的取值范围是,故答案为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知的内角,,的对边,,分别满足,,又点满足.(1)求及角的大小;(2)求的值.【答案】(1) (2)【解析】试题分析:(1)由及正弦定理化简可得即,从而得.又,所以,由余弦定理得;(2)由,得,所以.试题解析:(1)由及正弦定理得,即,在中,,所以.又,所以.在中,由余弦定理得,所以.(2)由,得,所以.18. 在四棱柱中,底面是正方形,且,.(1)求证:;(2)若动点在棱上,试确定点的位置,使得直线与平面所成角的正弦值为.【答案】(1)见解析(2)【解析】试题分析:(1)连接,,,与的交点为,连接,则,由正方形的性质可得,从而得平面,,又,所以;(2)由勾股定理可得,由(1)得所以底面,所以、、两两垂直.以点为坐标原点,的方向为轴的正方向,建立空间直角坐标系,设(),求得,利用向量垂直数量积为零可得平面的一个法向量为,利用空间向量夹角余弦公式列方程可解得,从而可得结果.试题解析:(1)连接,,,因为,,所以和均为正三角形,于是.设与的交点为,连接,则,又四边形是正方形,所以,而,所以平面.又平面,所以,又,所以.(2)由,及,知,于是,从而,结合,,得底面,所以、、两两垂直.如图,以点为坐标原点,的方向为轴的正方向,建立空间直角坐标系,则,,,,,,,,由,易求得.设(),则,即,所以.设平面的一个法向量为,由得令,得,设直线与平面所成角为,则,解得或(舍去),所以当为的中点时,直线与平面所成角的正弦值为.【方法点晴】本题主要考查利用线面垂直证明线线垂直以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.19. “过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则,.【答案】(1) (2) (3)的分布列为0 1 2 3 4∴.【解析】试题分析:(1)直方图各矩形中点值的横坐标与纵坐标的积的和就是所抽取的100包速冻水饺该项质量指标值的样本平均数;(2)①∵服从正态分布,且,,由可得落在内的概率是,②的可能取值为,根据独立重复试验概率公式求出各随机变量对应的概率,从而可得分布列,进而利用二项分布的期望公式可得的数学期望.试题解析:(1)所抽取的100包速冻水饺该项质量指标值的样本平均数为.(2)①∵服从正态分布,且,,∴,∴落在内的概率是.②根据题意得,;;;;.∴的分布列为0 1 2 3 4∴.20. 已知椭圆:的离心率为,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆的标准方程;(2)若直线:与椭圆相交于,两点,在轴上是否存在点,使直线与的斜率之和为定值?若存在,求出点坐标及该定值,若不存在,试说明理由.【答案】(1) (2) 存在点,使得为定值,且定值为0.【解析】试题分析:(1)由椭圆的离心率为,且以两焦点为直径的圆的内接正方形面积为可得,解方程组即可的结果;(2)由得,根据韦达定理以及过两点的直线的斜率公式可得,只需令,即可得结果.试题解析:(1)由已知可得解得,,所求椭圆方程为.(2)由得,则,解得或.设,,则,,设存在点,则,,所以.要使为定值,只需与参数无关,故,解得,当时,.综上所述,存在点,使得为定值,且定值为0.21. 已知函数,其中为自然对数的底数.(1)若函数在区间上是单调函数,试求实数的取值范围;(2)已知函数,且,若函数在区间上恰有3个零点,求实数的取值范围.【答案】(1) (2)【解析】试题分析:(1)函数在区间上单调递增等价于在区间上恒成立,可得,函数在区间单调递减等价于在区间上恒成立,可得,综合两种情况可得结果;(2),由,知在区间内恰有一个零点,设该零点为,则在区间内不单调,所以在区间内存在零点,同理,在区间内存在零点,所以只需在区间内恰有两个零点即可,利用导数研究函数的单调性,结合函数单调性讨论的零点,从而可得结果.试题解析:(1),当函数在区间上单调递增时,在区间上恒成立,∴(其中),解得;当函数在区间单调递减时,在区间上恒成立,∴(其中),解得.综上所述,实数的取值范围是.(2).由,知在区间内恰有一个零点,设该零点为,则在区间内不单调,所以在区间内存在零点,同理,在区间内存在零点,所以在区间内恰有两个零点.由(1)知,当时,在区间上单调递增,故在区间内至多有一个零点,不合题意.当时,在区间上单调递减,故在内至多有一个零点,不合题意;所以.令,得,所以函数在区间上单调递减,在区间上单调递增.记的两个零点为,(),因此,,必有,.由,得,所以,又,,所以.综上所述,实数的取值范围为.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22. 选修4-4:坐标系与参数方程在平面直角坐标系中,圆的参数方程为(为参数,是大于0的常数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)求圆的极坐标方程和圆的直角坐标方程;(2)分别记直线:,与圆、圆的异于原点的焦点为,,若圆与圆外切,试求实数的值及线段的长.【答案】(1) , (2) ,【解析】试题分析:(1)先将圆的参数方程化为直角坐标方程,再利用可得圆的极坐标方程,两边同乘以利用互化公式即可得圆的直角坐标方程;(2)由(1)知圆的圆心,半径;圆的圆心,半径,圆与圆外切的性质列方程解得,分别将代入、的极坐标方程,利用极径的几何意义可得线段的长.试题解析:(1)圆:(是参数)消去参数,得其普通方程为,将,代入上式并化简,得圆的极坐标方程,由圆的极坐标方程,得.将,,代入上式,得圆的直角坐标方程为.(2)由(1)知圆的圆心,半径;圆的圆心,半径,,∵圆与圆外切,∴,解得,即圆的极坐标方程为.将代入,得,得;将代入,得,得;故.【名师点睛】本题考查圆的参数方程和普通方程的转化、圆的极坐标方程和直角坐标方程的转化以及极径的几何意义,消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法;极坐标方程化为直角坐标方程,只需利用转化即可.23. 选修4-5:不等式选讲已知函数.(1)求不等式的解集;(2)若正数,满足,求证:.【答案】(1) (2)见解析【解析】试题分析:(1)对分三种情况讨论,分别求解不等式组,然后求并集,即可得不等式的解集;(2)先利用基本不等式成立的条件可得,所以.学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...试题解析:(1)此不等式等价于或或解得或或.即不等式的解集为.(2)∵,,,,即,当且仅当即时取等号.∴,当且仅当,即时,取等号.∴.。

【全国百强校】衡水金卷2018届全国高三大联考理科数学试题(原卷版)

【全国百强校】衡水金卷2018届全国高三大联考理科数学试题(原卷版)

衡水金卷2018届全国高三大联考理科第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则 ( )A. B.C. D.2. 记复数的虚部为,已知复数(为虚数单位),则为( )A. 2B. -3C.D. 33. 已知曲线在点处的切线的倾斜角为,则( )A. B. 2 C. D.4. 2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币,如图所示是一枚8克圆形金质纪念币,直径22mm,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( )A. B. C. D.5. 已知双曲线:的渐近线经过圆:的圆心,则双曲线的离心率为( )A. B. C. 2 D.6. 已知数列为等比数列,且,则( )A. B. C. D.7. 执行如图的程序框图,若输出的的值为-10,则①中应填( )A. B. C. D.8. 已知函数为内的奇函数,且当时,,记,,,则,,间的大小关系是( )A. B. C. D.9. 已知一几何体的三视图如图所示,俯视图是一个等腰直角三角形和半圆,则该几何体的体积为( )...A. B. C. D.10. 已知函数的部分图象如图所示,其中.记命题:,命题:将的图象向右平移个单位,得到函数的图象.则以下判断正确的是( )A. 为真B. 为假C. 为真D. 为真11. 抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为,一条平行于轴的光线从点射出,经过抛物线上的点反射后,再经抛物线上的另一点射出,则的周长为 ( )A. B. C. D.12. 已知数列与的前项和分别为,,且,,,若恒成立,则的最小值是( )A. B. C. 49 D.第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每题5分.13. 已知在中,,,若边的中点的坐标为,点的坐标为,则__________.14. 已知的展开式中所有项的二项式系数之和、系数之和分别为,,则的最小值为__________.15. 已知,满足其中,若的最大值与最小值分别为,,则实数的取值范围为__________.16. 在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bie nao).已知在鳖臑中,平面,,则该鳖臑的外接球与内切球的表面积之和为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 已知函数,.(Ⅰ)求函数的最小正周期及其图象的对称轴方程;(Ⅱ)在锐角中,内角,,的对边分别为,,,已知,,,求的面积.18. 如图,在四棱锥中,底面为直角梯形,其中,侧面平面,且,动点在棱上,且.(1)试探究的值,使平面,并给予证明;(2)当时,求直线与平面所成的角的正弦值.19. 如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分.为了解网络外卖在市的普及情况,市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到下表:(单位:人)(Ⅰ)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用网络外卖的情况与性别有关?(Ⅱ)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出3人赠送外卖优惠卷,求选出的3人中至少有2人经常使用网络外卖的概率②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为,求的数学期望和方差.参考公式:,其中.参考数据:20. 已知椭圆:的左、右焦点分别为点,,其离心率为,短轴长为. (Ⅰ)求椭圆的标准方程;(Ⅱ)过点的直线与椭圆交于,两点,过点的直线与椭圆交于,两点,且,证明:四边形不可能是菱形.21. 已知函数,其中为自然对数的底数.(Ⅰ)讨论函数的单调性及极值;(Ⅱ)若不等式在内恒成立,求证:.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在平面直角坐标系中,已知曲线的参数方程为(,为参数).以坐标原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为. (Ⅰ)当时,求曲线上的点到直线的距离的最大值;(Ⅱ)若曲线上的所有点都在直线的下方,求实数的取值范围.23. 选修4-5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)记函数的值域为,若,证明:.。

衡水金卷2018届高三四省第三次大联考理综物理试题含答案精品

衡水金卷2018届高三四省第三次大联考理综物理试题含答案精品

二、选择题14.氡气有天然放射性,其衰变产生的粒子可对人的呼吸系统造成辐射损伤。

氡衰变方程为2222188684Rn Po X,衰变过程中同时产生射线,半衰明为 3.8天,以下说法正确的是()A.该衰变过程为衰变B.对一个特定的氡核,在 3.8天内一定会衰变C. 射线是由处于高能級的21884Po核向低能級跃迁时产生的D.衰变后,21884Po核与X粒子的质量之和等于衰变前22286Rn核的质量15.如图所示,一劲度系数为k的轻质弹簧的一端与物块相连,另一固定在斜面体顶端,弹簧与斜面平行。

当物块位于斜面上A、B两点时,物块恰能静止在斜面上。

当物块在A处时,弹簧处于拉伸状态且长度为1L,当物块在B处时,弹簧处于压缩状态且长度为2L,已知物块与斜面间的滑动摩擦力等于最大静摩擦力。

由以上信息可以求出()A.物块与斜面间的动摩擦因数B物块与斜面间的最大静摩擦力C.弹簧的原长D.物块沿斜面方向的重力分量16.法拉第电动机的改装电路如图甲所示,在圆形水银槽中心竖直固定着一条形磁铁,S极向上,一根金属杆斜插在水银中,金属杆的上端与固定在水银槽圆心正上方的链相连。

在电路中A、B点间接入图乙所示交流电时,电源、理想二极管、导线、金属杆、水很构成回路,电路安全且正常工作(不计金属杆在转动中水银阻力的影响及水银电阻的变化),则从上往下看,金属杆( )A.逆时针匀速转动B.逆时针非匀速转动C.顺时针匀速转动D.顺时针非匀速转动17.一个小球从光滑固定的圆弧槽的A点由静止释放后,经最低点B运动到C点的过程中,小球的动能kE随时间t的变化图象可能是()18.如图所示的速度选择器水平放置,板长为L,两板间距离也为L,两板间分布着如图所示的正交匀强电场与匀强磁场,一带正电的粒子(不计重力)从两板左侧中点O处沿图中虚线水平向右射入速度选择器,恰好做匀速直线运动;若撤去磁场,保留电场,粒子以相同的速度从O点进入电场,恰好从上板极右边缘b点离开场区;若撤去电场,保留磁场,粒子以相同的速度从O点进入磁场,则粒子圆周运动的半径为()A.LB.2LC.54L D.2L19.2017年8月28日,中科院南极天文中心的巡天望远镜观测到一个由双中子星构成的孤立双星系统产生的引力波。

衡水金卷2018届高三上学期全国大联考(物理)

衡水金卷2018届高三上学期全国大联考(物理)

衡水金卷2018届高三上学期全国大联考物 理本试卷共7页,18题(含选考题)。

全卷满分110分。

考试时间90分钟。

注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题::共12小题,每小题4分,在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~12题有多项符合题目要求,全部选对得4分,选对但不全的得2分,有选错的得0分。

1.下列说法正确的是A .两个带电质点,只在相互作用的静电力下运动,若其中一个质点的动量增加,另一个质点的动量一定减少B .波尔将量子观念引入原子领域,成功解释了氢原子光谱的特征C .在原子核中,比结合能越小表示原子核中的核子结合得越牢固D .已知氢原子从基态跃迁到某一个激发态需要吸收的能量为12.09eV ,则动能等于12.09eV 的另一个氢原子与这个氢原子发生正碰,可以使这个原来静止并处于基态的氢原子跃迁到该激发态2.质量为m 的物体放置在水平地面上,物体与地面间的动摩擦因数3μ=,现用拉力F (与水平方向的夹角为θ)拉动物体沿地面匀速前进,下列说法正确的是A .θ=0°即拉力F 水平时,拉力最小B .θ=45°时,拉力F 最小C .拉力F 的最小值为12mgD .拉力F 的最小值为3mg 3.摩天轮是游乐场一种大型转轮状设施,摩擦力边缘悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动,随摩天轮转动过程中,可以俯瞰四周景色,下列叙述正确的是A .摩天轮转动过程中,乘客的机械能保持不变B .摩天轮转动一周的过程中,乘客重力的冲量为零C .在最高点,乘客重力大于座椅对他的支持力D .摩天轮转动过程中,乘客重力的瞬时功率保持不变4.如图所示,一理想变压器原副线圈的匝数比12:4:1n n =,变压器原线圈通过一理想电流表A 接()V u t π=的正弦交流电,副线圈接有三个规格相同的灯泡和两个二极管,已知两二极管的正向电阻均为零,反向电阻均为无穷大,不考虑温度对灯泡电阻的影响,用交流电压表测得a 、b 端和c 、d 端的电压分别为ab U 和cd U ,下列分析正确的是A .220V 55V ab cd U U ==,B .流经1L 的电流是流经电流表的电流的2倍C .若其中一个二极管被短路,电流表的示数将不变D .若通电1小时,1L 消耗的电能等于23L L 、消耗的电能之和5.碳14可以用来作示踪剂标记化合物,也常在考古学中测定生物死亡年代,在匀强电场中有一个初速度可以忽略的放射性碳14原子核,它所放射的粒子与反冲核经过相等的时间所形成的径迹如图所示,a 、b 均表示长度,那么碳14的衰变方程可能为A .14410624C He+Be →B .14014615C e+B →C .14014617C e+N -→D .14212615C H+B →6.如图所示,物块A 质量为1kg ,足够长的木板B 质量为2kg ,叠放在水平地面上,A 、B 间动摩擦因数1μ=0.4,B 与地面间动摩擦因数2μ=0.1,且最大静摩擦力等于滑动摩擦力,现对A 施加一个逐渐增大的水平力F=k t (k =1N/s ,t 为时间),210/g m s =,则下面关于A 与B 间摩擦力A f 、B 与地面间摩擦力B f 以及A 、B 加速度与时间关系图像正确的是7.一匀强电场的方向平行于xOy 平面,平面内a 、b 、c 三点的位置如图所示,三点的电势分别为10V 、17V 、26V 。

2018届河北省衡水金卷高三四省第三次大联考理科综合物理试题(解析版)

2018届河北省衡水金卷高三四省第三次大联考理科综合物理试题(解析版)

衡水金卷2018届高三四省第三次大联考理科综合物理试题二、选择题1. 氡气有天然放射性,其衰变产生的粒子可对人的呼吸系统造成辐射损伤。

衰变过程中同时产生射线,半衰明为3.8天,以下说法正确的是()A.B. 对一个特定的氡核,在3.8天内一定会衰变C.D. 衰变后,X【答案】C【解析】A、根据电荷数守恒、质量数守恒得,X的电荷数为2,质量数为4,为α粒子,故A错误;B、半衰期是大量粒子统计学结果,不能用在少量原子上,故B错误;C、γ 射线一般随着α或β C正确;D、衰变过程中质量数和电荷数守恒,但质量有亏损,X质量,故D错误;故选C。

2. 如图所示,一劲度系数为k的轻质弹簧的一端与物块相连,另一固定在斜面体顶端,弹簧与斜面平行。

当物块位于斜面上A、B两点时,物块恰能静止在斜面上。

当物块在A处时,弹簧处于拉伸状态且长度为L1,当物块在B处时,弹簧处于压缩状态且长度为L2,已知物块与斜面间的滑动摩擦力等于最大静摩擦力。

由以上信息可以求出()A. 物块与斜面间的动摩擦因数B. 物块与斜面间的最大静摩擦力C. 弹簧的原长D. 物块沿斜面方向的重力分量【答案】B【解析】当物块在A处时,B处时,B正确,A、C、D错误;故选B。

3. 法拉第电动机的改装电路如图甲所示,在圆形水银槽中心竖直固定着一条形磁铁,S极向上,一根金属杆斜插在水银中,金属杆的上端与固定在水银槽圆心正上方的链相连。

在电路中A、B点间接入图乙所示交流电时,电源、理想二极管、导线、金属杆、水很构成回路,电路安全且正常工作(不计金属杆在转动中水银阻力的影响及水银电阻的变化),则从上往下看,金属杆( )A. 逆时针匀速转动B. 逆时针非匀速转动C. 顺时针匀速转动D. 顺时针非匀速转动【答案】D【解析】闭合开关S,由于二极管单向导电,则有向上的电流通过金属杆,金属杆处在磁铁的磁场中,受到安培力作用,根据左手定则得知,安培力方向与金属杆垂直向外,使金属杆以磁铁棒为轴顺时针转动,由于电流大小周期性改变,所以安培力大小也改变,故金属杆非匀速转动,故ABC错误,D正确;故选D。

【全国百强校】衡水金卷2018届全国高三大联考理科数学试题(原卷版)

【全国百强校】衡水金卷2018届全国高三大联考理科数学试题(原卷版)

衡水金卷2018届全国高三大联考理科第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( )A. B.C. D.2. 记复数的虚部为,已知复数(为虚数单位),则为( )A. 2B. -3C.D. 33. 已知曲线在点处的切线的倾斜角为,则( )A. B. 2 C. D.4. 2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币,如图所示是一枚8克圆形金质纪念币,直径22mm,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( )A. B. C. D.5. 已知双曲线:的渐近线经过圆:的圆心,则双曲线的离心率为( )A. B. C. 2 D.6. 已知数列为等比数列,且,则( )A. B. C. D.7. 执行如图的程序框图,若输出的的值为-10,则①中应填( )A. B. C. D.8. 已知函数为内的奇函数,且当时,,记,,,则,,间的大小关系是( )A.B.C.D.9. 已知一几何体的三视图如图所示,俯视图是一个等腰直角三角形和半圆,则该几何体的体积为( )...A. B. C. D.10. 已知函数的部分图象如图所示,其中.记命题:,命题:将的图象向右平移个单位,得到函数的图象.则以下判断正确的是( ) A.为真 B.为假 C.为真 D. 为真11. 抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为,一条平行于轴的光线从点射出,经过抛物线上的点反射后,再经抛物线上的另一点射出,则的周长为 ( )A.B.C. D.12. 已知数列与的前项和分别为,,且,,,若恒成立,则的最小值是( )A. B. C. 49 D.第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每题5分.13. 已知在中,,,若边的中点的坐标为,点的坐标为,则__________.14. 已知的展开式中所有项的二项式系数之和、系数之和分别为,,则的最小值为__________.15. 已知,满足其中,若的最大值与最小值分别为,,则实数的取值范围为__________.16. 在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bie nao).已知在鳖臑中,平面,,则该鳖臑的外接球与内切球的表面积之和为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 已知函数,.(Ⅰ)求函数的最小正周期及其图象的对称轴方程;(Ⅱ)在锐角中,内角,,的对边分别为,,,已知,,,求的面积.18. 如图,在四棱锥中,底面为直角梯形,其中,侧面平面,且,动点在棱上,且.(1)试探究的值,使平面,并给予证明;(2)当时,求直线与平面所成的角的正弦值.19. 如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分.为了解网络外卖在市的普及情况,市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到下表:(单位:人)(Ⅰ)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用网络外卖的情况与性别有关?(Ⅱ)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出3人赠送外卖优惠卷,求选出的3人中至少有2人经常使用网络外卖的概率②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为,求的数学期望和方差.参考公式:,其中.参考数据:20. 已知椭圆:的左、右焦点分别为点,,其离心率为,短轴长为. (Ⅰ)求椭圆的标准方程;(Ⅱ)过点的直线与椭圆交于,两点,过点的直线与椭圆交于,两点,且,证明:四边形不可能是菱形.21. 已知函数,其中为自然对数的底数.(Ⅰ)讨论函数的单调性及极值;(Ⅱ)若不等式在内恒成立,求证:.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在平面直角坐标系中,已知曲线的参数方程为(,为参数).以坐标原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.(Ⅰ)当时,求曲线上的点到直线的距离的最大值;(Ⅱ)若曲线上的所有点都在直线的下方,求实数的取值范围.23. 选修4-5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)记函数的值域为,若,证明:.。

精品解析:【全国省级联考】衡水金卷2018届高三四省第三次大联考理科综合物理试题(解析版)

精品解析:【全国省级联考】衡水金卷2018届高三四省第三次大联考理科综合物理试题(解析版)

衡水金卷2018届高三四省第三次大联考理科综合物理试题二、选择题1. 氡气有天然放射性,其衰变产生的粒子可对人的呼吸系统造成辐射损伤。

3.8天,以下说法正确的是()A.B. 对一个特定的氡核,在3.8天内一定会衰变D. 衰变后,X粒子的质量之和等于衰变前【答案】C【解析】A、根据电荷数守恒、质量数守恒得,X的电荷数为2,质量数为4,为α粒子,故A错误;B、半衰期是大量粒子统计学结果,不能用在少量原子上,故B错误;C、γ 射线一般随着α或β 射线产生,是由处于高能級的C正确;D、X质量,故D错误;故选C。

2. 如图所示,一劲度系数为k的轻质弹簧的一端与物块相连,另一固定在斜面体顶端,弹簧与斜面平行。

当物块位于斜面上A、B两点时,物块恰能静止在斜面上。

当物块在A处时,弹簧处于拉伸状态且长度为L1,当物块在B处时,弹簧处于压缩状态且长度为L2,已知物块与斜面间的滑动摩擦力等于最大静摩擦力。

由以上信息可以求出()A. 物块与斜面间的动摩擦因数B. 物块与斜面间的最大静摩擦力C. 弹簧的原长D. 物块沿斜面方向的重力分量【答案】B【解析】当物块在A BB正确,A、C、D错误;故选B。

3. 法拉第电动机的改装电路如图甲所示,在圆形水银槽中心竖直固定着一条形磁铁,S极向上,一根金属杆斜插在水银中,金属杆的上端与固定在水银槽圆心正上方的链相连。

在电路中A、B点间接入图乙所示交流电时,电源、理想二极管、导线、金属杆、水很构成回路,电路安全且正常工作(不计金属杆在转动中水银阻力的影响及水银电阻的变化),则从上往下看,金属杆( )A. 逆时针匀速转动B. 逆时针非匀速转动C. 顺时针匀速转动D. 顺时针非匀速转动【答案】D【解析】闭合开关S,由于二极管单向导电,则有向上的电流通过金属杆,金属杆处在磁铁的磁场中,受到安培力作用,根据左手定则得知,安培力方向与金属杆垂直向外,使金属杆以磁铁棒为轴顺时针转动,由于电流大小周期性改变,所以安培力大小也改变,故金属杆非匀速转动,故ABC错误,D正确;故选D。

衡水金卷2018届全国高三大联考理科数学试题含答案

衡水金卷2018届全国高三大联考理科数学试题含答案

金卷 2018 届全国高三大联考理科第Ⅰ卷一、选择题:本大题共 12 个小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则 ( )A.B.C.D.【答案】C【解析】.所以,.故选 C.2. 记复数的虚部为,已知复数(为虚数单位),则 为( )A. 2 B. -3 C. D. 3【答案】B【解析】.故的虚部为-3,即.故选 B.3. 已知曲线在点处的切线的倾斜角为,则( )A. B. 2 C. D.【答案】C【解析】由,得,故.故选 C.4. 2017 年 8 月 1 日是中国人民解放军建军 90 周年,中国人民银行为此发行了以此为主题的金银纪念币,如图所示是一枚 8 克圆形金质纪念币,直径 22mm,面额 100 元.为了测算图中军旗部分的面积,现用 1 粒芝麻向硬币投掷 100 次,其中恰有 30 次落在军旗,据此可估计军旗的面积大约是( )A. B. C. D. 【答案】B 【解析】根据题意,可估计军旗的面积大约是. 故选 B.5. 已知双曲线 :的渐近线经过圆 :的圆心,则双曲线 的离心率为( )A.B.C. 2 D.【答案】A【解析】圆 :的圆心为 ,双曲线 的渐近线为 .依题意得 .故其离心率为.故选 A.6. 已知数列 为等比数列,且,则()A.B.C.D.【答案】A【解析】依题意,得,所以 .由 ,得 ,或 (由于 与 同号,故舍去).所以..故选 A.7. 执行如图的程序框图,若输出的 的值为-10,则①中应填()A.B.C.D.【答案】C【解析】由图,可知.故①中应填 .故选 C.8. 已知函数 为 的奇函数,且当 时,,记,, ,则 , , 间的大小关系是( )A.B.C.D.【答案】D【解析】根据题意得,令.则为 的偶函数,当 时,.所以 在 单调递减.又,,.故 ,选 D.9. 已知一几何体的三视图如图所示,俯视图是一个等腰直角三角形和半圆,则该几何体的体积为( )A.B.C.D.【答案】A 【解析】由三视图可知该几何体是一个半圆柱与一个地面是等腰直角三角形的三棱锥构成的组合体,故其体积.故选 A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.10. 已知函数的部分图象如图所示,其中 .记命题 :,命题 :将 的图象向右平移 个单位,得到函数的图象.则以下判断正确的是()A. 为真 B. 为假 C.为真 D.为真【答案】D【解析】由 ,可得 因为 ,所以.解得 . ,故 为真命题;将 图象所有点向右平移 个单位,.............................. 所以 为假, 为真,为假,为真.故选 D.11. 抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线 的焦点为 ,一条平行于 轴的光线从点 射出,经过抛物线上的点 反射后,再经抛物线上的另一点 射出,则 的周长为 ( )A.B.C.D.【答案】B【解析】令 ,得 ,即 .由抛物线的光学性质可知 经过焦点 ,设直线 的方程为,代入 .消去 ,得.则 ,所以..将 代入 得 ,故 .故.故 的周长为.故选 B.点睛:抛物线的光学性质:从抛物线的焦点发出的光线或声波在经过抛物线周上反射后,反射光线平行于抛物线的对称轴.12. 已知数列 与 的前 项和分别为 , ,且 ,,,若恒成立,则 的最小值是( )A. B. C. 49 D.【答案】B【解析】当 时,,解得由 得 .由,得两式相减得.所以.因为 ,所以.或. .即数列 是以 3 为首项,3 为公差的等差数列,所以 .所以.所以.要使恒成立,只需 .故选 B.点睛:由 和 求通项公式的一般方法为.数列求和的常用方法有:公式法;分组求和;错位相减法;倒序相加法;裂项相消法;并项求和.第Ⅱ卷本卷包括必考题和选考题两部分.第 13~21 题为必考题,每个试题考生都必须作答.第 22~23 题为选考题,考生根据要求作答.二、填空题:本大题共 4 小题,每题 5 分.13. 已知在 中,,,若边 的中点 的坐标为 ,点 的坐标为 ,则 __________.【答案】1【解析】依题意,得,故 是以 为底边的等腰三角形,故,所以.所以 .14. 已知的展开式中所有项的二项式系数之和、系数之和分别为 , ,则 的最小值为__________.【答案】16【解析】显然 .令 ,得 .所以.当且仅当 .即 时,取等号,此时的最小值为 16.15. 已知 , 满足其中 ,若的最大值与最小值分别为 , ,则实数的取值围为__________. 【答案】 【解析】作出可行域如图所示(如图阴影部分所示)设 ,作出直线,当直线过点 时, 取得最小值 ;当直线过点 时, 取得最大值 .即,当 或 时,.当 时,.所以,解得.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.16. 在《九章算术》中,将四个面都为直角三角形的三棱锥 称之为鳖臑(bie nao).已知在鳖臑 中, 平面 ,,则该鳖臑的外接球与切球的表面积之和为 __________. 【答案】 【解析】设 的中点为 ,如图,由,且 为直角三角形,得.由等体积法,知.即,解得 .故该鳖臑的外接球与切球的表面积之和为.三、解答题 :解答应写出文字说明、证明过程或演算步骤.17. 已知函数,.(Ⅰ)求函数 的最小正周期及其图象的对称轴方程;(Ⅱ)在锐角 中,角 , , 的对边分别为 , , ,已知,,,求 的面积.【答案】(1)最小正周期,对称轴方程为;(2) .【解析】试题分析:(1)化简函数得,其最小正周期,令即可解得对称轴;(2)由,解得 ,由正弦定理及,得,利用即可得解.试题解析:(1)原式可化为,,,,故其最小正周期,令,解得,即函数 图象的对称轴方程为,.(2)由(1),知,因为 ,所以.又,故得,解得 .由正弦定理及,得.故.18. 如图,在四棱锥中,底面 为直角梯形,其中,侧面 平面 ,且,动点 在棱 上,且.(1)试探究 的值,使 平面 ,并给予证明;(2)当 时,求直线 与平面 所成的角的正弦值.【答案】(1)见解析;(2) .【解析】试题分析:(1)连接 交 于点 ,连接 通过证得 ,即可证得 平面 ;(2)取 的中点 ,连接 ,可得两两垂直,建立空间直角坐标系,设 与平面 所成的角为 ,则, 为平面 的一个法向量.试题解析:(1)当 时, 平面 .证明如下:连接 交 于点 ,连接 .∵,∴.∵,∴.∴.又∵ 平面 , 平面 ,∴ 平面 .(2)取 的中点 ,连接 .则.∵平面 平面 ,平面 平面,且,∴ 平面 .∵ ,且,∴四边形 为平行四边形,∴ .又∵,∴ .由两两垂直,建立如图所示的空间直角坐标系 .则,,,,,.当 时,有 ,∴可得 .∴,,.设平面 的一个法向量为,则有即令 ,得 , .即.设 与平面 所成的角为 ,则.∴当 时,直线 与平面 所成的角的正弦值为 .点睛:高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.19. 如今我们的互联网生活日益丰富,除了可以很方便地网 购,网上叫外卖也开始成为不少人日常生活中不可或缺的一 部分.为了解网络外卖在 市的普及情况, 市某调查机构借 助网络进行了关于网络外卖的问卷调查,并从参与调查的网 民中抽取了 200 人进行抽样分析,得到下表:(单位:人)(Ⅰ)根据以上数据,能否在犯错误的概率不超过 0.15 的前提下认为 市使用网络外卖的情况与性别有关?(Ⅱ)①现从所抽取的女网民中利用分层抽样的方法再抽取5 人,再从这 5 人中随机选出 3 人赠送外卖优惠卷,求选出的 3 人中至少有 2 人经常使用网络外卖的概率②将频率视为概率,从 市所有参与调查的网民中随机抽取10 人赠送礼品,记其中经常使用网络外卖的人数为 ,求 的数学期望和方差.参考公式:,其中.参考数据:【答案】(1)见解析;(2)① ,②见解析. 【解析】试题分析:(1)计算 的值,进而可查表下结论;(2)①由分层抽样的抽样比计算即可;②由 列联表,可知抽到经常使用网络外卖的网民的频率为,将频率视为概率,即从 市市民中任意抽取 1 人,恰好抽到经常使用网络外卖的市民的概率为 ,由题意得.试题解析:(1)由列联表可知 的观测值,.所以不能在犯错误的概率不超过 0.15 的前提下认为 市使用网络外卖情况与性别有关.(2)①依题意,可知所抽取的 5 名女网民中,经常使用网络外卖的有(人),偶尔或不用网络外卖的有(人).则选出的 3 人中至少有 2 人经常使用网络外卖的概率为.②由 列联表,可知抽到经常使用网络外卖的网民的频率为,将频率视为概率,即从 市市民中任意抽取 1 人,恰好抽到经常使用网络外卖的市民的概率为 .由题意得,所以;.20. 已知椭圆 :的左、右焦点分别为点 , ,其离心率为 ,短轴长为 .(Ⅰ)求椭圆 的标准方程;(Ⅱ)过点 的直线 与椭圆 交于 , 两点,过点 的直线与椭圆 交于 , 两点,且 ,证明:四边形 不可能是菱形.【答案】(1);(2)见解析.【解析】试题分析:(1)由 , 及,可得方程;(2)易知直线 不能平行于 轴,所以令直线 的方程为与椭圆联立得,令直线 的方程为,可得,进而由 是菱形,则,即,于是有由韦达定理代入知无解.试题解析:(1)由已知,得 , ,又,故解得,所以椭圆 的标准方程为.(2)由(1),知 ,如图,易知直线 不能平行于 轴.所以令直线 的方程为,,.联立方程,得,所以,.此时,同理,令直线 的方程为,,,此时,,此时.故.所以四边形 是平行四边形.若 是菱形,则,即,于是有.又,,所以有,整理得到,即,上述关于 的方程显然没有实数解,故四边形 不可能是菱形.21. 已知函数,其中 为自然对数的底数.(Ⅰ)讨论函数 的单调性及极值;(Ⅱ)若不等式 在 恒成立,求证: .【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)函数求导得,讨论和 演技单调性及极值即可;(2)当 时, 在 单调递增,可知 在 不恒成立,当 时,,即,所以.令,进而通过求导即可得最值.试题解析:(1)由题意得.当 ,即 时, , 在 单调递增,没有极值.当 ,即 ,令 ,得,当时, , 单调递减;当时, , 单调递增,故当时, 取得最小值,无极大值.综上所述,当 时, 在 单调递增,没有极值;当 时, 在区间单调递减,在区间单调递增, 的极小值为,无极大值.(2)由(1),知当 时, 在 单调递增,当 时,成立.当 时,令 为 和 中较小的数,所以 ,且 .则,.所以,与 恒成立矛盾,应舍去.当 时,,即,所以.令,则.令 ,得,令 ,得 ,故 在区间 单调递增,在区间 单调递减.故,即当时,.所以.所以 .而,所以 .点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若 就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若 恒成立;(3)若恒成立,可转化为请考生在 22、23 两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修 4-4:坐标系与参数方程在平面直角坐标系 中,已知曲线 的参数方程为( , 为参数).以坐标原点 为极点, 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.(Ⅰ)当 时,求曲线 上的点到直线的距离的最大值;(Ⅱ)若曲线 上的所有点都在直线的下方,数的取值围.【答案】(1) ;(2) .【解析】试题分析:(1)将直线的极坐标方程化为普通方程,进而由圆的参数方程得曲线 上的点到直线的距离,,利用三角函数求最值即可;(2)曲线 上的所有点均在直线的下方,即为对 ,有恒成立,即(其中 )恒成立,进而得.试题解析:(1)直线的直角坐标方程为.曲线 上的点到直线的距离,,当时,,即曲线 上的点到直线的距离的最大值为 .(2)∵曲线 上的所有点均在直线的下方,∴对 ,有恒成立,即(其中 )恒成立,∴.又 ,∴解得,∴实数的取值围为 .23. 选修 4-5:不等式选讲已知函数.(Ⅰ)解不等式 ;(Ⅱ)记函数的值域为 ,若 ,证明:.【答案】(1);(2)见解析.【解析】试题分析:(1)分段去绝对值解不等式即可;(2)利用绝对值三角不等式得 ..用作差法比较大小得到,即可证得.试题解析:(1)依题意,得于是得或或解得.即不等式的解集为.(2),当且仅当时,取等号,∴.原不等式等价于,. ∵,∴,.∴.∴.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

衡水金卷2018届全国三大联考理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分。

考试时间120分钟。

注意事项:1.答卷前,考生要务必填写答题卷上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卡相应的位置上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷交回.第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{|540}M x x x =-+≤,{|24}xN x =>,则 ( ) A .{|24}M N x x =<< B .M N R =C .{|24}MN x x =<≤D .{|2}MN x x =>2. 记复数z 的虚部为Im()z ,已知复数5221iz i i =--(i 为虚数单位),则Im()z 为( ) A .2 B .-3 C .3i - D .33. 已知曲线32()3f x x =在点(1,(1))f 处的切线的倾斜角为α,则222sin cos 2sin cos cos ααααα-=+( ) A .12 B .2 C .35 D . 38- 4. 2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币,如图所示是一枚8克圆形金质纪念币,直径22mm ,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( ) A .27265mm π B .236310mm π C.23635mm π D .236320mm π5. 已知双曲线C :22221(0,0)x y a b a b-=>>的渐近线经过圆E :22240x y x y +-+=的圆心,则双曲线C 的离心率为( )A .5B .52C.2 D .2 6. 已知数列{}n a 为等比数列,且2234764a a a a =-=-,则46tan()3a a π⋅=( ) A .3- B .3 C.3± D .33- 7. 执行如图的程序框图,若输出的S 的值为-10,则①中应填()A .19?n <B .18?n ≥ C. 19?n ≥ D .20?n ≥8.已知函数()f x 为R 内的奇函数,且当0x ≥时,2()1cos f x e m x =-++,记2(2)a f =--,(1)b f =--,3(3)c f =,则a ,b ,c 间的大小关系是( )A .b a c <<B .a c b << C.c b a << D .c a b <<9. 已知一几何体的三视图如图所示,俯视图是一个等腰直角三角形和半圆,则该几何体的体积为()A .23π+ B .12π+ C.26π+ D .23π+ 10. 已知函数()2sin()(0,[,])2f x x πωϕωϕπ=+<∈的部分图象如图所示,其中5||2MN =.记命题p :5()2sin()36f x x ππ=+,命题q :将()f x 的图象向右平移6π个单位,得到函数22sin()33y x ππ=+的图象.则以下判断正确的是( )A.p q ∧为真B.p q ∨为假C.()p q ⌝∨为真D.()p q ∧⌝为真11. 抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点(3,1)M 射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则ABM ∆的周长为 ()A .712612+ B .926+ C. 910+ D .832612+ 12.已知数列{}n a 与{}n b 的前n 项和分别为n S ,n T ,且0n a >,2*63,n n S a a n N =+∈,12(21)(21)nn n a n a a b +=--,若*,n n N k T ∀∈>恒成立,则k 的最小值是( ) A .71 B .149 C. 49 D .8441第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每题5分.13.已知在ABC ∆中,||||BC AB CB =-,(1,2)AB =,若边AB 的中点D 的坐标为(3,1),点C 的坐标为(,2)t ,则t = . 14. 已知*1()()2nx n N x-∈的展开式中所有项的二项式系数之和、系数之和分别为p ,q ,则64p q +的最小值为 .15. 已知x ,y 满足3,,60,x y t x y π+≤⎧⎪⎪≥⎨⎪≥⎪⎩其中2t π>,若sin()x y +的最大值与最小值分别为1,12,则实数t 的取值范围为 .16.在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bie nao ).已知在鳖臑M ABC -中,MA ⊥平面ABC ,2MA AB BC ===,则该鳖臑的外接球与内切球的表面积之和为 .三、解答题 :解答应写出文字说明、证明过程或演算步骤.17. 已知函数21()cos 3sin()cos()2f x x x x ππ=+-+-,x R ∈. (Ⅰ)求函数()f x 的最小正周期及其图象的对称轴方程;(Ⅱ)在锐角ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,已知()1f A =-,3a =,sin sin b C a A =,求ABC ∆的面积.18. 如图,在四棱锥E ABCD -中,底面ABCD 为直角梯形,其中//,CD AB BC AB ⊥,侧面ABE ⊥平面ABCD ,且222AB AE BE BC CD =====,动点F 在棱AE 上,且EF FA λ=. (1)试探究λ的值,使//CE 平面BDF ,并给予证明; (2)当1λ=时,求直线CE 与平面BDF 所成的角的正弦值.19. 如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分.为了解网络外卖在A 市的普及情况,A 市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到下表:(单位:人)(Ⅰ)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为A 市使用网络外卖的情况与性别有关? (Ⅱ)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出3人赠送外卖优惠卷,求选出的3人中至少有2人经常使用网络外卖的概率②将频率视为概率,从A 市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为X ,求X 的数学期望和方差.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:20()P K k ≥0.050 0.010 0.001 0k3.8416.63510.82820. 已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为点1F ,2F ,其离心率为12,短轴长为23.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)过点1F 的直线1l 与椭圆C 交于M ,N 两点,过点2F 的直线2l 与椭圆C 交于P ,Q 两点,且12//l l ,证明:四边形MNPQ 不可能是菱形.21. 已知函数,()(1)(,)x f x e a x b a b R =-+-∈其中e 为自然对数的底数. (Ⅰ)讨论函数()f x 的单调性及极值;(Ⅱ)若不等式()0f x ≥在x R ∈内恒成立,求证:(1)324b a +<.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线C 的参数方程为cos ,sin x t y αα=⎧⎨=⎩(0t >,α为参数).以坐标原点O 为极点,x轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线l 的极坐标方程为2sin()34πρθ+=.(Ⅰ)当1t =时,求曲线C 上的点到直线l 的距离的最大值; (Ⅱ)若曲线C 上的所有点都在直线l 的下方,求实数t 的取值范围.23.选修4-5:不等式选讲 已知函数()21|1|f x x x =-++. (Ⅰ)解不等式()3f x ≤;(Ⅱ)记函数()()|1|g x f x x =++的值域为M ,若t M ∈,证明:2313t t t+≥+.衡水金卷2018届全国高三大联考理科参考答案及评分细则一、选择题1-5: CBCBA 6-10:ACDAD 11、12:BB二、填空题13. 1 14. 16 15. 57[,]66ππ16. 2482ππ- 三、解答题17. 解:(1)原式可化为,21()cos 3sin cos 2f x x x =--,1cos 231sin 2222x x +=--, sin(2)sin(2)66x x ππ=-=--, 故其最小正周期22T ππ==,令2()62x k k Z πππ-=+∈,解得()23k x k Z ππ=+∈,即函数()f x 图象的对称轴方程为,()23k x k Z ππ=+∈. (2)由(1),知()sin(2)6f x x π=--,因为02A π<<,所以52666A πππ-<-<.又()sin(2)16f A A π=--=-,故得262A ππ-=,解得3A π=.由正弦定理及sin sin b C a A =,得29bc a ==. 故193sin 24ABC S bc A ∆==. 18.(1)当12λ=时,//CE 平面BDF . 证明如下:连接AC 交BD 于点G ,连接GF . ∵//,2CD AB AB CD =,∴12CG CD GA AB ==. ∵12EF FA =,∴12EF CG FA GA ==.∴//GF CE .又∵CE ⊄平面BDF ,GF ⊂平面BDF , ∴//CE 平面BDF .(2)取AB 的中点O ,连接EO . 则EO AB ⊥.∵平面ABE ⊥平面ABCD ,平面ABE 平面ABCD AB =,且EO AB ⊥,∴EO ⊥平面ABCD .∵//BO CD ,且1BO CD ==,∴四边形BODC 为平行四边形,∴//BC DO . 又∵BC AB ⊥,∴//AB DO .由,,OA OD OE 两两垂直,建立如图所示的空间直角坐标系Oxyz.则(0,0,0)O ,(0,1,0)A ,(0,1,0)B -,(1,0,0)D ,(1,1,0)C -,(0,0,3)E . 当1λ=时,有EF FA =, ∴可得13(0,,)22F . ∴(1,1,0)BD =,(1,1,3)CE =-,33(1,,)22BF =. 设平面BDF 的一个法向量为(,,)n x y z =,则有0,0,n BD n BF ⎧⋅=⎪⎨⋅=⎪⎩即0,330,22x y y z +=⎧⎪⎨+=⎪⎩ 令3z =,得1y =-,1x =.即(1,1,3)n =-.设CE 与平面BDF 所成的角为θ, 则sin |cos |CE n θ=<⋅>=|113|1555--+=⨯. ∴当1λ=时,直线CE 与平面BDF 所成的角的正弦值为15. 19.解:(1)由列联表可知2K 的观测值,2()()()()()n ad bc k a b c d a c b d -=++++2200(50405060) 2.020 2.07211090100100⨯-⨯=≈<⨯⨯⨯.所以不能在犯错误的概率不超过0.15的前提下认为A 市使用网络外卖情况与性别有关. (2)①依题意,可知所抽取的5名女网民中,经常使用网络外卖的有6053100⨯=(人), 偶尔或不用网络外卖的有4052100⨯=(人). 则选出的3人中至少有2人经常使用网络外卖的概率为2133233355710C C C P C C =+=. ②由22⨯列联表,可知抽到经常使用网络外卖的网民的频率为1101120020=, 将频率视为概率,即从A 市市民中任意抽取1人, 恰好抽到经常使用网络外卖的市民的概率为1120. 由题意得11~(10,)20X B , 所以1111()10202E X =⨯=; 11999()10202040D X =⨯⨯=.20. 解:(1)由已知,得12c a =,3b =,又222c a b =-,故解得224,3a b ==,所以椭圆C 的标准方程为22143x y +=. (2)由(1),知1(1,0)F -,如图,易知直线MN 不能平行于x 轴. 所以令直线MN 的方程为1x my =-,11(,)M x y ,22(,)N x y .联立方程2234120,1,x y x my ⎧+-=⎨=-⎩,得22(34)690m y my +--=, 所以122634m y y m +=+,122934y y m -=+. 此时221212(1)[()]MN m y y y y =++-, 同理,令直线PQ 的方程为1x my =+,33(,)P x y ,44(,)Q x y ,此时342634m y y m -+=+,342934y y m -=+, 此时223434(1)[()4]PQ m y y y y =++-. 故||||MN PQ =.所以四边形MNPQ 是平行四边形.若MNPQ 是菱形,则OM ON ⊥,即0OM ON ⋅=, 于是有12120x x y y +=.又1212(1)(1)x x my my =--,21212()1m y y m y y =-++,所以有21212(1)()10m y y m y y +-++=,整理得到22125034m m --=+, 即21250m +=,上述关于m 的方程显然没有实数解,故四边形MNPQ 不可能是菱形.21.解:(1)由题意得'()(1)xf x e a =-+.当10a +≤,即1a ≤-时,'()0f x >,()f x 在R 内单调递增,没有极值. 当10a +>,即1a >-, 令'()0f x =,得ln(1)x a =+,当ln(1)x a <+时,'()0f x <,()f x 单调递减; 当ln(1)x a >+时,'()0f x >,()f x 单调递增,故当ln(1)x a =+时,()f x 取得最小值(ln(1))1(1)ln(1)f a a b a a +=+--++,无极大值. 综上所述,当1a ≤-时,()f x 在R 内单调递增,没有极值;当1a >-时,()f x 在区间(,ln(1))a -∞+内单调递减,在区间(ln(1),)a ++∞内单调递增,()f x 的极小值为1(1)ln(1)a b a a +--++,无极大值.(2)由(1),知当1a ≤-时,()f x 在R 内单调递增,当1a =-时,(1)3024b a +=<成立. 当1a <-时,令c 为1-和11ba -+中较小的数,所以1c ≤-,且11bc a-≤+.则1x e e -≤,(1)(1)a c b -+≤--+.所以1()(1)(1)0xf c e a c b e b b -=-+-≤---<,与()0f x ≥恒成立矛盾,应舍去.当1a >-时,min ()(ln(1))f x f a =+=1(1)ln(1)0a b a a +--++≥, 即1(1)ln(1)a a a b +-++≥,所以22(1)(1)(1)ln(1)a b a a a +≤+-++. 令22()ln (0)g x x x x x =->,则'()(12ln )g x x x =-.令'()0g x >,得0x e <<,令'()0g x <,得x e >,故()g x 在区间(0,)e 内单调递增, 在区间(,)e +∞内单调递减. 故max ()()ln 2eg x g e e e e ==-=, 即当11a e a e +=⇒=-时,max ()2e g x =. 所以22(1)(1)(1)ln(1)2e a b a a a +≤+-++≤. 所以(1)24b a e+≤. 而3e <, 所以(1)324b a +<. 22.解:(1)直线l 的直角坐标方程为30x y +-=. 曲线C 上的点到直线l 的距离,|cos sin 3|2d αα+-==|2sin()3|42πα+-,当sin()14πα+=-时,max |23|23222d ++==, 即曲线C 上的点到直线l 的距离的最大值为2322+.(2)∵曲线C 上的所有点均在直线l 的下方, ∴对R α∀∈,有cos sin 30t αα+-<恒成立, 即21cos()3t αϕ+-<(其中1tan tϕ=)恒成立, ∴213t +<.又0t >,∴解得022t <<, ∴实数t 的取值范围为(0,22).23.解:(1)依题意,得3,1,1()2,1,213,,2x x f x x x x x ⎧⎪-≤-⎪⎪=--<<⎨⎪⎪≥⎪⎩于是得1,()333,x f x x ≤-⎧≤⇔⎨-≤⎩或11,223,x x ⎧-<<⎪⎨⎪-≤⎩或1,233,x x ⎧≥⎪⎨⎪≤⎩ 解得11x -≤≤.即不等式()3f x ≤的解集为{|11}x x -≤≤.(2)()()|1|g x f x x =++=|21||22|x x -++≥|2122|3x x ---=, 当且仅当(21)(22)0x x -+≤时,取等号, ∴[3,)M =+∞.原不等式等价于2331t t t-+-, 22233(3)(1)t t t t t t t-+--+==.∵t M ∈,∴30t -≥,210t +>.∴2(3)(1)0t t t-+≥. ∴2313t t t+≥+.。

相关文档
最新文档