《直角三角形全等的判定》同步练习题
1.2.2 直角三角形全等的判定同步练习(答案版)
1.2.2 直角三角形全等的判定1.如果两个直角三角形的两条直角边对应相等,则这两个直角三角形全等的依是(C)A.SSSB.AASC.SASD.HL2.如图,∠C=∠D=90°,若利用“HL”可以判定Rt△ABC≌Rt△ABD,则还需要添加的条件是(B)A.∠BAC=∠BADB.BC=BD或AC=ADC.∠ABC=∠ABDD.以上都不正确3.下列条件中,不能判定两个直角三角形全等的是(B)A.两条直角边对应相等B.两个锐角对应相等C.一个锐角和一条直角边对应相等D.斜边和一条直角边对应相等4.如图,在△ABC中,∠C=90°,E为AC上一点,ED⊥AB于点D,BD=BC,连接BE,若AC=6 cm,则AE+DE等于(C)A.4 cm B.5 cm C.6 cm D.7 cm【点拨】由已知可证Rt△BDE≌Rt△BCE,∴DE=CE.∴AE+DE=AE+CE=AC=6 cm.5.如图,BD=CF,FD⊥BC于点D,DE⊥AB于点E,BE=CD,若∠AFD=134°,则∠EDF的度数为(A)A.44° B.36° C.46° D.34°【点拨】∵BD=CF,BE=CD,FD⊥BC,DE⊥AB,∴Rt△BDE≌Rt△CFD(HL).∴∠BDE=∠CFD.又∵∠CFD=180°-∠AFD=46°,∠EDF+∠EDB=90°,∴∠EDF=90°-46°=44°.【答案】A6.如图,在△ABC中,△C=90°,AD=AC,DE△AB交BC于点E.若△B=28°,则△AEC=(B)A.28°B.59°C.60°D.62°7.如图,在△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD,CE 相交于点O,AO的延长线交BC于点F,则图中全等的直角三角形有(D) A.3对B.4对C.5对D.6对8.如图,H是△ABC的高AD,BE的交点,且DH=DC.下列结论:①BD=AD;②BC=AC;③BH=AC;④CE=CD.其中正确的有(B)A.1个B.2个C.3个D.4个9.(中考·凉山州)如图,∠E=∠F=90°,∠B=∠C,AE=AF.下列结论:①EM=FN;②CD=DN;③∠F AN=∠EAM;④△ACN≌△ABM.其中正确的有(C)A.1个B.2个C.3个D.4个10.(中考·南京)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为(D)A.a+c B.b+cC.a-b+c D.a+b-c【点拨】∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°.∴∠A=∠C.又∵AB=CD,∴△ABF≌△CDE(AAS).∴AF=CE=a,DE=BF=b.∵EF=c,∴AD=AF+DF=a+(b-c)=a+b-c.【答案】D二.填空题11.如图所示,在△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件__AB=AC__ ,若加条件∠B=∠C,则可用_______AAS__________判定.第11题图第12题图第13题图12.如图所示,OD⊥AB于点D,OP⊥AC于点P,且OD=OP,则△AOD与△AOP全等的理由是____HL或斜边直角边定理_____13.如图所示,已知AB⊥CD,垂足为点B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是__AC=DE____14.如图,MN∥PQ,AB⊥PQ,点A,D在直线MN上,点B,C在直线PQ上,点E在AB上,AD+BC=7,AD=EB,DE=EC,则AB=___7_____.【点拨】∵MN∥PQ,AB⊥PQ,∴∠DAE=∠EBC=90°.∵AD=BE,DE=EC,∴Rt△ADE≌Rt△BEC.∴AE=BC.∵AD+BC=7,∴AB=AE+BE=BC+AD=7.三.计算证明题15.如图,在△ABC中,AB=42,D为BC上一点,AD=BD=4,在AD上找一点E,使BE=AC.(1)判断△ABD的形状,并说明理由;(2)求证:△BDE≌△ADC.解:(1)△ABD是等腰直角三角形.理由:在△ABD中,∵AD=BD=4,∴AD2+BD2=32.又∵AB=42,∴AB2=32,∴AD2+BD2=AB2,∴△ABD为等腰直角三角形.(2)证明:∵∠ADB=90°且∠ADB+∠ADC=180°,∴∠ADC=∠ADB=90°,∴△ADC 和△BDE 为直角三角形.在Rt △ADC 和Rt △BDE 中,⎩⎨⎧AC =BE ,AD =BD ,∴Rt △ADC ≌Rt △BDE (HL).16.如图,AC △BC ,AD △BD ,AD =BC ,CE △AB ,DF △AB ,垂足分别是E ,F .求证:CE =DF .证明:∵AC ⊥BC ,AD ⊥BD ,CE ⊥AB ,DF ⊥AB ,∴∠ACB =∠ADB =∠AEC =∠BFD =90°.在Rt △ABC 和Rt △BAD 中,⎩⎨⎧AB =BA ,BC =AD ,∴Rt △ABC ≌Rt △BAD (HL),∴AC =BD ,∠CAE =∠DBF .∵在△ACE 和△BDF 中,⎩⎨⎧∠CAE =∠DBF ,∠AEC =∠BFD ,AC =BD ,∴△ACE ≌△BDF (AAS),∴CE =DF .17.如图,在△ABC 中,AB =CB ,∠ABC =90°,F 为AB 延长线上一点,点E 在BC 上,且AE =CF.(1)求证:Rt △ABE ≌Rt △CBF ;(2)若∠CAE=30°,求∠ACF的度数.(1)证明:∵∠ABC=90°,∴∠CBF=∠ABE=90°.在Rt△ABE和Rt△CBF中,∵AE=CF,AB=CB,∴Rt△ABE≌Rt△CBF(HL).(2)解:∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°.∴∠BAE=∠CAB-∠CAE=45°-30°=15°.由(1)知Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=15°,∴∠ACF=∠BCF+∠ACB=15°+45°=60°.18.【中考·哈尔滨】已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE =90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1) 如图①,求证:AE =BD ; (2) 如图②,若AC =DC ,在不添加任何辅助线的情况下,请直接写出图②中四对全等的直角三角形.(1)证明:∵△ACB 和△DCE 都是等腰直角三角形,∠ACB =∠DCE =90°,∴AC =BC ,DC =EC ,∠ACB +∠ACD =∠DCE +∠ACD ,∴∠BCD =∠ACE ,在△ACE 与△BCD 中,⎩⎨⎧AC =BC ,∠ACE =∠BCD ,CE =CD ,∴△ACE ≌△BCD (SAS),∴AE =BD .(2)解:△ACB ≌△DCE ,△EMC ≌△BNC ,△AON ≌△DOM ,△AOB ≌△DOE.19.如图,∠C =∠D ,AC =AD .求证:BC =BD .【思路点拨】当图中的一对三角形根据已知条件无法证明全等时,可通过作辅助线将图形进行分割或添补,构造全等三角形.本题可过点A 分别作BC ,BD 的垂线,构造出几组全等的直角三角形.证明:过点A 作AM ⊥BC ,AN ⊥BD ,分别交BC ,BD 的延长线于点M ,N ,∴∠M =∠N =90°.∵∠ACB =∠ADB ,∴∠ACM =∠ADN .在△ACM 和△ADN 中,⎩⎨⎧∠M =∠N ,∠ACM =∠ADN ,AC =AD ,∴△ACM ≌△ADN (AAS).∴AM =AN ,CM =DN .在Rt △ABM 和Rt △ABN 中,⎩⎨⎧AB =AB ,AM =AN ,∴Rt △ABM ≌Rt △ABN (HL).∴BM =BN .∴BM -CM =BN -DN ,即BC =BD .20.如图,在△ABC 中,AB=AC,点P 从点B 出发沿线段BA 移动,同时,点Q 从点C 出发沿线段AC 的延长线移动,点P,Q 移动的速度相同,PQ 与直线BC 相交于点D.(1)如图①,求证PD=QD.(2)如图②,过点P 作直线BC 的垂线,垂足为E,当P,Q 在移动过程中,线段BE,ED,CD 中是否存在长度保持不变的线段?请说明理由.图3 图4(1)证明:如图3,过点P作PF//AC交BC于点F.∵点P和点Q同时出发,且速度相同,∴BP=CQ.∴PF//AQ,∴∠PFB=∠ACB,∠DPF=∠CQD.∵AB=AC,∴∠B=∠ACB.∴∠B=∠PFB.∴BP=FP.∴FP=CQ.在△PFD和△QCD中,∠DPF=∠DQC,∠PDF=∠QDC,FP=CQ,∴△PFD≌△QCD(AAS),∴PD=QD.(2)解:ED的长度保持不变.理由如下:如图4,过点P作PF//AC交BC于点F.由(1)知PB=PF.△PE△BF,△BE=EF.由(1)知△PFD△△QCD,△FD=CD.△ED=EF+FD=BE+CD=1BC.2△ED的长度为定值.。
2022年《直角三角形全等的判定》专题练习(附答案)
1.3 直角三角形全等的判定一、选择题(本大题共8小题)1. 在以下条件中,不能判定两个直角三角形全等的是( )2. 如下图,AB=CD,AE⊥BD于点E,CF⊥BD于点F,AE=CF,那么图中全等的三角形有( )第2题图第5题图第6题图3.以下说法中正确的选项是〔〕A.a,b,c是三角形的三边长,那么a2+b2=c2B.在直角三角形中,两边长和的平方等于第三边长的平方C.在Rt△ABC中,假设∠C=90°,那么三角形对应的三边满足a2+b2=c2D.在Rt△ABC中,假设∠A=90°,那么三角形对应的三边满足a2+b2=c24. 在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,∠A=∠B′,AB=B′A,那么以下结论中正确的选项是〔〕A. AC=A′C′B.BC=B′C′C.AC=B′C′D.∠A=∠A′5. 如下图,△ABC中,AB=AC,AD⊥BC交D点,E、F分别是DB、DC的中点,那么图中全等三角形的对数是〔〕6. 如图,在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,那么△BCE的面积等于〔〕A.10 B.7 C.5 D. 47. 在△ABC和△DEF中,∠A=∠D=90°,那么以下条件中不能判定△ABC和△DEF全等的是( )A.AB=DE,AC=DFB.AC=EF,BC=DFC.AB=DE,BC=EFD.∠C=∠F,BC=EF8. 如图,在Rt△ABC的斜边BC上截取CD=CA,过点D作DE⊥BC交AB于点E,那么有( )A.DE=DBB.DE=AEC.AE=BED.AE=BD第8题图第9题图二、填空题(本大题共4小题)9. :如图,AE⊥BC,DF⊥BC,垂足分别为E、F,AE=DF,AB=DC,那么△ABE≌△__________.10. 如图,BD⊥AE于点B,C是BD上一点,且BC=BE,要使Rt△ABC≌Rt△DBE,应补充的条件是∠A=∠D或__________或__________或__________.第10题图第11题图11. 如图,△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,假设根据“HL〞判定,还需要加一个条件__________.12. :如图,AB=CD,DE⊥AC于点E,BF⊥AC于点F,且DE=BF,∠D=60°,那么∠A=__________.三、计算题(本大题共4小题)13. :如图△ABC中,BD⊥AC,CE⊥AB,BD、CE交于O点,且BD=CE求证:OB=OC.14. :Rt△ABC中,∠ACB是直角,D是AB上一点,BD=BC,过D作AB的垂线交AC于E,求证:CD⊥BE15. 如图:在△ABC中,∠C=90° AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:〔1〕CF=EB.〔2〕AB=AF+2EB.16. 如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)假设CD=2,求AD的长.参考答案:一、选择题(本大题共8小题)1.A2. D3. C4. C5. D6. B7. B8. C二、填空题(本大题共6小题)9.分析:根据直角三角形全等的条件HL判定即可。
人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)
人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)一选择题1.下列条件不能判定两个直角三角形全等的是( )A. 斜边和一直角边对应相等B. 两个锐角对应相等C. 一锐角和斜边对应相等D. 两条直角边对应相等2.一块三角形玻璃被打碎后店员带着如图所示的一片碎玻璃去重新配一块与原来全等的三角形玻璃能够全等的依据是( )A. ASAB. AASC. SASD. SSS3.如图OD⊥AB于点D OP⊥AC于点P且OD=OP则△AOD与△AOP全等的理由是( )A. SSSB. ASAC. SSAD. HL4.如图为6个边长相等的正方形的组合图形则∠1+∠2+∠3的度数为( )A. 90°B. 135°C. 150°D. 180°5.如图AC是△ABC和△ADC的公共边下列条件中不能判定△ABC≌△ADC的是( )A. AB=AD,∠2=∠1B. AB=AD,∠3=∠4C. ∠2=∠1,∠3=∠4D. ∠2=∠16.如图已知点B、E、C、F在同一直线上且BE=CF,∠ABC=∠DEF那么添加一个条件后.仍无法判定△ABC≌△DEF的是( )A. AC=DFB. AB=DEC. AC//DFD. ∠A=∠D7.如图点C D在AB同侧∠CAB=∠DBA下列条件中不能判定△ABD≌△BAC的是( )A. ∠D=∠CB. BD=ACC. AD=BCD. ∠CAD=∠DBC8.如图D是AB上一点DF交AC于点E,DE=FE,FC//AB若AB=4,CF=3则BD的长是( )A. 0.5B. 1C. 1.5D. 29.如图△ABC中AB=AC,AD是角平分线BE=CF则下列说法中正确的有( )①AD平分∠EDF;②△EBD≌△FCD;③BD=CD;④AD⊥BC.A. 1个B. 2个C. 3个D. 4个10.两组邻边分别相等的四边形叫做“筝形”如图四边形ABCD是一个筝形其中AD=CD AB=CB 在探究筝形的性质时得到如下结论:③四边形ABCD的面积其中正确的结论有.( )A. 0个B. 1个C. 2个D. 3个二填空题11.如图在3×3的正方形网格中∠1+∠2=_______度.12.如图已知AB=AC,EB=EC,AE的延长线交BC于D则图中全等的三角形共有______对.13.如图所示的网格是正方形网格点A,B,C,D均落在格点上则∠BAC+∠ACD=____°.14.如图∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4则AC=______.15.如图在△ABC和△DEF中点B,F,C,E在同一直线上BF=CE,AB//DE请添加一个条件使△ABC≌△DEF这个添加的条件可以是______(只需写一个不添加辅助线).16.如图在△ABC中高AD和BE交于点H且DH=DC则∠ABC=°.17.如图在四边形ABCD中AB=AD,∠BAD=∠BCD=90∘连接AC若AC=6则四边形ABCD的面积为.18.如图∠C=90°,AC=20,BC=10,AX⊥AC点P和点Q同时从点A出发分别在线段AC和射线AX上运动且AB=PQ当AP=______时以点A,P,Q为顶点的三角形与△ABC全等.19.如图△ABC中AB=AC,AD⊥BC于D点DE⊥AB于点E BF⊥AC于点F,DE=3cm则BF=cm.20.如图所示∠E=∠F=90∘,∠B=∠C,AE=AF结论:①EM=FN②AF//EB③∠FAN=∠EAM④△ACN≌△ABM.其中正确的有______ .三解答题21.如图点A,D,C,F在同一条直线上AD=CF,AB=DE,AB//DE.求证:BC=EF.22.如图点C、F、E、B在一条直线上∠CFD=∠BEA,CE=BF,DF=AE写出CD与AB之间的关系并证明你的结论.23.如图B、C、E三点在同一条直线上AC//DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE24.已知:如图在△ABC中BE⊥AC垂足为点E,CD⊥AB垂足为点D且BD=CE.求证:∠ABC=∠ACB.25.如图在△ABC中AB=CB,∠ABC=90°,D为AB延长线上一点点E在BC边上且BE=BD 连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°求∠BDC的度数.答案和解析1.【答案】B【解析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS做题时要结合已知条件与全等的判定方法逐一验证.【解答】解:A.符合判定HL故本选项正确不符合题意;B.全等三角形的判定必须有边的参与故本选项错误符合题意;C.符合判定AAS故本选项正确不符合题意;D.符合判定SAS故本选项正确不符合题意.故选B.2.【答案】A【解析】本题考查了全等三角形的判定:全等三角形的判定方法中选用哪一种方法取决于题目中的已知条件若已知两边对应相等则找它们的夹角或第三边;若已知两角对应相等则必须再找一组对边对应相等若已知一边一角则找另一组角或找这个角的另一组对应邻边.利用全等三角形判定方法进行判断.【解答】解:这片碎玻璃的两个角和这两个角所夹的边确定从而可根据“ASA”重新配一块与原来全等的三角形玻璃.故选:A.3.【答案】D【解析】本题考查了直角三角形全等的判定的知识点解题关键点是熟练掌握直角三角形全等的判定方法HL.根据直角三角形全等的判别方法HL可证△AOD≌△AOP.【解答】解:∵OD⊥AB且OP⊥AC∴△AOD和△AOP是直角三角形又∵OD=OP且AO=AO∴△AOD≌△AOP(HL).故选D.4.【答案】B【解析】本题考查了全等图形准确识图并判断出全等的三角形是解题的关键标注字母利用“边角边”证明△ABC和△DEA全等根据全等三角形对应角相等可得∠1=∠4从而求出∠1+∠3=90°再判断出∠2=45°进而计算即可得解.【解答】解:如图在△ABC和△DEA中{AB=DE∠ABC=∠DEA=90°BC=EA,∴△ABC≌△DEA(SAS)∴∠1=∠4∵∠3+∠4=90°∴∠1+∠3=90°又∵∠2=45°∴∠1+∠2+∠3=90°+45°=135°.故选B.5.【答案】A【解析】本题考查三角形全等的判定方法判定两个三角形全等的一般方法有:SSS SAS ASA AAS等.利用全等三角形的判定定理:SSS SAS ASA AAS等逐项进行分析即可.判定两个三角形全等时必须有边的参与若有两边一角对应相等时这个角必须是两边的夹角.【解答】解:A.AB=AD∠2=∠1再加上公共边AC=AC不能判定△ABC≌△ADC故此选项符合题意;B.AB=AD∠3=∠4再加上公共边AC=AC可利用SAS判定△ABC≌△ADC故此选项不合题意;C.∠2=∠1∠3=∠4再加上公共边AC=AC可利用ASA判定△ABC≌△ADC故此选项不合题意;D.∠2=∠1∠B=∠D再加上公共边AC=AC可利用AAS判定△ABC≌△ADC故此选项不合题意;故选A.6.【答案】A【解析】解:∵BE=CF∴BE+EC=EC+CF即BC=EF且∠ABC=∠DEF∴当AC=DF时满足SSA无法判定△ABC≌△DEF故A不能;当AB=DE时满足SAS可以判定△ABC≌△DEF故B可以;当AC//DF时可得∠ACB=∠F满足ASA可以判定△ABC≌△DEF故C可以;当∠A=∠D时满足AAS可以判定△ABC≌△DEF故D可以;故选:A.根据全等三角形的判定方法逐项判断即可.本题主要考查全等三角形的判定方法 掌握全等三角形的判定方法是解题的关键 即SSS SAS ASA AAS 和HL .7.【答案】C【解析】本题考查了全等三角形的判定定理的应用 能熟记全等三角形的判定定理是解此题的关键 注意:全等三角形的判定定理有SAS ASA AAS SSS 符合SSA 和AAA 不能推出两三角形全等. 根据图形知道隐含条件BC =BC 根据全等三角形的判定定理逐个判断即可.【解答】解:A 添加条件∠D =∠C 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理AAS 能推出△ABD ≌△BAC 故本选项错误;B 添加条件BD =AC 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理SAS 能推出△ABD ≌△BAC 故本选项错误;C 添加条件AD =BC 还有已知条件∠CAB =∠DBA BC =BC 不符合全等三角形的判定定理 不能推出△ABD ≌△BAC 故本选项正确;D ∵∠CAB =∠DBA ∠CAD =∠DBC∴∠DAB =∠CBA 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理ASA 能推出△ABD ≌△BAC 故本选项错误;故选C .8.【答案】B【解析】解:∵CF//AB∴∠A =∠FCE ∠ADE =∠F∴在△ADE 和△CFE 中{∠A =∠FCE∠ADE =∠F DE =FE∴△ADE ≌△CFE(AAS)∴AD =CF =3∵AB =4∴DB =AB −AD =4−3=1.故选B .根据平行线的性质 得出∠A =∠FCE ∠ADE =∠F 再根据全等三角形的判定证明△ADE ≌△CFE得出AD=CF根据AB=4CF=3即可求线段DB的长.本题考查了全等三角形的性质和判定平行线的性质的应用能判定△ADE≌△FCE是解此题的关键解题时注意运用全等三角形的对应边相等对应角相等.9.【答案】C【解析】解:∵AB=AC AD平分∠BAC∴BD=DC AD⊥BC故③④正确在RT△BDE和RT△CDF中{BE=CFBD=CD∴RT△BDE≌RT△CDF故②正确∵AD⊥BC∴∠ADC=∠CDF=90°∴BC平分∠EDF.故①错误.故选:C.根据等腰三角形的三线合一可以判断③④正确根据HL可以证明RT△BDE≌RT△CDF可以判断②正确由BC平分∠EDF得出①错误故不难得到结论.本题考查全等三角形的判定和性质等腰三角形的性质角平分线的定义等知识解题的关键是等腰三角形三线合一的性质的应用属于中考常考题型.10.【答案】C【解析】此题考查全等三角形的判定和性质关键是根据SSS证明△ABD与全等和利用SAS证明与全等.【解答】解:如图在△ABD与中故①正确;∴∠ADB=∠CDB在与中∴∠AOD=∠COD=90°∴AC⊥DB故②正确;故③错误.故选C.11.【答案】90【解析】本题考查了全等三角形的判定和性质能看懂图形是解题的关键.首先判定两个三角形全等然后根据全等三角形的性质及直角三角形的性质即可判断得出结论.【解答】解:如图所示:∵∠ACB=∠DCE=90°AC=DC BC=EC∴Rt△ACB≌Rt△DCE∴∠2=∠EDC在Rt△DCE中∠1+∠EDC=90°∴∠1+∠2=90°.12.【答案】3【解析】解:①△ABE≌△ACE∵AB=AC EB=EC∴△ABE≌△ACE;②△EBD≌△ECD∵△ABE≌△ACE∴∠ABE=∠ACE∴∠EBD=∠ECD∵EB=EC∴△EBD≌△ECD;③△ABD≌△ACD∵△ABE≌△ACE△EBD≌△ECD∴∠BAD=∠CAD∵∠ABC=∠ABE+∠BED∴∠ABC=∠ACB∵AB=AC∴△ABD≌△ACD∴图中全等的三角形共有3对.在线段AD的两旁猜想所有全等三角形再利用全等三角形的判断方法进行判定三对全等三角形是△ABE≌△ACE△EBD≌△ECD△ABD≌△ACD.本题考查学生观察猜想全等三角形的能力同时也要求会运用全等三角形的几种判断方法进行判断.13.【答案】90【解析】【解答】解:在△DCE和△ABD中∵{CE=BD=1∠E=∠ADB=90°DE=AD=3∴△DCE≌△ABD(SAS)∴∠CDE =∠DAB∵∠CDE +∠ADC =∠ADC +∠DAB =90°∴∠AFD =90°∴∠BAC +∠ACD =90°故【答案】90.【分析】本题网格型问题 考查了三角形全等的性质和判定及直角三角形各角的关系 本题构建全等三角形是关键.证明△DCE ≌△ABD(SAS) 得∠CDE =∠DAB 根据同角的余角相等和三角形的内角和可得结论. 14.【答案】6【解析】本题考查了全等三角形的判定与性质有关知识 由AAS 证明△ABC ≌△EFC 得出对应边相等AC =EC BC =CF =4 求出EC 即可得出AC 的长.【解答】解:∵AC ⊥BE∴∠ACB =∠ECF =90°在△ABC 和△EFC 中{∠ACB =∠ECF ∠A =∠E AB =EF∴△ABC ≌△EFC(AAS)∴AC =EC BC =CF =4∵EC =BE −BC =10−4=6∴AC =EC =6;故答案为6. 15.【答案】AB =ED【解析】解:添加AB =ED∵BF =CE∴BF +FC =CE +FC即BC =EF∵AB//DE∴∠B =∠E在△ABC 和△DEF 中{AB =ED∠B =∠E CB =FE,∴△ABC ≌△DEF(SAS)故【答案】AB =ED .根据等式的性质可得BC =EF 根据平行线的性质可得∠B =∠E 再添加AB =ED 可利用SAS 判定△ABC ≌△DEF .本题考查三角形全等的判定方法 判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL .注意:AAA SSA 不能判定两个三角形全等 判定两个三角形全等时 必须有边的参与 若有两边一角对应相等时 角必须是两边的夹角.16.【答案】45【解析】本题考查了全等三角形的判定与性质 余角的性质 等腰直角三角形 由三角形的高得到∠ADB =∠ADC =∠BEC =90° 结合余角的性质得到∠HBD =∠CAD 易证△HBD ≌△CAD 得到AD =BD 根据等腰直角三角形得到∠ABD =45° 即可得出结论.【解答】解:∵AD ⊥BC BE ⊥AC∴∠ADB =∠ADC =∠BEC =90°∴∠HBD +∠C =∠CAD +∠C =90°∴∠HBD =∠CAD∵在△HBD 和△CAD 中{∠HBD =∠CAD,HDB =∠CDA,DH =DC,∴△HBD ≌△CAD(AAS)∴AD =BD∵∠ADB =90°∴△ABD 为等腰直角三角形∴∠ABD =45° 即∠ABC =45°故答案为45.17.【答案】18【解析】本题考查全等三角形的判定和性质和三角形的面积.过点A 作AE ⊥AC 交CD 的延长线于点E.做出辅助线是解答本题的关键.过点A 作AE ⊥AC 交CD 的延长线于点E 证明△AED ≌△ACB 将四边形ABCD 的面积转化为△ACE 的面积 利用三角形面积公式求解即可.【解答】解:过点A 作AE ⊥AC 交CD 的延长线于点E∵∠EAC =∠BAD =90°∴∠EAD =∠CAB∵∠BAD =∠BCD =90∘∴∠ADC +∠ABC =360°−(∠BAD +∠BCD)=180°又∵∠ADE +∠ADC =180∘∴∠ADE =∠ABC在△AED 与△ACB 中{∠EAD =∠CABAD =AB ∠ADE =∠ABC∴△AED ≌△ACB(ASA)∴AE =AC =6 四边形ABCD 的面积等于△ACE 的面积故S 四边形ABCD =12AC ⋅AE =12×6×6=18.故答案为18. 18.【答案】10或20【解析】解:∵AX ⊥AC∴∠PAQ =90°∴∠C=∠PAQ=90°分两种情况:①当AP=BC=10时在Rt△ABC和Rt△QPA中{AB=PQBC=AP∴Rt△ABC≌Rt△QPA(HL);②当AP=CA=20时在△ABC和△PQA中{AB=PQAP=AC∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=10或20时△ABC与△APQ全等;故【答案】10或20.分两种情况:①当AP=BC=10时;②当AP=CA=20时;由HL证明Rt△ABC≌Rt△PQA(HL);即可得出结果.本题考查了直角三角形全等的判定方法;熟练掌握直角三角形全等的判定方法本题需要分类讨论难度适中.19.【答案】6【解析】本题考查了全等三角形的判定与性质三角形的面积利用面积公式得出等式是解题的关键.先利用HL证明Rt△ADB≌Rt△ADC得出S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB又S△ABC=12AC⋅BF将AC=AB代入即可求出BF.【解答】解:在Rt△ADB与Rt△ADC中{AB=ACAD=AD ∴Rt△ADB≌Rt△ADC∴S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB∵S△ABC=12AC⋅BF∴12AC⋅BF=3AB ∵AC=AB∴12BF=3cm∴BF=6cm.故【答案】6.20.【答案】①③④【解析】此题考查了全等三角形的性质与判别考查了学生根据图形分析问题解决问题的能力.其中全等三角形的判别方法有:SSS SAS ASA AAS及HL.学生应根据图形及已知的条件选择合适的证明全等的方法.由∠E=∠F=90°∠B=∠C AE=AF利用“AAS”得到△ABE与△ACF全等根据全等三角形的对应边相等且对应角相等即可得到∠EAB与∠FAC相等AE与AF相等AB与AC相等然后在等式∠EAB=∠FAC两边都减去∠MAN得到∠EAM与∠FAN相等然后再由∠E=∠F=90°AE=AF∠EAM=∠FAN利用“ASA”得到△AEM与△AFN全等利用全等三角形的对应边相等对应角相等得到选项①和③正确;然后再∠C=∠B AC=AB∠CAN=∠BAM利用“ASA”得到△ACN与△ABM全等故选项④正确;若选项②正确得到∠F与∠BDN相等且都为90°而∠BDN不一定为90°故②错误.【解答】解:在△ABE和△ACF中∠E=∠F=90°AE=AF∠B=∠C∴△ABE≌△ACF(AAS)∴∠EAB=∠FAC AE=AF AB=AC∴∠EAB−∠MAN=∠FAC−∠NAM即∠EAM=∠FAN在△AEM和△AFN中∠E=∠F=90°AE=AF∠EAM=∠FAN∴△AEM≌△AFN(ASA)∴EM=FN∠FAN=∠EAM故选项①和③正确;在△ACN和△ABM中∠C=∠B∠CAN=∠BAM AC=AB∴△ACN≌△ABM(ASA)故选项④正确;若AF//EB∠F=∠BDN=90°而∠BDN不一定为90°故②错误则正确的选项有:①③④.21.【答案】解:∵AB//DE∴∠A =∠EDF∵AC =AD +DC DF =DC +CF 且AD =CF∴AC =DF在△ABC 和△DEF 中{AB =DE∠A =∠EDF AC =DF∴△ABC ≌△DEF(SAS)∴BC =EF .【解析】先证明AC =DF 再根据SAS 推出△ABC ≌△DEF 便可得结论.本题考查了全等三角形的判定和性质的应用 证明三角形的边相等 往往转化证明三角形的全等. 22.【答案】解:CD//AB CD =AB理由是:∵CE =BF∴CE −EF =BF −EF∴CF =BE在△CFD 和△BEA 中{CF =BE∠CFD =∠BEA DF =AE∴△CFD ≌△BEA(SAS)∴CD =AB ∠C =∠B∴CD//AB .【解析】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角对应相等的重要工具.在判定三角形全等时 关键是选择恰当的判定条件. 求出CF =BE 根据SAS 证△CFD ≌△BEA 推出CD =AB ∠C =∠B 根据平行线的判定推出CD//AB .23.【答案】证明:∵AC//DE∴∠ACB =∠E ∠ACD =∠D∵∠ACD =∠B∴∠D =∠B在△ABC 和△EDC 中{∠B =∠D∠ACB =∠E AC =CE∴△ABC ≌△CDE(AAS).【解析】此题主要考查了全等三角形的判定 平行线的性质.首先根据AC//DE 利用平行线的性质可得:∠ACB =∠E ∠ACD =∠D 再根据∠ACD =∠B 证出∠D =∠B 然后根据全等三角形的判定定理AAS 证出△ABC ≌△CDE 即可.24.【答案】证明:∵BE ⊥AC CD ⊥AB∴∠BDC =∠CEB =90°在Rt △BCD 和Rt △CBE 中{BC =CB BD =CE∴Rt △BCD ≌Rt △CBE(HL)∴∠DBC =∠ECB即∠ABC =∠ACB .【解析】本题考查了全等三角形的判定与性质;证明三角形全等是解题的关键.证明Rt △BCD ≌Rt △CBE(HL) 即可得出结论.25.【答案】(1)证明:∵∠ABC =90°∴∠DBC =90°在△ABE 和△CBD 中{AB =CB∠ABE =∠CBD BE =BD∴△ABE ≌△CBD(SAS);(2)解:∵AB =CB ∠ABC =90°∴∠BCA =45°∴∠AEB =∠CAE +∠BCA =30°+45°=75°∵△ABE ≌△CBD∴∠BDC =∠AEB =75°.【解析】(1)由条件可利用SAS证得结论;(2)由等腰直角三角形的性质可先求得∠BCA利用三角形外角的性质可求得∠AEB再利用全等三角形的性质可求得∠BDC.本题主要考查全等三角形的判定和性质掌握全等三角形的判定方法(即SSS SAS ASA AAS和HL)和全等三角形的性质(即全等三角形的对应边相等对应角相等)是解题的关键.。
直角三角形全等的判定_习题精选
习题精选
直角三角形全等的判定
(一)习题精选
1、判断下列条件能否判断两直角三角形全等,并说明理由
(1)一个锐角和这个锐角的对边对应相等。
(2)一个锐角和这个锐角相邻的一条直角边对应相等。
(3)一锐角与斜边对应相等。
(4)两直角边对应相等。
(5)两边对应相等。
(6)两锐角对应相等。
(7)一锐角和一边对应相等
2、下面说法不正确的是()
A、有一角和一边对应相等的两个直角三角形全等
B、有两边对应相等的两个直角三角形全等
C、有两角对应相等的两个直角三角形全等
D、有两角和一边对应相等的两个直角三角形全等
提示:先作出距离,利用三角形全等得到所求距离与CM相等。
提示:欲证BE⊥AC,则证∠AEB=,而直接证∠AEB=不好证,转化为证∠AFE+∠DAC=
5、如图3,已知:AD=BC,BE⊥AC,DF⊥AC,且BE=DF.
求证:(1)△ABE≌△CDF,(2)AB∥CD
提示:(1)由已知得△ADF≌△CBE,即AF=CE也就得到AE=CF。
(2)利用内错角相等两直线平行。
6、如图4,已知:∠A=, AB=BD,ED⊥BC于 D
求证:AE=ED
提示:找两个全等三角形,需连结BE。
八年级数学直角三角形全等的判定同步练习
1.1 探索勾股定理1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt △ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt △ABC 的三边,ο90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt △ABC 的三边,ο90=∠C ,则a 2+b 2=c 2.2. △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+3.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定4.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A .42B .32C .42 或 32D .37 或 335.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .6.假如有一个三角形是直角三角形,那么三边a 、b 、c 之间应满足 ,其中 边是直角所对的边;如果一个三角形的三边a 、b 、c 满足222b c a =+,那么这个三角形是 三角形,其中b 边是 边,b 边所对的角是 .7.一个三角形三边之比是6:8:10,则按角分类它是 三角形.8. 若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .9.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是 .10. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .11.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.AC B3m 4m20m 12.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?13.如图,小李准备建一个蔬菜大棚,棚宽4m ,高3m,长20m ,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.14.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?16.如下图所示,△ABC 中,AB =15 cm ,AC =24 cm ,∠A =60°,求BC 的长.A小汽车 小汽车 B C观测点A 17.如图,在四边形ABCD 中,∠BAD=90°,∠DBC=90°,AB=3,AD=4,BC=12,求CD 的长。
直角三角形全等的判定练习题
D EACB1、若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .2、如图,在△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,DE ⊥AB 于E , AB =10㎝,AC =6㎝,△BDE 的周长是 。
3、一个长方形的长为12cm ,对角线长为13cm ,则该长方形的周长为 .4、如图,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm , 先将直角边AC 沿AD 折叠,使它落在斜边AB 上,且与AE 重合, 则CD = .5、一透明的圆柱状玻璃杯,底面半径为10cm,高为15cm,一根吸管斜放与杯中,吸管露出杯口外5cm,则吸管长为___________cm.6、第七届国际数学教育大会的会徽主题图案是由一连串如图所示的直角三角形演化而成的. 设其中的第一个直角三角形OA 1A 2是等腰三角形,且OA 1=A 1A 2=A 2A 3=A 3A 4=……=A 8A 9=1,请你计算OA 9的长是 . 7、在直角三角形ABC 中,若∠C=90°,D 是BC 边上的 一点,且AD=2CD ,则∠ADB 的度数是( ) A .100° B .110° C .120° D .150°8、等腰三角形底边上的高为8,腰长为10,则三角形的面积为( ). A .56 B .48 C .40 D .329、如果△ABC 的三边分别为m 2-1,2 m ,m 2+1(m >1)那么( ) A. △ABC 是直角三角形,且斜边长为m 2+1; B. △ABC 是直角三角形,且斜边长为2m ;C. △ABC 是直角三角形,但斜边长需由m 的大小确定;D. △ABC 不是直角三角形. 10、在下列定理中假命题是( )A .一个等腰三角形必能分成两个全等的直角三角形B .一个直角三角形必能分成两个等腰三角形C .两个全等的直角三角形必能拼成一个等腰三角形D .两个等腰三角形必能拼成一个直角三角形 11、如图,Rt △ABC 中,∠B=90°,∠ACB=60°,延长BC 到D ,使CD=AC 则AC :BD=( )A .1:1B .3:1C .4:1D .2:312、如图,南北向MN 以西为我国领海,以东为公海.上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B.已知A 、C 两艇的距离是13海里,A 、B 两艇的距离是5海里;第4题E DCA反走私艇测得离C艇的距离是12海里.若走私艇C的速度不变,最早会在什么时间进入我国领海?13、如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于E.(1)若BC在DE的同侧(如图①)且AD=CE,说明:BA⊥A C.(2)若BC在DE的两侧(如图②)其他条件不变,问AB与AC仍垂直吗?若是请予证明,若不是请说明理由14、如图,在△ABC中,∠B=∠C,D、E分别是BC、AC的中点,AB=6,求DE的长。
沪教版(上海)八年级上册数学 19.7 直角三角形全等的判定 同步习题(含答案)
19.7 直角三角形全等的判定同步习题一、选择题1.如图,已知在△ABC中,∠ABC=90°,∠A=30°,BD⊥AC,DE⊥BC,D、E为垂足,下列结论正确的是()A.AC=2AB B.AC=8EC C.CE=12BD D.BC=2BD2. 如图,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD和CE交于点O,AO的延长线交BC于F,则图中全等直角三角形的对数为()A. 3对B. 4对C. 5对D. 6对3. 如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是()A.1B.2C.3D.44. 在如图中,AB=AC,BE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则下列结论中不正确的是()A. △ABE≌△ACFB. 点D在∠BAC的平分线上C. △BDF≌△CDED. 点D是BE的中点5.如图,一根木棍斜靠在与地面(OM)垂直的墙(ON)上,设木棍中点为P,若木棍A端沿墙下滑,且B沿地面向右滑行.在此滑动过程中,点P到点O的距离()A.不变 B.变小 C.变大 D.无法判断6. 已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为()A. 1B. 2C. 5D. 无法确定二、填空题7. 如图,E、B、F、C在同一条直线上,若∠D=∠A=90°,EB=FC,AB=DF.则ΔABC≌_____,全等的根据是_____.8. 如图,已知AB⊥BD于B,ED⊥BD于D,EC⊥AC,AC=EC,若DE=2,AB=4,则DB=______.9. 判定两直角三角形全等的各种条件:(1)一锐角和一边;(2)两边对应相等;(3)两锐角对应相等.其中能得到两个直角三角形全等的条件是_________.10. 如图,△ABC中,AM平分∠CAB,CM=20cm,那么M到AB的距离是_________cm.11. 如图,已知AD是△ABC的高,E为AC上一点,BE交AD于F,且BF=AC,FD=CD.则∠BAD=_______.12.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE= .三、解答题13. 如图所示,在△ABC中,AB=AC,D是BC边上的点,DE⊥AB,DF⊥AC,垂足分别为点E、F,∠BAC=120°.求证:12DE DF BC+=.14.如图,△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点. (1)求证:MN⊥DE;(2)连结DM,ME,猜想∠A与∠DME之间的关系,并写出推理过程;(3)若将锐角△ABC变为钝角△ABC,如图,上述(1)(2)中的结论是否都成立?若结论成立,直接回答,不需证明;若结论不成立,说明理由.15. 如图,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,•若AB=CD,试证明BD平分EF.参考答案一.选择题1. B;2. D;3. A;4. D;5. A;6. A;二.填空题7. △DFE,HL;8. 6;9. (1)(2)10.20;11.45°;12.4cm;三.解答题13.证明:∵在△ABC中,AB=AC,∠BAC=120°,∴∠B=∠C=1(180)302BAC︒-∠=︒.∵ DE⊥AB,DF⊥AC,∴12DE BD=,12DF CD=.∴12DE DF BC+=.14.解:(1)如图,连接DM,ME,∵CD、BE分别是AB、AC边上的高,M是BC的中点.∴DM=12BC,ME=12BC,∴DM=ME,又∵N是DE中点,∴MN⊥DE;(2)在△ABC中,∠ABC+∠ACB=180°-∠A,∵DM=ME=BM=MC,∴∠BMD+∠CME=(180°-2∠ABC)+(180°-2∠ACB) =360°-2(∠ABC+∠ACB)=360°-2(180°-∠A)=2∠A,∴∠DME=180°-2∠A;(3)结论(1)成立,结论(2)不成立,理由如下:在△ABC中,∠ABC+∠ACB=180°-∠A,∵DM=ME=BM=MC,∴∠BME+∠CMD=2∠ACB+2∠ABC=2(180°-∠A)=360°-2∠A ∴∠DME=180°-(360°-2∠A)=2∠A-180°.15.证明∵DE⊥AC,BF⊥AC,∴∠DEG=∠BFE=90°.∵AE=CF,AE+EF=CF+EF.即AF=CE.在Rt△ABF和Rt△CDE中,,, AB CD AF CE=⎧⎨=⎩∴Rt△ABF≌Rt△CDE(HL),∴BF=DE.在△BFG和△DEG中,,,,BFG DEGBGF DGE BF DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BFG≌△DEG(AAS),∴FG=EG,即BD平分EF.。
用“HL”证直角三角形全等同步练习含答案
用“HL ”证直角三角形全等同步练习含答案基础题基础题知识点1 1 用“用“用“HL HL HL”判定两个三角形全等”判定两个三角形全等”判定两个三角形全等1.如图,∠.如图,∠A A =∠D==∠D=909090°,°,°,AC AC AC==DB DB,则△ABC≌△DCB ,则△ABC≌△DCB 的理由是(的理由是( ) A .HL HL B .ASA C .AAS D .SAS2.下列判定两个直角三角形全等的方法中,不正确的是(.下列判定两个直角三角形全等的方法中,不正确的是( ) A .两条直角边分别对应相等.两条直角边分别对应相等 B .斜边和一锐角分别对应相等.斜边和一锐角分别对应相等 C .斜边和一条直角边分别对应相等.斜边和一条直角边分别对应相等 D .两个三角形的面积相等.两个三角形的面积相等3.如图所示,△.如图所示,△ABC ABC 中,中,AD AD AD⊥⊥BC 于D ,再添加一个条件,再添加一个条件____________________________________________________________,可使△ABD≌△ACD.,可使△ABD≌△ACD.,可使△ABD≌△ACD.4.如图,小明和小芳以相同的速度分别同时从A ,B 出发,小明沿AC 行走,小芳沿BD 行走,并同时到达C 、D ,若CB⊥AB,CB⊥AB,DA DA DA⊥⊥AB AB,则,则CB 与DA 相等吗?为什么?21世纪教育网版权所有5.已知AD⊥BE,垂足C 是BE 的中点,的中点,AB AB AB==DE DE,请说明,请说明AB∥DE 的理由.的理由.6.如图,∠.如图,∠ACB ACB ACB=∠CFE==∠CFE==∠CFE=909090°,°,°,AB AB AB==DE DE,,BC BC==EF EF,求证:,求证:,求证:AD AD AD==CF.知识点2 2 直角三角形全等判定方法的选用直角三角形全等判定方法的选用直角三角形全等判定方法的选用7.在Rt Rt△△ABC 和Rt Rt△△A ′B ′C ′中,∠′中,∠C C =∠C′==∠C′=909090°,如图,那么下列各条件中,不能使°,如图,那么下列各条件中,不能使Rt Rt△△ABC ABC≌≌Rt △A ′B ′C ′的是(′的是()21教育网A .AB AB=A′B′==A′B′==A′B′=55,BC BC=B′C′==B′C′==B′C′=3 3 B .AB AB=B′C′==B′C′==B′C′=55,∠,∠A A =∠B′==∠B′=404040°° C .AC AC=A′C′==A′C′==A′C′=55,BC BC=B′C′==B′C′==B′C′=3 3D .AC AC=A′C′==A′C′==A′C′=55,∠,∠A A =∠A′==∠A′=404040°°8.如图,在△.如图,在△ABC ABC 中,点D 是BC 的中点,的中点,DE DE DE⊥⊥AB 于点E ,DF DF⊥⊥AC 于点F ,BE BE==CF.(1)(1)图中有几对全等的三角形?请一一列出;图中有几对全等的三角形?请一一列出;图中有几对全等的三角形?请一一列出;(2)(2)选择一对你认为全等的三角形说明理由.选择一对你认为全等的三角形说明理由.选择一对你认为全等的三角形说明理由. 中档题中档题9.如图,在Rt Rt△△ABC 中,∠中,∠BAC BAC BAC==9090°,°,°,DE DE DE⊥⊥BC BC,,AC AC==6,EC EC==6,∠,∠ACB ACB ACB==6060°,则∠ACD °,则∠ACD 的度数为(的度数为()A .4545°°B .3030°°C .2020°°D .1515°°1010.如图,在直角三角形.如图,在直角三角形ABC 中,∠中,∠C C =9090°,一条线段°,一条线段PQ PQ==AB AB,点,点P ,Q 两点分别在AC 和AC 的垂线AX 上移动,当AP AP==________________时,才能使△ABC≌△QPA.时,才能使△ABC≌△1111.如图,已知方格纸中是.如图,已知方格纸中是4个相同的正方形,则∠1+∠3=个相同的正方形,则∠1+∠3=________________________..1212.如图,已知.如图,已知AE AE==DE DE,,AB AB⊥⊥BC BC,,DC DC⊥⊥BC BC,且,且AB AB==EC.EC.求证:求证:求证:BC BC BC==AB AB++DC.1313.如图所示,已知.如图所示,已知AB AB==CD CD,,DE DE⊥⊥AC 于E ,BF BF⊥⊥AC 于F ,且BF BF==DE DE,求证:AB∥CD.,求证:AB∥CD.,求证:AB∥CD.1414.如图,已知.如图,已知AD AD,,AF 分别是两个钝角△ABC 和△ABE 的高,如果AD AD==AF AF,,AC AC==AE.AE.求证:求证:求证:BC BC BC==BE.综合题综合题1515.已知:点.已知:点O 到△ABC 的两边AB AB,,AC 所在直线的距离相等,且OB OB==OC.(1)(1)如图如图1,若点O 在边BC 上,求证:∠ABO=∠ACO;上,求证:∠ABO=∠ACO;(2)(2)如图如图2,若点O 在△ABC 的内部,求证:∠ABO=∠ACO.的内部,求证:∠ABO=∠ACO.参考答案参考答案1.A A 2.D 2.D 2.D 3.3.3.答案不唯一,如答案不唯一,如AB AB==AC AC,或,或BD BD==CD 等 4.CB 4.CB==DA.DA.理由:由题意易知理由:由题意易知AC AC==BD. ∵CB⊥AB,∵CB⊥AB,DA DA DA⊥⊥AB AB,, ∴∠∴∠DAB DAB DAB=∠CBA==∠CBA==∠CBA=909090°°.在Rt Rt△△DAB 与Rt Rt△△CBA 中,îïíïìBD BD==AC AC,,AB AB==BA BA,, ∴Rt Rt△△DAB DAB≌≌Rt Rt△△CBA(HL)CBA(HL).. ∴DA=∴DA=CB. CB. CB. 5.∵C 是BE 的中点,的中点, ∴BC BC==CE .∵AD⊥BE,.∵AD⊥BE,∴∠∴∠ACB ACB ACB=∠DCE==∠DCE==∠DCE=909090°°.在Rt Rt△△ACB 与Rt Rt△△DCE 中,îïíïìAB AB==DE DE,,BC BC==EC EC,,∴Rt Rt△△ACB ACB≌≌Rt Rt△△DCE(HL)DCE(HL).. ∴∠B=∠E.∴∠B=∠E. ∴AB∥DE.∴AB∥DE.6.6.证明:∵∠ACB=∠CFE=证明:∵∠ACB=∠CFE=证明:∵∠ACB=∠CFE=909090°,°,°, ∴∠∴∠ACB ACB ACB=∠DFE==∠DFE==∠DFE=909090°°.在Rt Rt△△ACB 和RtRt△△DFE 中,îïíïìAB AB==DE DE,,BC BC==EF EF,,∴Rt Rt△△ACB ACB≌≌Rt Rt△△DFE(HL)DFE(HL).. ∴AC=∴AC=DF. DF.∴AC-∴AC-AF AF AF==DF DF--AF AF,即,即AD AD==CF. CF. 7.B8.(1)△BDE≌△CDF,△.(1)△BDE≌△CDF,△AED AED AED≌△≌△≌△AFD AFD AFD,△,△,△ABD ABD ABD≌△≌△≌△ACD. ACD. (2)∵DE⊥AB,(2)∵DE⊥AB,DF DF DF⊥⊥AC AC,, ∴△∴△BDE BDE 和△CDF 是直角三角形.是直角三角形. ∵D 是BC 的中点,的中点,∴BD BD==CD. 又∵BE=又∵BE=CF CF CF,,∴Rt Rt△△BDE BDE≌≌Rt Rt△△CDF(HL)CDF(HL).. 9.B 10.CB CB 11.9011.9011.90°° 12.12.证明:∵AB⊥BC,证明:∵AB⊥BC,证明:∵AB⊥BC,DC DC DC⊥⊥BC BC,, ∴∠∴∠B B =∠C==∠C=909090°°.在Rt Rt△△ABE 和Rt Rt△△ECD 中,îïíïìAE AE==ED ED,,AB AB==EC EC,, ∴Rt Rt△△ABE ABE≌≌Rt Rt△△ECD. ∴BE BE==CD. ∵BC=∵BC=BE BE BE++EC EC,, ∴BC BC==AB AB++DC. DC.13.13.证明:∵DE⊥AC,证明:∵DE⊥AC,证明:∵DE⊥AC,BF BF BF⊥⊥AC AC,, ∴∠∴∠AFB AFB AFB=∠CED==∠CED==∠CED=909090°°.在Rt Rt△△ABF 和Rt Rt△△CDE 中,îïíïìAB AB==CD CD,,BF BF==DE DE,, ∴Rt Rt△△ABF ABF≌≌Rt Rt△△CDE(HL)CDE(HL).. ∴∠∴∠BAF BAF BAF=∠DCE.=∠DCE.=∠DCE. ∴AB∥CD.∴AB∥CD.14.14.证明:∵证明:∵证明:∵AD AD AD,,AF 分别是两个钝角△ABC 和△ABE 的高,的高, ∴∠∴∠ADB ADB ADB=∠AFB==∠AFB==∠AFB=909090°°. ∵AB AB==AB AB,,AD AD==AF AF,, ∴Rt Rt△△ABD ABD≌≌Rt Rt△△ABF. ∴DB DB==FB.∵AC=∵AC=AE AE AE,,AD AD==AF AF,, ∴Rt Rt△△ADC ADC≌≌Rt Rt△△AFE. ∴DC DC==FE.∴DB-∴DB-DC DC DC==FB FB--FE FE,即,即BC BC==BE. BE.15.15.证明:证明:证明:(1)(1)(1)过点过点O 作OE⊥AB 于E ,作OF⊥AC 于F ,则∠BEO=∠CFO=,则∠BEO=∠CFO=909090°°. 又∵OB=又∵OB=OC OC OC,,OE OE==OF OF,,∴Rt Rt△△BOE BOE≌≌Rt Rt△△COF(HL)COF(HL).. ∴∠ABO=∠ACO.∴∠ABO=∠ACO.(2)(2)过点过点O 分别作OE⊥AB,OE⊥AB,OF OF OF⊥⊥AC AC,,E ,F 分别是垂足,则∠BEO=∠CFO=分别是垂足,则∠BEO=∠CFO=909090°°. 又∵OB=又∵OB=OC OC OC,,OE OE==OF OF,, ∴Rt Rt△△OEB OEB≌≌Rt Rt△△OFC.∴∠∴∠EBO EBO EBO=∠FCO,即∠ABO=∠ACO.=∠FCO,即∠ABO=∠ACO.=∠FCO,即∠ABO=∠ACO.。
《直角三角形全等的判定》练习(有答案)
直角三角形全等的判定同步练习1.选择:(1)两个三角形的两条边及其中一条边的对角对应相等,则下列四个命题中,真命题的个数是()个①这两个三角形全等; ②相等的角为锐角时全等③相等的角为钝角对全等; ④相等的角为直角时全等A.0 B.1 C.2 D.3(2)在下列定理中假命题是()A.一个等腰三角形必能分成两个全等的直角三角形B.一个直角三角形必能分成两个等腰三角形C.两个全等的直角三角形必能拼成一个等腰三角形D.两个等腰三角形必能拼成一个直角三角形(3)如图,Rt△ABC中,∠B=90°,∠ACB=60°,延长BC到D,使CD=AC,则AC:BD=()A.1:1 B.3:1 C.4:1 D.2:3(4)如图,在Rt△ABC中,∠ACB=90°,CD、CE,分别是斜边AB上的高与中线,CF是∠ACB的平分线. 则∠1与∠2的关系是()A.∠1<∠2 B.∠1=∠2; C.∠1>∠2 D.不能确定(5)在直角三角形ABC中,若∠C=90°,D是BC边上的一点,且AD=2CD,则∠ADB的度数是()A.30°B.60°C.120°D.150°2.解答:(1)已知:如图,∠B=∠E=90°,AC=DF,FB=EC,求证:AB=DE.(2)已知:如图,AB⊥BD,CD⊥BD,AB=DC,求证:AD//BC.(3)已知如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E、F,求证:CE=DF.参考答案(1)C; (2)D; (3)D设BC=x 则AC=2x ,CD=2x ∴BD=3x ∴AC :BD=2:3 (4)B∵CE 为△ABC 中线,∴AE=EC ∴∠3=∠A ∵CF 平分∠ACB∴∠ACF=∠FCB 即∠3+∠1=∠2+∠4 ∵CD ⊥AB ,∠ACB=90°∴∠4=∠A ∴∠3+∠1=∠2+∠A ∴∠1=∠2 (5)C∠ADC=60°∴∠ADB=120° 2.(1)∵FB=CE∴BC=FE在Rt △ABC 与Rt △DEF 中⎩⎨⎧==EF BC DF AC∴Rt △ABC ≌Rt △DEF (HL )∴AB=DE(2)∵AB ⊥BD CD ⊥BD∴∠ABD=∠BDC=90°∴在Rt △ABD 与Rt △CDB 中⎪⎩⎪⎨⎧=∠=∠=BD BD BDC ABD DCAB∴△ABD ≌△CDB (SAS ) ∴∠ADB=∠DBC ∴AD//BC(3)在Rt △ACB 与Rt △ABD 中⎩⎨⎧==ABAB ADBC ∴Rt △ACB ≌Rt △BDF (HL ) ∴∠CAB=∠DBA ,AC=BD ∴在Rt △CAE 与Rt △BDF 中⎪⎩⎪⎨⎧=∠=∠∠=∠BD AC DBF CAE DFB CEA ∴△CAE ≌△BDF (AAS ) ∴CE=DF.。
直角三角形全等的判定练习和答案
直角三角形全等的判定练习和答案一、选择题1.在Rt △ABC 和Rt △A ′B ′C ′中,∠C =∠C ′=90°,∠A =∠B ′,AB =B ′A ,则下列结论中正确的是( ) A.AC =A ′C ′ B.BC =B ′C ′ C.AC =B ′C ′D.∠A =∠A ′2.下列结论错误的是( )A .全等三角形对应边上的高相等B .全等三角形对应边上的中线相等C .两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等D .两个直角三角形中,两个锐角相等,则这两个三角形全等 3.两个直角三角形全等的条件是( )A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.一条斜边和一直角边对应相等 4.如图,已知AB AD =,那么添加下列一个条件后, 仍无法判定ABC ADC △≌△的是( )A .CB CD = B .BAC DAC =∠∠ C .BCA DCA =∠∠D .90B D ==︒∠∠5.如图所示,△ABC 中,AB =AC ,AD ⊥BC 交D 点,E 、F 分别是DB 、DC 的中点,则图中全等三角形的对数是( )A.1B.2C.3D.4二、填空题ABCD(第4题)6. 如图,DE ⊥AB , DF ⊥AC , AE =AF ,请找出一对全等的三角形: . 7.如图,已知AC ⊥BD ,BC =CE ,AC =DC .试分析∠B +∠D = .8.如图,有一正方形窗架,盖房时为了稳定,在上面钉了两个等长的木条GF 与GE E F ,,分别是AD BC ,的中点,可证得Rt AGE △≌ ,理由是 ,于是G 是 的中点. 三、解答题9.如图,已知AD AF ,分别是两个钝角ABC △和ABE △的高,如果AD AF =,AC AE =.求证:BC BE =.A D CBEA B CFEDG参考答案1.C 2.D 3.D 4.C 5.D6.Rt Rt ADE ADF △≌△ 7.90° 8.Rt Rt AGE BGF △≌△,HL ,AB 9.根据“HL ”证Rt Rt ADC AFE △≌△,CD EF ∴=,再根据“HL ”证Rt Rt ABD ABF △≌△,BD BF ∴=,BD CD BF EF ∴-=-,即BC BE =.。
专题2.15直角三角形全等的判定两大题型专项训练(30题)-2024-2025学年八年[含答案]
(23-24 八年级·重庆渝北·期中)
16.如图,点 B 在线段 AC 上,点 E 在线段上, ÐABD = ÐDBC , EB = BC , AE = DC ,
点 M , N 分别在线段 AE ,边上,且满足 ÐMBN = 90° ,猜测与 BN 的数量关系并说
并说明理由;
(3)若将图 1 中的 V DBE 按如图 3 所示位置摆放, DE , DB 分别交 AC 的延长线于点 F , P ,
连接 FB ,且 FB 平分 ÐCFE .你认为(1)中②猜想的结论还成立吗?若成立,写出证明过
程;若不成立,请直接写出 AF , EF 与 DE 之间的数量关系.
证明你的结论.
(3)如图 3,当 A, E , D 在同一直线上时(A, D 在点 E 的异侧), CE 与 AB 交于点 G ,
Ð BAD = ÐACE ,请直接写出 BBiblioteka , AB , AC 之间的数量关系.
(23-24 八年级·江苏淮安·期中)
22.【知识再现】
学完《全等三角形》一章后,我们知道“斜边和一条直角边分别相等的两个直角三角形全等
专题 2.15 直角三角形全等的判定两大题型专项训练(30 题)
【浙教版】
【题型 1 用 HL 证全等】
(23-24 八年级·辽宁沈阳·期末)
1.如图, AB ^ BC , AD ^ DC ,要根据“ HL ”证明 Rt△ ABC≌Rt△ ADC ,还应添加一个条
件是(
)
A. Ð1 = Ð2
B. Ð 2 = Ð 4
连接 FB ,且 FB 平分 ÐCFE .
①求证 BC = BE ;
②猜想 DE , EF 与 AF 之间的数量关系是__________;
八年级数学下册1.3直角三角形全等的判定同步练习1(新版)湘教版
1.3直角三角形全等的判定同步练习一、选择题(本大题共8小题)1.如图,/ A=Z D=90°, AC=DB 则厶 AB3A DCB 的依据是()2. 在下列条件中,不能判定两个直角三角形全等的是 ()A. 两条直角边对应相等B. 两个锐角对应相等C. 一个锐角和它所对的直角边对应相等D. 一条斜边和一条直角边对应相等3. 如图所示,AB=CD,AE 丄BD 于点E,CF 丄BD 于点F,AE=CF,则图中全等的三角形有 ()A.HLB.ASAC.AASA.1 对B.2 D.44.在 Rt △ ABC 和 Rt △ A B' C'中,/ C=Z C =90°,/ A=Z B ', AB=B A ,则下列结论中正确的是( ) A. AC=A ' CB.BC=B' CC.AC=B' CD. /A=/ A 5.如图所示,△ ABC 中, AE =AC ADL BC 交 D 点,E 、 F 分别是DB D.SAS 对A.1B.2C.3D.4三角形的对数是()6.已知在△ ABC 和厶DEF 中,/ A=Z D=90° ,则下列条件中不能判定厶 ABC 和厶DEF 全等的是8. 如图,南京路与八一街垂直,西安路也与八一街垂直,曙光路与环城路垂 直•如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程为()m.二、填空题(本大题共6小题)9. 已知一条斜边和一条直角边,求作直角三角形,作图的依据是___________ .10. 已知:如图,AE ± BC DF 丄BC 垂足分别为 E 、F, AE=DF AB=DC 则厶ABE^A ____________A. AB=DE,AC=DFB. AC=EF,BC=DFC.AB=DE,BC=EFD. / C=Z F,BC=EF 7.如图,在Rt △ ABC 的斜边 BC 上截取CD=CA 过点D 作DEI BC 交AB 于点E,则有() A.DE=DB B.DE=AE C.AE=BED.AE=BDA.400B.60011. 如图,已知BD 丄AE 于点B,C 是BD 上一点,且BC=BE 要使Rt △ AB3 Rt △ DBE,应补充的条 件是/ A=Z D 或 __________ 或 ___________ 或 ___________14.用三角尺可按下面方法画角平分线: 如图,在已知/ AOB两边上分别取 0M=0,再分别过点M N 作OA 0B 的垂线,两垂线交于点 P,画射线0P 则0P 平分/ AOB 作图过程用到了厶 OPM PA 0PN 那么△ 0PM PA 0PN 的依据是 __________ .12.如图,△ ABC 中,AD ± BC 于点D,要使△ ABD^A ACD 若根据“ HL ”判定,还需要加一个条件 __________iy c/ D=60°,则/ A=13.16. 已知:Rt △ ABC 中,/ ACB 是直角,D 是AB 上一点,BD=BC 过D 作AB 的垂线交求证:CD L BE17.用尺规作一个直角三角形,使其中一条边长为 a ,这条边所对的角为 30°a已知:线段a ,求作:Rt △ ABC 使 BC=a / ACB=90,/ A=30°18. 已知△ ABC 中,CD L AB 于D,过D 作DEI AC F 为BC 中点,过F 作FG L DC 求证: 参考答案: 一、选择题(本大题共8小题) 1. A分析:已知/ A=Z D=90 , 题中隐含BC=BC,根据HL 即可推出△ AB 笑 △ DCB■Vi f三、计算题(本大题共4小题)15. 已知:如图△ ABC 中,BD 丄 AC, CE L AB, BD CE 交于O 点,且BD=CE 求证:OB=OC.AC 于 E ,DG=EG解:解:HL,理由是:•/ / A=Z D=90 ,•••在Rt△ ABC和Rt△ DCB 中AC 二BDBC =BC•Rt△ ABC^ Rt△ DCB( HL),故选A.2. D分析:针对每一个条件进行判定验证,从而判断结论。
三角形全等的判定 同步练习及答案4 (1)
三角形全等的判定同步练习一、选择题1、下列说法:①有两条直角边对应相等的两个直角三角形全等;②有斜边对应相等的两个等腰直角三角形全等;③有一条直角边和斜边上的高对应相等的两个直角三角形全等;④有一条边相等的两个等腰直角三角形全等.其中正确的有().A、1个B、2个C、3个D、4个2、如图,△ABC是不等边三角形,DE=BC,以D、E为两个顶点作位置不同的三角形,使所作三角形与△ABC全等,这样的三角形最多可以画出 [ ].A.2个 B.4个 C.6个 D.8个(第2题图) (第3题图) (第4题图) (第7题图)3、方格纸中,每个小格顶点叫做一个格点,以格点连线为边的三角形叫做格点三角形.如图,在4×4的方格纸中,有两个格点三角形△ABC、△DEF,下列说法中成立的是()A、∠BCA=∠EDFB、∠BCA=∠EFDC、∠BAC=∠EFDD、两个三角形中,没有相等的角4、如图,△ABC≌△DCB,若∠A=80°,∠ACB=40°,则∠BCD等于()A.80° B.60° C.40° D.20°5、下列说法正确的是()A、全等三角形是指周长和面积都一样的三角形;B、全等三角形的周长和面积都一样 ;C、全等三角形是指形状相同的两个三角形;D、全等三角形的边都相等6、下列两个三角形中,一定全等的是()A. 两个等边三角形B. 有一个角是40°,腰相等的两个等腰三角形C. 有一条边相等,有一个内角相等的两个等腰三角形D. 有一个角是100°,底相等的两个等腰三角形7、如图,△ABC与△BDE都是等边三角形,AB<BD,若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为 ( )A.AE=CD B.AE>CD C.AE<CD D.无法确定8、如图, 小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是()A.PO B.PQ C.MO D.MQ(第8题图) (第9题图) (第10题图) (第11题图)9、如图,D、E、F是△ABC三边的中点,且DE∥AB,DF∥AC,EF ∥BC, 平移△AEF可以得到的三角形是( )A.△BDFB.△DEFC.△CDED.△BDF和△CDE10、如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°二、填空题11、如图,铁路上A,B两站(视为线上两点)相距25千米,C,D为铁路同旁两个村庄(视为两点),DA⊥AB于A点,CB⊥AB于B点,DA=15千米,CB=10千米,现在要在铁路AB 上修一个土特品回购站E,使C,D两村庄到E站的距离相等,则E站应建在距A站______千米处.12、如图,等腰直角三角形ABC的直角顶点B在直线PQ上,AD⊥PQ于D,CE⊥PQ于E,且AD=2cm,DB=4c m,则梯形ADEC的面积是 _____.(第12题图) (第13题图) (第14题图) (第15题图)13、将两块直角三角尺的直角顶点重合为如图17的位置, 若∠AOD=110°,则∠BOC=____°14、如图,和都是边长为4的等边三角形,点、、在同一条直线上,连接,则的长为 .15、如图,AB∥EF∥DC,∠ABC=90°,AB=DC,那么图中的全等三角形共有对(填数字)16、如图,若△ABC ≌△ADE ,∠EAC=35, 则∠BAD =________度.(第16题图) (第17题图)17、如图,△ABC的三个顶点分别在格子的3个顶点上,请你试着再在图中的格子的顶点上找出一个点,使得△DBC与△ABC全等,这样的三角形有个.18、(动手操作实验题)如图所示是小明自制对顶角的“小仪器”示意图:(1)将直角三角板ABC的AC边延长且使AC固定;(2)另一个三角板CDE•的直角顶点与前一个三角板直角顶点重合;(3)延长DC,∠PCD与∠ACF就是一组对顶角,已知∠1=30°,∠ACF为多少?三、简答题19、一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将两张三角形纸片摆成如图18的形式,使点B,F,C, D在同一条直线上.(1)你能说明AB⊥DE吗?(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予说明.20、如图,已知M在AB上,BC=BD,MC=MD.请说明:AC=AD.21、如图,在△ABC中,点D在AB上,BD=BE,(1)请你再添加一个条件,使得△BEA≌△BDC,并说明理由,你添加的条件是理由是:(2)根据你添加的条件,再写出图中的一对全等三角形(只要求写出一对全等三角形,不再添加其它线段,不再标注或使用其它字母,不必说明理由。
2022-2023学年人教版八年级数学上册《三角形全等的判定》同步练习
人教版数学八年级上册《12.2三角形全等的判定》同步练习一、单选题(本大题共15小题,共45分)1.(3分)不能确定两个三角形全等的条件是()A. 三条边对应相等B. 两边及其夹角对应相等C. 两角及其中一角的对边对应相等D. 两条边和一条边所对的角对应相等2.(3分)如图,线段AD与BC交于点O,且AC=BD,AD=BC,则下面的结论中不正确的是()A. ΔABC≌ΔBADB. OB=OCC. ∠CAB=∠DBAD. ∠C=∠D3.(3分)在△ABC中,∠C=90°,∠CBA的外角平分线,交AC的延长线于F,交斜边上的高CD的延长线于E,EG∥AC交AB的延长线于G,则下列结论:①CF=CE;②GE=CF;③EF是CG的垂直平分线;④BC=BG.其中正确的是()A. ①②③④B. ①③④C. ②③④D. ①②4.(3分)如图,AD是ΔABC的高,AD也是ΔABC的中线,则下列结论不一定成立的是()A. AB=ACB. AD=BCC. ∠B=∠CD. ∠BAD=∠CAD5.(3分)B为AC上一点,在AC同侧作等边△EAB及等边△DBC,那么下列式子错误的是( )A. △ABD≌△EBCB. ∠BDA=∠BCEC. △ABE≌△BCDD. 若BE交AD于M,CE交BD于N,那么△NBC≌△MBD6.(3分)如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A. ∠B=∠CB. AD=AEC. ∠ADC=∠AEBD. DC=BE7.(3分)把点M(-2,1)向右平移3个单位长度,再向下平移2个单位长度后得到点N,则N的坐标为( )A. (-4,4)B. (-5,3)C. (1,-1)D. (-5,-1)8.(3分)如图,AB交CD于点O,点O分别是AB与CD的中点,则下列结论中错误的是()A. ∠A=∠BB. AC=BDC. ∠A+∠B=90°D. AC∥BD9.(3分)如图,∠1=∠2,∠C=∠D,AC、BD交于E点,下列结论中不正确的是()A. ∠DAE=∠CBEB. △DEA不全等于△CEBC. CE=DED. △EAB是等腰三角形10.(3分)如图,在正方形ABCD中,点E,F分别在BC和CD上,过点A作GA⊥AE,CD的延长线交AG于点G,BE+DF=EF,若∠DAF=30°,则∠BAE的度数为()A. 15°B. 20°C. 25°D. 30°11.(3分)下列说法正确的是( )A. 有两边和一个角相等的两个三角形全等B. 两条直角边对应相等的两个直角三角形全等C. 三角形的一条中线把三角形分成的两个小三角形全等D. 有两边和其中一边的对角对应相等的两个三角形全等12.(3分)在下列命题中,是假命题的个数有()①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③面积相等的两个三角形全等;④三角形的一个外角等于两个内角的和.A. 4个B. 3个C. 2个D. 1个13.(3分)如图,已知O是线段AC和BD的中点,要说明ΔABO≌ΔCDO,以下回答最合理的是()A. 添加条件∠A=∠CB. 添加条件AB=CDC. 不需要添加条件D. ΔABO和ΔCDO不可能全等14.(3分)如图,∠1=∠2,∠3=∠4,则下面结论中错误的是()A. △ADC≌△BCDB. △ABD≌△BACC. △AOB≌△CODD. △AOD≌△BOC15.(3分)如图是5×5的正方形网络,以点D,E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出()A. 2个B. 4个C. 6个D. 8个二、填空题(本大题共5小题,共15分)16.(3分)如图,∠BAC=∠ABD,BD、AC交于点O,要使OC=OD,还需添加一个条件,这个条件可以是____.17.(3分)同学们知道:只有两边和其中一边的对角对应相等的两个三角形不一定全等.你如何处理这三个条件,使这两个三角形全等?如方案(1):若这两个三角形是直角三角形,则这两个三角形全等.请你仿照方案(1)写出另外一个方案:____.18.(3分)如图,∠1=∠2=30°,∠A=∠B,AE=BE,点D在边AC上,AE与BD相交于点O,则∠C的度数为______.19.(3分)如图,AB=AC,AD=AE,∠BAC=∠DAE,∠1=21°,∠2=30°,∠3= ______ .20.(3分)如图,已知AD=BC,根据“SAS”,还需要一个条件____,可证明△ABC≌△BAD.三、解答题(本大题共5小题,共40分)21.(8分)如图所示,在四边形ABCD中,AC与BD交于O,AB=AD,CB=CD,∠BCD=45°,BE⊥CD于E,BE与AC交于F.(1)求证:CF=2BO;(2)若DE=1,求CF⋅FO的值.22.(8分)已知:∠A=90°,∠ADE=120°,BD平分∠ADE,AD=DE.(1)ΔBAD与ΔBED全等吗?请说明理由;(2)若DE=2,试求AC与EC的长.23.(8分)已知:如图,点E,D,B,F在同一条直线上,AD//CB,∠BAD=∠BCD,DE=BF.求证:(1)AD=BC;(2)AE//CF.24.(8分)如图,在RtΔABC中,∠ABC=90°,延长AB至E,使AE=AC,过E作EF⊥AC于F,EF交BC于G.(1)求证:BE=CF;(2)若∠E=40°,求∠AGB的度数.25.(8分)如图,AD=BC,请添加一个条件,使图中存在全等三角形并给予证明.你所添加的条件为:____;得到的一对全等三角形是△____≌△____.答案和解析1.【答案】D;【解析】解:A、三条边对应相等,符合SSS,能判定三角形全等;B、两边及其夹角对应相等,符合SAS,能判定三角形全等;C、两角及其中一角的对边对应相等,能判定三角形全等,符合AAS.D、两条边和一条边所对的角对应相等,满足SSA,不能判定三角形全等.故选D.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS,HL,做题时要结合各选项的已知逐个进行验证.该题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS,HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.【答案】B;【解析】解:A、根据SSS可以证明ΔABC≌ΔBAD,故本选项正确;B、OB和OC显然不是对应边,故本选项错误;C、根据全等三角形的对应角相等,得∠CAB=∠DBA,故本选项正确;D、根据全等三角形的对应角相等,得∠C=∠D,故本选项正确.故选:B.根据SSS可以证明ΔABC≌ΔBAD,从而得到其对应角相等、对应边相等.该题考查全等三角形的判定和性质,解答该题的关键是熟练掌握基本知识,属于中考常考题型.3.【答案】A;【解析】解:∵BF平分∠GBC,∴∠GBF=∠CBF,而∠GBF=∠EBD,∴∠CBF=∠EBD,∵∠BCA=90°,CD为高,∴∠F=∠BED,∴CF=CE,所以①正确;又∵GE∥AF,∴∠F=∠GEB,∴∠GEB=∠CEB,而∠GBF=∠CBF,∴∠GBE=∠CBE,∴△BEG≌△BEC,∴GE=CE,∴GE=CF,所以②正确;在△EGC中,EC=EG,BE平分∠CEG,∴EB垂直平分GC,所以③正确;∴BG=BC,所以④正确.故选A.4.【答案】B;【解析】解:∵AD是ΔABC的高,AD也是ΔABC的中线,∴BC⊥AD,BD=CD,在ΔABD和ΔACD中,{AD=AD∠ADB=∠ADC=90°BD=CD,∴ΔABD≌ΔACD(SAS),∴AB=AC,∠B=∠C,∠BAD=∠BAD.故选:B.证明ΔABD≌ΔACD,可得AB=AC,∠B=∠C,∠BAD=∠BAD.则答案得出.考查了等腰三角形的性质及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解答该题的关键.5.【答案】C;【解析】△ABE与△BCD未必全等,故选C。
人教版八年级上册12.2全等三角形判定同步练习(包含答案)
12.2全等三角形判定知识要点:三角形全等的判定(1)边边边(SSS):三边分别相等的两个三角形全等。
(2)边角边(SAS):两边和它们的夹角分别相等的两个三角形全等。
(3)角边角(ASA):两角和它们的夹边分别相等的两个三角形全等。
(4)角角边(AAS):两角和其中一个角的对边分别相等的两个三角形全等。
(5)斜边、直角边(HL):斜边和一条直角边分别相等的两个直角三角形全等。
一、单选题1.如图,12∠=∠,下列条件中不能使...ABD ACD ∆≅∆的是( )A .AB AC = B .B C ∠=∠ C .ADB ADC ∠=∠D .DB DC = 2.如图所示,则下面图形中与图中△ABC 一定全等的三角形是( )A .B .C .D .3.如图,有两个长度相同的滑梯靠在一面墙上,已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是( )A.90°B.120°C.135°D.150°4.有一个小口瓶(如图所示),想知道它的内径是多少,但是尺子不能伸到里边直接测,于是拿两根长度相同的细木条,把两根细木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,那么△OAB≌△OCD理由是()A.边角边B.角边角C.边边边D.角角边5.如图,用尺规作出∠OBF=∠AOB,作图痕迹MN是A.以点B为圆心,OD为半径的弧B.以点B为圆心,DC为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DC为半径的弧6.如图,已知,,,则图中全等三角形的总对数是A.3 B.4 C.5 D.67.如图,FE=BC,DE=AB,∠B=∠E=40°,∠F=70°,则∠A=( )A.40°B.50°C.60°D.70°8.如图,已知AB∥CF,E为DF的中点,若AB=9cm,CF=5cm,则BD等于()A.2cm B.3cm C.4cm D.5cm9.如图,已知AC=DB,AO=DO,CD=100 m,则A,B两点间的距离( )A.大于100 m B.等于100 mC.小于100 m D.无法确定10.如图,AB⊥BC且AB=BC,DE⊥CD且DE=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.36 B.48 C.72 D.108二、填空题11.如图,若AB=AD,加上一个条件_____,则有△ABC≌△ADC.12.如图,已知BD⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF=__________.13.如图,已知∠1=∠2=90°,AD=AE,那么图中有____对全等三角形.14.如图,Rt∆ABC 中,∠BAC = 90°,AB =AC ,分别过点B、C 作过点A 的直线的垂线BD、CE ,垂足分别为D、E ,若BD = 4,CE=2,则DE= (_________)15.如图,∠ACB =90°,AC =BC ,BE ⊥CE ,AD ⊥CE ,垂足分别为E ,D ,AD =25,DE =17,则BE =______.三、解答题16.如图,点E ,F 在CD 上,AD CB ,DE CF =,A B ∠=∠,试判断AF 与BE 有怎样的数量和位置关系,并说明理由.17.已知:如图,AB=AC ,PB=PC ,PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E .证明:(1)PD=PE .(2)AD=AE .18.已知:如图,AE ∥CF ,AB=CD ,点B 、E 、F 、D 在同一直线上,∠A=∠C .求证:(1)AB∥CD;(2)BF=DE.19.如图,点M.N在线段AC上,AM=CN,AB∥CD,AB=CD.请说明△ABN≌△CDM的理由;答案1.D 2.B3.A4.A5.D6.D7.D8.C9.B10.C11.BC =DC12.150°13.314.615.816.解:AF 与BE 平行且相等,因为AD CB ,所以C D ∠=∠.因为DE CF =,所以CE DF =.又因为A B ∠=∠,所以AFD BEC ∆≅∆.所以AF BE =,AFD BEC ∠=∠.所以AF BE .17.解:证明:(1)连接AP .在△ABP 和△ACP 中,AB=AC PB=PC AP=AP ⎧⎪⎨⎪⎩,∴△ABP ≌△ACP (SSS ).∴∠BAP=∠CAP ,又∵PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,∴PD=PE (角平分线上点到角的两边距离相等).(2)在△APD 和△APE 中,∵90PAD PAE ADP AEP AP AP ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△APD ≌△APE (AAS ),∴AD=AE ;18.解:(1)∵AB ∥CD ,∴∠B=∠D .在△ABE 和△CDF 中,A CAB CD B D∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE ≌△CDF (ASA ),∴∠B=∠D ,∴AB ∥CD ;(2)∵△ABE ≌△CDF ,∴BE=DF .∴BE+EF=DF+EF ,∴BF=DE .19.∵AM=CN∴AM+MN=CN+MN即AN=CM∵AB ∥CD∴∠A=∠C在△ABN 和△CDM 中=AN CMA C AB CD=⎧⎪∠∠⎨⎪=⎩∴△ABN ≌△CDM (SAS )人教版八年级上册12.2全等三角形判定同步练习(包含答案)11 / 11。
1.3直角三角形全等的判定同步练习含答案
B1.3 直角三角形全等的判定要点感知 斜边、直角边定理:斜边和 直角边对应相等的两个直角三角形全等.简 称“斜边、直角边”或“ HL'.预习练习 如图,AB=CD,A& BC 丁点E,DFL BC 于点F,若BE=CF 则/XABE^zX ,其依据 是.知识点1直角三角形全等的判定1.如图,Z A=Z D=90° , AC=DB 则△AB(^z\ DCB 勺依据是() A. HL B.ASAC.AASD.SAS 2. 在下列条件中,不能判定两个直角三角形全等的是()A. 两条直角边对应相等B. 两个锐角对应相等C. 一个锐角和它所对的直角边对应相等D. 一条斜边和一条直角边对应相等 3. 如图所示,AB=CD,A& BD 于点E,CFLBD 丁点F,AE=CF 则图中全等的三角形有()A.1对B.2 对C.3 对D.4 对4. 已知:如图,A 」BC DFL BC 垂足分别为 E 、F, AE=DF AB=DC 贝U△ABE^zXA C DABA D5.如图,已知BM AE于点B,C是BD上一点,且BC=BE安使Rt△ AB%Rt△ DBE应补充的条件是ZA=Z D或_________ 或__________ 或6.已知:如图,BE CD^A ABC勺高,且BE=CD BE CD交丁点P,若BD=2 见J CE=7.已知:如图,AB=CD DN AC于点E, BFL AC于点F,且DE=BF Z D=60° ,则Z A=8.已知:如图,点B、F、C E在同一直线上,BF=CE ABLB巳D」B巳垂足分别为B、E且AC=DF 连接AC DF.求证:Z A=Z D.9.已知:如图,AB=CD DNAC BFLAC, E、F 是垂足,DE=BF求证:AB// CD.B知识点2作直角三角形10.已知一条斜边和一条直角边,求作直角三角形,作图的依据是.11.已知Rt△ ABG ZACB=90 ,请利用直角三角形全等的判定HL求作三角形Rt△ DEF使Rt△ DE降Rt △ ABC.12.用三角尺可按下面方法画角平■分线:如图,在已知Z AOEH边上分别取OM=QN再分别过点M N作OA OB的垂线,两垂线交丁点P,画射线OP则OP平分/ AOB作图过程用到了^ OPIWA OPN 那么△ OPIWzX OPN勺依据是.13.如图,ZXABC中,AEU BC 丁点D,要使△ABt^zX ACD若根据“ HL'判定,还需要加一个条件7C14.如图,在Rt△ ABC的斜边BC上截取CD=CAS点D作D」BC交AB丁点E,则有()A.DE=DBB.DE=AEC.AE=BED.AE=BDB D16.如图,AD^A ABC 的高,AC 的位置关系.E 为AC 上一点,BE 交ADT 点F,若有BF=AC FD=CD 试探究BE 与17.用尺规作一个直角三角形,使其中一条边长为 a,这条边所对的角为30° . 15. 如图,AD// BC, ZA=90° , E 是 AB 上的一点,且 AD=BE / 1=/ 2. 求证:△ADf^ BEC.18.已知:点。
直角三角形全等的判定练习题
(C)3个(D)4个
二、填空题
4.如图,在△ABC和△ABD中,∠C=∠D=90°,若利用“AAS”证明△ABC≌△ABD,则需要加条件_______或;若利用“HL”证明△ABC≌△ABD,则需要加条件或.
第4题第5题第6题
5.如图,有一个直角△ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P.Q两点分别在AC和过点A且垂直于AC的射线AX上运动,当AP=时,才能使ΔABC≌ΔPQA.
直角三角形全等判定练习
班级________学号______姓名___________评价___________
课题
直角三角形全等的判定(一)
日期
一、选择题
1.△ABC中,∠C=90°,AD为角平分线,BC=32,BD∶DC=9∶7,则点D到AB的距离为( )
A.18cmB.16cmC.14cmD.12cm
2.在△ABC内部取一点P使得点P到△ABC的三边距离相等,则点P应是△ABC的哪三条线交点.()
(A)高(B)角平分线(C)中线(D)边的垂直平分线
3.已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的有几个()
(1)AD平分∠EDF;(2)△EBD≌△FCD;
(3)BD=CD;(4)AD⊥BC.
6.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于D,DE⊥AB于E,且AB=6 cm,则△DEB的周长为___________cm.
三、解答题
7.如图,在△ABC中,已知D是BC中点,DE⊥AB,DF⊥AC,垂足分别是E、F,DE=DF.求证:AB=AC
8.已知:如图,AC平分∠AD,CE⊥AB于E,CF⊥AD于F,且BC=DC.你能说明BE与DF相等吗?
12.2 第4课时 直角三角形全等的判定(“HL”)练习题 人教版八年级数学上册
第4课时直角三角形全等的判定(“HL”)知识点 1 用“HL”判定直角三角形全等1.如图1,可直接用“HL”判定Rt△ABC和Rt△DEF全等的条件是 ()图1A.AC=DF,BC=EFB.∠A=∠D,AB=DEC.AC=DF,AB=DED.∠B=∠E,BC=EF2.如图2所示,P是∠BAC内一点,且点P到AB,AC的距离PE,PF相等,则直接得到Rt△PEA≌Rt△PFA的依据是 ()图2A.AASB.ASAC.HLD.SSS3.如图3,若要用“HL”证明Rt△ABC≌Rt△ABD,则需要添加的一个条件是.图34.如图4,BD,CE均是△ABC的高,且BE=CD.求证:△BEC≌△CDB.图4 知识点 2 直角三角形全等的灵活运用5.如图5,在Rt△ABC和Rt△A'B'C'中,∠C=∠C'=90°,那么下列各组条件中,不能判定Rt△ABC≌Rt△A'B'C'的是 ()图5A.AB=A'B'=5,BC=B'C'=3B.AB=B'C'=5,∠A=∠B'=40°C.AC=A'C'=5,BC=B'C'=3D.AC=A'C'=5,∠A=∠A'=40°6.如图6,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,垂足分别为D,E.若BD=4 cm,CE=3 cm,则DE= cm.图67.如图7,点E,F在BC上,AE⊥BC,DF⊥BC,AC=DB,BE=CF.求证:AC∥DB.图7 8.如图8所示,为了固定电线杆AD,将两根长均为10 m的钢丝一端同系在电线杆上的点A处,另一端固定在地面上的两个锚上,那么两个锚(B,C)离电线杆底部(D)的距离相等吗?为什么?图8【能力提升】9.如图9所示,在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E,F,则图中全等三角形共有 ()图9A.2对B.3对C.4对D.5对10.如图10,D为Rt△ABC中斜边BC上的一点,且BD=AB,过点D作BC的垂线,交AC于点E.若AE=12 cm,则DE的长为 cm.图1011.如图11,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q从点A同时出发,分别在线段AC和射线AX上运动,且AB=PQ,当点P运动到AP= 时,△ABC与△APQ全等.图1112.如图12,已知在Rt△ABC中,∠ACB=90°,CA=CB,D是AC上一点,点E在BC的延长线上,且AE=BD,BD的延长线与AE交于点F.试通过观察、测量、猜想等方法来探索BF与AE有何特殊的位置关系,并证明.图1213.如图13①,AB=4 cm,AC⊥AB,BD⊥AB,AC=BD=3 cm.点P在线段AB上以1 cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等?判断此时线段PC和线段PQ的位置关系,请分别说明理由.(2)如图②,将图①中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x,t 的值;若不存在,请说明理由.图13第4课时 直角三角形全等的判定(“HL ”)1.C [解析] “HL ”是斜边、直角边分别相等,则必须有AB=DE ,故排除A,D 两个选项,而选项B 中另一个条件为∠A=∠D ,不是直角边对应相等,故排除选项B .故选C .2.C3.答案不唯一,如AC=AD 或BC=BD4.证明:∵BD ,CE 均是△ABC 的高,∴∠BEC=∠CDB=90°.在Rt △BEC 和Rt △CDB 中,{BC =CB,BE =CD,∴Rt △BEC ≌Rt △CDB (HL).5.B [解析] 在Rt △ABC 和Rt △A'B'C'中,∠C=∠C'=90°,选项A 符合直角三角形全等的判定方法“HL ”;选项B 不符合三角形全等的判定方法;选项C 符合三角形全等的判定方法“SAS ”;选项D 符合三角形全等的判定方法“ASA ”.6.7 [解析] ∵∠BAC=90°,∠ADB=∠AEC=90°,∴∠BAD+∠EAC=90°,∠BAD+∠DBA=90°. ∴∠EAC=∠DBA.又∵AB=AC ,∴△ABD ≌△CAE (AAS). ∴AD=CE ,BD=AE. ∴DE=AD+AE=CE+BD=7 cm .故答案为7. 7.证明:∵BE=CF ,∴BE+EF=CF+EF ,即BF=CE.∵AE ⊥BC ,DF ⊥BC , ∴∠AEC=∠DFB=90°.在Rt △AEC 和Rt △DFB 中,{AC =DB,CE =BF,∴Rt △AEC ≌Rt △DFB (HL). ∴∠ACE=∠DBF.∴AC ∥DB.8.解:相等.理由如下:∵AD ⊥BC ,∴∠ADB=∠ADC=90°.在Rt △ADB 和Rt △ADC 中,{AB =AC,AD =AD,∴Rt △ADB ≌Rt △ADC (HL). ∴BD=CD ,即两个锚(B ,C )离电线杆底部(D )的距离相等. 9.B [解析] ∵AB=AC ,BD=CD ,AD=AD ,∴△ABD ≌△ACD (SSS).∴∠B=∠C.又∵∠DEB=∠DFC=90°,BD=CD ,∴△BED ≌△CFD (AAS).∴DE=DF.在Rt △AED 和Rt △AFD 中,∵AD=AD ,DE=DF ,∴Rt △AED ≌Rt △AFD (HL).故图中共有3对全等三角形. 10. 12 [解析] 如图,连接BE. 在Rt △DBE 和Rt △ABE 中,{DB =AB(已知),BE =BE(公共边),∴Rt △DBE ≌Rt △ABE (HL).∴AE=DE.又AE=12 cm,∴DE=12 cm .11.5或10 [解析] ∵AX ⊥AC ,∴∠PAQ=90°.∴∠C=∠PAQ=90°.分两种情况:①当AP=BC=5时, 在Rt △ABC 和Rt △QPA 中,{AB =QP,BC =PA,∴Rt △ABC ≌Rt △QPA (HL);②当AP=CA=10时, 在Rt △ABC 和Rt △PQA 中,{AB =PQ,CA =AP,∴Rt △ABC ≌Rt △PQA (HL).综上所述,当点P 运动到AP=5或10时,△ABC 与△APQ 全等. 故答案为5或10. 12.解:BF ⊥AE. 证明:∵∠ACB=90°,∴∠ACE=∠BCD=90°.在Rt △BDC 和Rt △AEC 中,{CB =CA,BD =AE,∴Rt △BDC ≌Rt △AEC (HL). ∴∠CBD=∠CAE. ∵∠CAE+∠E=90°, ∴∠CBD+∠E=90°. ∴∠BFE=90°,即BF ⊥AE.13.解:(1)当t=1时,△ACP ≌△BPQ ,此时PC ⊥PQ. 理由:当t=1时,AP=BQ=1 cm,∴BP=AC=3 cm .在△ACP 和△BPQ 中,{AP =BQ,∠A =∠B =90°,AC =BP,∴△ACP ≌△BPQ (SAS). ∴∠ACP=∠BPQ.∴∠APC+∠BPQ=∠APC+∠ACP=90°. ∴∠CPQ=90°,即PC ⊥PQ.(2)存在.由题意得AP=t cm,BP=(4-t )cm,AC=3 cm,BQ=xt cm .分两种情况讨论: ①若△ACP ≌△BPQ , 则AC=BP ,AP=BQ ,即{3=4−t,t =xt,解得{t =1,x =1; ②若△ACP ≌△BQP , 则AC=BQ ,AP=BP , 即{3=xt,t =4−t,解得{t =2,x =32. 综上所述,当x=1,t=1或x=32,t=2时,△ACP 与△BPQ 全等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直角三角形
第2课时 直角三角形全等的判定
一、选择题:
1. 两个直角三角形全等的条件是( )
A.一锐角对应相等;
B.两锐角对应相等;
C.一条边对应相等;
D.两条边对应相等
2. 如图,∠B=∠D=90°,BC=CD ,∠1=30°,则∠2的度数为( ) A. 30° B. 60° C. 30°和60°之间 D. 以上都不对 【
3. 如果两个直角三角形的两条直角边对应相等,那么两个直角三角形全等的 依据是( )
A. AAS
4. 已知在△ABC 和△DEF 中,∠A=∠D=90°,则下列条件中不能判定△ABC 和 △DEF 全等的是( )
=DE,AC=DF =EF,BC=DF
=DE,BC=EF D.∠C=∠F,BC=EF )
5. 如图,AB ∥EF ∥DC,∠ABC=90°,AB=DC,那么图中有全等三角形( ) 对; 对; 对; 对
6. 要判定两个直角三角形全等,下列说法正确的有( )
①有两条直角边对应相等; ②有两个锐角对应相等; ③有斜边和一条直角边对应相等; ④有一条直角边和一个锐角相等; ⑤有斜边和一个锐角对应相等; ⑥有两条边相等.
个 个 个 个
1
2A B
C
D
第2题图 第5题图 第7题图 第8题图
7. 如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是( )
A .C
B CD = B .BA
C DAC =∠∠ C .BCA DCA =∠∠
D .90B D ==︒∠∠
—
B
A
E
F
C
D
8. 如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()
A.A B=AC B.∠BAC=90°C.B D=AC D.,
∠B=45°
二、填空题:
9.有________和一条________对应相等的两个直角三角形全等,简写成“斜边直角
边”或用字母表示为“___________”.
10.判定两个直角三角形全等的方法有______________________________.
11.如图,已知AC⊥BD于点P,AP=CP,请增加一个条件,使△ABP≌△
CDP(不能添加辅助线),你增加的条件是_________________________________
~
12.如图,在Rt△ABC和Rt△DCB中,AB=DC,∠A=∠D=90°,AC与BD
交于点O,则有△________≌△________,其判定依据是________,还有△________≌△________,其判定依据是________.
第11题图第12题图第13题图
13.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,
若BF=AC,则∠ABC=_______
第14题图第15题图第16题图14.如图,已知∠1=∠2=90°,AD=AE,那么图中有对全等三角形.
%
15.如图,Rt△ABC中,∠C=90°,AC=8,BC=4,PQ=AB,点P与点Q分
别在AC和AC的垂线AD上移动,则当AP=_______时,△ABC≌△APQ.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点
A的直线的垂线BD,CE,若BD=4cm,CE=3cm,则DE=________cm .
17.如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右
边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=__________度
18.如图,南京路与八一街垂直,西安路也与八一街垂直,曙光路与环
城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程为__________m.
~
第17题图第18题图
三、解答题:
19. 如图,,
于点,,平分交于点,请=⊥=∠
AB AC AD BC D AD AE AB DAE DE F
你写出图中三对
..全等三角形,并选取其中一对加以证明.
【
20.在△ABC中,AB=CB,∠ABC=90º,F为AB延长线上一点,点E在BC上,且AE=CF.
(1)求证: Rt△ABE≌Rt△CBF;
(2)若∠CAE=30º,求∠ACF度数.
、
21. 如图AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.
(1)求证AD=AE;
(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.
$
22. 已知如图,AB=AC,∠BAC=90°,AE是过A点的一条直线,且B、C在DE的异侧,BD
⊥AE于D,CE⊥AE于E,求证:BD=DE+CE.
B A
C D
23. 如图,在△ABC中,以AB、AC为直角边, 分别向外作等腰直角三角形ABE、ACF,
连结EF,过点A作AD⊥BC,垂足为D,反向延长DA交EF于点M.
(1)用圆规比较EM与FM的大小.
(2)你能说明由(1)中所得结论的道理吗
B A
E M
F D
—
&
`
< 参考答案
一、选择题
二、填空题
9. 斜边,直角边,HL 10. SSS 、ASA 、AAS 、SAS 、HL 11. BP=DP 或AB=CD 或∠A=∠C 或∠B=∠D . ,DCB,HL,AOB,DOC,AAS. `13. 45° 14. 3 15. 4或8 16. 7 17. 90° 18. 500
、
三、解答题
19.解:(1)ADB ADC △≌△、ABD ABE △≌△、AFD AFE △≌△、
BFD BFE △≌△、 ABE ACD △≌△(写出其中的三对即可). (2)以△ADB ≌ADC 为例证明. 证明:
,90AD BC ADB ADC ⊥∴∠=∠=°.
在Rt ADB △和Rt ADC △中,
,,AB AC AD AD == ∴ Rt ADB △≌Rt ADC △.
、
20.解:(1)∵∠ABC=90°,∴∠CBF=∠ABE=90°.
在Rt △ABE 和Rt △CBF 中,
∵AE=CF, AB=BC, ∴Rt △ABE ≌Rt △CBF(HL)
(2) ∵AB=BC, ∠ABC=90°, ∴ ∠CAB=∠AC B=45°. ∵∠BAE=∠CAB-∠CAE=45°-30°=15°.
由(1)知 Rt △ABE ≌Rt △CBF , ∴∠BCF=∠BAE=15°,
∴∠ACF=∠BCF+∠ACB=45°+15°=60°.
21.(1)证明:在△ACD 与△ABE 中,
[
∵∠A=∠A ,∠ADC=∠AEB=90°,AB=AC , ∴△ACD ≌△ABE , ∴AD=AE .
(2)互相垂直,
在Rt △ADO 与△AEO 中, ∵OA=OA ,AD=AE , ∴△ADO ≌△AEO , ∴∠DAO=∠EAO , 即OA 是∠BAC 的平分线,
~
又∵AB=AC , ∴OA ⊥BC .
22.证明:∵BD ⊥AE 于D,CE ⊥AE 于E ∴∠ADB=∠AEC=90° ∵∠BAC=90°
∴∠ABD+∠BAD=∠CAE+∠BAD ∴∠ABD=∠CAE
在△ABD 和△CAE 中
ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩
∴△ABD ≌△CAE(AAS) ∴BD=AE,AD=CE ∵AE=AD+DE ∴BD=CE+DE
23. 解:(1)EM=FM
(2)作EH ⊥AM,垂足为H,FK ⊥AM,垂足为K 先说明Rt △EHA ≌Rt △ADB 得EH=AD Rt △FKA ≌Rt △ADC 得FK=AD 得EH=FK
在Rt △EHK 与Rt △FKM 中,Rt △EHM ≌Rt △FKM
得EM=FM.。