高中数学第三章不等式3.1不等关系北师大版必修

合集下载

高中数学名师讲义:第三章 3.1 不等关系与不等式 Word版含答案

高中数学名师讲义:第三章 3.1 不等关系与不等式 Word版含答案

均值不等式[新知初探]1.均值定理 如果a ,b ∈R +当且仅当a =b 时,等号成立,以上结论通常称为均值不等式.对任意两个正实数a ,b ,数a +b2称为a ,b 的算术平均值(平均数),数ab 称为a ,b 的几何平均值(平均数).均值定理可叙述为:两个正实数的算术平均值大于或等于它的几何平均值.[点睛] (1)“a =b ”是a +b2≥ab 的等号成立的条件.若a ≠b ,则a +b2≠ab ,即a +b2>ab .(2)均值不等式a +b2≥ab 与a 2+b 2≥2ab 成立的条件不同,前者a >0,b >0,后者a ∈R ,b ∈R.2.利用均值不等式求最值(1)两个正数的积为常数时,它们的和有最小值; (2)两个正数的和为常数时,它们的积有最大值.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)对任意a ,b ∈R ,a 2+b 2≥2ab ,a +b ≥2ab 均成立( ) (2)若a ≠0,则a +4a≥2a ·4a=4( ) (3)若a >0,b >0,则ab ≤⎝⎛⎭⎪⎫a +b 22( )解析:(1)错误.任意a ,b ∈R ,有a 2+b 2≥2ab 成立,当a ,b 都为正数时,不等式a +b ≥2ab 成立.(2)错误.只有当a >0时,根据均值不等式,才有不等式a +4a≥2a ·4a=4成立. (3)正确.因为ab ≤a +b2,所以ab ≤⎝⎛⎭⎪⎫a +b 22.答案:(1)× (2)× (3)√2.已知f (x )=x +1x-2(x >0),则f (x )有( )A .最大值为0B .最小值为0C .最小值为-2D .最小值为2答案:B3.对于任意实数a ,b ,下列不等式一定成立的是( ) A .a +b ≥2ab B.a +b2≥abC .a 2+b 2≥2ab D.b a +a b≥2答案:C4.已知0<x <1,则函数y =x (1-x )的最大值是________. 答案:14[典例] (1)已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A .m >n B .m <n C .m =nD .不确定(2)若a>b>1,P=lg a·lg b,Q=12(lg a+lg b),R=lga+b2,则P,Q,R的大小关系是________.[解析] (1)因为a>2,所以a-2>0,又因为m=a+1a-2=(a-2)+1a-2+2,所以m ≥2a-1a-2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=22-b2<4,综上可知m>n.(2)因为a>b>1,所以lg a>lg b>0,所以Q=12(lg a+lg b)>lg a·lg b=P;Q=12(lg a+lg b)=lg a+lg b=lg ab<lga+b2=R.所以P<Q<R.[答案] (1)A (2)P<Q<R[活学活用]已知a,b,c都是非负实数,试比较a2+b2+b2+c2+c2+a2与2(a+b+c)的大小.解:因为a2+b2≥2ab,所以2(a2+b2)≥(a+b)2,所以a2+b2≥22(a+b),同理b2+c2≥22(b+c), c2+a2≥22(c+a),所以a2+b2+b2+c2+c2+a2≥22[(a+b)+(b+c)+(c+a)],即a2+b2+b2+c2+c2+a2≥2(a+b+c),当且仅当a=b=c时,等号成立.[典例] 设a,b,c都是正数,求证:ab(a+b)+bc(b+c)+ca(c+a)≥6abc.[证明] 因为a,b,c都是正数,所以ab(a+b)+bc(b+c)+ca(c+a)=a2b+ab2+b2c+bc 2+c 2a +ca 2=(a 2b +bc 2)+(b 2c +ca 2)+(c 2a +ab 2)≥2a 2b 2c 2+2a 2b 2c 2+2a 2b 2c 2=6abc ,所以原不等式成立,当且仅当a =b =c 时,等号成立.[活学活用]已知a ,b ,c 为正实数, 且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a-1⎝ ⎛⎭⎪⎫1b-1⎝ ⎛⎭⎪⎫1c-1≥8.证明:因为a ,b ,c 为正实数,且a +b +c =1, 所以1a -1=1-a a =b +c a ≥2bca.同理,1b -1≥2ac b ,1c -1≥2ab c.上述三个不等式两边均为正,相乘得⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥2bc a ·2ac b ·2ab c =8,当且仅当a =b =c =13时,取等号.[典例] (1)(2)已知x >0,y >0,且2x +3y =6,求xy 的最大值. (3)已知x >0,y >0,1x +9y=1,求x +y 的最小值.[解] (1)由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由均值不等式可得a +b ≥2ab =2100 =20, 当且仅当a =b =10时,a +b 取到最小值20. (2)∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝ ⎛⎭⎪⎫2x +3y 22=16·⎝ ⎛⎭⎪⎫622=32, 当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32.(3)∵1x +9y=1,∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +9y=1+9x y +y x +9=y x+9xy+10,又∵x >0,y >0, ∴y x +9xy+10≥2y x ·9xy+10=16, 当且仅当y x=9xy,即y =3x 时,等号成立. 由⎩⎪⎨⎪⎧y =3x ,1x +9y=1,得⎩⎪⎨⎪⎧x =4,y =12,即当x =4,y =12时,x +y 取得最小值16.[活学活用]1.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5解析:选 C 由已知,可得6⎝ ⎛⎭⎪⎫2a +1b =1,∴2a +b =6⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=6⎝⎛⎭⎪⎫5+2a b+2b a≥6×(5+4)=54,当且仅当2ab=2ba时等号成立,∴9m≤54,即m≤6,故选C.2.若x>0,y>0,且x+4y=1,则xy的最大值为________.解析:1=x+4y≥24xy=4xy,∴xy≤116,当且仅当x=4y=12时等号成立.答案:1 16[典例] 某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:(1)仓库面积S的最大允许值是多少?(2)为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?[解] (1)设铁栅长为x米,一堵砖墙长为y米,而顶部面积为S=xy,依题意得,40x +2×45y+20xy=3 200,由均值不等式得3 200≥240x×90y+20xy=120xy+20xy,=120S+20S.所以S+6S-160≤0,即(S-10)(S+16)≤0,故S≤10,从而S≤100,所以S的最大允许值是100平方米,(2)取得最大值的条件是40x=90y且xy=100,求得x=15,即铁栅的长是15米.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N +),求当每台机器运转多少年时,年平均利润最大,最大值是多少.解:每台机器运转x 年的年平均利润为y x=18-⎝ ⎛⎭⎪⎫x +25x ,而x >0,故y x≤18-225=8,当且仅当x =5时等号成立,此时年平均利润最大,最大值为8万元. 故当每台机器运转5年时,年平均利润最大,最大值为8万元.层级一 学业水平达标1.下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x ≥2B .当x >0时,x +1x≥2C .当x ≥2时,x +1x的最小值为2D .当0<x ≤2时,x -1x无最大值解析:选B A 中,当0<x <1时,lg x <0,lg x +1lg x≥2不成立;由均值不等式知B 正确;C 中,由对勾函数的单调性,知x +1x 的最小值为52;D 中,由函数f (x )=x -1x 在区间(0,2]上单调递增,知x -1x 的最大值为32,故选B.2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.1x 2+1≤1 D .x +1x≥2解析:选C 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立.对于C ,x 2+1≥1,∴1x 2+1≤1成立.故选C. 3.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( ) A.1a +1b <1B.1a +1b ≥1C.1a +1b<2 D.1a +1b≥2解析:选B 因为ab ≤⎝⎛⎭⎪⎫a +b 22≤⎝ ⎛⎭⎪⎫422=4,所以1a +1b ≥21ab≥214=1. 4.四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d2>bc B.a +d2<bc C.a +d2=bcD.a +d2≤bc解析:选A 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d2>bc .5.若x >0,y >0,且2x +8y=1,则xy 有( )A .最大值64B .最小值164C .最小值12D .最小值64解析:选D 由题意xy =⎝ ⎛⎭⎪⎫2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.6.若a >0,b >0,且1a +1b=ab ,则a 3+b 3的最小值为________.解析:∵a >0,b >0,∴ab =1a +1b ≥21ab,即ab ≥2,当且仅当a =b =2时取等号,∴a 3+b 3≥2ab3≥223=42,当且仅当a =b =2时取等号,则a 3+b 3的最小值为4 2.答案:4 27.已知0<x <1,则x (3-3x )取得最大值时x 的值为________.解析:由x (3-3x )=13×3x (3-3x )≤13×⎝ ⎛⎭⎪⎫3x +3-3x 22=34,当且仅当3x =3-3x ,即x =12时等号成立. 答案:128.若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________.解析:因为x >0,所以x +1x≥2.当且仅当x =1时取等号,所以有x x 2+3x +1=1x +1x+3≤12+3=15,即x x 2+3x +1的最大值为15,故a ≥15.答案:⎣⎢⎡⎭⎪⎫15,+∞9.(1)已知x <3,求f (x )=4x -3+x 的最大值; (2)已知x ,y 是正实数,且x +y =4,求1x +3y的最小值.解:(1)∵x <3, ∴x -3<0, ∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x+-x +3≤-243-x-x +3=-1,当且仅当43-x =3-x ,即x =1时取等号, ∴f (x )的最大值为-1. (2)∵x ,y 是正实数,∴(x +y )⎝ ⎛⎭⎪⎫1x +3y =4+⎝ ⎛⎭⎪⎫y x +3x y ≥4+2 3.当且仅当y x=3xy,即x =2(3-1),y =2(3-3)时取“=”号. 又x +y =4, ∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32. 10.设a ,b ,c 都是正数,试证明不等式:b +c a +c +a b +a +bc≥6. 证明:因为a >0,b >0,c >0, 所以b a +ab ≥2,c a +a c ≥2,b c +c b≥2,所以⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫b c +c b ≥6,当且仅当b a =a b ,c a =a c ,c b =b c, 即a =b =c 时,等号成立. 所以b +c a +c +a b +a +bc≥6. 层级二 应试能力达标1.a ,b ∈R ,则a 2+b 2与2|ab |的大小关系是( ) A .a 2+b 2≥2|ab | B .a 2+b 2=2|ab | C .a 2+b 2≤2|ab |D .a 2+b 2>2|ab |解析:选A ∵a 2+b 2-2|ab |=(|a |-|b |)2≥0,∴a 2+b 2≥2|ab |(当且仅当|a |=|b |时,等号成立).2.已知实数a ,b ,c 满足条件a >b >c 且a +b +c =0,abc >0,则1a +1b +1c的值( )A .一定是正数B .一定是负数C .可能是0D .正负不确定解析:选B 因为a >b >c 且a +b +c =0,abc >0,所以a >0,b <0,c <0,且a =-(b +c ), 所以1a +1b +1c =-1b +c +1b +1c ,因为b <0,c <0,所以b +c ≤-2bc , 所以-1b +c ≤12bc ,又1b +1c ≤-21bc, 所以-1b +c +1b +1c ≤12bc-21bc=-32bc<0,故选B.3.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则a +b2cd的最小值为( )A .0B .1C .2D .4解析:选 D 由题意,知⎩⎪⎨⎪⎧a +b =x +y ,cd =xy ,所以a +b2cd=x +y 2xy=x 2+y 2+2xy xy=x 2+y 2xy+2≥2+2=4,当且仅当x =y 时,等号成立. 4.设a ,b 是实数,且a +b =3,则2a+2b的最小值是( ) A .6B .4 2C .2 6D .8解析:选B ∵a ,b 是实数,∴2a>0,2b>0, 于是2a+2b≥2 2a·2b=2 2a +b=223=42,当且仅当a =b =32时取得最小值4 2.5.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的最大值为________. 解析:x +1x -1≥a 恒成立⇔⎝ ⎛⎭⎪⎫x +1x -1min ≥a ,∵x >1,即x -1>0, ∴x +1x -1=x -1+1x -1+1≥2x -1x -1+1=3, 当且仅当x -1=1x -1,即x =2时,等号成立. ∴a ≤3,即a 的最大值为3. 答案:36.若正数a ,b 满足a +b =1,则13a +2+13b +2的最小值为________. 解析:由a +b =1,知13a +2+13b +2=3b +2+3a +2a +b +=79ab +10,又ab ≤⎝ ⎛⎭⎪⎫a +b 22=14(当且仅当a =b =12时等号成立),∴9ab +10≤494,∴79ab +10≥47. 答案:477.某厂家拟在2016年举行某产品的促销活动,经调查,该产品的年销售量(即该产品的年产量)x (单位:万件)与年促销费用m (m ≥0)(单位:万元)满足x =3-km +1(k 为常数),如果不举行促销活动,该产品的年销售量是1万件.已知2016年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).(1)将2016年该产品的利润y (单位:万元)表示为年促销费用m 的函数; (2)该厂家2016年的促销费用为多少万元时,厂家的利润最大?解:(1)由题意,可知当m =0时,x =1,∴1=3-k ,解得k =2,∴x =3-2m +1, 又每件产品的销售价格为1.5×8+16xx元,∴y =x ⎝⎛⎭⎪⎫1.5×8+16x x-(8+16x +m )=4+8x -m=4+8⎝⎛⎭⎪⎫3-2m +1-m =-⎣⎢⎡⎦⎥⎤16m +1+m ++29(m ≥0). (2)∵m ≥0,16m +1+(m +1)≥216=8,当且仅当16m +1=m +1,即m =3时等号成立, ∴y ≤-8+29=21,∴y max =21.故该厂家2016年的促销费用为3万元时,厂家的利润最大,最大利润为21万元.8.已知k >16,若对任意正数x ,y ,不等式⎝ ⎛⎭⎪⎫3k -12x +ky ≥2xy 恒成立,求实数k 的最小值.解:∵x >0,y >0,∴不等式⎝ ⎛⎭⎪⎫3k -12x +ky ≥2xy 恒成立等价于⎝ ⎛⎭⎪⎫3k -12x y +k y x ≥2恒成立.又k >16, ∴⎝ ⎛⎭⎪⎫3k -12xy+k y x≥2k ⎝⎛⎭⎪⎫3k -12,∴2k ⎝⎛⎭⎪⎫3k -12≥2,解得k ≤-13(舍去)或k ≥12,∴k min =12.。

北师大版高一数学必修第一册(2019版)_1。3。1_不等式的性质教学设计(2)

北师大版高一数学必修第一册(2019版)_1。3。1_不等式的性质教学设计(2)

第一章预备知识第3节不等式3.1不等式的性质与相等关系一样,不等关系是数学中最基本的数量关系,作为预备知识,掌握好不等关系和不等式的基本性质,是证明和求解不等式的基础,是解决二次函数和二次不等式问题的前提,通过不等关系和不等式性质的学习,有助于提高学生的数学运算能力和逻辑推理能力,同时为培养学生数学建模能力奠定基础。

(1)知识目标:掌握作差法比较两个实数(代数式)大小的基本方法;掌握不等式的基本性质;熟练运用不等式的基本性质进行不等式的变形、运算和证明。

(2)核心素养目标:通过不等式性质的运用,提高学生数学运算能力和数学建模能力。

(1)作差法比较两个实数(代数式)的大小;(2)不等式的基本性质;(3)熟练运用不等式的基本性质进行不等式的变形、运算和证明。

多媒体课件一、复习引入一天,同学甲问同学乙:“你今年多少岁了?”乙回答说:“16岁了,你呢?”“我满15岁了,哈哈!再过一年,明年我们就一样大了!”乙默然。

这个对话里面包含了什么数学知识呢?提示:两人相差1岁,过一年,两人的年龄同时加1,不可能相等。

思考讨论:高速路上的限速标志,上面的数字是什么意思?提示:车速为v,行车道上的车速应该满足100km/ℎ≤v≤120km/ℎ.二、新知识在生活中,有很多数量关系的问题,它们既有相等关系,又有不等关系。

在数学中,用不等式来表示不等关系。

1、实数大小的比较两个实数a,b,如果a−b>0,那么a>b;如果a−b=0,那么a=b;如果a−b<0,那么a<b.即注意:①这种比较实数大小的方法叫作“作差法”,另外在数轴上可以更加直观的看出两个实数的大小;②比较两个代数式的大小,基本方法也是“作差法”,作差后的结果一般要进行因式分解或配方,然后与0相比较。

如:已知实数a,试比较a2+2与2a的大小.a2+2−2a=a2−2a+1+1=(a−1)2+1>0 ∴a2+2>2a例1.试比较(x+1)(x+5)与(x+3)2的大小.解:作差比较,(x+1)(x+5)−(x+3)2=(x2+6x+5)−(x2+6x+9)=−4<0∴(x+1)(x+5)<(x+3)2例2.试证明:若0<a<b,m>0,则a+mb+m >ab.证明:作差比较,a+mb+m −ab=b(a+m)−a(b+m)b(b+m)=m(b−a)b(b+m)a−b>0⇔a>b a−b=0⇔a=b a−b<0⇔a<b因为a <b ,所以b −a >0,又因a >0,b >0,m >0,所以m(b−a)b (b+m )>0∴a +mb +m >ab2、不等式的基本性质性质 内容备注性质1 如果a >b ,且b >c ,那么a >c 传递性性质2 如果a >b ,那么a +c >b +c 加(减)乘(除)运算性质3如果a >b ,c >0,那么ac >bc如果a >b ,c <0,那么ac <bc性质4 如果a >b ,c >d ,那么a +c >b +d 同向不等式相加 性质5如果a >b >0,c >d >0,那么ac >bd如果a >b >0,c <d <0,那么ac <bd不等式相乘注意:①以上性质均可以利用“作差法”给出证明,下面以性质4为例给出证明,其它,请同学们自行完成.性质4的证明:(a +c )−(b +d )=(a −b )+(c −d)因为a >b ,c >d ,有a −b >0,c −d >0,所以有(a −b )+(c −d )>0 得a +c >b +d②根据性质5,可以得出不等式乘方(开方)的运算性质.即:如果a >b >0,n ∈N +,那么a n >b n如果a >b >0,n ∈N +,那么√a n>√b n③不等式的变形、运算等,务必根据性质进行,避免错误. 如:如果a >b ,那么1a<1b ,对吗?提示:不正确,要由a >b 得到1a <1b ,应该将不等式两边同乘以1ab ,但条件并没有给出ab 的正负,所以结论错误例3. (1)已知a >b ,ab >0,求证:1a <1b ;(2)已知a >b ,c <d ,求证:a −c >b −d .证明:(1)因ab>0,则1ab >0,由不等式的性质3,a·1ab>b·1ab,得1a<1b.(2)因c<d. 由不等式的性质3,−c>−d再由a>b,利用不等式的性质4,同向不等式相加,得a−c>b−d思考讨论(综合练习):(1)已知a>0,b>0,求证:a3+b3≥a2b+ab2;(2)已知2≤x≤4,1≤y≤2,求x−2y的范围;(3)已知1≤a−b≤2,2≤a+b≤3,求2a−4b的范围.提示:(1)作差,(a3+b3)−(a2b+ab2)=(a3−a2b)+(b3−ab2)=a2(a−b)+b2(b−a)=(a−b)2(a+b)因a>0,b>0,(a−b)2≥0,所以(a−b)2(a+b)≥0得a3+b3≥a2b+ab2.(2)由 1≤y≤2得−4≤−2y≤−2,与2≤x≤4不等式相加得−2≤x−2y≤2即x−2y∈[−2,2].(3)设a−b=x,a+b=y,则1≤x≤2, 2≤y≤3,且a=x+y2,b=y−x2所以2a−4b=2·x+y2−4·y−x2=3x−y,与上(2)小题一样得2a−4b∈[0,4].三、课堂练习教材P26,练习1~6.四、课后作业教材P30,习题1-3,A组1~5(1)“作差法”比较大小,是证明不等式的基础,另外还可以采用“作商法”,即如果a>0,b>0,则ba>1⇔b>a;(2)不等式的基本性质是不等式变形、化简、证明的基础,不仅要熟练运用基本性质,还要特别注意性质中的条件.。

(完整版)北师大版高中数学课本目录

(完整版)北师大版高中数学课本目录

必修1 第一章集合§1 集合的含义与表示§2 集合的基本关系§3 集合的基本运算3.1 交集与并集3.2 全集与补集第二章函数§1 生活中的变量关系§2 对函数的进一步认识2.1 函数概念2.2 函数的表示法2.3 映射§3 函数的单调性§4 二次函数性质的再研究4.1 二次函数的图像4.2 二次函数的性质§5 简单的幂函数课题学习个人所得税的计算第三章指数函数和对数函数§1 正整数指数函数§2 指数扩充及其运算性质2.1 指数概念的扩充2.2 指数运算的性质§3指数函数3.1 指数函数的概念3.2 指数函数和的图像和性质3.3 指数函数的图像和性质§4 对数4.1 对数及其运算4.2 换底公式§5 对数函数5.1 对数函数的概念5.2 y=log2x的图像和性质5.3 对数函数的图像和性质§6 指数函数、幂函数、对数函数增长的比较第四章函数应用§1 函数与方程1.1 利用函数性质判定方程解的存在1.2 利用二分法求方程的近似解§2 实际问题的函数建模2.1 实际问题的函数刻画2.2 用函数模型解决实际问题2.3 函数建模案例必修2第一章立体几何初步§1 简单几何体 1.1 简单旋转体1.2 简单多面体§2 直观图§3 三视图3.1 简单组合体的三视图3.2 由三视图还原成实物图§4 空间图形的基本关系与公理4.1 空间图形基本关系的认识4.2 空间图形的公理§5 平行关系5.1 平型关系的判定5.2 平行关系的性质§6 垂直关系6.1 垂直关系的判定6.2 垂直关系的性质§7 简单几何体的面积和体积7.1 简单几何体的侧面积7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积课题学习正方体截面的形状第二章解析几何初步§1 直线与直线的方程1.1 直线的倾斜角和斜率1.2 直线的方程1.3 两条直线的位置关系1.4 两条直线的交点1.5 平面直角坐标系中的距离公式§2 圆与圆的方程2.1 圆的标准方程2.2 圆的一般方程2.3 直线与圆、圆与圆的位置关系§3 空间直角坐标系3.1 空间直角坐标系的建立3.2 空间直角坐标系中点的坐标3.3 空间两点间的距离公式必修3第一章统计§1 从普查到抽样§2 抽样方法2.1 简单随机抽样2.2 分层抽样与系统抽样§3 统计图表§4 数据的数字特征4.1 平均数、中位数、众数、极差、方差4.2 标准差§5 用样本估计总体5.1 估计总体的分布5.2 估计总体的数字特征§6 统计活动:结婚年龄的变化§7 相关性§8 最小二乘估计第二章算法初步§1 算法的基本思想 1.1 算法案例分析1.2 排序问题与算法的多样性§2 算法框图的基本结构及设计2.1 顺序结构与选择结构2.2变量与赋值2.3 循环结构§3 几种基本语句3.1 条件语句3.2 循环语句第三章概率§1 随机事件的概率 1.1 频率与概率1.2 生活中的概率§2 古典概型2.1 古典概型的特征和概率计算公式2.2 建立概率模型2.3 互斥事件§3 模拟方法—概率的应用必修4第一章三角函数§1 周期现象§2 角的概念的推广§3 弧度制§4 正弦函数和余弦函数的定义与诱导公式4.1 任意角的正弦函数、余弦函数的定义4.2 单位圆与周期性4.3 单位圆与诱导公式§5 正弦函数的性质与图像5.1 从单位圆看正弦函数的性质5.2 正弦函数的图像5.3正弦函数的性质§6 余弦函数的性质与图像6.1正弦函数的图像6.2 正弦函数的性质§7 正切函数7.1 正切函数的定义7.2 正切函数的图像与性质7.2 正切函数的诱导公式§8 函数y=Asin 的图像§9 三角函数的简单应用第二章平面向量§1 从位移、速度、力到向量1.1 位移、速度、和力1.2 向量的概念§2 从位移的合成到向量的加法2.1 向量的加法2.2 向量的减法§3 从速度的倍数到数乘向量3.1 数乘向量3.2 平面向量基本定理§4 平面向量的坐标 4.1 平面向量的坐标表示4.2 平面向量线性运算的坐标表示4.3 向量平行的坐标表示§5 从力做的功到向量的数量积§6 平面向量数量积的坐标表示§7 向量应用举例7.1 点到直线的距离公式7.2 向量的应用举例第三章三角恒等变形§1 同角三角函数的基本关系§2 两角和与差的三角函数2.1 两角差的余弦函数2.2 两角和与差的正弦、余弦函数2.3 两角和与差的正切函数§3 二倍角的三角函数必修5第一章数列§1 数列1.1 数列的概念1.2 数列的函数特征§2 等差数列2.1 等差数列2.2 等差数列的前n项和§3 等比数列3.1 等比数列3.2 等比数列的前n项和§4 数列在日常经济生活中的应用第二章解三角形§1 正弦定理与余弦定理1.1 正弦定理 1.2 余弦定理§2 三角形中的几何计算§3 解三角形的实际应用举例第三章不等式§1 不等关系1.1 不等关系1.2 比较大小§2 一元二次不等式2.1 一元二次不等式的解法2.2 一元二次不等式的应用§3 基本不等式3.1 基本不等式3.2 基本不等式与最大(小)值§4 简单线性规划4.1 二元一次不等式(组)与平面区域4.2 简单线性规划4.3 简单线性规划的应用选修1-1第一章常用逻辑用语§1 命题§2 充分条件与必要条件2.1 充分条件2.2 必要条件2.3 充要条件§3 全称量词与存在量词3.1 全称量词与全称命题3.2 存在量词与特称命题3.3 全。

高中数学 第3章 不等式 3.1 不等式的基本性质教学案(含解析)高一第一册数学教学案

高中数学 第3章 不等式 3.1 不等式的基本性质教学案(含解析)高一第一册数学教学案

3.1 不等式的基本性质(1)不等式的定义用数学符号“>”“<”“≥”“≤”“≠”连接两个数或代数式,这些含有这些不等号的式子叫做不等式.(2)关于a≥b和a≤b的含义①不等式a≥b应读作:“a大于或等于b”,其含义是a>b或a=b,等价于“a不小于b”,即若a>b或a=b中有一个正确,则a≥b正确.②不等式a≤b应读作:“a小于或等于b”,其含义是a<b或a=b,等价于“a不大于b”,即若a<b或a=b中有一个正确,则a≤b正确.(3)不等式中常用符号语言2(1)如果a-b是正数,那么a>b;即a-b>0⇔a>b;(2)如果a-b等于0,那么a=b;即a-b=0⇔a=b;(3)如果a-b是负数,那么a<b,即a-b<0⇔a<b.3.不等式的基本性质性质1: 若a>b,则b<a;(自反性),a>b⇔b<a.性质2:若a>b,b>c,则a>c;(传递性)性质3:若a>b,则a+c>b+c;(加法保号性)性质4:若a>b,c>0,则ac>bc;(乘正保号性)若a>b,c<0,则ac<bc;(乘负改号性)性质5:若a>b,c>d,则a+c>b+d;(同向可加性)性质6:若a>b>0,c>d>0,则ac>bd;(全正可乘性)性质7:如果a>b>0,那么a n>b n(n∈N*).(拓展)提醒:不等式的基本性质是不等式变形的依据,也是解不等式的根据,同时还是证明不等式的理论基础.(1)在应用不等式时,一定要搞清它们成立的前提条件,不可强化或弱化成立的条件.(2)要注意每条性质是否具有可逆性.1.思考辨析(正确的打“√”,错误的打“×”)(1)若ac>bc,则a>b.( )(2)若a+c >b+d,则a>b,c>d.( )(3)若a >b ,则1a <1b.( )[答案] (1)× (2)× (3)×2.已知a 1,a 2∈()0,1,记M =a 1a 2, N =a 1+a 2-1,则M 与N 的大小关系是( )A .M <NB .M >NC .M =ND .不确定B [由题意得M -N =a 1a 2-a 1-a 2+1=()a 1-1()a 2-1>0,故M >N .故选B .]3.若x >y ,且x +y =2,则下列不等式一定成立的是( ) A .x 2<y 2B .1x <1yC .x 2>1D .y 2<1C [因为x >y ,且x +y =2,所以2x >x +y =2,即x >1,则x 2>1,故选C .]利用不等式的性质判断和解不等式①若a >b ,则ac 2>bc 2; ②若a <b <0,则a 2>ab >b 2; ③若a >b ,则a 2>b 2;④若a <b <0,则a b >ba.其中正确命题的序号是 .(2)求解关于x 的不等式ax +1>0(a ∈R ),并用不等式的性质说明理由.(1)②④ [对于①∵c 2≥0,∴只有c ≠0时才成立,①不正确; 对于②,a <b <0⇒a 2>ab ;a <b <0⇒ab >b 2,∴②正确;对于③,若0>a >b ,则a 2<b 2,如-1>-2,但(-1)2<(-2)2,∴③不正确;对于④,∵a <b <0,∴-a >-b >0,∴(-a )2>(-b )2,即a 2>b 2.又∵ab >0,∴1ab >0,∴a 2·1ab >b 2·1ab ,∴a b >ba,④正确.所以正确答案的序号是②④.](2)[解] 不等式ax +1>0(a ∈R )两边同时加上-1得ax >-1 (不等式性质3),当a =0时,不等式为0>-1恒成立,所以x ∈R , 当a >0时,不等式两边同时除以a 得 x >-1a(不等式性质4),当a <0时,不等式两边同时除以a 得 x <-1a(不等式性质4).综上:当a =0时,不等式的解集为R ,当a >0时,不等式的解集为⎝ ⎛⎭⎪⎫-1a ,+∞,当a <0时,不等式的解集为⎝⎛⎭⎪⎫-∞,-1a .1.利用不等式判断正误的两种方法①直接法:对于说法正确的,要利用不等式的相关性质证明;对于说法错误的只需举出一个反例即可.②特殊值法:注意取值一定要遵循三个原则:一是满足题设条件;二是取值要简单,便于验证计算;三是所取的值要有代表性.2.利用不等式的性质解不等式,要求步步有据,特别是解含有参数的不等式更加要把握好分类讨论的标准.因为参数的范围不同,不等式的解集不同,所以对于参数的不同范围得到的解集都是独立的,不能求并集.[跟进训练]1.已知a <b <c 且a +b +c =0,则下列不等式恒成立的是( )A .a 2<b 2<c 2B .ab 2<cb 2C .ac <bcD .ab <acC [∵a +b +c =0且a <b <c ,∴a <0,c >0,∴ac <bc ,故选C .]2.若关于x 的不等式ax +b >0的解集为(-∞,2),则不等式bx -a >0的解集为 .⎝ ⎛⎭⎪⎫-12,+∞ [因为关于x 的不等式ax +b >0的解集为(-∞,2),所以a <0,且x =2是方程ax +b =0的实数根,所以2a +b =0,即b =-2a ,由bx -a >0得-2ax -a >0,因为a <0,所以x >-12,即不等式bx -a >0的解集为⎝ ⎛⎭⎪⎫-12,+∞.]利用不等式的性质比较代数式的大小[探究问题]1.如果a ,b 之间的大小关系分别为a >b ,a =b ,a <b ,那么a -b 分别与0的关系?反之呢?[提示] 若a >b ,则a -b >0,反之也成立; 若a =b ,则a -b =0,反之也成立; 若a <b ,则a -b <0,反之也成立.2.若a >b ,则ab >1吗?反之呢?[提示] 若a >b ,当b <0时,ab<1,即a >bab >1;若a b >1,则a b -1>0,即a -b b>0, ∴a -b >0,b >0或a -b <0,b <0,即a b >1a >b ,反之也不成立.【例2】 已知x <1,比较x 3-1与2x 2-2x 的大小.[思路点拨] 作差―→因式分解――→x <1判号―→下结论[解] x 3-1-(2x 2-2x ) =x 3-2x 2+2x -1=(x 3-x 2)-(x 2-2x +1)=x 2(x -1)-(x -1)2=(x -1)(x 2-x +1)=(x -1)⎣⎢⎢⎡⎦⎥⎥⎤⎝⎛⎭⎪⎫x -122+34, ∵x <1,∴x -1<0,又∵⎝⎛⎭⎪⎫x -122+34>0, ∴(x -1)⎣⎢⎢⎡⎦⎥⎥⎤⎝⎛⎭⎪⎫x -122+34<0, ∴x 3-1<2x 2-2x .1.(变条件)本例条件“x <1”变为“x ≥1”,比较x 3-1与2x 2-2x 的大小.[解] x 3-1-(2x 2-2x )=(x -1)(x 2-x +1)=(x -1)⎣⎢⎢⎡⎦⎥⎥⎤⎝⎛⎭⎪⎫x -122+34, ∵x ≥1,∴x -1≥0,又⎝⎛⎭⎪⎫x -122+34>0, ∴(x -1)⎣⎢⎢⎡⎦⎥⎥⎤⎝⎛⎭⎪⎫x -122+34≥0, ∴x 3-1≥2x 2-2x .2.(变题)已知:a >0, b >0, 比较1a +1b 与1a +b 的大小.[解](作差法)⎝ ⎛⎭⎪⎫1a +1b -1a +b=ab +b 2+a 2+ab -abab a +b=a 2+ab +b 2ab a +b, 因为a >0, b >0,所以a 2+ab +b 2ab a +b>0,所以1a +1b >1a +b.(作商法)因为a >0, b >0,所以1a +1b 与1a +b同为正数,所以1a +1b1a +b =a +b2ab ,所以a +b 2ab -1=a 2+ab +b 2ab>0,即a +b 2ab>1,因为1a +b >0,所以1a +1b >1a +b.(综合法)因为a >0, b >0,所以a +b >0,所以⎝ ⎛⎭⎪⎫1a +1b (a +b )=a +b a +a +b b =2+b a +a b >1,所以1a +1b >1a +b.1.作差法比较两个数大小的步骤及变形方法(1)作差法比较的步骤:作差→变形→定号→结论.(2)变形的方法:①因式分解;②配方;③通分;④分母或分子有理化(针对无理式中的二次根式);⑤分类讨论.2.作商法比较大小的三个步骤 (1)作商变形; (2)与1比较大小; (3)得出结论.提醒:作商法比较大小仅适用同号的两个数.3.综合法需要结合具体的式子的特征实施,本题思路为:A >B >0⇔A ·1B>1.[跟进训练]3.已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >bA [∵c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b . 又b +c =6-4a +3a 2,∴2b =2+2a 2,∴b =a 2+1,∴b -a =a 2-a +1=⎝⎛⎭⎪⎫a -122+34>0,∴b >a ,∴c ≥b >a .故选A .] 4.已知a ,b ∈R ,试比较a 2-ab 与3ab -4b 2的大小.[解] 因为a ,b ∈R ,所以(a 2-ab )-(3ab -4b 2)=a 2-4ab +4b 2=(a -2b )2,当a =2b 时,a 2-ab = 3ab -4b 2, 当a ≠2b 时,a 2-ab > 3ab -4b 2.证明不等式【例3】 (1)已知a >b ,e >f ,c >0,求证:f -ac <e -bc . (2)已知a > b >0, m >0,求证:b a <b +ma +m.[证明] (1)∵a >b ,c >0,∴ac >bc . ∴-ac <-bc ,∵f <e ,∴f -ac <e -bc .(2)(作差法)因为a > b >0, m >0,所以b -a <0,a +m >0,所以b a -b +m a +m =b a +m -a b +m a a +m =m b -a a a +m <0,所以b a <b +m a +m;(不等式的性质)因为a > b >0, m >0, 所以am > bm, a +m >0,ab >0,所以am +ab >ab +bm ,即a (b +m )>b (a +m ),所以b a <b +m a +m.1.利用不等式的性质证明不等式(综合法)的注意事项(1)利用不等式的性质及其推论可以证明一些不等式.解决此类问题一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用.(2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.2.作差法也可以应用于证明不等式.3.第二题的结论源于生活背景的提炼:在含糖b 克的a 克糖水中放入m 克的糖,结果糖水变甜了.本质上是浓度变大了.[跟进训练]5.若bc -ad ≥0,bd >0.求证:a +b b ≤c +d d.[证明] ∵bc -ad ≥0,∴ad ≤bc ,bd >0,∴a b ≤c d ,∴a b +1≤c d +1,∴a +b b ≤c +dd . 6.已知a >b >m >0,求证:a b <a -m b -m.[证明] (作差法)因为a >b >m >0, 所以b -a <0,b -m >0,所以a b -a -m b -m =a b -m -b a -m b b -m =m b -a b b -m <0,所以a b <a -m b -m;(不等式的性质)因为a >b >m >0,所以am >bm ,b -m >0, 所以-bm >-am ,所以ab -bm >ab -am ,即b (a -m )>a (b -m ),所以a b <a -m b -m.不算式性质的应用[思路点拨] 欲求a -b 的范围,应先求-b 的范围,再利用不等式的性质求解.[解]∵1<a<4,2<b<8,∴2<2a<8,6<3b<24,∴8<2a+3b<32.∵2<b<8,∴-8<-b<-2,又∵1<a<4,∴1+(-8)<a+(-b)<4+(-2),即-7<a-b<2,故8<2a+3b<32,-7<a-b<2.即2a+3b的取值范围为(8,32),a-b的取值范围为(-7,2).相除,应用时,要充分利用所给条件进行适当变形来求范围,注意变形的等价性.2.已知两个二元一次代数式的范围,求第三个二元一次式的范围,可以用双换元的方法,也可以通过待定系数法,先用已知的两个二元一次代数式表示未知的二元一次式.[跟进训练]7.已知-12≤α<β≤12,求α+β2,α-β3的取值范围.[解] ∵-12≤α<β≤12,∴-14≤α2<14,-14<β2≤14.两式相加得-12<α+β2<12.∵-16≤α3<16,-16≤-β3<16,两式相加得-13≤α-β3<13.又∵α<β,∴α-β3<0,∴-13≤α-β3<0.8.已知-4≤a -c ≤-1,-1≤4a -c ≤5,求9a -c 的范围.[解]令⎩⎪⎨⎪⎧a -c =x ,4a -c =y ,得⎩⎪⎨⎪⎧a =13y -x ,c =13y -4x ,∴9a -c =83y -53x ,∵-4≤x ≤-1,∴53≤-53x ≤203,①∵-1≤y ≤5,∴-83≤83y ≤403,②①和②相加,得-1≤83y -53x ≤20,∴-1≤9a -c ≤20.1.作差法比较大小的三个步骤作差、变形、定号,概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.2.利用不等式的性质可以判定不等式的正确性、也证明一些不等式还可以求相关量的取值范围.必须熟记不等式的性质,不可省略条件或跳步推导,更不能随意构造性质与法则.3.不等式的证明可以用比较法(作差或作商法)、也可以利用不等式的性质(综合法),注意方法的灵活应用.1.已知a ,b ,c ,d ∈R ,则下列命题中必成立的是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +bC .若a >b ,c <d ,则a c >bdD .若a 2>b 2,则-a <-bB [选项A ,若a =4,b =2,c =5,显然不成立;选项C 不满足倒数不等式的条件,如a >b >0,c <0<d 时,不成立;选项D 只有a >b >0时才可以,否则如a =-1,b =0时不成立,故选B .]2.设a =3x 2-x +1,b =2x 2+x ,则( )A.a>b B.a<bC.a≥b D.a≤bC[a-b=(3x2-x+1)-(2x2+x)=x2-2x+1=(x-1)2≥0,∴a≥b.]3.已知角α,β满足-π2<α-β<π2,0<α+β<π,则3α-β的取值范围是.(-π,2π)[结合题意可知3α-β=2(α-β)+(α+β),且2(α-β)∈(-π,π),α+β∈(0,π),利用不等式的性质可知3α-β的取值范围是(-π,2π).]4.近来鸡蛋价格起伏较大,假设第一周、第二周鸡蛋价格分别为a元/斤、b元/斤,家庭主妇甲和乙买鸡蛋的方式不同:家庭主妇甲每周买3斤鸡蛋,家庭主妇乙每周买10元钱的鸡蛋,试比较谁的购买方式更优惠(两次平均价格低视为实惠) .(在横线上填甲或乙即可)乙[由题意得甲购买产品的平均单价为3a+3b6=a+b2,乙购买产品的平均单价为2010a+10b=2aba+b,由条件得a≠b.∵a+b2-2aba+b=a-b22a+b>0,∴a+b2>2aba+b,即乙的购买方式更优惠.]5.若a>b>0,c<d<0,e<0,求证:ea-c2>e(b-d)2.[证明]∵c<d<0,∴-c>-d>0,又a>b>0,∴a-c>b-d>0,则(a-c)2>(b-d)2>0,即1a-c2<1(b-d)2.又e<0,∴ea-c2>e(b-d)2.。

高中数学第3章不等式3.1.1不等关系与不等式3.1.2不等式的性质新人教B版必修5

高中数学第3章不等式3.1.1不等关系与不等式3.1.2不等式的性质新人教B版必修5
A.5x+4y<200 B.5x+4y≥200 C.5x+4y=200 D.5x+4y≤200
2.设 M=x2,N=-x-1,则 M 与 N 的大小关系是( )
A.M>N
B.M=N
C.M<N
D.与 x 有关
A [M-N=x2-(-x-1)=x2+x+1=x+122+34>0,故 M>N.]
a>b,b>c⇒_a_>_c_
性质 3(可加性)
a>b⇒_a_+__c_>_b_+__c_
推论 1 性质 3
推论 2
a+b>c⇒_a_>__c_-__b__ a>b,c>d⇒_a_+__c_>__b_+__d_
性质 4(可乘性) a>b,c>0⇒_a_c_>__b_c_;a>b,c<0⇒_a_c_<__b_c_
2.由-6<a<8,-4<b<2,两边分别相减得-2<a-b<6,你认为 正确吗?
[提示] 不正确.因为同向不等式具有可加性与可乘性.但不能 相减或相除,解题时要充分利用条件,运用不等式的性质进行等价变 形,而不可随意“创造”性质.
3.你知道下面的推理、变形错在哪吗? ∵2<a-b<4, ∴-4<b-a<-2. 又∵-2<a+b<2, ∴0<a<3,-3<b<0, ∴-3<a+b<3. 这怎么与-2<a+b<2 矛盾了呢?
1.利用不等式的性质证明不等式注意事项 (1)利用不等式的性质及其推论可以证明一些不等式.解决此类问 题一定要在理解的基础上, 记准、记熟不等式的性质并注意在解题 中灵活准确地加以应用. (2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立 的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.

高中数学第三章不等式

高中数学第三章不等式
x
{x|1 3x1 3}
3
3
例 5 :求 f(x) 函 2 x2 数 x 3 lo 3(3 g 2 xx2)
的定义域。 一次函数、一元一次方程、一元一次不等式之间的关系,通过观察一次函数的图像求得一元一次不等式的解集.
一元一次方程ax+b=0的解
作出y=x2-2x-3的图像
解:由已知得 大于0取两边,小于0取中间
x
|
x
1
2
观察4x2-4x+1 <0的解
o●
x
无解
三、例题讲解 例3 解不等式 -x2 +2x-3 > 0
解:∵ -x2 +2x-3 > 0 ∴x2 -2x+3 < 0
又∵△<0, ∴原不等式无解.
三、例题讲解
∵ 例4 -3x2+6x>2 解不等式: -3x2+6x>2
方程2x2-3x-2=0 的解是
当x为何值时,y<0 ,即2x-6<0
方当程x的为解何即值函时数,图y>象0,与即x2轴x-交6>点0 的横 O 3
x
标下,方不或等 上222x式 方xx-6--的 图66=><0解象00的的 的集所解解解即对为为为函应xxx=数x><3的33图范象围在. x轴
一、复习引入
一元一次函数y=ax+b的图 像
∴ 3x -6x+2<0 2 ①把二次项系数化为正数;
解:因为△ =0,方程4x2-4x+1 =0的解是
∴x2 -2x+3 < 0
①把二次项系数化为正数;
大一于元0一取次两不边等,式因小a于x+为0b取<0中的,间解集△>0,方程3x2-6x+2=0的解是

3.1.1不等关系与不等式

3.1.1不等关系与不等式

变式 3:设 m=x2+y2+2y,n=2x-5,则 m,n 的大小关系是( A )
A.m>n
B.m<n
C.m=n
D.与 x,y 取值有关
解析 ∵m-n=x2+y2+2y-2x+5 =(x2-2x+1)+(y2+2y+1)+3
=(x-1)2+(y+1)2+3>0,
∴m>n.
例 3、已知 a 、b 、m 都是正数,且 a b ,求证: b m b am a
分析:假设截得500mm的钢管x根,截得600mm的钢管y根。根 据题意,应当有什么样的不等关系呢?
(1)截得两种钢管的总长度不能超过4000mm; (2)截得600mm钢管的数量不能超过500mm的钢管数量的3倍; (3)截得两种钢管的数量都不能为负.
上面三个不等关系,是“且”的关系,要同时满足的话, 可以用下面的不等式组来表示:
例 6、已知-6<a<8,2<b<3,分别求 2a+b,a-b 的取值范围.
分析:欲求 a-b 的取值范围,应先求-b 的取值范围
解析:∵-6<a<8,∴-12<2a<16, 又∵2<b<3,∴-10<2a+b<19. ∵2<b<3,∴-3<-b<-2,∴-9<a-b<6.
变式 6、已知-π2≤α<β≤π2,求α+2 β,α-2 β的范围.
第三章 不等式
3.1 不等关系与不等式
本节主要讲解不等关系及不等式的基本性质。通过三个不等 关系的实例引入新课,三个问题体现了的不等关系在各个领域 的应用。
问题探究一是比较大小的方法,强调作差法的重要性,例2、 变式2、3对作差法加以巩固。问题探究二不等式的性质,利用3 个例题和3个变式加以巩固。问题探究三利用不等式的性质求范 围,强调同向不等式可以相加的性质。

北师大版高中数学课本目录大全(必修)

北师大版高中数学课本目录大全(必修)

北师大版(新课标)高中数学课本目录大全(含必修和选修)北师大必修《数学1(必修)》全书目录:第一章集合§1 集合的含义与表示§2 集合的基本关系§3 集合的基本运算阅读材料康托与集合论第二章函数§1 生活中的变量关系§2 对函数的进一步认识§3 函数的单调性§4 二次函数性质的再研究§5 简单的幂函数阅读材料函数概念的发展课题学习个人所得税的计算第三章指数函数和对数函数§1 正整数指数函数§2 指数概念的扩充§3 指数函数§4 对数§5 对数函数§6 指数函数、幂函数、对数函数增长的比较阅读材料历史上数学计算方面的三大发明第四章函数应用§1 函数与方程§2 实际问题的函数建模阅读材料函数与中学数学探究活动同种商品不同型号的价格问题必修2全书目录:第一章立体几何初步§1 简单几何体§2 三视图§3 直观图§4 空间图形的基本关系与公理§5 平行关系§6 垂直关系§7 简单几何体的面积和体积§8 面积公式和体积公式的简单应用阅读材料蜜蜂是对的课题学习正方体截面的形状第二章解析几何初步§1 直线与直线的方程§2 圆与圆的方程§3 空间直角坐标系阅读材料笛卡儿与解析几何探究活动1 打包问题探究活动2 追及问题必修3全书目录第一章统计§1 统计活动:随机选取数字§2 从普查到抽样§3 抽样方法§4 统计图表§5 数据的数字特征§6 用样本估计总体§7 统计活动:结婚年龄的变化§8 相关性§9 最小二乘法阅读材料统计小史课题学习调查通俗歌曲的流行趋势第二章算法初步§1 算法的基本思想§2 算法的基本结构及设计§3 排序问题§4 几种基本语句课题学习确定线段n等分点的算法第三章概率§1 随机事件的概率§2 古典概型§3模拟方法――概率的应用探究活动用模拟方法估计圆周率∏的值必修4 全书目录:第一章三角函数§1 周期现象与周期函数§2 角的概念的推广§3 弧度制§4 正弦函数§5 余弦函数§6 正切函数§7 函数的图像§8 同角三角函数的基本关系阅读材料数学与音乐课题学习利用现代信息技术探究的图像第二章平面向量§1 从位移、速度、力到向量§2 从位移的合成到向量的加法§3 从速度的倍数到数乘向量§4 平面向量的坐标§5 从力做的功到向量的数量积§6 平面向量数量积的坐标表示§7 向量应用举例阅读材料向量与中学数学第三章三角恒等变形§1 两角和与差的三角函数§2 二倍角的正弦、余弦和正切§3 半角的三角函数§4 三角函数的和差化积与积化和差§5 三角函数的简单应用课题学习摩天轮中的数学问题探究活动升旗中的数学问题必修5全书共三章:数列、解三角形、不等式。

高中数学第三章不等式3.1不等关系作差比较法的应用素材北师大版必修(1)

高中数学第三章不等式3.1不等关系作差比较法的应用素材北师大版必修(1)

作差比较法的应用比较法是证明不等式的最基本方法,解决问题时,往往是最基本方法也是最有效方法,最能够体现高考强调的“通性通法”。

比较法分为比差法与比商法两种。

本文主要讲解“比差法”。

一、方法细解1、比差法步骤是“作差――变形――判断”三步组成,比差法的判断是与“零”比较。

2、比较法证明不等式时,先作差,再变形,比差法的依据是:0>-⇔>b a b a ;0=-⇔=b a b a ;.0<-⇔<b a b a 。

作差法的关键是变形,它具有方向性和技巧性,常用的技巧有:(1)分解因式;(2)配方;(3)有理化分子;(4)分类讨论;(5)平方后作差。

二、比较法的应用1、直接应用例1、已知R b R a ∈∈,,且b a ≠,在(1)2223b ab a >+;(2)322355b a b a b a +>+;(3))1(222--≥+b a b a ;(4)2>+ab ba ,四个式子中恒成立的是( )A 、4个B 、3个C 、2个D 、1个 解:(1)(4)举反例很容易排除,对于(2),利用作差法:322355ba ba ba--+)()(223223b ab b aa ---=))((3322b ab a --=))(()(222b ab ab a b a +++-=0,0)(222>++>-bab a b a ,而a +b 的符号是不确定的,故差值符号不能确定,因此(2)不正确;对于(3),=++-+22222b a b a 0)1()1(22≥++-b a ,故)1(222--≥+b a ba(3)正确,综合以上分析,只有(3)正确,故选D.点评:这种题型在高考中经常出现,比差法是常用的方法技巧。

要熟练的应用因式分解发、配方法、提取公因式等技巧。

例2 设a 、b 是正实数,以下不等式 (1)ba ab ab +>2;(2)22234b ab b a ->+;(3)22>+abab 恒成立的序号为( )A 、(1)(2)B 、(1)(3)C 、(2)(3)D 、(3)解:(1)ba abb a ab ba ab ab +-+=+-2)(20)()2(2≥+-=+-+=ba b a ab ba ab b a ab ,(1)不合题意,排除A 、B ;(2)=--+)34(322b ab b a =+-2244b ab a 0)2(2≥-b a ,即22234b ab ba-≥+,不合题意,排除C ;(3)22-+abab 01)1(22222>+-=+-=abab abab ba ,所以22>+abab 成立,故选D.点评:能够利用基本方法,通过熟练的运用配方化为平方和的形式,容易判断作差后与零的大小关系。

高中数学 第三章 不等式 3.3.1 基本不等式课件 北师大版必修5

高中数学 第三章 不等式 3.3.1 基本不等式课件 北师大版必修5
§3 基本不等式
3.1 基本不等式
学习目标
1.掌握基本不等式及其推导方法. 2.理解基本不等式的几何意义及其等号 成立的条件. 3.能利用基本不等式证明不等式.
思维脉络
基本不等式 (1)概念:如果 a,b 都是非负数,那么������+2������ ≥ ������������,当且仅当 a=b 时,等号 成立.我们称上述不等式为基本不等式,其中������+2������称为 a,b 的算术平均 数, ������������称为 a,b 的几何平均数,因此,基本不等式又称为均值不等式. (2)文字叙述:两个非负数的算术平均数不小于它们的几何平均数. (3)意义:
lg������·lg������;
(4)若
a,b∈(0,+∞),则1������
+
1 ������
>
2������������.
探究一
探究二
探究三
思维辨析
解:(1)正确.在基本不等式������+2������ ≥ ������������中,将 a,b 分别用 a4,b4 代换, 且 a4≥0,b4≥0,
解析:①③错,都忽视了利用基本不等式时每一项必须非负这一
条件;
②正确,若 x<0,则 x+4������=- (-������) +
-
4 ������
≤-2
(-������)·
-
4 ������
=-4,当且仅当
-x=-4������,即 x=-2 时,等号成立;
④错,当 ������2 + 2 = ������21+2时,x2+2=1,x2=-1(不成立).故正确的是②.

高中数学 第三章 不等式 3.1 基本不等式 3.1.2 比较大小教案 北师大版必修5-北师大版高二

高中数学 第三章 不等式 3.1 基本不等式 3.1.2 比较大小教案 北师大版必修5-北师大版高二

word1 / 1 比较大小本节教材分析教材首先给出了不等式的主要性质,这是比较大小的依据,也是应用不式解决问题的最基本的保障.几个例子分别体现了不等式性质的应用,思考交流的第2题与练习中的第2题,尽管表现形式截然不同,但就其本质上来说是一致的.三维目标1.知识与技能:掌握不等式的基本性质,会用不等式的性质证明简单的不等式;2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法;3.情态与价值:通过讲练结合,培养学生转化的数学思想和逻辑推理能力.教学重点:掌握不等式的性质和利用不等式的性质证明简单的不等式;教学难点: 利用不等式的性质证明简单的不等式。

教学建议:1. 教学中,教师应做好点拨,利用数轴这一简单的数形结合工具,做好归纳总结.2. 通过举例引导学生归纳出比较大小的方法与步骤.3. 课堂上应根据实际具体情况,选择设计出最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法.4. 设计教案时要注重难度的控制,不等式内容广泛,教学时知识应拓宽,但难度不能太大.5. 教学设计应注意学生思维能力的训练和培养.新课导入设计导入一:[情景导入]在初中,我们已经学习过不等式的一些基本性质。

请同学们回忆初中不等式的的基本性质。

(1)不等式的两边同时加上或减去同一个数,不等号的方向不改变;即若a b a c b c >⇒±>±(2)不等式的两边同时乘以或除以同一个正数,不等号的方向不改变;即若,0a b c ac bc >>⇒>(3)不等式的两边同时乘以或除以同一个负数,不等号的方向改变。

即若,0a b c ac bc ><⇒<然后导入新课.导入二:[类比导入]等式具有许多性质,其中有:在等式两边都加上、或都减去,或都程以,或都除以(除数不为零)同一个数,所得的依旧是等式.我们自然会联想到,不等式是否也会有此同样的性质呢?学生会进一步探究验证这个联想,由此而展开新课.。

北师大版高中数学课本目录(含重难点及课时分布)

北师大版高中数学课本目录(含重难点及课时分布)

高中数学课本内容及其重难点北师大版高中数学必修一·第一章集合(考点的难度不是很大,是高考的必考点)· 1、集合的基本关系· 2、集合的含义与表示· 3、集合的基本运算(重点)(2课时)·第二章函数· 1、生活中的变量关系· 2、对函数的进一步认识· 3、函数的单调性(重点)· 4、二次函数性质的再研究(重点)· 5、简单的幂函数(5课时)·第三章指数函数和对数函数· 1、正整数指数函数· 2、指数概念的扩充· 3、指数函数(重点)· 4、对数· 5、对数函数(重点)· 6、指数函数、幂函数、对数函数增减性(重点)(3课时)·第四章函数应用· 1、函数与方程· 2、实际问题的函数建模(2课时)北师大版高中数学必修二·第一章立体几何初步· 1、简单几何体· 2、三视图(重点)· 3、直观图(1课时)· 4、空间图形的基本关系与公理(重点)· 5、平行关系(重点)· 6、垂直关系(重点)· 7、简单几何体的面积和体积(重点)· 8、面积公式和体积公式的简单应用(重点、难点)(4课时)·第二章解析几何初步· 1、直线与直线的方程· 2、圆与圆的方程· 3、空间直角坐标系(4课时)北师大版高中数学必修三·第一章统计· 1、统计活动:随机选取数字· 2、从普查到抽样· 3、抽样方法· 4、统计图表· 5、数据的数字特征(重点)· 6、用样本估计总体· 7、统计活动:结婚年龄的变化· 8、相关性· 9、最小二乘法(3课时)·第二章算法初步· 1、算法的基本思想· 2、算法的基本结构及设计(重点)· 3、排序问题(重点)· 4、几种基本语句(2课时)·第三章概率· 1、随机事件的概率(重点)· 2、古典概型(重点)· 3、模拟方法――概率的应用(重点、难点)(4课时)北师大版高中数学必修四·第一章三角函数· 1、周期现象与周期函数· 2、角的概念的推广· 3、弧度制· 4、正弦函数(重点)· 5、余弦函数(重点)· 6、正切函数(重点)· 7、函数的图像(重点)· 8、同角三角函数的基本关系(重点、难点)(5课时)·第二章平面向量· 1、从位移、速度、力到向量· 2、从位移的合成到向量的加法(重点)· 3、从速度的倍数到数乘向量(重点)· 4、平面向量的坐标(重点)· 5、从力做的功到向量的数量积(重点)· 6、平面向量数量积的坐标表示(重点)· 7、向量应用举例(难点)(5课时)·第三章三角恒等变形(重点)· 1、两角和与差的三角函数· 2、二倍角的正弦、余弦和正切· 3、半角的三角函数· 4、三角函数的和差化积与积化和差· 5、三角函数的简单应用(难点)(4课时)北师大版高中数学必修五·第一章数列· 1、数列的概念· 2、数列的函数特性· 3、等差数列(重点)· 4、等差数列的前n项和(重点)· 5、等比数列(重点)· 6、等比数列的前n项和(重点)· 7、数列在日常经济生活中的应用(6课时)·第二章解三角形(重点)· 1、正弦定理与余弦定理正弦定理· 2、正弦定理· 3、余弦定理· 4、三角形中的几何计算(难点)· 5、解三角形的实际应用举例(6课时)·第三章不等式· 1、不等关系· 1。

北师大版(新课标)高中数学课本目录大全(必修)

北师大版(新课标)高中数学课本目录大全(必修)

北师大版(新课标)高中数学课本目录大全(含必修和选修)北师大必修《数学1(必修)》全书目录:第一章集合§1 集合的含义与表示§2 集合的基本关系§3 集合的基本运算阅读材料康托与集合论第二章函数§1 生活中的变量关系§2 对函数的进一步认识§3 函数的单调性§4 二次函数性质的再研究§5 简单的幂函数阅读材料函数概念的发展课题学习个人所得税的计算第三章指数函数和对数函数§1 正整数指数函数§2 指数概念的扩充§3 指数函数§4 对数§5 对数函数§6 指数函数、幂函数、对数函数增长的比较阅读材料历史上数学计算方面的三大发明第四章函数应用§1 函数与方程§2 实际问题的函数建模阅读材料函数与中学数学探究活动同种商品不同型号的价格问题必修2全书目录:第一章立体几何初步§1 简单几何体§2 三视图§3 直观图§4 空间图形的基本关系与公理§5 平行关系§6 垂直关系§7 简单几何体的面积和体积§8 面积公式和体积公式的简单应用阅读材料蜜蜂是对的课题学习正方体截面的形状第二章解析几何初步§1 直线与直线的方程§2 圆与圆的方程§3 空间直角坐标系阅读材料笛卡儿与解析几何探究活动1 打包问题探究活动2 追及问题必修3全书目录第一章统计§1 统计活动:随机选取数字§2 从普查到抽样§3 抽样方法§4 统计图表§5 数据的数字特征§6 用样本估计总体§7 统计活动:结婚年龄的变化§8 相关性§9 最小二乘法阅读材料统计小史课题学习调查通俗歌曲的流行趋势第二章算法初步§1 算法的基本思想§2 算法的基本结构及设计§3 排序问题§4 几种基本语句课题学习确定线段n等分点的算法第三章概率§1 随机事件的概率§2 古典概型§3模拟方法――概率的应用探究活动用模拟方法估计圆周率∏的值必修4 全书目录:第一章三角函数§1 周期现象与周期函数§2 角的概念的推广§3 弧度制§4 正弦函数§5 余弦函数§6 正切函数§7 函数的图像§8 同角三角函数的基本关系阅读材料数学与音乐课题学习利用现代信息技术探究的图像第二章平面向量§1 从位移、速度、力到向量§2 从位移的合成到向量的加法§3 从速度的倍数到数乘向量§4 平面向量的坐标§5 从力做的功到向量的数量积§6 平面向量数量积的坐标表示§7 向量应用举例阅读材料向量与中学数学第三章三角恒等变形§1 两角和与差的三角函数§2 二倍角的正弦、余弦和正切§3 半角的三角函数§4 三角函数的和差化积与积化和差§5 三角函数的简单应用课题学习摩天轮中的数学问题探究活动升旗中的数学问题必修5全书共三章:数列、解三角形、不等式。

高中数学 第三章 不等式 3.1 不等关系与比较大小教学设计 高二数学教案

高中数学 第三章 不等式 3.1 不等关系与比较大小教学设计 高二数学教案

《不等关系与比较大小》教学设计一、教学目标知识与技能:1、会用实数基本理论比较两个实数(代数式)的大小;2、掌握不等式的基本性质.过程与方法:通过回忆初中内容,结合数轴得出实数基本性质;由不等式的基本性质,总结并证明不等式的其它性质;强化转化思想与数形结合思想.情感、态度与价值观:激发探究数学问题的兴趣,体会数学式子的结构美.二、教学重点:比较两实数(或代数式)的大小..三、教学难点:不等式性质的熟练运用.四、教学过程(一)复习引入问题:不等关系在数学意义上有哪些体现?如果两个量之间存在不等关系,一般就有大小之分,那么如何比较两个量的大小呢?本节就来讨论这个问题---比较大小.(二)新课学习1实数比较大小的依据(从数轴上看,右边的点所表示的数总比左边的点所表示的数大)对于任意两个实数,a b0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.2比较两个实数,a b 大小的方法(1)作差a b ----变形---与0比较---得出结论;(2)作商a b ----变形---与1比较---得出结论(作商的前提是两个数同号)3不等式的基本性质(1)a b a c b c >⇒+>+;(2),0a b c ac bc >>⇒>;(3),0a b c ac bc ><⇒<;(4),a b b c a c >>⇒>(传递性);(5),a b c d a c b d >>⇒+>+(同向可加性);(6)0,0a b c d ac bd >>>>⇒>(正数同向可乘性); (7)0,1,n n a b n n N a b >>>∈⇒>>且;(8),0a b >,a b <,0m >a a m b b m+⇒<+. 一、典例分析 例1、试比较下列各组数的大小,其中x R ∈(1)(1)(5)x x ++与2(3)x +;(2)61x +与42x x +;(3)a b a b 与b a a b ,其中,0,,R a b a b >∈且.解(1)(1)(5)x x ++-2(3)x +22(65)(69)x x x x =++-++40=-<所以,(1)(5)x x ++<2(3)x +.(2) 61x +42()x x -+6421x x x =--+422(1)(1)x x x =--- 当1x =±时, 61x +42()x x =+;当1x ≠±,61x +42()x x >+. (3) a b a b b a a b a a b b -⎛⎫= ⎪⎝⎭①当a b >时,1,0,a a b b >->所以1a b a b -⎛⎫> ⎪⎝⎭,所以a b b a a b a b >; ②当a b =时,1,0,a a b b =-=所以1a b a b -⎛⎫= ⎪⎝⎭,所以a b b a a b a b =; ③当a b <时,1,0,a a b b <-<所以1a b a b -⎛⎫> ⎪⎝⎭,所以a b b a a b a b >;综上知, a b b a a b a b ≥例2(教材P72例7)引出性质(8)一、深化练习例3、已知22ππαβ-≤<≤,求2αβ+,3αβ-的取值范围解 ,2222ππππαβ-≤<-<≤,∴式相加得παβπ-<+<, ∴222παβπ+-<<. 22ππα-≤<,∴22ππβ-≤-<,∴παβπ-≤-<,∴333παβπ--≤<, 又∵αβ<,∴03αβ-<,∴033παβ--≤< 综上,2αβ+的取值范围为(,)22ππ-,3αβ-的取值范围为[,0)3π-. 例4、 设2()(0)f x ax bx a =+≠,若3(1)5,4(1)6f f ≤≤≤-≤,求(2)f 的取值范围.解 由(1)(1)f a b f a b =+⎧⎨-=-⎩,得1[(1)(1)]21[(1)(1)]2a f fb f f ⎧=+-⎪⎪⎨⎪=--⎪⎩∴(2)423(1)(1)=+=+-f a b f f∵3(1)5≤≤f≤≤,∴9(1)15f又∵4(1)6≤+-≤f f≤-≤,∴133(1)(1)21f即(2)f的取值范围为[13,21]五、课堂小结1比较两个实数(代数式)的大小依据及方法;2掌握不等式的基本性质.。

高中数学 第三章 不等关系与不等式1典型例题素材 北师大版必修5

高中数学 第三章 不等关系与不等式1典型例题素材 北师大版必修5

不等关系与不等式1典型例题素材北师大版必修5【例1】已知a<b<0,判断下列不等式是否成立.(1); (2);(3)|a|>|b|; (4)a2>b2; (5); (6).【例2】设f(x)=ax2+bx且1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围.参考答案例1【分析】综合使用不等式的诸种性质判断.【解】(1)∵a<b<0,∴ab>0.即>0a·成立.(2)取a=-2,b=-1,则a-b=-1,则不成立.(3)∵a<b<0,∴-a>-b>0|a|>|b|>0成立.(4)将-a>-b>0平方得:a2>b2>0成立.(5)由(3)知|a|>|b|>0成立成立不成立.而可正可负,故原不等式不成立.【点拨】肯定命题须证明,否定结论举反例.对(6),使用的方法是:作差→分解因式→判断符号.例2【分析】∵f(-1)=a-b,f(1)=a+b,而1≤a-b≤2,2≤a+b≤4,又a+b与a-b中的a、b不是独立的,而是相互制约的,因此,若将f(-2)用a-b和a+b表示则问题得解.【解】设f(-2)=m·f(-1)+nf(1),(m,n为待定系数),则4a-2b=m(a-b)+n(a+b),即:4a-2b=(m+n)a-(m-n)b比较两边a、b的系数得方程:解之得∴f(-2)=3f(-1)+f(1),∵1≤f(-1)≤2,2≤f(1)≤4,∴5≤3f(-1)+f(1)≤10,故5≤f(-2)≤10.【点拨】利用不等式求范围,要注意“度”的把握,过度的放、缩,容易出错.精美句子1、善思则能“从无字句处读书”。

读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。

读大海,读出了它气势磅礴的豪情。

读石灰,读出了它粉身碎骨不变色的清白。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等关系
在客观世界中,量与量之间有的是相等关系,有的是不等关
系.我们用数学符号“≠”“>”“<”“≥”“≤”连接两个数或代 数式,以表示不等关系.
文字语言 数学符号 文字语言 数t;
大于等于 ≥
至多

至少

不少于 ≥
小于等于 ≤
不多于 ≤
实数大小比较 比较实数 a,b 大小 1.文字叙述 如果 a-b 是_正__数___,那么 a>b; 如果 a-b__等__于__0__,那么 a=b; 如果 a-b 是_负__数___,那么 a<b,反之也成立. 2.符号表示 a-b>0⇔a__>__b; a-b=0⇔a_=___b; a-b<0⇔a__<__b.
关于性质的几点说明 1.性质 1 把不等式两边的式子交换,所得不等式和原不等 式异向. 2.注意传递性是有条件的! 3.性质 3 是移项的依据.不等式中任何一项改变符号后, 可以把它从一边移到另一边.即 a+b>c⇒a>c-b.性质 3 是可逆 的,即 a>b⇔a+c>b+c.
4.注意不等式的单向性和双向性.性质 1 和 3 是双向的, 其余的在一般情况下是不可逆的.
解析: 该两位数应表示为 10y+x,
由题意可知 50<10y+x<60,且 x-y=2.
答案:
50<10y+x<60 x-y=2
2.某矿山车队有 4 辆载重为 10 t 的甲型卡车和 7 辆载重为 6 t 的乙型卡车,有 9 名驾驶员.此车队每天至少要运 360 t 矿石至 冶炼厂.已知甲型卡车每辆每天可往返 6 次,乙型卡车每辆每天 可往返 8 次,写出满足上述所有不等关系的不等式.
实数比较大小的注意事项 1.符号“⇔”表示“等价于”,即可以互相推出.“⇔” 的右边反映的是两个实数 a,b 的大小关系,左边反映的是实数 的运算性质,三个等价式子体现的是实数的大小顺序和实数的运 算性质之间的关系. 2.比较两实数 a,b 的大小,只需确定它们的差 a-b 与 0 的大小关系,与差的具体数值无关.因此,比较两实数 a,b 的 大小,其关键在于经过适当变形,能够确认差 a-b 的符号,变 形的常用方法有配方、分解因式等.
讲课堂互动讲义
用不等式组表示不等关系 某厂使用两种零件 A、B,装配两种产品:甲、乙, 该厂的生产能力是月产甲最多 2 500 件,月产乙最多 1 200 件, 而组装一件甲需要 4 个 A,2 个 B;组装一件乙需要 6 个 A,8 个 B. 某个月,该厂能用的 A 最多有 14 000 个,B 最多有 12 000 个.用 不等式将甲、乙两种产品产量之间的关系表示出来.
km/h,行驶过程中,同一车道上的车间距 d 不得小于 10 m,用
不等式表示为( )
v≤120km/h A.d≥10m
B.v≤120(km/h)或 d≥10(m)
C.v≤120(km/h) 答案: A
D.d≥10(m)
3.若 f(x)=3x2-x+1,g(x)=2x2+x-1,则 f(x)与 g(x)的大 小关系是________.(用“>”连接)
x+4y≤6 000
x,y∈N+
x,y∈N+
用不等式表示实际问题中的不等关系时,应 首先读懂题意,设出未知量,寻找不等关系的根源,将不等关系 用未知量表示出来,即得到不等式或不等式组,这是应用不等式 解决实际问题的最基本的一步.要注意把题中所有不等关系全部 列出来.
1.一个两位数大于 50,而小于 60,其个位数字 x 比十位数 字 y 大 2,试用不等式表示上述关系________________.
[思路点拨] 设出甲、乙两种产品的产量,把题中所有不等 关系一一列出,组成不等式组.
[边听边记] 设甲、乙两种产品产量分别为 x 件、y 件,由题 意列不等式组如下:
0≤x≤2 500
0≤x≤2 500
0≤y≤1 200
0≤y≤1 200
4x+6y≤14 000 ,即2x+3y≤7 000 .
2x+8y≤12 000
不等式性质 1.不等式的性质 (1)如果 a>b,b>c,那么__a_>__c_. (2)如果 a>b,那么 a+c_>__b+c. (3)如果 a>b,c>0,那么 ac_>__bc. (4)如果 a>b,c<0,那么 ac_<__bc. 2.一个重要结论 设 a,b 为正实数,且 a<b,m>0,则ab+ +mm_>__ab.
[提示] S>165,N≤35
在数学意义上,不等关系可以体现在以下几个方面 1.__常__量__与__常__量___之间的不等关系; 2.__变__量__与__常__量___之间的不等关系; 3.__函__数__与__函__数___之间的不等关系; 4.__一__组__变__量___之间的不等关系.
5.在应用不等式时,一定要搞清它们成立的前提条件.不 可强化或弱化成立的条件.要克服“想当然”“显然成立”的思 维定势.
1.若 b<0,a+b>0,则 a-b 的值( )
A.大于零
B.小于零
C.等于零
D.不能确定
解析: ∵b<0,a+b>0,
∴a>-b>0,∴a-b>0.
答案: A
2.某高速公路对行驶的各种车辆的速度 v 的最大限速为 120
第三章
不等式
§1 不等关系
学课前预习学案
[问题 1] 判断数轴上(如图)的点 A,B,C 所对应的数 a,b, c 的大小关系.
[提示] c<a<b
[问题 2] 某单位招收员工的条件是“年龄不超过 35 岁,身 高 165 cm 以上”,小李被单位录用,那么,你能用不等式表示 出小李的身高 S(cm)和年龄 N(岁)满足的不等关系吗?
解析: f(x)-g(x)=x2-2x+2=(x-1)2+1>0, ∴f(x)>g(x). 答案: f(x)>g(x)
4.已知x>3,试比较x3+11x与6x2+6的大小. 解析: x3+11x-(6x2+6) =x3-3x2-3x2+11x-6 =x2(x-3)+(-3x+2)(x-3) =(x-3)·(x2-3x+2) =(x-3)(x-2)(x-1), 由 x>3,得 x-3>0,x-2>0,x-1>0, 所以 x3+11x>6x2+6.
相关文档
最新文档