XL型旋流式水膜脱硫除尘器

XL型旋流式水膜脱硫除尘器
XL型旋流式水膜脱硫除尘器

XL型旋流式水膜脱硫除尘器

一、文丘里喷淋装置工艺原理

含有粉尘及硫化物的锅炉烟气进入文丘里喉管后,由于喉管断面积不变,管内静压下降到最低值,并维持不变,此时气流流速达到最高值;气流进入渐扩管,由于断面积逐扩大,管内静压逐渐得到恢复,气流流速也逐渐下降。在收缩管末端或喉管处通过喷嘴引入洗涤液,该处的气流速度就很高,由喷嘴喷出含有碱性的洗涤液在高速气流的冲击下,进一步雾化成更细小的雾滴,而且气、液、固(粒尘)三相的相对速度都很大,使它们得以更充分混合,从而增加了二氧化硫与碱液滴混合的机会,使大部分的二氧化硫和碱性液滴得以充分反应,达到脱硫目的。另一方面,由于碱性洗涤液雾化充分,使气体达到饱和程度,从而破坏了尘粒表面的气膜,使尘粒完全被水汽润湿。当气体进入扩散管后,这些被水润湿的尘粒与雾滴之间,以及不同粒径的尘粒或雾滴之间,在不同惯性力的作用下,在相互碰撞接触中凝聚成粒径较大的含尘液滴。这些较粗的含尘液滴随气流进入旋流式水膜除尘器后,在重力、惯性力、离心力的作用下,从气流中分离出来,从而达到净化目的。

二、XL旋流水膜脱硫除尘设备结构与原理

新一代XL型高效低阻旋流式水膜脱硫除尘器是在原有麻石水膜除尘器的基础上改进而成。具有安装方便、施工周期短、使用寿命长、价格低等优点,是新一代锅炉烟气除尘治理的理想产品。

XL型旋流式水膜脱硫除尘器主要由主筒体、上部注水槽、下部

溢水孔、清理孔等组成,其工作原理是:含尘气流通进入筒体,筒体是一个圆形筒体,水从除尘器上部注水槽进入筒内,使整个圆筒内壁形成一层水膜从上而下流动,烟气由筒体下部切向或蜗旋进入,在筒体内旋转上升,含尘气体及硫化物在离心力作用下始终与筒体内壁面的水膜发生摩擦,这样含尘气体被水膜湿润,含硫气体被碱液中和,尘粒随水流到设备底部,从溢水孔排走,在筒体底部封底并设有水封槽以防止烟气从底部漏出,有清理孔便于进行筒体底部清理。净化后废水由底部溢流孔排出进入沉淀池,沉淀再次中和,循环使用。净化后的气体,通过筒体上部锥体部分引出,从而达到除尘脱硫的目的。

文丘里水膜除尘器设计指导

| 文丘里水膜除尘器设计指导书 (一) 计算书部分 1、 熟悉资料 (1) 设备原理:文丘里水膜除尘器是一种高效湿式除尘器,常用于高温烟气降温和 除尘上,其结构包括文丘里洗涤器和旋风水膜除尘器。了解其原理有助于画图前分析计算。 (2) 土建资料:根据建筑平、立、剖面图,了解除尘设备结构特点为管道合理布局 提供参考条件。 (3) 设计依据:依据建筑条件图和设计规范、设计手册、技术措施、标准图集设计。 2、 设计过程 文丘里除尘器的设计主要包括三个主要内容:净化气体量、文丘里管和捕集器的主要尺寸的确定。 (1) ! (2) 净化气体量Q 的确定 净化气体量可以根据生产工艺物料平衡和燃烧装置的燃烧计算来求,也可以采用直接测量的烟气量数据。对于烟气量的设计与计算,都以文丘里管前的烟气性质和状态参数为准。为了简化设计计算,计算时可以不考虑其漏风系数、烟气温度的降低、烟气中水蒸气对烟气体积的影响。 (3) 文丘里管几何尺寸的确定 1) 喉管 ①喉管截面积 通常按式(1-1)计算。 03600u Q t A = (1-1) 式中 A 0— 喉管的截面积,m 2 Q t —温度为t 时气体口的气体流量,m 3 /h ~ u 0— 通过喉管的气体流速,m/s ②确定高宽比求得高、宽 2) 收缩管 ① 收缩管进气端截面积 通常按与之相连的进气管道形状计算,计算公式为: 1 13600u Q t A = (1-2) 式中 A 1—收缩管进气端的截面积, Q t —温度为t 时气体口的气体流量,m 3 /h ; u 1— 收缩管进气端气体的速度,m/s ② 计算截面收缩管进气端的高度和宽度

20T锅炉烟气SNCR脱硝+水膜除尘器+高效喷淋脱硫塔技术方案

20T/H锅炉烟气除尘脱硫脱硝项目[SNCR脱硝+文丘里水膜脱硫除尘器+高效雾化喷淋式脱硫塔] 处理20T/h锅炉水膜除尘器+高效雾化喷淋脱硫塔现场照片 浙江丽水众发造纸厂

SNCR脱硝+文丘里水膜脱硫除尘器+双碱法脱硫工艺 技 术 文 件 编制: 审核: 日期: 2015 年8月 江苏龙源环境工程有限公司 江苏龙源环保科技有限公司

神华集团乌海能源天信公司2×75T/H锅炉烟气脱硫塔现场照片 脱硫塔整台出厂

目录 一总论..................................................................................................................... - 4 - 1.1 工程概述..................................................................................................... - 4 - 1.2 设计参数..................................................................................................... - 4 - 1.3除尘脱硫系统主要技术要求...................................................................... - 5 - 1.4 主要设计原则............................................................................................. - 5 - 二工艺介绍............................................................................................................. - 6 - 2.1 文丘里水膜脱硫除尘器............................................................................. - 7 - 2.2 钠钙双碱脱硫工艺..................................................................................... - 8 - 2.3 工艺特点..................................................................................................... - 9 - 2.4 工艺流程介绍............................................................................................. - 9 - 2.4 工艺原理................................................................................................... - 11 - 2.5 烟气脱硫系统描述................................................................................... - 12 - 三供货范围及内容............................................................................................... - 15 - 3.1 设计范围................................................................................................... - 15 - 3.2 主要设备清单........................................................................................... - 16 - 四脱硫系统各项性能参数................................................................................... - 16 - 4.1 主要技术参数........................................................................................... - 16 - 4.2 脱硫系统年运行费用分析............................................ 错误!未定义书签。 4.3 主要经济技术指标................................................................................... - 17 - 五脱硫渣的处理................................................................................................... - 17 - 六技术标准及规范............................................................................................... - 18 - 七附图................................................................................................................... - 19 -

湿式除尘器的类型及结构

湿式除尘器的类型及结构 湿式除尘器的结构:不同类型的湿式除尘器其结构虽有较大差别,但总体上一般由尘气导入装置,引水装置,水气接触本体,液滴分离器和污水(泥)排放装置组成。 1.湿式除尘器的分类 湿式除尘器的类型,从不同角度有不同的分类。 (1)按结构型式可分为 ①贮水式:内装一定量的水,高速含尘气体冲击形成水滴、水膜和气泡,对含尘气体进行洗涤,如冲激式除尘器、水浴式除尘器、卧式旋风水膜除尘器。 ②加压水喷淋式:向除尘器内供给加压水,利用喷淋或喷雾产生水滴而对含尘气体进行洗涤;如文氏管除尘器、泡沫除尘器、填料塔、湍求塔等。 ③强制旋转喷淋式:借助机械力强制旋转喷淋,或转动叶片,使供水形成水滴、水膜、气泡,对含尘气体进行洗涤。如旋转喷雾式除尘器。 (2)按能耗大小可分为 ①低能耗型:阻力在4000Pa以下,除尘效率可达90%。这类除尘器包括喷淋式,水浴式,冲激式,泡沫式,旋风水膜式除尘器。 ②高能耗型:阻力在4000Pa以上,对微细粉尘效率高,该类主要指文氏管除尘器。 (3)按气液接触方式可分为 ①整体接触式:含尘气流冲入液体内部而被洗涤,如自激式,旋风水膜式,泡沫式等除尘器; ②分散接触式:向含尘气流中喷雾,尘粒与水滴,液膜碰撞而被捕集,如文氏管,喷淋塔等。 2.自激式除尘器 自激式除尘器内先要贮存一定量的水,它利用气流与液面的高速接触,激起大量水滴,使尘粒从气流中分离,水浴除尘器、冲激式除尘器等都是属于这一类。 (1)水浴除尘器 图5-5-1是水浴除尘器的示意图,含尘空气以8~12m/s的速度从喷头高速喷出,冲入液体中,激起大量泡沫和水滴。粗大的尘粒直接在水池内沉降,细小的尘粒在上部空间和水滴碰撞后,由于凝聚、增重而捕集。水浴除尘器的效率一般为80%~95%。 喷头的埋水深度h020~30mm。除尘器阻力约为400~700Pa。 水浴除尘器可在现场用砖或钢筋混凝土构筑,适合中小型工厂采用。它的缺点是泥浆清理比较困难。

除尘器选型计算公式.doc

袋式除尘器的选型核算 袋式除尘器的品种许多,因而其选型核算显得格外重要,选型不妥,如设备过大,会形成不必要的糟蹋;设备选小会影响出产,难于满意环保需求。 选型核算方法许多,通常地说,核算前应晓得烟气的根本工艺参数,如含尘气体的流量,性质,浓度以及粉尘的分散度,浸润性、黏度等。晓得这些参数后,经过核算过滤风速、过滤面积、滤料及设备阻力、再挑选设备种类类型。 1、处置气体量的核算 核算袋式除尘器的处置气体时,首先需求出工况条件下的气体量,即实践经过袋式除尘设备的气体量,而且还要思考除尘器自身的漏风量。 这些数据,应依据已有工厂的实践运转经历或检测材料来断定,若是缺少必要的数据,可按出产工艺进程发生的气体量,再添加集气罩混进的空气量(约20%~40%)来核算。https://www.360docs.net/doc/1212840998.html, 除尘器常识 (1-1) 式中Q-经过除尘器的含尘气体量, m3/h; Q s-出产进程中发生的气体量,m3/h; T c-除尘器内气体的温度, ℃; Pa -环境大气压,kPa;

K -除尘器器前漏风体系。 应该注重,若是出产进程产笺气体量是作业状态下的气体量,进行选型比拟时则需求换算为规范状态下的气体量。 2、过滤风速的选择 过滤风速的巨细,取决于含尘气体的性状、织物的种类以及料尘的性质,通常按除尘器样本引荐的数据及使用者的实践经历选择。大都反吹风袋式除尘器的过滤风速在0.6~1.3m/s之间,脉冲袋式除尘器的过滤风速在1.2~2m/s左右,玻璃纤维袋式除尘器的过滤风速约为0.5~0.8m/s,表1所列过滤风速可供参考: 表1 3、过滤面积的断定 (1)总过滤面积依据经过除尘器的总气量和选定的过滤速度,按下式核算总过滤面积: (1-2) 式中S-总过滤面积 m2; S1—滤袋作业有些的过滤面积 m2; S2—滤袋清灰有些的过滤面积 m2; Q —经过除尘器的总气体量 m3/h; 求出总过滤面积后,就能够断定袋式除尘器的整体规划和尺度。 (2)单条滤袋面积单条圆形滤袋面积,通常用下式核算:

文丘里水膜除尘器设计指导

文丘里水膜除尘器设计指导书 (一) 计算书部分 1、 熟悉资料 (1) 设备原理:文丘里水膜除尘器是一种高效湿式除尘器,常用于高温烟气降温和除尘上,其结构包括文丘里洗涤器和旋风水膜除尘器。了解其原理有助于画图前分析计算。 (2) 土建资料:根据建筑平、立、剖面图,了解除尘设备结构特点为管道合理布局提供参考条件。 (3) 设计依据:依据建筑条件图和设计规范、设计手册、技术措施、标准图集设计。 2、 设计过程 文丘里除尘器的设计主要包括三个主要内容:净化气体量、文丘里管和捕集器的主要尺寸的确定。 (1) 净化气体量Q 的确定 净化气体量可以根据生产工艺物料平衡和燃烧装置的燃烧计算来求,也可以采用直接测量的烟气量数据。对于烟气量的设计与计算,都以文丘里管前的烟气性质和状态参数为准。为了简化设计计算,计算时可以不考虑其漏风系数、烟气温度的降低、烟气中水蒸气对烟气体积的影响。 (2) 文丘里管几何尺寸的确定 1) 喉管 ①喉管截面积 通常按式(1-1)计算。 03600u Q t A = (1-1) 式中 A 0— 喉管的截面积,m 2 Q t —温度为t 时气体口的气体流量,m 3/h u 0— 通过喉管的气体流速,m/s ②确定高宽比求得高、宽 2) 收缩管 ① 收缩管进气端截面积 通常按与之相连的进气管道形状计算,计算公式为: 1 13600u Q t A = (1-2) 式中 A 1—收缩管进气端的截面积, Q t —温度为t 时气体口的气体流量,m 3/h u 1— 收缩管进气端气体的速度,m/s ② 计算截面收缩管进气端的高度和宽度 ③ 确定收缩角1θ ④ 矩形文丘里管的收缩管长度 矩形收缩管长度L 1可以按式(1-3)和式(1-4) 计算,取两式最大值作为收缩管的长度。

水膜除尘器运行操作规程(包括常见故障处理)

水膜除尘器运行操作规程 1.目的 为了保证水膜除尘器的正常运行,确保人身及设备的安全,特制定本规程。 2.适用范围 本规程适用于水膜除尘器的运行操作。 3.除尘器的技术指标(本项根据本公司的实际情况填写) 3.1除尘脱硫系统入口处烟气指标: 3.1.1烟气量65000Nm3/h(165℃) 3.1.2燃煤含硫量≤1.0% 3.2除尘脱硫装臵:符合《锅炉大气污染物排放标准》(GB13271—2001)二类区 Ⅱ时段燃煤锅炉标准。 3.2.1当脱硫液PH≥11时,脱硫效率≥85% 3.2.2净化后烟尘排放浓度≤60mg/ m3 3.2.3烟气湿度≤4% 3.2.4除尘脱硫系统烟气总阻力≤800Pa 3.3.5脱硫剂:氢氧化钠(或石灰) 3.4除尘脱硫装臵系统 3.4.1采用沉淀池循环补水不外排 3.4.2选用65YU-1-35-25耐腐泵二台供脱硫循环液,一用一备(或一冲一用) 4.运行前的检查 4.1检查除尘器所有人孔,手孔是否关闭,循环泵和刮板机固定螺丝是否松动,护栏是否完整,操作平台是否整洁无杂物。 4.2用手盘动联轴器,看看是否运转灵活,如转动不灵活或有不正常噪音、卡死等异常,应重新拆泵检查,清理异物,消除噪音,或通过增减叶轮垫调整叶轮与泵体之间的间隙,使间隙保持在1-2mm之间,安装后再盘动链轴器,直到转动灵活。 4.3观察沉淀池循环水水位,如水位太低,及时补充循环水至正常水位。 4.4接通电源后启动循环泵,查看电机转动方向与泵上箭头所指方向是否一致,如不一致,应重新接线调整。

5.设备运行步骤 5.1设备检查一切正常后,启动循环泵,电机运转正常后应慢慢开启出口阀门至所需的工作状,注意观察循环泵的出水压力是否正常。 5.2同时打开除尘器的排水阀。注意观察烟囱烟气黑度是否达标,如果超标,可适当关闭除尘器出水阀,适当抬高除尘器水位。 5.3运行一段时间后,根据沉淀池的灰量,启动除尘刮板机。 5.4启动刮板机后要在现场观察一段时间,检查刮板机头固定螺栓和顶丝是否松动,链条和刮板是否吻合无故障,至少观察链条转动循环一圈后再离开。 5.5观察刮板机的出灰量,如出灰量小,及时关闭刮板机,等积灰多了以后再启动。 5.6检测循环水的PH值,如循环水PH值低于6,要及时加石灰或火碱,使循环水的PH值保持在 6.5-7之间。 6.停止运行 6.1当锅炉停止运行,停止引风机,待炉膛炉渣全部清除后再停止循环泵,关闭出水阀。 6.2观察除尘刮板机的出灰量,待出灰量减少后停止刮板机。 7.运行中注意事项 7.1循环池最高液面与泵底板之间的距离应大于250mm,以免循环水侵蚀轴承。 7.2要定期更换循环泵链轴器软垫,以免磨损链轴器。 7.3如锅炉燃烧煤炭,因灰量少,除尘器刮板机要间断运行。如锅炉燃烧稻壳,灰量大,刮板机需要连续运行,可根据沉淀池灰量情况,调整刮板机运行时间。 水膜除尘器常见故障及处理 1、除尘器喷淋水膜形成不完整,除尘效果差。 1.1检查循环泵是否有故障,给水压力是否正常,如是泵体原因,检修或更换泵体。

袋式除尘器选型设计说明书

袋式除尘器选型设计说明书 1. 设计方案简介 1.1方案的确定 依据设计题目选用分室反吹袋式除尘器,采用逆气流反吹清灰及二状态清灰制度。根据石灰窑含尘气体特性,选用玻璃纤维滤料。 含尘气体从灰斗上部的进气口进入除尘器,然后含尘气体向上进入滤袋中,尘粒被阻留在滤袋内,积在滤袋表面,洁净的气体逸出滤袋。当压力损失达到一定值时,需对滤袋进行清灰,即向除尘器鼓入与进气方向相反的空气,,滤袋在逆气流的作用下向里压缩,由于滤袋的形变,积在滤袋内表面的尘粒从滤袋上脱落入积灰斗中。如此即完成了净化气体和收集灰尘的任务。 2.设计计算 2.1基础数据 ①含尘气流的温度T=300℃,进气流量Q=6000m3/h, 含尘浓度=5g/m3,②参考《大气污染控制工程》,逆气流反吹清灰的过滤气速fv=0.5~2.0 m/min;选取fv =0.7 m/min。 ③参考《大气污染控制工程》,袋式除尘器的压力损失Pfppp,通过清洁滤袋的压力损失fp一般为100~130Pa,当压力损失p接近1000Pa时一般需要对滤袋进行清灰。此处选取fp为100 Pa。 ④参考《除尘设备》,石灰窑中颗粒的比阻系数pR=1.50 min/(g·m) ⑤参看《环境工程设计手册》,石灰的堆积密度P=1500Kg/m3,含尘气流达到国家标准的排放浓度标=200mg/m3 ⑥参看《袋式除尘器的设计与应用》,相邻两滤袋安装的中心距为210~250mm,滤袋与花板边界距离为200mm,单元间隔大于相邻两滤袋的间隔。⑦物理学结论,将物体置于倾斜角大于45°的倾斜板上,物体将向下滑动,故当灰斗倾斜角大于45°时,灰粒可自行落下。 ⑧含尘气体进气流速iv为18m/s,净气出口流速ov为3~8m/s 。 2.2过滤面积、滤袋数目的确定 参考《大气污染控制工程》,袋式除尘器的过滤面积A=Q/60V f=6000/60*0.7=142.86 m3 根据《袋式除尘器的设计与应用》所述,滤袋长度L与直径D的比L/D的取值范围5~40,及滤袋尺寸的参考数据选取: L=1500mm, d=160mm. 计划所需滤袋总数n= A/∏Ld=142.86/∏*0.16*1.5=190 故分两个单元,每个单元安装100条滤袋,按10×10布置,总计200条滤袋。 2.3 滤袋清灰时间的确定 袋式除尘器的压力损失:Pfppp—(※) 式中 fp—通过清洁滤袋的压力损失,Pa; Pp—通过颗粒层的压力损失,Pa。参考《除尘设备》: Pp= 2 fPvRt 式中 pR—颗粒比阻力系数,min/(g·m) fv—过滤风速,m/min —含尘浓度,g/m3 t —清灰时间,min 设p达到1000Pa时清灰一次,将已知数据代入(※)式: 1000 = 100 + 1.50×0.72×5×t 解得:t = 244.9min = 4.08h

麻石水膜除尘器原理

麻石水膜除尘器 麻石水膜除尘器 麻石水膜除尘器由花岗岩石料砌筑而成,经久耐用。脱硫除尘原理:含尘烟气切向进入除尘器,沿内壁螺旋上升,与从水槽流下的水膜碰撞,凝聚。灰尘没入水中。干净的烟气脱水后排入烟囱。由于除尘器的水呈碱性,烟气中的二氧化硫与碱发生反应,生成盐类。该除尘器适用于2-75吨燃煤锅 一、结构与原理 麻石水膜除尘器主要由文丘里、主筒体、上部注水槽、下部溢水孔、清理孔、副筒体和连接烟道(钢混结构)等组成,其工作原理是:含尘气流通过进口烟道进入文丘里,在喉部的入口被水均匀的喷入,由于烟气高速运动,因此喷入的水被其溶化成细小的水雾,湿润了烟气中的灰料。在这个过程烟气中的灰料被湿润,使它的重量加大而有利于被离心分离,在高速呈絮流状态中,由于水滴与尘粒差别较大,它们的速度差也较大。这样,灰粒与水滴就发生了碰撞凝聚,尤其是粒径细小的灰尘料可以被水雾水溶,这些都为灰料的分离做好充分的准备,此后进入主筒。主筒体是一个圆形筒体,水从除尘器上部注水槽进入主筒,使整个圆筒内壁形成一层水膜从上而下流动,烟气由筒体下部切向进入,在筒体内旋转上升,含尘气体在离心力作用下始终与筒体内壁面的水膜发生摩擦,这样含尘气体被水膜湿润,尘粒随水流到除尘器底部,从溢水孔排走,在筒体底部封底并设有水封槽以防止烟气从底部漏出,有清理孔便于进行筒体底部清理。除尘后废水由底

部溢流孔排出进入沉淀池,沉淀中和,循环使用。净化后的气体,通过主筒体上部锥体部分进行脱水处理进入副筒后再进行沉降、分离脱水后,净化后的烟气通过副筒体下部排入引风机,完成整个工作过程。 二、特点 麻石水膜除尘器的特点,造价低,安装方便,抗腐蚀、耐磨、经久耐用,且性能稳定除尘率高,除尘效率一般可达95~97%,双筒除尘器除尘效率可达97%以上,适应性强,可用于多种工业锅炉和含尘场所的除尘、脱硫,运行稳定,维护简单。是用户理想的锅炉配套产品。 1、采用天然花岗岩,经机械加工成圆形弯板,整体结构光滑平整。有耐腐蚀,耐磨损,耐高温的特性。 2、内部平整光滑,使耗水量降低至原来的2/3,降低了运行成本。 3、安装时用耐酸胶涂在缝口连接,确保连接处不漏水。 4、进出口均配法兰并提供法兰尺寸,安装时法兰对接处用石棉绳填缝,严防漏风,影响除尘效果。 5、筒体底部是封闭的,这比传统不封闭的筒体提高了效率,降低了风能的消耗,减少了外部污染。 三、主要技术性能和参数 除尘效率:≥98% 脱硫效率:≥80% 进口烟速:18~22m/s 出口烟速:16~20m/s 捕滴器筒体上升烟速:3.5~5.5m/s

水膜除尘原理(精)

原理 花岗岩水膜脱硫除尘器又称:麻石除尘器。主要由文丘里、主筒体、上部注水槽、下部溢水孔、清理孔、副筒体和连接烟道(钢混结构)等组成,脱硫除尘器的工作原理是:含尘气流通过进口烟道进入文丘里,在喉部的入口被水均匀的喷入,由于烟气高速运动,因此喷入的水被其溶化成细小的水雾,湿润了烟气中的灰料。在这个过程烟气中的灰料被湿润,使它的重量加大而有利于被离心分离,在高速呈絮流状态中,由于水滴与尘粒差别较大,它们的速度差也较大。这样,灰粒与水滴就发生了碰撞凝聚,尤其是粒径细小的灰尘料可以被水雾水溶,这些都为灰料的分离做好充分的准备,此后进入主筒。花岗岩水膜脱硫除尘器主筒体是一个圆形筒体,水从除尘器上部注水槽进入主筒,使整个圆筒内壁形成一层水膜从上而下流动,烟气由筒体下部切向进入,在筒体内旋转上升,含尘气体在离心力作用下始终与筒体内壁面的水膜发生摩擦,这样含尘气体被水膜湿润,尘粒随水流到除尘器底部,从溢水孔排走,在筒体底部封底并设有水封槽以防止烟气从底部漏出,有清理孔便于进行筒体底部清理。除尘后废水由底部溢流孔排出进入沉淀池,沉淀中和,循环使用。净化后的气体,通过主筒体上部锥体部分进行脱水处理进入副筒后再进行沉降、分离脱水后,净化后的烟气通过副筒体下部排入引风机,完成除尘设备的整个工作过程。 一、脱硫除尘器除尘效率的计算方法 对于脱硫除尘器的除尘效率是指含尘气流在通过布袋式除尘器时新捕集下来的粉尘量占进入除尘设备的粉尘量的百分数,用公式表示为:C=Gc÷Gj×100%式中C——除尘效率,%,Gc——被捕集的粉尘量,kg;Gj——进入除尘器的粉尘量,kg。 脱硫除尘器的除尘效率是衡量脱硫除尘器性能最基本的参数,它表示除尘脱硫设备处理气流中粉尘的能力,它与滤料运行状态有关,并受粉尘性质、滤料种类、阻力、粉尘层厚度,过滤风速及清灰方式等诸多因素影响。脱硫除尘器的除尘效率与粉尘料径有着直接的关系,常用分级效率表示某一粒径(或粒径范围)下的除尘效率,它也是评价除尘器、静电除尘器性能的指标之一。脱硫除尘器中除尘效果的叛断脱硫除尘器性能的优劣通常用除尘效率、压力损失、过滤风速及滤料寿命来表示,对袋式除尘器进行研究和技术改良,有着重大的意义。 脱硫除尘器除尘效果的叛断

浮球塔麻石水膜除尘器改造技术

浮球塔麻石水膜除塵器改造技術 作者︰佚名文章來源︰中國洛陽萬山高新技術應用工程有限公司 一、概述 火力發電廠現用的文丘裡水膜式除塵器,因內部其結構簡單,對含有粉塵濃度較高的煙氣,進行處理時很難達到國家粉塵的排放標準,除塵效率一般90~95%。排放濃度大于即將出台的火力發電廠粉塵排放標準。在96年前建的電廠的投產的,煙氣最高允許排放濃度350毫克/立方米。透過我公司工程技術人員對有文丘裡水膜除塵器改造技術成果,採用浮球塔技術對麻石除塵器進行改造,不必拆除原麻石水膜除塵器,而改裝電除塵器,這樣可節省大量的資金。 浮球塔麻石水膜除塵器技術改造項目,是由浮球塔麻石水膜除塵器二級除塵器構成,浮球塔直接坐落在麻石水膜除塵器上部,取消了麻石水膜除塵器的干段。該除塵器的總高度比使用單個麻石水膜除塵器時高出2~4米。它的工作原理是在原麻石水膜除塵器上部加裝一罐體,內部有兩層網格裝有一萬多個直徑30 mm的塑膠小球,第一層塑膠小球上面有噴淋水裝置,營運時塑膠小球處于懸浮狀態,煙氣穿過小球時,粘塵被沾附在小球上,在被噴淋下來的水帶走,除塵效率可達到99%以上。 浮球塔麻石水膜除塵器改造項目是近幾年發展起來的一種新型高效全濕式過濾除塵技術。以前浮球塔在化工業中應用較多,多用于工業尾氣淨化、廢氣回收等。它具有吸收效果好。淨化效果率高等特點。隨著對環保要求的提升,浮球塔因其允許氣速高,處理能力大,氣液分佈比較均勻,不易堵塞等;優點,而應用于鍋爐尾氣消煙去塵中。 目前,在工業鍋爐和電站鍋爐中使用較多的除塵方法是靜電除塵、水膜除塵和多管除塵,靜電除塵效率較高,效果好,但其造價較高,維護費用較高,且無脫硫,因此有其應用的局限性;多管除塵不能消除黑煙,也不能脫硫,因此應用較多的還是水膜除塵,但是在實際運行中也存在水膜除塵因為某些原因而效率不高,達不到環保要求的情況。為了解決這個問題,可以在水膜除塵器的上端加裝一個二級除塵設備──浮球過濾塔,而成為浮球塔式水膜消煙除塵器。浮球塔式水膜除塵器是一種效率較高的鍋爐濕法消煙除塵脫硫設備。特別是能夠解決鍋爐冒黑煙的問題,能夠保護環境,將會取得很好的經濟效益。 二、工作原理 水膜除塵器是依靠離心力的作用把煙塵中的沉粒甩向水膜壁,被側壁不斷流下的水沖走,從而除掉塵粒。但對于微小顆粒的粉塵,由於慣性很小,所以很難除掉。浮球塔式消煙除塵器是透過慣性碰撞、接觸阻留的原理,使塵粒與液膜接觸,並被捕捉,塵粒與液滴接觸,從而增濕增重並凝聚,達到消煙除塵的目的。由於處理能力有限,所以一般它與水膜除塵器一起工作,較大顆粒的粉塵被水膜 除塵器除掉,細小的粉塵由浮球塔除掉。從水膜出來的含有微小塵粒的煙氣,經過浮球塔,在一定流速下衝擊填料球層時,小球開始浮動、旋轉、互相碰撞,再加上洗滌液的作用,在小球表面形成氣液混合物。含塵煙氣在小球隙縫間轉彎行走,與小球碰撞,塵粒被球表面形成的持水層捕集,向下流去,由於不斷有新的液體補充,因此,塵粒不斷被浮動小球表面的液體捕捉。從浮球層出來的煙塵再經過一端淋雨段,剩餘粉塵被進一步捕集。 三、設備架構 浮球塔是由筒體、閘極板、輕質浮球、噴嘴、除霧器等組成。筒體內下邊是閘極板,閘極板上放置一定數量的小球,球層上邊有噴嘴把噴淋液霧化后噴淋到小球表面,再上邊又有一層小球和噴嘴,最上邊是脫水器。筒體是浮球塔的基本構架,一般筒體是由碳鋼製成,內襯防腐材料,防腐材料可用耐蝕玻璃鋼;也可以用聚丙稀製作筒體外包一層玻璃鋼。

XL型旋流式水膜脱硫除尘器

XL型旋流式水膜脱硫除尘器 一、文丘里喷淋装置工艺原理 含有粉尘及硫化物的锅炉烟气进入文丘里喉管后,由于喉管断面积不变,管内静压下降到最低值,并维持不变,此时气流流速达到最高值;气流进入渐扩管,由于断面积逐扩大,管内静压逐渐得到恢复,气流流速也逐渐下降。在收缩管末端或喉管处通过喷嘴引入洗涤液,该处的气流速度就很高,由喷嘴喷出含有碱性的洗涤液在高速气流的冲击下,进一步雾化成更细小的雾滴,而且气、液、固(粒尘)三相的相对速度都很大,使它们得以更充分混合,从而增加了二氧化硫与碱液滴混合的机会,使大部分的二氧化硫和碱性液滴得以充分反应,达到脱硫目的。另一方面,由于碱性洗涤液雾化充分,使气体达到饱和程度,从而破坏了尘粒表面的气膜,使尘粒完全被水汽润湿。当气体进入扩散管后,这些被水润湿的尘粒与雾滴之间,以及不同粒径的尘粒或雾滴之间,在不同惯性力的作用下,在相互碰撞接触中凝聚成粒径较大的含尘液滴。这些较粗的含尘液滴随气流进入旋流式水膜除尘器后,在重力、惯性力、离心力的作用下,从气流中分离出来,从而达到净化目的。 二、XL旋流水膜脱硫除尘设备结构与原理 新一代XL型高效低阻旋流式水膜脱硫除尘器是在原有麻石水膜除尘器的基础上改进而成。具有安装方便、施工周期短、使用寿命长、价格低等优点,是新一代锅炉烟气除尘治理的理想产品。 XL型旋流式水膜脱硫除尘器主要由主筒体、上部注水槽、下部

溢水孔、清理孔等组成,其工作原理是:含尘气流通进入筒体,筒体是一个圆形筒体,水从除尘器上部注水槽进入筒内,使整个圆筒内壁形成一层水膜从上而下流动,烟气由筒体下部切向或蜗旋进入,在筒体内旋转上升,含尘气体及硫化物在离心力作用下始终与筒体内壁面的水膜发生摩擦,这样含尘气体被水膜湿润,含硫气体被碱液中和,尘粒随水流到设备底部,从溢水孔排走,在筒体底部封底并设有水封槽以防止烟气从底部漏出,有清理孔便于进行筒体底部清理。净化后废水由底部溢流孔排出进入沉淀池,沉淀再次中和,循环使用。净化后的气体,通过筒体上部锥体部分引出,从而达到除尘脱硫的目的。

除尘器选型

布袋除尘器设计涉及到因素和设计要点. 下面详细介绍设计中的四个重点: 1、使用温度 布袋除尘器的使用温度是设计的重要依据,使用温度与设计温度出现偏差,会酿成严重后果,因为温度受下述两个条件所制约: 一是不同滤料材质所允许的最高承受温度(瞬间允许温度和长期运行温度)有严格限制.二是为防止结露,气体温度必须保持在露点20℃以上. 对高温气体,必须将其冷却至滤料能承受的温度以下,冷却方式有多种,较为典型的有自然风管冷却、强制风冷、水冷等,具体可按不同的工艺及冷却温度、布置尺寸要求等进行设计选型. 2、处理风量 处理风量决定着布袋除尘器的规格大小,一般处理风量都用工况风量.设计时一定要注意除尘器使用场所及烟气温度,若布袋除尘器的烟气处理温度已经确定,而气体又采取稀释法冷却时,处理风量还要考虑增加稀释的空气量. 考虑今后工艺变化,风量设计指值在正常风量基础上要增加5%~10%的保险系数,否则今后一旦工艺调整增加风量,布袋除尘器的过滤速度会提高,从而使设备阻力增大,甚至缩短滤袋使用寿命,也将成为其他故障频率急剧上升的原因,但若保险系数过大,将会增加除尘器的投资和运转费用.箱式脉冲喷吹除尘器中,处于不同部位的各条滤袋,清灰强度存在较 大差异,且一般气耗量较大,滤袋长度受到限制,清灰效果对离线阀的气密性依赖较大,所 以箱式喷吹多用于中小型除尘器. 过滤风速因布袋除尘器的形式、滤料的种类及特性的不同而有很大差异,处理风量一经确定,即可根据确定的过滤风速来决定所必须的过滤面积. 3、入口含尘浓度 入口含尘浓度常以标态体积含尘质量表示,就入口含尘浓度,布袋除尘器设计时要作如下考 虑 (1) 设备阻力和清灰周期.入口含尘浓度增大,相同过滤面积情况下,设备阻力也增加,为维 持一定的设备阻力,清灰周期也相应缩短. (2) 滤料和箱体的磨损.在粉尘具有强磨损的高浓度状况下,磨损量与含尘浓度成正比,在除尘器入口处应有导流耐磨等处理技术,如烧结粉尘、氧化铝粉、硅砂粉等. (3) 预除尘器及过滤风速.在入口含尘浓度很高的情况下,应设计较低的过滤风速及设计预除 尘器,但如果设计具有初级沉降功能的结构形式,也可取消预除尘器.

文丘里湿式除尘器工艺设计

文丘里湿式除尘器工艺设计

南京工程学院 课程设计说明书设计题目:文丘里湿式除尘器工艺设计 课程名称:除尘与输灰系统及设备 院(系、部):环境工程学院 专业:电力环保 班级: 姓名: 学号: 起止日期:2014.12.22~2014.12.26 指导老师:张雯娣

一.绪论....................................... - 1 - 二、前言....................................... - 1 - 三、设计任务 ................................... - 2 - (一)主要技术参数 ........................... - 3 - (二)烟气量的计算 ........................... - 3 - 四、设计原则 ................................... - 5 - 五、设计计算 ................................... - 6 - (一)、步骤 ................................. - 6 - (二)、计算 ................................. - 6 - 六、参考文献 ...................................- 11 - 七、设计图纸 ...................................- 11 - 八、设计结论 ...................................- 11 -

水膜除尘器技术文件讲解

型煤烘干尾气除尘工程 技术文件 汨罗环保 二O 一六年四月

目录 第一章总论 (04) 第一节项目概述 (04) 第二节设计依据及设计参数 (05) 第三节设计原则 (06) 第二章燃煤炉窑烟气除尘治理工艺选择 (07) 第一节除尘方法选择原则 (07) 第二节炉窑烟气除尘处理工艺选择 (08) 第三节湿式除尘装置发展概况 (08) 第三章湿法烟气除尘技术 (09) 第一节湿法烟气除尘器的要求 (09) 第二节湿法烟气除尘须注意的问题 (09) 第四章SPX-65 型除尘器设备简介 (11) 第一节除尘器除尘工艺流程 (11) 第二节设备性能 (12) 第三节主体简介 (12) 第四节技术原理 (14) 第五节技术创新 (15) 第六节除尘原理 (17) 第七节液气分离原理 (19) 第五章设备技术指标与设计制造标准及结构材料 (19)

第一节SPX-65 型设备技术指标 (19) 第二节设计、制造、检验标准 (20) 第三节设备结构与材料 (20) 第四节SPX-65 型除尘塔材料清单 (21)

第一章总论 第一节项目概述 一、工程规模 本项目为:型煤烘干尾气除尘工程,生产过程中排出大量烟气,排烟温度约60℃,其烟气量为:200000m3/h,烟尘初始浓度:≤850mg/Nm3。 二、项目内容 尾气除尘工艺:采用湿式花岗石水膜除尘器除尘工艺。该除尘工艺系统主要由:花岗石水膜除尘器设备和除尘循环水处理系统组成。除尘系统按 200000m3/h 烟气量配套一台 SPX-60 型花岗石水膜除尘器设备和与除尘器配套的除尘循环水处理系统。 由于国家环保要求日益提高,单位各级领导对环境保护的重视,为了使该烘干炉排放烟气中的烟尘能达到新的环保要求排放,现决定对该烘干炉尾气进行除尘处理,结合烘干炉尾气含湿量大及现场实际情况,在达到环保要求的前提下,节省现场用地,节约系统投资成本。该尾气除尘设备采用湿式花岗石水膜除尘器设备,尾气除尘系统力求效率高、结构简单、操作管理方便和节省投资。我公司以丰富的工程经验及设计经验,结合贵单位实际情况,对该烘干炉尾气除尘工程进行工艺布置: 1、每台烘干炉配套一台 SPX-60型湿式花岗石水膜除尘器; 2、除尘器喷淋水采用沉淀后循环使用,无废水外排,无二次污染; 3、沉淀池采用除尘灰水 2 级自然沉淀,配套 2 级沉淀池规格: 第一级沉淀池规格:12400mm×4500mm×3000mm(长×宽×深); 第二级沉淀池规格:12400mm×4500mm×3000mm(长×宽×深) 4、循环水系统 循环水系统由循环清水池、循环泵及相应管道、阀门组成;

除尘器的选型计算

除尘器的选型计算 (1) 电除除尘器型号的确定 设计选用单区除尘器,即粒子的捕集和荷电是在同一个区 域中进行的。收尘集和放电极也在同一个区域。单区电除尘器按结构类型可分立式和卧式电除尘。立式电除尘器中的气流是自下而上垂直流动,一般用于烟气量较小,除尘效率不太高的场合。立式除尘器较高,气体通常直接排入大气,所以在正压下进行。卧式电除尘器内的气流是水平方向流动的。它的优点是按照不同除尘效率的要求,可任意增加电场长度和个数;能分段供电;适合于负压操作,引风机的寿命较长。本次设计由于烟气量大,采用卧式电除尘器。 (2) 电除尘器的台数 锅炉烟气量为210767.7h m /3 ,采用一台电除尘器 (3) 电场风速的确定 烟气在电除尘器内流速大小的选取,视电除尘器规格大小和被处 理烟气特性而定,一般在0.4~1.5m/s 范围内。电场风速与收尘效率无关,但对具有一定尺寸收尘极板面积的电除尘器而言,过高的电场风速不仅使电场长度增加,占地面积增大,而且会引起粉尘二次飞扬,降低除尘效率,反之,在一定的处理烟气量条件下,过低的电场风速必然需要大的电场断面。这样导致设备大,不经济。所以电场风速的选取要适当,本设计中取0.9m/s (4) 电除尘器截面积(初定) 式中 29 .036007.210767m v Q F =?== F ——电除尘器截面积,2 m Q ——处理烟气流量,h m /3 V ——电场风速,s m / (5) 除尘效率(η) 除尘效率可根据电除尘器进出口烟气浓度确定 %97.991270 3.011=-=- =C C s η 式中 C ——标准状态下烟气含尘浓度,3/m mg s C ——标准状态下锅炉烟气排放标准中的规定值,3/m mg (6) 有效驱进速度的确定 s cm s m A Q e /95.3/0395.011ln ==-= η ω 3<3.95<18 设计合理 (7) 集尘极板高度h

实验十三文丘里——旋风水膜除尘器的除尘模拟实验

实验十三文丘里——旋风水膜除尘器的除尘模拟实 验

实验四 GR型消烟除尘脱硫壹体化装置的模拟实验 壹、实验意义和目的 燃煤锅炉排放的烟气含有大量的二氧化硫和烟尘,是目前我国主要的大气污染源之壹,若不对该烟气加以净化处理,将会造成严重的大气污染。GR型消烟除尘脱硫壹体化装置是成熟先进的烟气净化装置,它是集消烟、除尘、脱硫为壹体的高效锅炉净化装置,该设备具有效率高,投资少,无二次水污染等特点,经全国多家锅炉应用运行表明其处理效果良好,出口烟气各项指标均达到国家规定的标准要求。通过本实验应达到以下目的: (1)了解湿式除尘脱硫壹体化装置的组成及运行过程; (2)掌握湿式除尘脱硫壹体化装置的工作原理; (3)掌握采用烟气平行采样仪测定烟气中烟尘和二氧化硫浓度的方法;二、实验原理 GR型消烟除尘脱硫壹体化装置的消烟除尘及脱硫原理 (1)消烟除尘原理 湿式消烟除尘脱硫过程是以水、气、固三相工艺技术组成的壹个系统,如何增大水、气、固的接触面积将直接影响消烟除尘脱硫效果,为增大接触面积,湿式净化装置,采用自激式核凝原理实现消烟除尘脱硫。内部结构是在除尘室内设置自循环给水、收缩段、弧形板、扩张段、阶段折流等。作用过程是烟气通过风机作用产生高速气流冲击液面,由于烟气气速高、气温高,可产生大量微小水滴及过饱和水蒸气,较大烟气在流动过程中和直碰撞聚结沉降,微细烟气作为过饱和蒸气的凝结核,均匀地冷凝于每个微粒上凝聚增大,由0.1~1μm增大到5μm

之上,经过较长的折流挡板和气液分离器将液固混合物从烟气中分离,达到消烟除尘脱硫效果。 (2)脱硫的主要原理 湿式脱硫的主要作用有俩个:壹是水对二氧化硫的物理吸收剂,二氧化硫溶于水SO 2+H 2O=H 2SO 3,这是壹个可逆过程,烟气脱硫效果受到最大溶解度的限制;二是化学吸收,烟气中SO 2和水中碱性物质发生中和反应,反应机理如下: 从反 应机理来见,脱硫效率受到气、液、固三相湍流状态和洗涤液的 浓度及碱度有关。 采用双碱法,双碱法包括吸收和再生俩个步骤。该法吸收SO 2采用钠基碱,因为它易吸收SO 2,反应速度快,反应充分,和钙基相比,在较低液气比时得到较高的脱硫效率,而运行中实际消耗的是廉价的石灰(钙基),因为吸收SO 2的废水进入再生池用石灰进行再生,使NaOH 或Na 2CO 3再生,重新进入除尘器内和SO 2发生反应。由于生成CaSO 3的沉淀反应不在除尘器内部,而是在沉淀再生池中进行,因此,不会在除尘器及管道中产生结垢和堵塞现象,在除尘器内部是吸收反应,生成的是Na 2SO 3。所以双碱法具有高脱硫率、不易堵塞结垢等优点,而实际消耗是便宜的石灰,运行费用也较低。反应方程式: ①吸收反应: NaOH+SO 2→Na 2SO 3+H 2O Na 2CO 3+SO 2→Na 2SO 3+CO 2↑ Na 2SO 3+SO 2→2NaHSO 3 - ++→→+3 23222)(SO H H SO H O H SO 液-+ - +→23 3 2SO H SO H O H OH H 2→++) ()(22液气SO SO →

麻石水膜除尘器烟气带水原因分析及技术改造

第21卷第4期电站系统工程V ol.21 No.4 2005年7月Power System Engineering Jul., 2005 文章编号:1005-006X(2005)04-0032-03 麻石水膜除尘器烟气带水原因分析及技术改造 鄢晓忠1余涛1林建湘2李立春2 (1.长沙理工大学,2.湖南华菱湘潭钢铁有限公司热电厂) 摘要:分析了麻石水膜除尘器烟气带水的原因,主要存在制水槽水被抽干、内筒不能形成正常水膜、入口烟气卷吸入口上方水帘带水及漏风等原因使烟气带水,从而使风机叶轮挂灰、腐蚀引起风机振动。针对以上原因,提出了切实可行的改造措施,基本消除了烟气带水现象,经实际使用证明效果良好。 关键词:麻石水膜除尘器;烟气带水;改造 中图分类号:TK223.27 文献标识码:B Reason Analysis for Smoke Watered of Pocked-stone Water-film Dust Collector and its Improvement YAN Xiao-zhong, YU Tao, LIN Jian-xiang, LI Li-chun Abstract: The reasons for smoke watered of the pocked-stone water-film dust collector, such as unwatered in the overflow channel, normal water-film can’t be formed in internal cylinder, the smoke entrainment in upper water curtain and air leakage, etc. Thus case ash deposit on fan impeller of the induce draft fans, corrosion and vibration. Feasible improvement measures are put forward and eliminate a great part of smoke watered. The practical use shows that the improvement is good, having very good economic and popularized value. Key words:pocked-stone water-film dust collector; smoke watered; improvement 湖南省湘潭钢铁公司热电厂现有5台燃煤锅炉,其中两台35 t/h和一台65 t/h的前置风力抛煤机倒转炉排炉,两台75 t/h的煤粉锅炉。它们都分别配备了麻石水膜除尘器。由于钢铁厂具有充足的高炉煤气,因此,考虑到回收利用高炉煤气,锅炉运行中以燃煤为主的同时,掺烧了占总供给热值40%左右的高炉煤气及少量焦炉煤气。但在运行中,发现除尘器效率较低,烟气带水严重,烟气含湿量增大,风机叶轮挂灰腐蚀严重。引风机运行中,粘附在叶轮上的灰浆水分逐渐蒸发,形成坚硬灰壳,并逐渐增厚。当部分灰壳脱落时,转子失去平衡,发生振动。经常性发生引风机振动超标,曾经出现过将6#锅炉引风机的地脚螺栓拔出、振裂基础的严重现象。锅炉被迫停炉进行处理,影响锅炉安全运行,同时也大大增加了维护工作量。鉴于此,由热电厂向总公司提出并立项对其存在的问题进行分析,并对麻石除尘器进行了改造,从改造后3年多的运行情况看,除尘器运行良好,达到了预期的改造目的。 1 麻石水膜除尘器的工作原理 锅炉运行中,通过多个喷嘴将水以1~2 m/s的速度喷淋在麻石筒上部的溢水槽内,水从除尘器上部溢水槽进入麻石砌的旋风筒内壁,使得整个内壁面从上而下形成一个均匀流动的水膜。从尾部烟道出来的含尘烟气以一定的速度从麻石除尘器的底部切向进入,做旋转运动并螺旋上升,烟尘粒子由于受到离心力的作用被甩到筒内壁的水膜上并被水膜粘附,而随水膜流到除尘器底部的锥形灰斗,经水封和排灰沟冲至沉渣池,净化后的烟气从顶部进入附筒,而被引风机 收稿日期: 2005-03-01 鄢晓忠(1963-),男,高级工程师。能源与动力工程学院,410077 抽出。因此,麻石内筒内烟气流运动可分解为竖直上升和绕筒中心旋转的两个运动,用矢量式表示为: 旋 升 V V V K K K + =,其中旋转运动的强弱对除尘脱水起着重要作用。所以形成完整水膜加强吸附作用和改善旋转分运动是提高除尘效率和有效防止烟气带水的有效办法。对于外水槽微压式供水方式的麻石水膜除尘器(见图1),是靠外水槽内的微压△p=γ水(H1-H2)在内筒内壁形成水膜,只要维持恒定的水位(H1不变),形成水膜的微压△p就是一个恒定值,从而形成稳定的水膜。同时,外水槽的水位实际上对制水槽(出水器)也起水封作用,H1为水封高度,为防止外水槽内的存水被抽空,P1=γ水H1应大于引风机的全压头300~500 Pa。水封高度H1可借助于水槽内的溢水漏斗维持。出水口高度H3有控制水膜厚度的作用。因此,在除尘器设计时,一般对H1、H2、H3有一定的要求。 图1 除尘器制水槽结构图 1.给水管 2.外水槽 3.溢水管 4.麻石 5.挡水檐 6.麻石筒 2 除尘器存在问题的原因分析 烟气带水及除尘效率较低是麻石水膜除尘器较普遍存 在的问题,原因是多方面的。如:运行操作不当、水膜形成

相关文档
最新文档