第九章醇和醚解析
有机化学醇和醚
3. 溶解性 醚一般微溶于水,能与水分子形成氢键;易溶于有机溶剂。 由于 醚的化学性质不活泼,是良好的溶剂。
§10.9 醚的化学性质
醚键(C-O-C)的极性很小,比较稳定。
对碱、氧化剂、还原剂都很稳定; 在常温下醚也不与金属钠作用; 但是在一定条件下,醚也能发生某些化学反应。
§10.9 醚的化学性质
+ CH3CH2I
CH 3CH 2I
+ H2O
混醚与氢碘酸作用时,一般是较小的烃基生成碘代烷,较大的烃基
生成醇或酚。
CH 57%HI O C H 2 5 3 △ O C H 2 5 HI △ C H OH 2 5 OH + C H I 2 5 +
CH I 3
§10.9.2 络合物的生成 醚可以将氧上的未共用电子对与缺电子的试剂(如BF3、AlCl3、 RMgX等)形成相应的络合物。
HOCl
HOCH2 CH2 Cl
§10.10 重要的醚
环氧乙烷
b. 化学反应
在酸或碱催化下可以与许多含活泼氢的试剂(如水、氢卤酸、醇、氨
等)发生化学反应。
CH2 O
CH2
+
HA
CH2 OH
CH2 A
式中:A代表-OH,-X,-OR,-NH2等。
§10.10 重要的醚
环氧乙烷
b. 化学反应
① 与水反应
用,形成佯盐,而溶于强酸体系(如浓硫酸、浓盐酸)。
金 羊盐不稳定,遇水很快分解为原来的醚。
§10.9.1 佯盐的形成和醚键的断裂
醚键的断裂
醚与浓氢卤酸(一般用氢碘酸)共热,醚键可以断裂生成卤代烷 和醇。如果氢卤酸过量,生成的醇进一步反应生成卤代烷。
醇和醚
* 性质
●
弱酸性(酸性比醇大)
后两个反应不仅可用来鉴定硫醇,而且 可用作重金属Pb、Hg、Sb等中毒的解毒剂。
●
氧化反应
氧化剂:H2O2、 NaIO、I2或O2
这个反应可以定量进行,因此可用来测定巯基 化合物的含量。
●
酯化反应:
●
分解反应 :
此反应工业上可用来脱硫。
第二节 醚
一、 醚的分类,命名和同分异构 * 分类 醚可看作是醇羟基的氢原子被烃基取代
●
间接水合
烯烃用 98% H2SO4 吸收后,先生成烃基硫
酸氢酯,再经水解得到醇。
*
硼氢化氧化反应
* 从醛、酮、羧酸及其酯还原
还原剂可用H2(催化剂:Ni,Pt等)或者LiAlH4、 NaBH4 等。
●
羧酸最难还原,与一般化学还原剂不起反应, 但可被LiAlH4 还成醇。
●
●
酯需高温高压才能催化加氢,用化学还原剂还 原最常用的是金属钠和醇。
溶解度越小,甚至不溶于水。这是有机化合
物在水中溶解性的一般规律。
(1)
四、醇的化学性质
* 与活泼金属的反应
此反应随着醇的相对分子量的增大而反
应速度减慢,醇的反应活性为:
甲醇>伯醇>仲醇>叔醇 醇钠遇水就分解为原来的醇和NaOH。
* 卤烃的生成
●
醇与氢卤酸作用,则羟基被卤素取代而生成卤 烃和水,这是制备卤烃的重要方法之一。
* 性质 ● 物理性质
无色,具有乙醚气味,高浓度时,具有刺激
性气味、易燃。沸点为10.5℃,溶于水。
●
化学性质
说明:
(1) 乙二醇乙醚是一具有醇和醚性质的物
有机化学醇和醚详解演示文稿
(CH3)3CCOOH ② H+,H2O
(CH3)3CCH2OH
H5C2OOC(CH2)8COOC2H5 Na,C2H5OH HOCCH2(CH2)8CH2OH
73-75%
第十页,共55页。
四、醇的物理性质: 沸点较高,低级醇易溶于水;
Hydrogen bond
第十一页,共55页。
五、醇的化学性质:
立即浑浊
CH3
CH3
H
H
H5C2
C
OH
ZnCl2/HCl room temperature
H5C2 C Cl
CH3
CH3
几分钟变浑浊
CH3CH2CH2CH2OH ZnCl2/HCl
CH3CH2CH2CH2Cl
几乎无现象
第十六页,共55页。
醇与HX作用机理的SN1 反应机理:
CH3
快
CH3H
Step 1 H3C C O H + H
RCH2 OH + Br P Br
( 1 or 2 )
Br
RCH2
O
PBr2
BrSN2
H
RCH2
Br + HOPBr2
HCl
O
RCH2 OH +Cl S Cl
RCH2 S O
O ( 1 or 2 )
Cl
R Cl + SO2
第十九页,共55页。
3、 醇与无机含氧酸反应
CH2OH CHOH 3HNO3 CH2OH
CH3CH2CH2OH CH2=CHCH2OH
OH
Propanol
2-propenol cyclohexanol
CH3CH2CH2OH
有机化学 第九章 醇酚醚
醇 R-OH
酚 醚
醇、酚和醚(P239)
(R-H)
Ar-OH R-O-R′或 R-O-Ar
醇、酚、醚都是烃的含氧衍生物 醇与酚有相同的官能团:羟基(-OH) 醚是醇或酚的衍生物
2014-12-28 1
2014-12-28
2
(一)醇
醇在自然界中含量丰富。例如:
• 乙醇:人类制造并且消费乙醇已经有超过千年的 历史,最初的制备手段来自于酒精饮料的发酵与 蒸馏。乙醇是一种透明可燃的液体,可用于工业 溶剂,汽车燃料及工业原料。 • 甲醇:是自然界中最简单的醇,最早通过蒸馏木 材得到,因此也称作“木醇”。其气味和特性类 似于乙醇,同时也是一种常用溶剂、燃料或工业 原料。不同于乙醇,甲醇具有高度的毒性:约 10mL的甲醇就可通过损坏光学神经而导致永久失 明,30ml甲醇则会导致死亡。
32
B) 弱氧化剂 ①沙瑞特试剂* :CrO3(C5H5N)2 可使伯醇氧化为醛,仲醇氧化为酮。重键不被氧化。
CH3(CH2)4C CCH2OH
沙瑞特试剂 CH2Cl2, 25 ℃
CH3(CH2)4C CCHO 84%
② MnO2
新制得的二氧化锰可选择性地氧化不饱和的伯醇 成醛,仲醇成酮,双键不被氧化破坏。
RO - Na + + HOH
较强碱 较强酸
Na + OH - + ROH
较弱碱 较弱酸
工业上生产醇钠,不使用昂贵的金属钠,而是利用上述平 衡反应。加苯带走水,使平衡朝着生成醇钠的方向进行。
2014-12-28 17
9.3.2
生成卤代烃(P244)
醇可与多种卤化试剂作用,羟基被卤素取代 生成卤代烃。 1、 与氢卤酸的反应
有机化学第9章醇-酚-醚
C H 3 C H 2 C H 2 C H 2 O HC u - C r O 2 C H 3 C H 2 C H 2 C H O + H 2 O 3 5 0 ℃
OH
R'
❖ 羟基连在同一碳原子上的化合物
RCH2C O R'
OH H
H
R C O -H2O R C O
醛
H
OH H R C O -H2O
R'
RC O 酮 R'
OH H R C O -H2O
OH
R C O 羧酸 OH
9.1.2 醇的结构
醇的氧原子为sp3杂化。其中两个sp3杂化轨道分别含有一个电子,与碳 原子的sp3杂化轨道和氢原子的1s轨道重叠。另外二个sp3杂化轨道分别 含有一对未共用电子对,交叉构象为优势构象。
CH3CH2CH2OH 丙醇
(CH3)2CHOH 异丙醇
(CH3)3COH 叔丁醇
OH
OH
C
环已醇
三苯甲醇
系统命名法
即选择含有羟基的最长碳链作为主链,把支链看作取代基,从离 羟基最近的一端开始编号,按照主链所含的碳原子数目称为“某 醇”,羟基在1位的醇,可省去羟基的位次。
例如:
2-丁烯醇(巴豆醇) 3-苯基-2-丙烯醇(肉桂醇) 3 ,4-二甲基-2-戊醇
R O H + S O C l 2 R C l + S O 2 + H C l
反应实际上是先形成氯代亚硫酸酯,再与Cl-进行亲核取 代反应
RCH2OH+SOCl2 -HCl
O CH2O S Cl
《化学第九章醇和醚》PPT课件
CH3
CH3
C
CH3
O
H OH
3oROH负离子空阻 大,溶剂化作用小。
精选PPT
33
三 碳氧键的断裂,羟基的亲核取代反应
1. 醇和氢卤酸的反应 2. 醇与磺酰氯反应 3. 醇与卤化磷的反应 4. 与氯化亚砜的反应
精选PPT
34
1. 醇和氢卤酸的反应
反应式
ROH + HX
RX + H2O
醇的活性比较: 苯甲型, 烯丙型 > 3oROH > 2oROH > 1oROH > CH3OH
精选PPT
40
4 与氯化亚砜的反应
(1) 反应方程式
R O H+SO C l2
R C l +SO 2 +H C l
该反应的特点是: 反应条件温和,反
精选PPT
13
2、利用格利雅试剂合成
(1)与甲醛合成增加一个碳的伯醇
RMgBr + HCHO 干醚 R-CH2-OMgBr H2O R-CH2-OH
(2) 与其它醛合成仲醇
O
OMgBr
R1-CH + RMgBr 干醚 R1-CH-R H2O R1-CH-R
(3)与酮合成叔醇
O
① RMgBr,干醚
OH
-CH2Cl Na2CO3
H2O
-CH2OH
精选PPT
23
9.3 醇的物理性质、光谱特征
一 物理性质
醇分子之间能形成氢键,沸点较相应分子量的烷烃高。
由于醇分子与水分子之间能形成氢键,三个碳的醇和叔丁醇能 与水混溶。
随着碳原子数的增大氢键减弱,沸点向相应的烷烃靠近;在水 中的溶解性也下降,甚至不溶,高级脂肪醇是表面活性剂。
《有机化学》第9章 醇 酚 醚
2023/6/13
1
第一节 醇
醇分子可以看成是水分子中氢原子被烃基取代的产物或烃分子中氢原子被羟 基(﹣OH)取代的产物,它的官能团是羟基。由于该官能团颇具化学活性,使醇 类化合物成为制药和有机合成的重要原料。
一、醇的分类和命名 1. 醇的分类
⑴ 根据和羟基相连的碳原子的类型,可以分为伯醇(1°醇,一级醇)、仲醇( 2°醇,二级醇)和叔醇(3°醇,三级醇)。例如:
2023/6/13
26
二、醚的物理性质
在常温下除了甲醚和甲乙醚为气体外,大多数醚为有香味的液体。醚分 子中没有与强电负性原子相连的氢,因此分子间不能形成氢键。醚的沸点显 著低于相对分子质量的醇,如甲醚和乙醇的沸点分别为–24.9℃和78.5℃。 醚分子能与水分子形成氢键,使它在水中的溶解度与相对分子质量的醇相近, 如甲醚能与水混溶,乙醚和正丁醇在水中溶解度都约为8 g / 100 g水。1,4二氧六环分子中四个碳原子连有两个醚键氧原子,与水生成的氢键足以使它 与水混溶。四氢呋喃分子中,虽然四个碳原子仅连有一个醚键氧原子,但因 氧原子在环上,使孤对电子暴露在外,与乙醚相比较,它更易与水形成氢键, 故也可以与水混溶。环醚的水溶液既能溶解离子化合物,又能溶解非离子化 合物,为常用的优良溶剂。
2023/6/13
13
5. 氧化反应
在有机物分子中加入氧或脱去氢都属于氧化反应。醇可以被多种氧化剂所氧化。 醇的结构不同,使用的氧化剂不同,其产物也各异。
⑴ 氧化剂氧化
伯醇氧化先生成醛,醛再进一步氧化生成羧酸,要想得到醛,须把生成的醛立即 蒸出,否则会被继续氧化。仲醇氧化生成酮,叔醇在一般条件下不被氧化,只有在 剧烈的条件下,如与K2Cr2O7和H2SO4一起加热回流,则断裂成小分子产物。
《有机化学》第九章醇、酚、醚的结构与性质
第九章醇、酚、醚的结构与性质前言(1) 醇的结构与性质醇分子可以看成是水分子中氢原子被烃基取代的产物或烃分子中氢原子被羟基(﹣OH)取代的产物。
和水分子一样,醇分子中氧原子也是sp3杂化的,sp3杂化的氧原子分别与烃基和氢形成2个σ键,还有两对孤电子对,在两个sp3杂化轨道上,因此醇分子不是直线型,而是角型的,所以醇分子是极性分子。
由于醇中含有羟基,分子间可以形成氢键,因此低级醇的熔点和沸点比分子量相近的碳氢化合物的熔点和沸点高得多。
随着分子量的增加,羟基在醇分子中比例减小,羟基对醇的影响减小,从而使高级醇的物理性质与烷烃近似。
低分子量的醇可以与水形成氢键而互溶。
羟基是醇的官能团,醇的化学性质也是由羟基引起的,主要是羟基的活性;羟基被取代的反应;羟基的氧化反应以及β﹣H的活性等。
(2) 酚的结构与性质酚羟基与芳羟基直接相连,羟基氧原子是sp2杂化的,还有一对孤电子在未杂化的p轨道上,p电子云正好能与苯环的大π键电子云发生侧面重叠,形成p-π共轭效应,其结果p电子云向苯环转移,而羟基氧氢之间的电子云向氧原子转移,使氢容易以离子形式离去,具有部分双键的性质,难以被取代,当氧原子电子云向苯环转移,使苯环电子云密度升高,因此苯环上发生亲电取代反应速度加快。
(3) 醚的结构与性质醚可以看作是水的两个氢原子被烃基取代所得的化合物。
氧原子也是 sp 3 杂化的,因此醚不是直线型结构,而是角形结构,醚是极性分子。
与醇相比,醚分子间不能形成氢键,沸点比同组分醇的沸点低得多,如乙醚沸点是34.6℃ ,而丁醇的沸点为117.8℃ 。
但是醚比分子量相近的烷烃分子的沸点高。
醚分子中的氧可与水形成氢键,所以醚在水中有一定溶解度,乙醚在水中溶解度为 8g/100ml ,对于环状醚,由于成环缘故,氧原子外突,形成氢键的能力较强,因此四氢呋喃, 1,4 ﹣二氧六环与水能混溶。
醚是一类相当不活泼的化合物(环醚除外),醚链对于碱,氧化物,还原剂都是十分稳定。
醇和醚知识点详解
5.1.1 醇的分类和命名
一、醇的分类
1)根据羟基所连的烃基的结构不同,可分为脂肪醇、脂环醇 和芳香醇,又可分为饱和醇和不饱和醇。
脂肪醇: H3C OH
醇 脂环醇:
OH
甲醇 环己醇
芳香醇:
CH 2 OH
苯甲醇
2)按羟基所连碳原子的类型分:
O
3.用途
a. 选择性络合金属离子 分离提存贵金属
18-冠-6—K+ 12-冠-4—Li+
像西方的皇冠
b 作为相转移催化剂
冠醚 R Br + KCN
KCN和冠醚一起进入有机相 K+被固定,CN-亲核性大增。
5.2.6 环氧化合物 (Epoxides)
1、结构
C C 环醚 O
2、环氧化物的反应
张力 (Strain)
1).由格氏试剂制备 2).由醛酮还原
3).由烯烃加水
4).由RX水解
一、 醚的分类与命名 二、 醚的结构和物理性质 三、 醚的化学反应 四、 醚的制备方法 五、醚的来源和用途 六、冠醚 七、环氧化合物 八、硫醇与硫醚
5.2.1 醚的分类与命名
1、醚的分类
醚键:C-O-C 单醚: Et2O 混醚:CH3-O-C(CH3)3 环醚:
亲核取代反应
Nu: H2O, ROH, NH3及 Grignard试剂 (RMgX)
H2C CH2 + ROH O
RO CH2 CH2 O ROH RO CH2 CH2 OH
碱催化,亲核试剂进攻取代基较少的碳原子
CH3CH2O- + H2C CHCH3 O
CH3CH2OH
醇和醚知识点详解
醇和醚知识点详解醇和醚是有机化合物中常见的两类化合物。
它们在许多领域具有重要的应用,如有机合成、溶剂、药物和香料等。
本文将详细介绍醇和醚的定义、性质、制备方法和应用等知识点。
一、醇的定义和性质醇是一类含有氢氧基(-OH)的有机化合物。
根据氢氧基的位置,醇可以分为一次醇、二次醇和三次醇。
一次醇中,氢氧基连接在碳链上,如甲醇(CH3OH)和乙醇(C2H5OH)。
二次醇中,有两个氢氧基连接在碳原子上,如乙二醇(HOCH2CH2OH)。
三次醇则有三个氢氧基连接在碳原子上。
醇分子中的氢氧基使其具有一些特殊性质,如溶解性和酸碱性。
1. 溶解性:醇一般可溶于水。
较短的醇(一次醇和二次醇)溶解性较高,而较长的醇溶解性较差。
这是因为水分子能与醇分子的氢键形成氢键,使其能够相互溶解。
2. 酸碱性:醇可作为酸或碱。
在适当条件下,醇的氢氧基可以脱去质子成为负离子(醇的碱性),也可以接受质子成为正离子(醇的酸性)。
二、醇的制备方法1. 氢氧化物的还原:将醛或酮用还原剂(如氢气与催化剂)还原即可得到相应的醇。
2. 同分异构体的合成:对一些具有同分异构体的化合物,通过适当的反应条件,可以选择性地将其转化为某一种醇。
3. 环氧化合物的开环:将环氧化合物与酸或碱反应,使其开环而生成相应的醇。
4. 卤代烃的取代反应:醇也可以通过将卤代烃与水反应来获得。
三、醇的应用1. 溶剂:醇在许多化学反应中可以作为溶剂使用,如乙醇常用于制备药物和香料。
2. 酯的制备:醇与酸酐反应,通常可以生成酯。
酯在食品工业、香料工业和制药工业中有广泛的应用。
3. 脱水剂:由于醇分子中含有活泼的氢氧基,因此醇在一些有机合成反应中可以作为脱水剂使用。
四、醚的定义和性质醚是一类含有两个烷基或芳基团的有机化合物,其通式为R-O-R',其中R和R'可以是烷基或芳基团。
根据醚分子中氧原子在碳链上的位置,可以分为对称醚和非对称醚。
1. 对称醚:两个烷基或芳基团相同,例如乙醚(CH3OCH3),是最简单的醚。
第9章 醇、酚、醚
[总结 有机物的系统命名法的总原则 总结] 有机物的系统命名法的总原则: 总结
1.按官能团的优先次序排列, 选择最优先的官能团作为母 体官能团, 其它的官能团则作为取代基. 2.选择含有母体官能团的最长碳链作为主链, 主链的编号 首先应使母体官能团的编号最小, 其次是使取代基的编 号之和最小(即最低系列原则). [附] 常见官能团的优先次序: –COOH、–SO3H > –COOR、–CONH2 > –CHO、–CO– > –OH、–SH > –NH2 > C≡C、C=C > –Ph > –R > –OR、–X、–NO2 (见 刘庄编《普通有机化学》P167)
(HO)3P=O : 甘油三硝酸酯 (硝酸甘油)
O RO–P–OR + 3H2O OR
(RO)3P=O
有机酸酯: (见 P256) ROH + R′ COOH
R′ OH + H–X
• 反应活性(了解): HI > HBr > HCl •
H+ OH–
R–X + H2O
2. 醇的分类
• 根据羟基所连接的饱和碳原子的类型, 可分为 伯醇(1°)、 • •
仲醇(2°) 和 叔醇(3°). 根据所含羟基的数目, 可分为 一元醇 和 多元醇. 根据羟基所连的烃基结构, 可分为 饱和醇、不饱和醇 和 芳香醇.
3. 醇的命名法
① 普通命名法: 根据羟基所连的烃基 命名为 某(基)醇. 只适用于碳数不多、结构简单的醇. (例子见书) ② 系统命名法: 命名原则(见书): 选主链、主链的编号 例: CH3CHCH2CHCH3 CH3 OH 4–甲基–2–戊醇 • 不饱和醇的命名: 根据其不饱和键称为 某烯醇或某炔醇. 例: CH3CH=CHCH2OH 2–丁烯醇 (羟基位置为1时可省略) • 多元醇的命名: CH3CHCH2CHCH3 OH OH 2,4–戊二醇 • 脂环醇的命名: 根据脂环烃基 命名为 环某醇. 如 环己醇 • 芳香醇的命名: 把苯环看作取代基. 如 2–苯基乙醇 • 常见俗名: 酒精(乙醇)、甘油(丙三醇)、肌醇(环己六醇)
第九章 醇 酚 醚
第九章醇酚醚醇,酚,醚都是烃的含氧衍生物。
醇和酚是烃的羟基衍生物,而醚通常是有醇或酚制得的。
酚与醇在结构上的区别就在于它所含的羟基直接与芳环相联。
醇分子间能形成氢键,醇也能跟水形成氢键。
醇通常以下法制备:1.烯烃加水。
2.烯烃经羟汞化—脱汞反应。
3.烯烃经硼氢化—氧化反应。
4.Grignard反应。
一级醇:二级醇:三级醇:5.羰基化合物的还原。
6.卤代烷的水解。
醚可以通过一级卤代烷跟醇钠或酚钠的反应来制备(Williamson合成法)。
醇跟氢卤酸发生取代反应(1°ROH,S N2; 2°ROH和3°ROH,S N1)。
在硫酸或其他强酸存在下,醇能发生消除反应,这时醇的反应活性顺序是3°>2° >1°。
当醚跟HBr 或HI 共热时可发生取代反应。
醇可以跟有机酸或无机酸反应生成酯。
一级醇可以被氧化成羧酸(或醛),而二级醇被氧化成酮,三级醇在碱性条件下是抗氧化的。
环氧化物比其他醚更活泼,在酸性和碱性溶液中可以跟亲核试剂发生开环反应。
醇的酸性比水还弱,与醇显著不同,酚是具有相当酸性的化合物,它可以溶于氢氧化钠水溶液而变成它的盐。
酚的最突出的化学性质是它的环对亲电取代反应有极高的反应活性:1.卤代。
白色,可用于酚的鉴别2.硝化。
3.磺化。
4.酰基化反应,Fries重排:5.跟甲醛反应。
习题一、按系统命名法命名下列化合物:5. 醇、酚、醚(1) (2)3-乙基-2-甲氧基己烷 5-甲基-4-己烯-3-醇(3)(4)3-甲基-2-环己烯-1-醇 2-甲基-4-甲氧基苯酚(5) (6)4-烯丙基-2-甲氧基苯酚 6-甲基-3-乙基-5-溴-1-庚醇1. 2.3. 4.5. 6. 1、3-E-3-甲基-3-戊烯-2-醇; 2、R-3-甲基-2-丁醇; 3、(2S ,3S )-3-甲氧基-2-戊醇; 4、2-异丙氧基丁烷; 5、4-甲氧基苯酚; 6、5-溴-1-苯酚OH C CH 3HO 3)2OCH 3CH 3HO H H C 2H 5OOH OCH 3OH Br CH(CH CHCH-OCHCH CH CH 322233)CH CH CH 3233C=CHCHCH OH CH 3OHCH 33OHOCH 223OH OCH CH=CH CH CH CH CH 322233OHCHCHCH CHCH 2CH二、完成下列反应,写出反应的主要产物:1.2.3. 4.5. 6.7. 8.9.10.11.12.13. 14.1、CH 2CH 2CH CH 3=;2、CH 3CHCH 3=C ()2;3、CH 3CH 2CH 3O C ()3; 4、OCH 3CH 2CH 2CH 2OH + NaBr H 2SO 4(CH 3)3CCH 2OH CH 3CH 2Br + NaOC(CH 3)3OH +K 2CrO 7dil.H 2SO 4CH 3CH 2CH 2MgBr +CH 2-CH 2OEt 2OH 2O 3)2OH H 2SO 4CH 2CH 2OHOH SOCl 2[ ]CH 2CH 3O + HI CH=CHCHCH 3OH + CH 3CCH 3OAl[OCH(CH 3)2]3CH 3CH=CHCH 2OH +HBr OH +CH 3COCH 3H 2SO 4CH 3CH=CHCH 2OH + CrO 3(C 5H 5N)2.CH 2Cl 2CH 3( )CH 2Cl ( )( )CH 2CH=CH 2( )2CH5、CH 2CH 2CH 2OH CH 3; 633; 7CH 2CH 2CH 3OHNH 3;82CH 2Cl9、CH2CH 3I ; 10CH 3=OC =CH 、CH 3CH 3OH;11、CH 3Br CH 2CH =CH ; 12、313、CH 3CH =CH CHO ;14、Cl 2CCH、Lindlar 、、H 3+O 2CH 2CH 3OH三、选择正确答案,并说明理由:1. 具有下列结构的醇类化合物,可以稳定存在的是( )。
有机化学第9章 醇、酚和醚
OCH3 + H2 O
硫酸和乙醇作用,也可以得到硫酸氢乙酯和硫酸二乙酯。硫酸二 甲酯和硫酸二乙酯是烷基化试剂,可以用在有机物分子中导入甲基和乙 基的试剂,但是它们的蒸气有剧毒,使用时要特别注意。
( 2) 多元醇与一元酸的反应
CH2OH CHOH + 3 HONO2 ( HNO3 ) CH OH
2
CH2ONO2 CHONO2 CH2ONO2
H H H
烃基的供电子作用使氧 氢键极性下降。 氢原子既不供电子,也不吸电 子,氧氢键极性不变。 孤对电子占据的 P 轨道与苯环间存 在 P-π共轭体系,氧上电子云向苯 环转移,使氧氢键极性增强。
取代酚的酸性:(pKa值)
OH OH OH
吸电子基 酸性增加 斥电子基 酸性下降
OH
OH
OC H 3
C H3
分子间脱水 (伯醇 亲核取代 SN2机理):
总结:醇的分子内脱水和分子间脱水是两种互相竞争的反应。 高温有利于发生分子内脱水生成烯烃,较低温度则有利于分子间脱 水生成醚。 伯醇能进行分子内脱水和分子间脱水;仲醇和叔醇在酸催化作 用下主要是进行分子内脱水,产物是烯烃 。
5) 多元醇的特性 (1) 与氢氧化铜的反应(邻二醇结构)
(CH3)2CHCH2CH2OH + HONO
(CH3)2CHCH2CH2ONO + H2O 亚硝酸异戊酯
亚硝酸异戊酯用作血管舒张药,可缓解心绞痛,但副作用大。
O CH3OH + HOSO3H ( H2SO4 )
O CH3OH + CH3O S O OH CH3O
CH3O
S O
OH
O S O
+ H2 O
OH
有机化学第9章(醇、酚、醚)重、难点提示和辅导
有机化学第9章(醇、酚、醚)重、难点提示和辅导一.命名1.醇普通命名是在醇分子中烃基的名称后面加上“醇”字即可。
系统命名是选择含有羟基的最长碳链为主链,从靠近羟基的一端开始编号,根据主链碳原子数叫做“某醇”,再把取代基的位次和名称及羟基的位次放在醇的名称前面。
2.酚酚的命名是在芳环(苯、萘等)名称后面加上“酚”字,若芳环上有取代基,将取代基的位次和名称写再前面。
3.醚简单醚根据烃基命名单醚:称(二)某烃(基)醚,如甲醚、二苯醚。
混合醚:按照“次序规则”,较小基团放在前面,如甲乙醚;有芳基时,将芳基放在前面,如苯甲醚。
结构复杂的醚当作烃的烷氧基衍生物命名,即复杂的烃基为母体,简单的烃基与氧组成的烷氧基作为取代基。
如:叫3-甲氧基戊烷。
二.化学性质三.鉴别1.醇(1)用金属钠,有气泡产生,(鉴别六个碳原子以下的醇)。
注意排除水、酸、末端炔烃剂低级醛、酮中活泼氢的干扰。
(2)用卢卡斯试剂鉴别伯、仲、叔醇。
在伯、仲、叔醇的试管仲分别加入卢卡斯试剂,很快变浑浊的是伯醇,放置后变浑浊的是仲醇,加热才变浑浊的是叔醇,(此法适于鉴别六个碳原子以下的醇)。
2.酚(1)三氯化铁显色,鉴别酚类化合物。
(2)加溴水,生成白色沉淀,鉴别苯酚。
四.制备方法:(本章没有讲到,根据前面讲过的内容可以总结)1.醇(1)烯烃在酸催化下与水加成,不对称烯烃与水加成符合马氏规则。
(教材39页)(2)卤代烃的碱性水解(教材101页)(3)环氧乙烷与格氏试剂反应,可制备增加两个碳原子的伯醇(教材129页)(4)醛酮与格氏试剂加成后再酸性水解(教材142页)(5)醛酮还原(教材148页)2.醚卤代烃的醇解(教材101页)五.重要的名词、规则卢卡斯试剂:浓盐酸和无水氯化锌的混合液。
查依采夫规则(见8章辅导)六.练习题教材133页:习题二、134页:习题四、五、七、八。
第九章醇和醚
醇、醚可看成是水分子中的氢原子被烃基所取代的 产物,属烃的含氧衍生物。
通式:R-OH 脂肪醇;Ar-R-OH 芳香醇;
R-O-R` 脂肪醚、Ar-O-Ar 芳醚。
如果硫化氢分子中的氢原子被烃基取代,则得到硫 醇、硫酚、硫醚。R-SH、 Ar-SH、 R-S-R`
第一节
醇
醇可以看成是烃分子中的氢原子被羟基(OH)取代后 生成的衍生物(R-OH)。
环氧乙烷化学性质活泼,在酸或碱催化下能与多种试剂 反应,形成一系列重要工业原料。
A. 在酸催化下,环氧乙烷可与水、醇、卤化氢等含活泼氢的 化合物反应,生成双官能团化合物。
这些产物同时有醇和醚的性质,是很好的溶剂,常称溶 纤素,广泛用于纤维素酯和油漆工业。
B. 在碱催化下,环氧乙烷可与RO-,NH3,RMgX等反应生成 相应的开环化合物。
发。大于6个碳的醇(苄醇除外)不溶于卢卡斯试剂,易混淆实
验现象。
2) 醇与HX的反应为亲核取代反应,伯醇为SN2历程,叔醇、烯 丙醇为SN1历程,仲醇多为 SN1历程。 A. SN1: 烯丙醇、苄醇、叔醇、仲醇。
这是因为按SN1机理进行反应时,可能发生分子重排的结果。
B. SN2:大多数伯醇,且没有重排反应。
硫醇的分解:氢解和热解两种,用于脱硫。
氢解:H2,CoMnO4 340℃-400℃
RH + H2S 烯烃 + H2S
R-SH
热解:340℃-400℃
硫醚的C-S键较弱,反应活性大于醇。 硫醚的氧化:生成亚砜和砜类。
二甲亚砜的溶解能力和穿透能力极强,在实验室中应避 免与人体皮肤接触。 锍盐的生成:
3.醇的命名 1)俗名 如乙醇俗称酒精,丙三醇称为甘油等。 2)简单的一元醇用普通命名法命名。
醇和醚
醇的物理性质、 第四节 醇的物理性质、光谱特征 一 物理性质
醇分子之间能形成氢键。 醇分子之间能形成氢键。 固态,缔合较为牢固。液态, 固态,缔合较为牢固。液态,形成氢键和氢键的解离 均存在。气态或在非极性溶剂的稀溶液中,醇分子可以单 均存在。气态或在非极性溶剂的稀溶液中, 独存在。 独存在。 由于醇分子之间能形成氢键, 由于醇分子之间能形成氢键,沸点较相应分子量的烷 烃高。 烃高。 由于醇分子与水分子之间能形成氢键, 由于醇分子与水分子之间能形成氢键,三个碳的醇和 叔丁醇能与水混溶。 叔丁醇能与水混溶。
光谱特征(参见第八章) 二 光谱特征(参见第八章)
醇化物(结晶醇) 三 醇化物(结晶醇)
低级醇与一些无机盐形成的结晶状分子化合物称之为结晶 低级醇与一些无机盐形成的结晶状分子化合物称之为结晶 也称之为醇化物 醇化物。 醇,也称之为醇化物。 MgCl2 6CH3OH 注意 许多无机盐 不能作为醇 的干燥剂。 的干燥剂。 CaCl2 4C2H5OH 工业乙醚常杂有 少量乙醇, 少量乙醇,加入 CaCl2可使醇从 乙醚中沉淀下来。 乙醚中沉淀下来。
HOCH2CHCH2OH OH
HOCH2CH2OH
二
R C R'
OH OH
-H2O
R R'
C O
RCH
OH OH
-H2O
RCHO
OH R C OH OH
-H2O
RCOOH
第二节 醇的命名 衍生物命名法(看作甲醇的衍生物) 一 衍生物命名法(看作甲醇的衍生物)
CH3 (CH3)2CHCHOH
甲基异丙基甲醇 甲基异丙基甲醇
CH3
HBr
H H
Br Br CH3
(dl) ) H+
醇和醚_精品文档
R-OH + HX
CH2Cl
H2O Na2CO3
CH2OH
CH2=CH-CH2Cl
H2O Na2CO3
CH2=CH- CH2OH
.
11
二、醇的物理性质
1. 物态
C1~C4 ----有酒味无色液体 C5~C11 ----有嗅味油状液体 C12 以上----固体
.
12
2. 沸点(b.P.)
① 比相应烃、卤代烃高
ROH + PCl5 ROH + SOCl2
R-Cl + POCl3 + HCl
R-Cl + SO2 + HCl 此反应产物纯净
制氯代烃
.
22
4.与酸反应(成酯反应)
醇和无机酸、有机酸作用,生成相应的酯
与有机酸反应: O
C2H5OH + CH3-C-OH
O
H+
CH3-C-O-C2H5 + H2O
与无机酸反应:
甲醇
-OH
环己醇
-CH2-OH
苄醇
有异构体,按正、异、仲、新、叔等命名
CH3
CH3CH-OH
异丙醇
OH
CH3CHCH2CH3
仲丁醇
CH3
CH3
CH3C-OH
CH3CCH2-OH
CH3
叔丁醇
.
CH3
新戊醇
3
② 甲醇衍生物命名法:--------以甲醇作母体
Ph Ph-C-OH
Ph
三苯甲醇
CH2CH3 CH3-C-OH
SN1历程
CH3
δ+ δ- 快
C H 3 C O H + H—X
醇与醚的制备与反应特性解析
醇与醚的制备与反应特性解析醇与醚是有机化学中常见的官能团,它们在许多化学反应中发挥着重要的作用。
本文将对醇与醚的制备方法以及它们的反应特性进行解析。
一、醇的制备与反应特性1. 醇的制备方法醇可以通过多种方法合成,其中最常见的方法是通过醚与水的加成反应或者通过醛和酮的还原反应来制备。
例如,氢氧化钾和溴代烷在乙醇中反应,可以得到相应的醇。
2. 醇的反应特性醇具有许多重要的反应特性,其中包括酸碱性、氧化性和亲核性。
醇可以与酸反应生成醋酸酯,与碱反应生成醇盐。
此外,醇还可被氧化剂氧化为醛和酮。
二、醚的制备与反应特性1. 醚的制备方法醚的制备常通过醇之间的脱水反应实现,即两个醇分子之间通过酸催化或碱催化发生缩合反应,失去一个水分子形成醚。
另外,醚还可以通过醇与卤代烷的取代反应制备。
2. 醚的反应特性醚具有较高的化学稳定性,不易与酸或碱反应。
然而,在一些特殊条件下,醚可以遭受氧化反应,生成醚的过氧化物。
此外,醚还可以通过酸催化或碱催化的环合反应发生缩合反应,生成环状醚。
三、醇与醚的应用领域1. 醇的应用领域由于醇具有丰富的官能团化合物,它们在医药、香料、染料、涂料等领域有广泛的应用。
例如,乙醇常作为溶剂用于制药工艺中,甘油常作为护肤品的主要成分。
2. 醚的应用领域醚广泛应用于有机合成领域,例如,二甲醚常使用在有机合成反应中作为溶剂或还原剂。
此外,环状醚也被广泛应用于催化反应和超分子化学研究中。
总结:醇与醚是有机化学中常见的官能团,它们具有各自的制备方法和反应特性。
醇可以通过醚与水的加成反应或者通过醛和酮的还原反应制备,而醚则可以通过醇之间的脱水反应或醇与卤代烷的取代反应制备。
在应用领域上,醇与醚有着广泛的用途,包括医药、香料、染料、涂料等。
深入了解醇与醚的制备与反应特性,对于有机化学领域的研究和应用具有重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.醇的命名 1)俗名 如乙醇俗称酒精,丙三醇称为甘油等。
2)简单的一元醇用普通命名法命名。
3)系统命名法 结构比较复杂的醇,采用系统命名法。选择含有羟基碳
的最长碳链为主链,以羟基的位置最小编号,称为某醇。
选长链——含羟基碳; 编位次——羟基始。
2)用硫酸催化脱水时,有重排产物生成,遵循E1机理。
6、氧化和脱氢 1)氧化:
伯醇、仲醇分子中的α-H原子,由于受羟基的影响易被氧化。 常用的氧化剂: 氧化产物:A. 伯醇被氧化为羧酸
此反应可用于检查醇的含量,例如,检查司机是否酒后驾车的 分析仪就是根据此反应原理设计的。在100ml血液中如含有超过 80mg乙醇(最大允许量)时,呼出的气体所含的乙醇即可使仪器 得出正反应。(若用酸性KMnO4,只要有痕迹量的乙醇存在,溶
高级醇的硫酸酯是常用的合成洗涤剂之一。如 C12H25OSO2ONa (十二烷基磺酸钠)。
2)与有机酸反应
5. 脱水反应 醇与催化剂共热即发生脱水反应,随反应条件而异可发生
分子内或分子间的脱水反应。
醇的脱水反应活性: 3o R-OH > 2o R-OH > 1o R-OH
醇脱水反应的特点: 1)主要生成札依采夫烯,例如:
醇可以看成是烃分子中的氢原子被羟基(OH)取代后 生成的衍生物(R-OH)。
一、醇的结构、分类和命名
1 、醇的结构
2. 醇的分类
1)根据羟基所连碳原子种类分为: 一级醇(伯醇)、二级醇(仲醇)、三级醇(叔醇)。
2)根据分子中烃基的类别分为: 脂肪醇、脂环醇和芳香醇(芳环侧链有羟基的化合物)。
3)根据分子中所含羟基的数目分为: 一元醇、二元醇和多元醇。 两个羟基连在同一碳上的化合物不稳定,这种结构会自发
这是因为空间位阻较大,不利于按SN2历程进行反应。若按 SN1历程进行反应,虽然生成的中间体是稳定性很小的伯碳正离 子,反应速率较慢,但因伯碳正离子可重排为稳定的叔碳正离子,
故得到的是重排产物。
3. 与卤化磷和亚硫酰氯反应
4. 与酸反应(成酯反应) 1)与无机酸反应
醇与含氧无机酸硫酸、硝酸、磷酸反应生成无机酸酯。
被取代。
醇钠(RONa)是有机合成中常用的碱性试剂。醇钠的用途: 1. 醇钠在有机合成中用作碱性试剂,其碱性比NaOH还强。
2. 醇钠也常作分子中引入烷氧基(RO-)的亲核试剂。
醇还可与其它活泼金属反应:如Mg,Al,生成醇镁、醇铝。
2、与氢卤酸反应(制卤代烃的重要方法)
1) 反应速度与氢卤酸的活性和醇的结构有关。 HX的反应活性: HI > HBr > HCl
3. 结晶醇的形成
低级醇能和一些无机盐(MgCl2、CaCl2、CuSO4等)作 用形成结晶醇,亦称醇化物。 如:
三、醇的化学性质
分子中的C—O键和O—H键都是极性键,因而醇分子中 有两个反应中心。 又由于受C—O键极性的影响,使得α—H
具有一定的活性,所以醇的反应都发生在这三个部位上。
1、与活泼金属的反应
Na与醇的反应比与水的反应缓慢的多,反应所生成的热量不 足以使氢气自燃,故常利用醇与Na的反应销毁残余的金属钠,
而不发生燃烧和爆炸。
CH3CH2O- 的碱性比OH-强,所以醇钠极易水解。
醇的反应活性: CH3OH > 伯醇(乙醇) > 仲醇 > 叔醇
pKa: 15.09
15.93
> 19
羟基的氢原子活性取决于O—H键的断裂难易程度。叔醇 羟基的氧受到三个供电子基团(R)的影响,使氧原子上的 电子云密度较高,氢原子和氧原子结合得也较牢。而伯醇羟 基的氧原子只受到一个供电子基团(R)的影响,使氧原子 上的电子云密度较低,O—H的氢受到的束缚较小,所以易
验现象。
2) 醇与HX的反应为亲核取代反应,伯醇为SN2历程,叔醇、烯 丙醇为SN1历程,仲醇多为 SN1历程。
A. SN1: 烯丙醇、苄醇、叔醇、仲醇。
这是因为按SN1机理进行反应时,可能发生分子重排的结果。
B. SN2:大多数伯醇,且没有重排反应。 β位上有支链的伯醇、仲醇与HX的反应常有重排产物生成。
3)含支链的醇比直链醇的沸点低,如正丁醇(117.3)、异丁 醇(108.4)、叔丁醇(88.2)。
R
R
O
HO
H
HOHOR来自R2. 溶解度 1)甲、乙、丙醇与水以任意比混溶(与水形成氢键的原
因);
2)C4以蔽上作则用随增着大碳,链阻的碍增了长醇溶羟解基度与减水小形(成烃氢基键增)大;,其遮
3)分子中羟基越多,在水中的溶解度越大,沸点越高。如 乙二醇(bp=197 ℃)、丙三醇(bp=290 ℃)可与水混溶。
液颜色即从紫色变为无色,故仪器中不用KMnO4)。
B. 仲醇一般被氧化为酮。脂环醇可继续氧化为二元酸。
叔醇一般难氧化,在剧烈条件下氧化则碳链断裂生成小 分子氧化物。
2)脱氢 伯、仲醇的蒸气在高温下通过催化活性铜时发生脱氢反
应,生成醛和酮。
四、多元醇的反应
1. 螯合物的生成
多元醇的命名,要选择含-OH尽可能多的碳链为主链, 羟基的位次要标明。
二、醇的物理性质
1. 沸点 1)比相应的烷烃的沸点高100-120 ℃(形成分子间氢键的原 因), 如乙烷的沸点为-88.6 ℃,而乙醇的沸点为78.3℃。
2)比分子量相近的烷烃的沸点高, 如乙烷(分子量为30)的沸点 为-88.6 ℃,甲醇(分子量32)的沸点为64.9 ℃。
第九章 醇和醚
❖ 醇、醚可看成是水分子中的氢原子被烃基所取代的 产物,属烃的含氧衍生物。
❖ 通式:R-OH 脂肪醇;Ar-R-OH 芳香醇;
R-O-R` 脂肪醚、Ar-O-Ar 芳醚。 ❖ 如果硫化氢分子中的氢原子被烃基取代,则得到硫
醇、硫酚、硫醚。R-SH、 Ar-SH、 R-S-R`
第一节 醇
醇的活性次序: 烯丙式醇 > 叔醇 > 仲醇 > 伯醇 > CH3OH
醇与卢卡斯(Lucas)试剂(浓盐酸和无水氯化锌)的反应:
Lucas试剂可用于区别伯、仲、叔醇,但一般仅适用于3-6个 碳原子的醇。原因: 1-2个碳的产物(卤代烷)的沸点低,易挥 发。大于6个碳的醇(苄醇除外)不溶于卢卡斯试剂,易混淆实