高中数学例题:对数函数的单调性及其应用
高三数学 函数的单调性和最值典型例题解析之一

高三数学函数的单调性和最值典型例题解析1.由二次函数的值域和对数函数的单调性,求得()f x 的最小值,解不等式112log 48a a ⎛⎫≥+ ⎪⎝⎭,可得所求范围. 【详解】(1)由2040x a a x ->⎧⎨->⎩可得24a x a <<,则()f x 的定义域为()2,4a a ,()log (2)log (4)log (2)(4)a a a f x x a a x x a a x =-+-=--22log (3)a x a a ⎡⎤=--+⎣⎦,当1a >时,()f x 的增区间为()2,3a a ,减区间为()3,4a a .证明:设()22()3g x x a a =--+,()g x 的增区间为(),3a -∞,减区间为()3,a +∞,当1a >时,设1223a x x a <<<,可得()()12g x g x <,()()12log log []a a g x g x <⎡⎤⎣⎦,即()()12f x f x <,可得()f x 在()2,3a a 递增;设1234a x x a <<<,可得()()12g x g x >,()()12log log []a a g x g x >⎡⎤⎣⎦, 即()()12f x f x >,可得()f x 在()3,4a a 递减.(2)由01a <<,()2223x a a a --+≤,可得2()log 2a f x a ≥=,所以112log 48a a ⎛⎫≥+ ⎪⎝⎭,即为211048a a --≤,解得102a <≤,即a 的取值范围是10,2⎛⎤⎥⎝⎦.2. 已知定义域为R 的函数12()12xxf x -=+. (1)试判断函数12()12xxf x -=+在R 上的单调性,并用函数单调性的定义证明;(2)若对于任意t ∈R ,不等式22(2)()0f t t f t k -+-<恒成立,求实数k 的取值范围. 【答案】(1)函数()f x 在R 上单调递减,证明见解析;(2)1,2⎛⎫-∞- ⎪⎝⎭.【详解】(1)函数12()12xx f x -=+在R 上单调递减.证明如下:任取12,x x ∈R ,且12x x <,122112*********(22)()()1212(12)(12)x x x x x x x x f x f x ----=-=++++,因为12x x <,所以1222x x <,1120x +>,2120x +>,即12()()f x f x >,故函数12()12xxf x -=+在R 上单调递减. (2)因为1221()()1221x x x x f x f x -----===-++,故12()12xxf x -=+为奇函数,所以222(2)()()f t t f t k f k t -<--=-, 由(1)知,函数()f x 在R 上单调递减,故222t t k t ->-,即2220t t k -->对于任意t ∈R 恒成立,所以222k t t <-,令()222g t t t =-,则()min k g t <,因为()22111222222g t t t t ⎛⎫=-=--≥- ⎪⎝⎭,所以()min 12g t =-,所以12k <-,即实数k 的取值范围是1,2⎛⎫-∞- ⎪⎝⎭.3.下列函数中是偶函数,且在区间(0,1)上单调递增的是() A .22y x =-B .2y x=C .1||||y x x =+D .2||x y x =【答案】AD 【详解】A ,因为()()()2222f x x x f x -=--=-=,22y x =-是偶函数,在区间(0,1)上为增函数,符合题意;B ,因为()()22x x f x f x =--=--=,2y x=是奇函数,且在区间(0,1)上为减函数,不符合题意; C ,因为()()11||||||||f x x x f x x x -=-+=+=-,1||(0)||y x x x =+≠是偶函数,当(0,1)x ∈时,1y x x=+单调递减,不符合题意;D ,因为()()22||||x x f x f x x x -===-,2(0)||x y x x =≠是偶函数,且在区间(0,1)上为增函数,符合题意. 故选:AD4.定义在[1,1]-上的奇函数()f x ,对任意,0m n ≠时,恒有()()0f m f n m n+>+.(1)比较1()2f 与1()3f 大小;(2)判断()f x 在[1,1]-上的单调性,并用定义证明;(3)若810a x -+>对满足不等式11()(2)024f x f x -+-<的任意x 恒成立,求a 的取值范围. 【答案】(1)11()()23f f >;(2)函数()f x 在[1,1]-上为单调递增函数,证明见解析;(3)4a >. 【解析】试题解析:(1)利用作差法,即可比较1()2f 与1()3f 大小;(2)利用单调性定义证明步骤,即可得出结论;(3)先确定x 的范围,再分离参数求最值,即可求a 的取值范围.试题解析:(1)第一步,由()()0f m f n m n+>+得出031213121>⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛f f :∵11()023+-≠,031213121>⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛f f , ∵03121>⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛f f , 第二步,由奇偶性得出结论: ∵11()()23f f >--∵11()()23f f >. (2)第一步,取值、作差: 任取12[1,1]x x ∈-,且12x x <,21212121212121()()()()()()()()()f x f x f x f x f x f x x x x x x x x x -+--=-=--+-.第二步,判断符号:∵2121()()0()f x f x x x +->+-,210x x ->,∵21()()0f x f x ->,第三步,下结论:∵函数()f x 在[1,1]-上为单调递增函数. (3)4a >.考点:函数奇偶性与单调性的综合问题. 5.已知函数()21xf x x =+. (1)判断并证明函数()f x 的奇偶性;(2)判断当()1,1x ∈-时函数()f x 的单调性,并用定义证明; (3)若()f x 定义域为()1,1-,解不等式()()210f x f x -+<. 【答案】(1)奇函数(2)增函数(3)1{|0}3x x <<【解析】试题解析:(1)判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)与f(x)的关系,如果对定义域上的任意x ,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。
【教学随笔】例析与对数函数的单调性有关的参数范围的求法

例析与对数函数的单调性有关的参数范围的求法对数函数的单调性是对数函数的一个重要性质,而求与对数函数的单调性有关的参数范围是一个难点.要正确解答此类题型,主要从下面几点考虑:①抓住函数的定义域,在定义域内进行讨论;②抓住对数函数的底数,由此确定函数的单调性;③注意对数函数真数大于零.下面举例说明.例1已知函数f(x)=lg(ax -1)-lg(x -1)(a ∈R),若函数f(x)在[10,+∞)上单调递增,试求a 的取值范围.解:由已知有10a -1>0,a >110,则 因为f(x)=lg(ax -1)-lg(x -1)=lg(a +a-1x-1)在[10,+∞)上单调递增, 当a >1时,f(x)在[1,∞)上为减函数,因此,f(x)不可能在[10,+∞)上单调递增,不满足条件;当110<a <1时,f(x)在[1,∞)上为增函数,因此,f(x)在[10,+∞)上单调递增,满足条件.综上所述,所求a 的取值范围是110<a <1. 点评:本题利用对数的性质转化为函数f(x)=lg(a +a-1x-1),对a -1的符号进行讨论,并结合反比例函数的单调性及单调性的复合规律进行求解的.例2已知函数f(x)=2x ,设f(x)的反函数为f -1(x),若f -1(x +a x–3)在区间[2,+∞)上单调递增,求正实数a 的范围.解:∵f -1(x)=log 2x ,∴f -1(x +a x –3)=log 2(x +a x–3), 设g(x)=x +a x –3,由于f -1(x +a x –3)在区间[2,+∞)上单调递增,故g(2)=2+a 2–3>0,即a >2,当2≤x 1<x 2时恒有:g(x 1)-g(x 2)=(x 1-x 2)·x 1x 2-a x 1x 2<0成立, ∵x 1-x 2<0,x 1x 2>4,x 1x 2-a >0恒成立,即a <x 1x 2恒成立,∴a ≤4,综上所述,a 的取值范围为2<a ≤4.点评:本题充分利用函数的单调性的定义,通过分离参数,并将a <x 1x 2恒成立转化为a ≤x 1x 2无限趋近的一个常数.例3函数f(x)=log 9(x +8–a x)在[1,+∞)上单调递增,求实数a 的取值范围. 解:由条件知1+8–a >0,得a <9.当0<a <9时,易知函数u =x +8–a x在(0,+∞)上单调递增,由此可知函数f(x)=log 9(x +8–a x)在[1,+∞)上单调递增,满足条件; 当a =0时,函数f(x)=log 9(x +8),易知在[1,+∞)上单调递增,满足条件;当a <0时,函数u =x +8–a x =x +-a x+8在[-a,+∞)上单调递增,所以-a ≤1,解得a ≥-1.综上所述,所求a 的范围是-1≤a <9.点评:本题充分利用函数y =x +m x 的单调性进行求解的.对于函数y =x +m x:当m >0时,函数的单调递增区间为(-∞,-m),(m ,+∞);当m =0时为一次函数;当m <0时,函数的递增区间为(-∞,0),(0,+∞).例4是否存在实数a ,使函数f(x)=log a (ax 2-x)在区间[2,4]上是增函数?如果存在,求出a 的变化范围,如果不存在,请说明理由.解:设g(x)=ax 2-x ,假设符合条件的a 存在,当a >1时,为使函数f(x)=log a (ax 2-x)在区间[2,4]上是增函数,只需g(x)=ax 2-x在区间[2,4]上是增函数,故应满足⎩⎪⎨⎪⎧ x=12a ≤2g(2)=4a-2>0⇒a >12,当注意到a >1时,即a >1; 当0<a <1时,为使函数f(x)=log a (ax 2-x)在区间[2,4]上是增函数,只需g(x)=ax 2-x 在区间[2,4]上是减函数,故应满足⎩⎪⎨⎪⎧ x=12a ≥4g(4)=16a-4>0,此不等式组无解, 综上可知,当a >1时,f(x)=log a (ax 2-x)在区间[2,4]上为增函数.点评:本题充分利用二次函数的对称轴位置及单调区间的端点值的符号进行求解的.。
高中数学:2.2.2对数函数及其性质 (1)

2.2.2对数函数及其性质第二课时对数函数及其性质的应用(习题课)比较对数值的大小[例1]比较下列各组数中两个值的大小:(1)log23.4,log28.5;(2)log0.31.8,log0.32.7;(3)log a5.1,log a5.9(a>0,且a≠1).[解](1)考察对数函数y=log2x,因为它的底数2>1,所以它在(0,+∞)上是增函数,于是log23.4<log28.5.(2)考察对数函数y=log0.3x,因为它的底数0<0.3<1,所以它在(0,+∞)上是减函数,于是log0.31.8>log0.32.7.(3)当a>1时,y=log a x在(0,+∞)上是增函数,于是log a5.1<log a5.9;当0<a<1时,y=log a x在(0,+∞)上是减函数,于是log a5.1>log a5.9.比较对数值大小时常用的4种方法(1)同底的利用对数函数的单调性.1.比较下列各题中两个值的大小: (1)lg 6,lg 8; (2)log 0.56,log 0.54; (3)log 132与log 152;(4)log 23与log 54.解:(1)因为函数y =lg x 在(0,+∞)上是增函数,且6<8,所以lg 6<lg 8. (2)因为函数y =log 0.5x 在(0,+∞)上是减函数,且6>4,所以log 0.56<log 0.54. (3)由于log 132=1log 213,log 152=1log 215. 又∵对数函数y =log 2x 在(0,+∞)上是增函数,且13>15,∴0>log 2 13>log 2 15,∴1log 213<1log 215.∴log 132<log 152. (4)取中间值1,∵log 23>log 22=1=log 55>log 54,∴log 23>log 54.[例2] (1)已知log a 12>1,求a 的取值范围;(2)已知log 0.7(2x )<log 0.7(x -1),求x 的取值范围. [解] (1)由log a 12>1得log a 12>log a a .求解对数不等式①当a >1时,有a <12,此时无解.②当0<a <1时,有12<a ,从而12<a <1.∴a 的取值范围是⎝⎛⎭⎫12,1.(2)∵函数y =log 0.7x 在(0,+∞)上为减函数, ∴由log 0.72x <log 0.7(x -1) 得⎩⎪⎨⎪⎧2x >0,x -1>0,2x >x -1,解得x >1.∴x 的取值范围是(1,+∞).常见对数不等式的2种解法(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式,再借助y =log a x 的单调性求解.2.已知log a (3a -1)恒为正,求a 的取值范围. 解:由题意知log a (3a -1)>0=log a 1. 当a >1时,y =log a x 是增函数,∴⎩⎪⎨⎪⎧ 3a -1>1,3a -1>0,解得a >23,∴a >1;当0<a <1时,y =log a x 是减函数,∴⎩⎪⎨⎪⎧3a -1<1,3a -1>0,解得13<a <23.∴13<a <23. 综上所述,a 的取值范围是⎝⎛⎭⎫13,23∪(1,+∞).有关对数型函数的值域与最值问题[例3] 求下列函数的值域.(1)y =log 2(x 2+4);(2)y =log 12(3+2x -x 2).[解] (1)y =log 2(x 2+4)的定义域是R. 因为x 2+4≥4,所以log 2(x 2+4)≥log 24=2, 所以y =log 2(x 2+4)的值域为[2,+∞). (2)设u =3+2x -x 2=-(x -1)2+4≤4. 因为u >0,所以0<u ≤4.又y =log 12u 在(0,+∞)上为减函数,所以log 12u ≥log 124=-2,所以y =log 12(3+2x -x 2)的值域为[-2,+∞).(1)求对数型函数的值域,一般需根据对数函数的单调性及真数的取值范围求解. (2)求函数的值域时,一定要注意定义域对它的影响,结合函数的单调性求解,当函数中含有参数时,有时需讨论参数的取值.3.已知f (x )=2+log 3x ,x ∈[1,9],求函数y =[f (x )]2+f (x 2)的最大值及此时x 的值. 解:y =[f (x )]2+f (x 2)=(2+log 3x )2+log 3x 2+2=(log 3x )2+6log 3x +6=(log 3x +3)2-3. ∵f (x )的定义域为[1,9], ∴y =[f (x )]2+f (x 2)中,x必须满足⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9,∴1≤x ≤3,∴0≤log 3x ≤1,∴6≤y ≤13. ∴当x =3时,y 取得最大值,为13.[例4] 已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),其中(a >0且a ≠1),设h (x )=f (x )-g (x ).求函数h (x )的定义域,判断h (x )的奇偶性,并说明理由. [解] ∵f (x )=log a (1+x )的定义域为{x |x >-1}, g (x )=log a (1-x )的定义域为{x |x <1},∴h (x )=f (x )-g (x )的定义域为{x |x >-1}∩{x |x <1}={x |-1<x <1}. ∵h (x )=f (x )-g (x )=log a (1+x )-log a (1-x ),∴h (-x )=log a (1-x )-log a (1+x )=-[log a (1+x )-log a (1-x )]=-h (x ), ∴h (x )为奇函数. [一题多变]1.[变条件]若f (x )变为log a 1+x1-x (a >1):求f (x )的定义域.解:因为f (x )=log a 1+x1-x,需有1+x1-x >0,即⎩⎪⎨⎪⎧ 1+x >0,1-x >0,或⎩⎪⎨⎪⎧1+x <0,1-x <0,所以-1<x <1.所以函数f (x )的定义域为(-1,1).2.[变设问]在本例条件下,若f (3)=2,求使h (x )<0成立的x 的集合. 解:∵f (3)=log a (1+3)=log a 4=2,∴a =2. ∴h (x )=log 2(1+x )-log 2(1-x ), ∴h (x )<0等价于log 2(1+x )<log 2(1-x ),对数函数性质的综合应用∴⎩⎪⎨⎪⎧1+x <1-x ,1+x >0,1-x >0,解得-1<x <0.故使h (x )<0成立的x 的集合为{x |-1<x <0}.层级一 学业水平达标1.若lg(2x -4)≤1,则x 的取值范围是( ) A .(-∞,7] B .(2,7] C .[7,+∞)D .(2,+∞)解析:选B ∵lg(2x -4)≤1,∴0<2x -4≤10,解得2<x ≤7,∴x 的取值范围是(2,7],故选B.2.已知log 12m <log 12n <0,则( )A .n <m <1B .m <n <1C .1<m <nD .1<n <m解析:选D 因为0<12<1,log 12m <log 12n <0,所以m >n >1,故选D.3.函数f (x )=|log 12x |的单调递增区间是( )A.⎝⎛⎦⎤0,12 B .(0,1] C .(0,+∞)D .[1,+∞)解析:选D f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).4.已知实数a =log 45,b =⎝⎛⎭⎫120,c =log 30.4,则a ,b ,c 的大小关系为( ) A .b <c <a B .b <a <c C .c <a <bD .c <b <a解析:选D 由题知,a =log 45>1,b =⎝⎛⎭⎫120=1,c =log 30.4<0,故c <b <a . 5.函数f (x )=lg ⎝ ⎛⎭⎪⎫1x 2+1+x 是( ) A .奇函数 B .偶函数 C .既奇又偶函数D .非奇非偶函数解析:选A f (x )定义域为R ,f (-x )+f (x )=lg ⎝ ⎛⎭⎪⎫1x 2+1-x +lg ⎝ ⎛⎭⎪⎫1x 2+1+x =lg1(x 2+1)-x 2=lg 1=0,∴f (x )为奇函数,故选A. 6.比较大小: (1)log 22______log 23; (2)log 3π______log π3.解析:(1)因为函数y =log 2x 在(0,+∞)上是增函数,且2>3,所以log 22>log 2 3. (2)因为函数y =log 3x 增函数,且π>3,所以log 3π>log 33=1. 同理1=log ππ>log π3,所以log 3π>log π3. -=-=答案=-=-:(1)> (2)>7.不等式log 13(5+x )<log 13(1-x )的解集为________.解析:由⎩⎪⎨⎪⎧5+x >0,1-x >0,5+x >1-x ,得-2<x <1.-=-=答案=-=-:{x |-2<x <1}8.设a >1,函数f (x )=log a x 在区间[a,2a ]上的最大值与最小值之差为12,则a =________.解析:∵a >1,∴f (x )=log a x 在[a,2a ]上递增, ∴log a (2a )-log a a =12,即log a 2=12,∴a 12=2,a =4. -=-=答案=-=-:49.已知对数函数f (x )的图象过点(4,2),试解不等式f (2x -3)>f (x ). 解:设f (x )=log a x (a >0且a ≠1), 因为f (4)=2,所以log a 4=2,所以a =2,所以f (x )=log 2x ,所以f (2x -3)>f (x )⇒log 2(2x -3)>log 2x ⇒⎩⎪⎨⎪⎧2x -3>0,x >0,2x -3>x ⇒x >3,所以原不等式的解集为(3,+∞).10.求函数y =log 12(1-x 2)的单调增区间,并求函数的最小值.解:要使y =log 12(1-x 2)有意义,则1-x 2>0,∴x 2<1,则-1<x <1,因此函数的定义域为(-1,1). 令t =1-x 2,x ∈(-1,1).当x ∈(-1,0]时,x 增大,t 增大,y =log 12t 减小,∴x ∈(-1,0]时,y =log 12(1-x 2)是减函数;同理当x ∈[0,1)时,y =log 12(1-x 2)是增函数.故函数y =log 12(1-x 2)的单调增区间为[0,1),且函数的最小值y min =log 12(1-02)=0.层级二 应试能力达标1.若a >0,且log 0.25(a 2+1)>log 0.25(a 3+1),则实数a 的取值范围是( )A .(0,1)∪(1,+∞)B .(0,1)C .(1,+∞)D .[1,+∞)解析:选C ∵log 0.25(a 2+1)>log 0.25(a 3+1),∴a 2<a 3,即a 2(1-a )<0,∴a >1,故选C.2.设a =log 54,b =log 53,c =log 45,则( ) A .a <c <b B .b <c <a C .a <b <cD .b <a <c解析:选D 由于b =log 53<a =log 54<1<log 45=c ,故b <a <c . 3.关于函数f (x )=log 12(1-2x )的单调性的叙述正确的是( )A .f (x )在⎝⎛⎭⎫12,+∞内是增函数 B .f (x )在⎝⎛⎭⎫12,+∞内是减函数 C .f (x )在⎝⎛⎭⎫-∞,12内是增函数 D ..f (x )在⎝⎛⎭⎫-∞,12内是减函数 解析:选C 由于底数12∈(0,1),所以函数f (x )=log 12(1-2x )的单调性与y =1-2x 的单调性相反.由1-2x >0,得x <12,所以f (x )=log 12(1-2x )的定义域为(-∞,12).因为y =1-2x 在(-∞,+∞)内是减函数,所以f (x )在⎝⎛⎭⎫-∞,12内是增函数,故选C. 4.(2017·全国卷Ⅱ)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞)D .(4,+∞)解析:选D 由x 2-2x -8>0,得x >4或x <-2.因此,函数f (x )=ln(x 2-2x -8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y =x 2-2x -8在(4,+∞)上单调递增,由复合函数的单调性知,f (x )=ln(x 2-2x -8)的单调递增区间是(4,+∞).5.若y =log (2a -3)x 在(0,+∞)上是增函数,则实数a 的取值范围为________. 解析:由y =log (2a -3)x 在(0,+∞)上是增函数,所以2a -3>1,解得a >2. -=-=答案=-=-:(2,+∞)6.已知f (x )是定义在R 上的偶函数,且在[0,+∞)上为增函数,f ⎝⎛⎭⎫13=0,则不等式f (log 18x )>0的解集为________________.解析:∵f (x )是R 上的偶函数,∴它的图象关于y 轴对称.∵f (x )在[0,+∞)上为增函数,∴f (x )在(-∞,0]上为减函数,做出函数图象如图所示.由f ⎝⎛⎭⎫13=0,得f ⎝⎛⎭⎫-13=0. ∴f (log 18x )>0⇒log 18x <-13或log 18x >13⇒x >2或0<x <12, ∴x ∈⎝⎛⎭⎫0,12∪(2,+∞). -=-=答案=-=-:⎝⎛⎭⎫0,12∪(2,+∞) 7.求函数f (x )=log 2(4x )·log 14x 2,x ∈⎣⎡⎦⎤12,4的值域. 解:f (x )=log 2(4x )·log 14x 2 =(log 2x +2)·⎣⎡⎦⎤-12(log 2x -1) =-12[](log 2x )2+log 2x -2. 设log 2x =t .∵x ∈⎣⎡⎦⎤12,4,∴t ∈[-1,2],则有y =-12(t 2+t -2),t ∈[-1,2], 因此二次函数图象的对称轴为t =-12, ∴它在⎣⎡⎦⎤-1,-12上是增函数,在⎣⎡⎦⎤-12,2上是减函数, ∴当t =-12时,有最大值,且y max =98. 当t =2时,有最小值,且y min =-2.∴f (x )的值域为⎣⎡⎦⎤-2,98.8.已知函数f (x )=log a (1-x )+log a (x +3),其中0<a <1.(1)求函数f (x )的定义域;(2)若函数f (x )的最小值为-4,求a 的值.解:(1)要使函数有意义,则有⎩⎪⎨⎪⎧1-x >0,x +3>0, 解得-3<x <1,所以函数的定义域为(-3,1).(2)函数可化为:f (x )=log a (1-x )(x +3)=log a (-x 2-2x +3)=log a [-(x +1)2+4], 因为-3<x <1,所以0<-(x +1)2+4≤4. 因为0<a <1,所以log a [-(x +1)2+4]≥log a 4,即f (x )min =log a 4,由log a 4=-4,得a -4=4,所以a =4-14=22.。
高中数学必修一课件:第四章对数函数的图象和性质(第3课时)

2
2.设f(x)是奇函数,当x>0时,f(x)=log2x,则当x<0时,f(x)=( D )
A.-log2x
B.log2(-x)
C.logx2
D.-log2(-x)
解析 当x<0时,-x>0,f(-x)=log2(-x),又因为f(x)为奇函数,所以f(-x) =-f(x),所以f(x)=-log2(-x).
∴g(x)min=g(3)=-98,
则m的取值范围是m|
m<-98.
探究3 对数型函数的奇偶性问题的求解方法:
对数函数本身不具有奇偶性,但有些函数与对数函数复合后,就具有奇偶
性了,如y=log2|x|就是偶函数.一般利用函数奇偶性的定义,并结合对数的运 算性质来判断这类函数的奇偶性.
为了便于判断函数的奇偶性,有时需要将函数进行化简,或利用定义的等
3.函数f(x)=log211+-xx( B )
A.是偶函数
B.是奇函数
C.既是奇函数又是偶函数
D.既不是奇函数又不是偶函数
解析
要使函数f(x)=log2
1+x 1-x
有意义,需满足பைடு நூலகம்
1+x 1-x
>0⇒-1<x<1,所以函数
的定义域为(-1,1),关于原点对称.f(-x)=log2
1-x 1+x
,则f(x)+f(-x)=
(2)若函数y=loga(2-ax)在[0,1]上是减函数,则a的取值范围为__(1_,__2)___. 【解析】 首先a作为底数满足a>0且a≠1, 令t=2-ax,则t=2-ax为减函数, ∵y=loga(2-ax)在[0,1]上是减函数, ∴y=logat为增函数,∴a>1,又t=2-ax在x∈[0,1]时需大于0, ∴2-a·1>0,∴a<2. 综上,1<a<2.
带标准答案对数与对数函数经典例题

经典例题透析类型一、指数式与对数式互化及其应用1.将下列指数式与对数式互化:(1);(2);(3);(4);(5);(6).思路点拨:运用对数的定义进行互化.解:(1);(2);(3);(4);(5);(6).总结升华:对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段.举一反三:【变式1】求下列各式中x的值:(1)(2)(3)lg100=x (4)思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x.解:(1);(2);(3)10x=100=102,于是x=2;(4)由.类型二、利用对数恒等式化简求值2.求值:解:.总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三:【变式1】求的值(a,b,c∈R+,且不等于1,N>0)思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算.解:.类型三、积、商、幂的对数3.已知lg2=a,lg3=b,用a、b表示下列各式.(1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a(3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b(5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a举一反三:【变式1】求值(1)(2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2解:(1)(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2.【变式2】已知3a=5b=c,,求c的值.解:由3a=c得:同理可得.【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:.证明:.【变式4】已知:a2+b2=7ab,a>0,b>0. 求证:.证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb即.类型四、换底公式的运用4.(1)已知log x y=a,用a表示;(2)已知log a x=m,log b x=n,log c x=p,求log abc x.解:(1)原式=;(2)思路点拨:将条件和结论中的底化为同底.方法一:a m=x,b n=x,c p=x∴,∴;方法二:.举一反三:【变式1】求值:(1);(2);(3).解:(1)(2);(3)法一:法二:.总结升华:运用换底公式时,理论上换成以大于0不为1任意数为底均可,但具体到每一个题,一般以题中某个对数的底为标准,或都换成以10为底的常用对数也可.类型五、对数运算法则的应用5.求值(1) log89·log2732(2)(3)(4)(log2125+log425+log85)(log1258+log254+log52)解:(1)原式=.(2)原式=(3)原式=(4)原式=(log2125+log425+log85)(log1258+log254+log52)举一反三:【变式1】求值:解:另解:设=m (m>0).∴,∴,∴,∴lg2=lgm,∴2=m,即.【变式2】已知:log23=a,log37=b,求:log4256=?解:∵∴,类型六、函数的定义域、值域求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用.6. 求下列函数的定义域:(1);(2).思路点拨:由对数函数的定义知:x2>0,4-x>0,解出不等式就可求出定义域.解:(1)因为x2>0,即x≠0,所以函数;(2)因为4-x>0,即x<4,所以函数.举一反三:【变式1】求下列函数的定义域.(1) y=(2) y=ln(a x-k·2x)(a>0且a¹1,kÎR).解:(1)因为,所以,所以函数的定义域为(1,)(,2).(2)因为a x-k·2x>0,所以()x>k.[1]当k≤0时,定义域为R;[2]当k>0时,(i)若a>2,则函数定义域为(k,+∞);(ii)若0<a<2,且a≠1,则函数定义域为(-∞,k);(iii)若a=2,则当0<k<1时,函数定义域为R;当k≥1时,此时不能构成函数,否则定义域为.【变式2】函数y=f(2x)的定义域为[-1,1],求y=f(log2x)的定义域.思路点拨:由-1≤x≤1,可得y=f(x)的定义域为[,2],再由≤log2x≤2得y=f(log2x)的定义域为[,4]. 类型七、函数图象问题7.作出下列函数的图象:(1) y=lgx,y=lg(-x),y=-lgx;(2) y=lg|x|;(3) y=-1+lgx.解:(1)如图(1);(2)如图(2);(3)如图(3).类型八、对数函数的单调性及其应用利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.8. 比较下列各组数中的两个值大小:(1)log23.4,log28.5(2)log0.31.8,log0.32.7(3)log a5.1,log a5.9(a>0且a≠1)思路点拨:由数形结合的方法或利用函数的单调性来完成.(1)解法1:画出对数函数y=log2x的图象,横坐标为3.4的点在横坐标为8.5的点的下方,所以,log23.4<log28.5;解法2:由函数y=log2x在R+上是单调增函数,且3.4<8.5,所以log23.4<log28.5;解法3:直接用计算器计算得:log23.4≈1.8,log28.5≈3.1,所以log23.4<log28.5;(2)与第(1)小题类似,log0.3x在R+上是单调减函数,且1.8<2.7,所以log0.31.8>log0.32.7;(3)注:底数是常数,但要分类讨论a的范围,再由函数单调性判断大小.解法1:当a>1时,y=log a x在(0,+∞)上是增函数,且5.1<5.9,所以,log a5.1<log a5.9当0<a<1时,y=log a x在(0,+∞)上是减函数,且5.1<5.9,所以,log a5.1>log a5.9 解法2:转化为指数函数,再由指数函数的单调性判断大小,令b1=log a5.1,则,令b2=log a5.9,则当a>1时,y=a x在R上是增函数,且5.1<5.9所以,b1<b2,即当0<a<1时,y=a x在R上是减函数,且5.1<5.9所以,b1>b2,即.举一反三:【变式1】(2011 天津理7)已知则()A.B.C.D.解析:另,,,在同一坐标系下作出三个函数图像,由图像可得又∵为单调递增函数,∴故选C.9. 证明函数上是增函数.思路点拨:此题目的在于让学生熟悉函数单调性证明通法,同时熟悉利用对函数单调性比较同底数对数大小的方法.证明:设,且x1<x2 则又∵y=log2x在上是增函数即f(x1)<f(x2)∴函数f(x)=log2(x2+1)在上是增函数.举一反三:【变式1】已知f(log a x)=(a>0且a≠1),试判断函数f(x)的单调性.解:设t=log a x(x∈R+,t∈R).当a>1时,t=log a x为增函数,若t1<t2,则0<x1<x2,∴f(t1)-f(t2)=,∵0<x1<x2,a>1,∴f(t1)<f(t2),∴f(t)在R上为增函数,当0<a<1时,同理可得f(t)在R上为增函数.∴不论a>1或0<a<1,f(x)在R上总是增函数.10.求函数y=(-x2+2x+3)的值域和单调区间.解:设t=-x2+2x+3,则t=-(x-1)2+4.∵y=t为减函数,且0<t≤4,∴y≥=-2,即函数的值域为[-2,+∞.再由:函数y=(-x2+2x+3)的定义域为-x2+2x+3>0,即-1<x<3.∴t=-x2+2x+3在-1,1)上递增而在[1,3)上递减,而y=t为减函数.∴函数y=(-x2+2x+3)的减区间为(-1,1),增区间为[1,3.类型九、函数的奇偶性11. 判断下列函数的奇偶性. (1)(2).(1)思路点拨:首先要注意定义域的考查,然后严格按照证明奇偶性基本步骤进行.解:由所以函数的定义域为:(-1,1)关于原点对称又所以函数是奇函数;总结升华:此题确定定义域即解简单分式不等式,函数解析式恒等变形需利用对数的运算性质.说明判断对数形式的复合函数的奇偶性,不能轻易直接下结论,而应注意对数式的恒等变形.(2)解:由所以函数的定义域为R关于原点对称又即f(-x)=-f(x);所以函数.总结升华:此题定义域的确定可能稍有困难,函数解析式的变形用到了分子有理化的技巧,要求掌握.类型十、对数函数性质的综合应用12.已知函数f(x)=lg(ax2+2x+1).(1)若函数f(x)的定义域为R,求实数a的取值范围;(2)若函数f(x)的值域为R,求实数a的取值范围.思路点拨:与求函数定义域、值域的常规问题相比,本题属非常规问题,关键在于转化成常规问题.f(x)的定义域为R,即关于x的不等式ax2+2x+1>0的解集为R,这是不等式中的常规问题.f(x)的值域为R与ax2+2x+1恒为正值是不等价的,因为这里要求f(x)取遍一切实数,即要求u=ax2+2x+1取遍一切正数,考察此函数的图象的各种情况,如图,我们会发现,使u能取遍一切正数的条件是.解:(1)f(x)的定义域为R,即:关于x的不等式ax2+2x+1>0的解集为R,当a=0时,此不等式变为2x+1>0,其解集不是R;当a≠0时,有a>1.∴a的取值范围为a>1.(2)f(x)的值域为R,即u=ax2+2x+1能取遍一切正数a=0或0≤a≤1,∴a的取值范围为0≤a≤1.13.已知函数h(x)=2x(x∈R),它的反函数记作g(x),A、B、C三点在函数g(x)的图象上,它们的横坐标分别为a,a+4,a+8(a>1),记ΔABC的面积为S.(1)求S=f(a)的表达式;(2)求函数f(a)的值域;(3) 判断函数S=f(a)的单调性,并予以证明;(4)若S>2,求a的取值范围.解:(1)依题意有g(x)=log2x(x>0).并且A、B、C三点的坐标分别为A(a,log2a),B(a+4,log2(a+4)),C(a+8,log2(a+8)) (a>1),如图.∴A,C中点D的纵坐标为〔log2a+log2(a+8)〕∴S=|BD|·4·2=4|BD|=4log2(a+4)-2log2a-2log2(a+8).(2)把S=f(a)变形得:S=f(a)=2〔2log2(a+4)-log2a-log2(a+8)〕=2log2=2log2(1+).由于a>1时,a2+8a>9,∴1<1+<,又函数y=log2x在(0,+∞)上是增函数,∴0<2log2(1+)<2log2,即0<S<2log2.(3)S=f(a)在定义域(1,+∞)上是减函数,证明如下:任取a1,a2,使1<a1<a2<+∞,则:(1+)-(1+)=16()=16·,由a1>1,a2>1,且a2>a1,∴a1+a2+8>0,+8a2>0,+8a1>0,a1-a2<0,∴1<1+<1+,再由函数y=log2x在(0,+∞)上是增函数,于是可得f(a1)>f(a2)∴S=f(a)在(1,+∞)上是减函数.(4)由S>2,即得,解之可得:1<a<4-4.。
对数函数的单调性、奇偶性的运用

,解之可得:1<a<4 -4.
t为减函数. ∴ 函数y= (-x2+2x+3)的减区间为(-1,1),增区间为[1,3 . 二、函数的奇偶性 4. 判断下列函数的奇偶性. (1) (2) . (1)思路点拨:首先要注意定义域的考查,然后严格按照证明奇偶 性基本步骤进行. 解:由
所以函数的定义域为:(-1,1)关于原点对称 又
又∵ 为单调递增函数, ∴ 故选C. 2. 证明函数 上是增函数. 思路点拨:此题目的在于让学生熟悉函数单调性证明通法,同时熟 悉利用对函数单调性比较同底数对数大小的方法. 证明:设 ,且x1<x2 则
又∵y=log2x在 上是增函数 即f(x1)<f(x2) ∴函数f(x)=log2(x2+1)在 上是增函数.
〔log2a+log2(a+8)〕 ∴ S= |BD|·4·2=4|BD|=4log2(a+4)-2log2a-2log2(a+8). (2)把S=f(a)变形得:S=f(a)=2〔2log2(a+4)-log2a-log2(a+8)〕 =2log2
=2log2(1+ ). 由于a>1时,a2+8a>9, ∴1<1+ < ,又函数y=log2x在(0,+∞)上是增函数, ∴ 0<2log2(1+ )<2log2 ,即0<S<2log2 . (3)S=f(a)在定义域(1,+∞)上是减函数,证明如下:任取a1,a2, 使1<a1<a2<+∞,则: (1+
当a>1时,y=ax在R上是增函数,且5.1<5.9 所以,b1<b2,即
【教学随笔】对数函数单调性的应用

对数函数单调性的应用形如y =log a x(a >0且a ≠1)的函数叫做对数函数,其中x 是自变量.单调性在它性质中占有重要地位,它在解决相关问题中有着重要的应用.一般地,对于函数y =log a x(a >0且a ≠1):(1)当a >1时,在(0,+∞)上是增函数;(2)当0<a <1时,在(0,+∞)上是减函数.这种性质称为函数的单调性.确定单调性有两个条件:①a 的范围;②定义域.在应用时务必注意定义域这一条件.现举例说明.一、比较大小例1(1)log 23.4与log 28.5;(2)log 0.31.8与log 0.32.7;(3)log a 5.1与log a 5.9;(4)log 67与log 76;(5)log 3π与log 20.8.解析:(1)y =log 2x 在(0,+∞)上是增函数,∵3.4<8.5,∴log 23.4<log 28.5.(2)y =log 0.3x 在(0,+∞)上是减函数,∵1.8<2.7,∴log 0.31.8>log 0.32.7.(3)对底数a 进行分类讨论,当a >1时,函数y =log a x 在(0,+∞)上是增函数,∵5.1<5.9,∴log a 5.1<log a 5.9;当0<a <1时,函数y =log a x 在(0,+∞)上是减函数,∵5.1<5.9,∴log a 5.1>log a 5.9.(4)log 67>log 66=1,log 76<log 77=1,∴log 67>log 76.(5)∴log 3π>log 31=0,log 20.8<log 21=0,∴log 3π>log 20.8.点拨:解答此类题型的关键是确定出与两个比较的数相关的对数函数模型,再利用对数函数的单调性进行求解.如果出现底数不统一,则需要统一底数或借助蹭量作桥梁进行比较.二、求函数的定义域例2求函数f(x)=lg(a x ﹣k ·2x ),(a >0,a ≠2,k 为常数)的定义域.解析:由a x -k ·2x >0⇒(a 2)x >k. (1)若k ≤0,由于a >0,a ≠2,(a 2)x >0得x ∈R ,即定义域为R. (2)若k >0,则当a >2时,知a 2>1,得定义域为{x|x >log a 2k};当0<a <2时,0<a 2<1,得定义域为{x|x <log a 2k}. 点拨:此类题型主要是根据函数表达式的具体的特征,列出使函数有意义的关于x 的不等式,如果不等式含有对数,则可根据对数函数的单调性进行求解.三、求函数的值域例3求函数y =log 12(x 2-6x +17)的值域.解析:∵x 2-6x +17=(x -3)2+8>0恒成立,∴函数的定义域为R ,又x 2-6x +17=(x -3)2+8≥8,∵y =log 12x 是减函数,∴log 12(x 2-6x +17)的值域是(-∞,-3].点拨:利用对数函数的单调性求解函数的值域要抓住函数的单调性复合规律:如果函数f(x)=log a u ,u =g(x),当a >1时,u 具有最大值(或最小值),则u 也取相应最大值(或最小值);当0<a <1时,u 具有最大值(或最小值),则u 也取相应最小值(或最大值).四、求以对数函数为载体的复合函数中的参数例4已知y =log a (2-ax)在[0,1]上是x 的减函数,求a 的取值范围.解析:∵a >0,令u =2-ax 是x 的减函数,又y =log a (2-a)在[0,1]上是x 的减函数,故y =log a u 是增函数,即a >1,又2-ax >0,∴a <2,综上得1<a <2.点拨:此类题型主要从两个方面入手:一是利用函数单调性的复合规律“同增异减”确定参数的范围;二是抓住真数大于零,如果根据真数所涉及函数的单调性,一般可简化运算.五、解对数不等式例6已知2log a (x -4)>log a (x -2),求x 的范围.解析:去对数符号,转化为代数不等式求解.同时注意对数函数的定义域,原不等式等价于⎩⎨⎧ log a (x -4)2>log a (x -2)x -4>0,注意定义域及单调性有 (1)当a >1时,等价于⎩⎪⎨⎪⎧ (x -4)2>x -2x -4>0x -2>0,解得x >6. (2)当0<a <1时,又等价于⎩⎨⎧ (x -4)2<x -2x -4>0,解之得4<x <6, 因此,当a >1时,x >6;当0<a <1时,4<x <6.点拨:利用对数的单调性解对数不等式主要从两个方面考虑:一是考虑函数的真数。
对数函数图象及性质——单调性

练习.判断函数 f(x)=ln(x+ x2+1)的奇偶性.
解:f(x)是奇函数.
∵ x2+1>|x|≥-x,∴x∈R.
∵f(-x)=ln(-x+ -x2+1)
=ln(
x2+1-x)=ln
1 x2+1+x
=-ln( x2+1+x)=-f(x),
∴函数 f(x)=ln(x+ x2+1)为奇函数.
1-x>x+2,
解得-2<x<-12. 答案:{x|-2<x<-12}
• 练习2: 已知loga(2a+1)<loga3a,求a的取 值范围.
• 解:(1)当a>1时,原不等式等价于
a2a+1<3a,解得a 2a+1>0
(2)当 0<a<1 时,
原不等式等价于20a<+a 1>3a, 3a>0
解得 0<a<1. 综上所述,a 的范围是 0<a<1 或 a>1.
• 1.对数函数的单调性要结合其图象理解和记忆.
• 2.对数值大小的比较是对数函数的单调性、特殊点 的具体应用.
• 3.和对数函数有关的值域问题,也是利用了对数函 数的单调性.
• 4.复合函数y=f[φ(x)]的单调性研究,遵循一般步 骤和结论,即:分别求出y=f(u)与u=φ(x)两个函数 的单调性,再按口诀“同增异减”得出复合后的单 调性,即两个函数同为增函数或者同为减函数,则 复合后结果为增函数;若两个函数一增一减,则复 合后结果为减函数.为何有“同增异减”?我们可 以抓住“x的变化→u=φ(x)的变化→y=f(u)的变化” 这样一条思路进行分析.
当 0<a<1 时,若 x>1,则 f(x)=loga(3x2-2x-1)为 减函数;若 x<-13,则 f(x)=loga(3x2-2x-1)为增函数.
(3)对数函数典型例题例析之单调性

对数函数典型例题例析在解决与对数函数有关的问题时,应遵循:一要“定义域优先”的原则,即优先考虑其定义域;二要重视底数、真数应满足的条件,以及不同条件下,性质和图象的差异.只有完全掌握了这些,才能处理好对数函数单调性涉及的综合问题.下面举例说明.例1 已知y = log a (2-a x )在区间[0,1]上是x 的减函数,求实数a 的取值范围.解法一:由y = log a (2-a x )在区间[0,1]上是x 的减函数,当0<x ≤1时,2-a >0,即 a <x2恒成立,所以a <(x2)min = 2.又知a >0,u = 2-a x 为减函数,因此对数函数的底a >1. 综合得1<a <2.解法二:根据y = log a (2-a x ),则a >0且a ≠1,2-a x >0,所以x <a2,即函数定义域为(-∞,a2).∵函数在区间[0,1]上是减函数,∴1<a2,即a <2. ①又∵u = 2-a x 为减函数,∴y = log a u 是增函数,则a >1. ② 综合①、②得1<a <2.例2 求关于x 的函数y = lg[x 2-(a + 2)x + 1] (其中a 为实数),在其定义域内单调区间,并指出其单调性.解:要使函数有意义,必须x 2-(a + 2)x + 1>0.设g(x) = x 2-(a + 2)x + 1,其判别式∆= (a + 2)2-4 = a (a + 4),⑴当-4<a <0时,∆<0,恒有g(x)>0,函数y 的定义域为R ,又y 与g(x)单调性一致.所以在(-∞,22+a ]上,y 单调递减;在[22+a ,+∞)上,y 单调递增;⑵当a =-4时,∆= 0,y = lg(x + 1)2,其定义域为{x | x ≠-1,x ∈R}, ∴在(-∞,-1)上y 单调递减;在(-1,+∞)上,y 单调递增; ⑶当a = 0时,∆= 0,y = lg(x -1)2,其定义域为{x | x ≠1,x ∈R}, ∴在(-∞,1)上y 单调递减;在(1,+∞)上,y 单调递增; ⑷当a <-4或a >0时,∆>0,函数的定义域为:(-∞,2)4(2+-+a a a )∪(2)4(2+++a a a ,+∞).∴在(-∞,2)4(2+-+a a a )上,y 单调递减;在(2)4(2+++a a a ,+∞)上,y 单调递增.例3 已知函数f (x) = lgxx +-11+21+x ,x ∈(-1,1 ),问y =f (x) 的图象上是否存在两个不同的点A 、B ,使A B ⊥y 轴,若存在,求A 、B 的坐标,若不存在,说明理由. 解:先证明f (x)是单调函数.设-1<x 1<x 2<1,则f ( x1)-f ( x2) = lg 1111x x +-+211+x -lg2211x x +--212+x = lg)1)(1()1)(1(1221x x x x +-+-+)2)(2(2112++-x x x x ,∵-1<x 1<x 2<1,∴ x 2-x 1>0, 1-x 1>1-x 2>0,1 + x 2>1 + x 1>0, ∴)1)(1()1)(1(1221x x x x +-+->1,)2)(2(2112++-x x x x >0,即f ( x 1)-f ( x 2)>0,∴函数f (x)是单调递减函数.假设函数f (x)的图象上存在不同的两点A (x 1, y 1),B(x 2, y 2)使直线A B ⊥y 轴,则x 1≠x 2,y 1= y 2,这与函数是减函数矛盾.∴y =f (x)的图象上不存在两个不同的点A 、B ,使A B ⊥y 轴.评析:直线A B ⊥y 轴或A B ∥x 轴 ⇔ x A ≠x B ⇒ y A ≠y B ,从函数的单调性上可以找到解题的突破口.。
对数函数的单调性和应用

数字签名
对数函数还可以用于实现数字签 名算法,如DSA和ECDSA。通过 对数据进行对数运算,可以生成 数字签名,用于验证数据的完整 性和来源。
THANKS FOR WATCHING
感谢您的观看
数学表达式
当底数a(a>1)时,对 于任意x1<x2,有 log_a(x1)<log_a(x2)。
单调性证明
由于对数函数的导数 log'(x)=1/(xln(a))>0, 所以对数函数在底数大 于1时是单调增函数。
单调减函数
总结词
当底数小于1时,对数函数 是单调减函数。
详细描述
对于底数小于1的对数函数, 随着自变量的增加,函数值 相应减小,表现出单调递减 的性质。
01
对数函数和三角函数在形式上 有些相似,例如自然对数函数 和正弦函数都关于y=x对称。
02
在复数域中,对数函数和三角 函数有密切的联系,例如复数 的模和辐角可以用对数和三角 函数来表示。
03
在解决一些物理问题时,例如 波动方程和热传导方程,对数 函数和三角函数也会一起出现 。
对数函数与微积分的联系
03
风险评估
在评估投资风险时,可以利用对数函数计算投资组合的收益率和波动率,
从而确定投资组合的风险水平。
利用对数函数进行科学计算
声学计算
在物理学中,声波的传播速度与频率的对数成正比。利用 对数函数可以简化声学计算,例如计算声音的传播距离和 时间等。
化学反应速率
在化学反应中,反应速率与反应物浓度的对数成正比。利 用对数函数可以建立反应速率方程,从而研究化学反应的 动力学特征。
生物种群数量变化
在生态学中,某些生物种群的数量增长符合对数函数模型。 通过对历史数据进行分析,可以预测未来种群数量的变化 趋势。
SXA256高考数学必修_对数函数单调性综合问题解析6

对数函数单调性综合问题解析6函数的单调性只能在函数定义域内来讨论.由于对数函数的单调性由其底的取值范围决定,所以有关对数函数的单调性问题一要注意对数函数底的限制条件,二要注意对数函数真数大于零.只有完全掌握了这些,才能处理好对数函数单调性涉及的综合问题.下面举例说明.例1 已知函数f (x) = lg(ax -1)-lg(x -1) (a ∈R ),若函数f (x) 在[10,+∞)单调递增,试求a 的取值范围.解:由已知有10a -1>0,a >101.因为f (x) = lg(ax -1)-lg(x -1) = lg(a +11--x a ) 在[10,+∞)上单调递增,所以当 10≤x 1<x 2<+∞时,恒有f ( x 1)<f ( x 2),即有111--x a <112--x a ⇔ (a -1)(111-x -112-x )<0,而111-x >112-x , ∴a <1.即a 的取值范围为(101,1). 例2 是否存在实数a ,使函数f (x) = log a (ax 2-x)在区间[2,4]上是增函数?如果存在,求出a 的变化范围,如果不存在,请说明理由.解:设g(x) = ax 2-x ,假设符合条件的a 存在.当a >1时,为使函数f (x) = log a (ax 2-x)在区间[2,4]上是增函数,只需g(x) = ax 2-x 在区间[2,4]上是增函数,故应满足12,2(2)420.x a g a ⎧=≤⎪⎨⎪=->⎩⇒ a >21,当注意到a >1时,∴a >1. 当0<a <1时,为使函数f (x) = log a (ax 2-x)在区间[2,4]上是增函数,只需g(x) = ax 2-x 在区间[2,4]上是减函数,故应满足14,2(2)1640.x a g a ⎧=≥⎪⎨⎪=->⎩ 此不等式组无解.综上可知,当a >1时,f (x) = log a (ax 2-x)在区间[2,4]上为增函数.例3 设函数)(x f =log 21(x +xm ) (x >0,m 是正常数)在区间[m ,2m]上的最大值为g(m),求g(m)的表达式.分析:可以证明,函数)(x ϕ= x +x m 在(0,m ]上单调递减,在[m ,+∞)上单调递增,在函数定义域的作用下,此题利用这一性质可以把问题转化为分类讨论函数)(x ϕ的最值问题.解:⑴当2m ≤m ,即0<m ≤41时,)(x ϕ在区间[m ,2m]上单调递减,因而)(x ϕ有最小值)2(m ϕ,即)(x ϕ≥)2(m ϕ= 2m +21. ∴log 21)(x ϕ≤log 21( 2m +21),即g(m) = log 21( 2m +21). ⑵当m <m <2m ,即41<m <1时,)(x ϕ在区间[m ,2m]上有最小值)(m ϕ,即)(x ϕ≥)(m ϕ= m 2. ∴log 21)(x ϕ≤log 21(m 2),即g(m) = log 21(m 2). ⑶当m ≤m ,即 m ≥1时,)(x ϕ在区间[m ,2m]上单调递增,因而)(x ϕ有最小值)(m ϕ,即≥)(m ϕ= m +1.∴log 21)(x ϕ≤log 21( m +1),即g(m) = log 21( m +1).综上所述,g(m)的表达式为: g(m) =⎪⎪⎪⎩⎪⎪⎪⎨⎧≥+<<≤<+.)1()1(log ),141()2(log ),410()212(log 212121m m m m m m 评析:函数的单调性是探索函数最值的常用工具,应当引起重视.另外还需要注意的是,闭区间上的单调函数在区间的端点处必取得最大值或最小值.。
苏教版高中数学必修1知识拓展:对数函数单调性应用例析

对数函数单调性应用例析我们知道,对数函数log a y x =(0a >,且1)a ≠当1a >时,在(0,)+∞上为增函数;当01a <<时,在(0,)+∞上为减函数。
对数函数的单调性,在比较大小方面的题目时具有特殊功效。
例1 比较下列各组数中两个值的大小:(1)3log 3.4与3log 7.5;(2)log 5.1a 与log 5.9a (0a >,1a ≠)。
分析:对于底数相同的两个对数值比较大小,可由对数函数的单调性确定。
解析:(1)考察函数3log y x =,因为它的底数31>,所以它在(0,)+∞上为增函数,所以3log 3.4<3log 7.5。
(2)对数函数的增减性决定于对数的底数是大于1还是小于1,而已知条件中并未指明底数a 与1哪个大,因此,需对底数a 进行讨论。
当1a >时,函数log a y x =在(0,)+∞上为增函数,于是log 5.1a <log 5.9a ; 当01a <<时,函数log a y x =在(0,)+∞上为减函数,于是log 5.1a >log 5.9a 。
评注:本题是利用对数函数的单调性比较两个对数的大小的,对底数与1的大小关系未明确指定时,要分情况对底数进行讨论来比较两个对数的大小。
例2 函数2222()2(log )log f x x a x b -=++在12x =时有最小值1,试确定a 、b 的值。
分析:解答本题需运用配方法确定函数的最值。
解析:222222()2(log )(2log )2log 22a a f x x a x b x b ⎛⎫=+-+=-+- ⎪⎝⎭, ∴()f x 在2log 2a x =时有最小值22a b -。
又∵12x =时,()f x 有最小值1,∴221log2212aab⎧=⎪⎪⎨⎪-=⎪⎩,解得2a=-,3b=。
评注:将求指数函数、对数函数的最大值、最小值问题,转化为求二次函数的最大值、最小值,是解决这种问题的一个基本方法。
对数函数及其性质的应用(高中数学)

(2)法一(单调性法):由于 log132= 1
又因对数函数 y=log2x 在(0,+∞)上是增函数,
且13>15,所以 0>log213>log215,
常见的对数不等式的三种类型 1形如 logax>logab 的不等式,借助 y=logax 的单调性求解,如果 a 的取值不确定,需分 a>1 与 0<a<1 两种情况讨论; 2形如 logax>b 的不等式,应将 b 化为以 a 为底数的对数式的形式, 再借助 y=logax 的单调性求解; 3形如 logax>logbx 的不等式,可利用图象求解.
[解] (1)∵22a+1>25a-2,∴2a+1>5a-2,即 3a<3,∴a<1,即 0 <a<1.∴实数 a 的取值范围是(0,1).
(2)由(1)得,0<a<1,∵loga(3x+1)<loga(7-5x),
3x+1>0,
∴7-5x>0, 3x+1>7-5x,
x>-31, 即x<75,
x>34,
2.如何求形如 y=logaf(x)的值域? 提示:先求 y=f(x)的值域,注意 f(x)>0,在此基础上,分 a>1 和 0<a<1 两种情况,借助 y=logax 的单调性求函数 y=logaf(x)的值域.
【例 3】 (1)已知 y=loga(2-ax)是[0,1]上的减函数,则 a 的取值范 围为( )
A.(0,1)
B.(1,2)
C.(0,2)
D.[2,+∞)
(2)函数 f(x)=log21(x2+2x+3)的值域是________. [思路点拨] (1)结合对数函数及 y=2-ax 的单调性,构造关于 a 的
人教B版高中数学必修一学第二章函数的单调性讲解与例题

2.1.3 函数的单调性1.函数单调性的概念一般地,设函数y =f (x )的定义域为A ,区间M ⊆A . 如果取区间M 中的任意两个值x 1,x 2,改变量Δx =x 2-x 1>0,则当Δy =f (x 2)-f (x 1)>0时,就称函数y =f (x )在区间M 上是增函数,如下图所示.当Δy =f (x 2)-f (x 1)<0时,就称函数y =f (x )在区间M 上是减函数,如下图所示.如果一个函数在某个区间M 上是增函数或是减函数,就说这个函数在这个区间M 上具有单调性(区间M 称为单调区间).谈重点 对函数单调性的理解1.函数的单调性是对定义域内某个区间而言的,即单调区间是定义域的子集.如函数y =x 2的定义域为R ,当x ∈[0,+∞)时是增函数,当x ∈(-∞,0)时是减函数.2.函数单调性定义中的x 1,x 2有三个特征:一是任意性,即“任意取x 1,x 2”,“任意”二字决不能丢掉;二是有大小,即x 1<x 2(x 1>x 2);三是同属一个单调区间,三者缺一不可.3.单调性是一个“区间”概念,如果一个函数在定义域的几个区间上都是增(减)函数,但不能说这个函数在其定义域上是增(减)函数.如函数f (x )=1x在(-∞,0)上是减函数,在(0,+∞)上也是减函数,但不能说f (x )=1x在(-∞,0)∪(0,+∞)上是减函数.因为当x 1=-1,x 2=1时有f (x 1)=-1<f (x 2)=1,不满足减函数的定义.4.单调区间端点的写法:对于单独的一个点,由于它的函数值是唯一确定的常数,没有增减性变化,所以不存在单调问题,因此在写此单调区间时,包括端点可以,不包括端点也可以,但对于某些无意义的点,单调区间就一定不包括这些点.【例1-1】下列说法不正确的有( )①函数y =x 2在(-∞,+∞)上具有单调性,且在(-∞,0)上是减函数;②函数1=y x的定义域为(-∞,0)∪(0,+∞),且在其上是减函数; ③函数y =kx +b (k ∈R )在(-∞,+∞)上一定具有单调性;④若x 1,x 2是f (x )的定义域A 上的两个值,当x 1>x 2时,有f (x 1)<f (x 2),则y =f (x )在A 上是增函数.A .1个B .2个C .3个D .4个解析:①函数y =x 2在(-∞,0]上是减函数,在[0,+∞)上是增函数,故其在(-∞,+∞)上不具有单调性;②(-∞,0)和(0,+∞)都是函数1=yx的单调区间,在这两个区间上都是减函数,但1=yx在整个定义域上不是减函数;③当k=0时,y=b,此时函数是一个常数函数,不具有单调性;④因为x1,x2是定义域上的两个定值,不具有任意性,所以不能由此判定函数的单调性.答案:D【例1-2】若对于任意实数x总有f(-x)=f(x),且f(x)在区间(-∞,-1]上是增函数,则( )A.32f⎛⎫-⎪⎝⎭<f(-1)<f(2)B.f(-1)<32f⎛⎫-⎪⎝⎭<f(2)C.f(2)<f(-1)<32 f⎛⎫-⎪⎝⎭D.f(2)<32f⎛⎫-⎪⎝⎭<f(-1)解析:∵函数f(x)对于任意实数x总有f(-x)=f(x),∴f(-2)=f(2).∵f(x)在区间(-∞,-1]上是增函数,且-2<32-<-1,∴f(-2)<32f⎛⎫-⎪⎝⎭<f(-1),即f(2)<32f⎛⎫-⎪⎝⎭<f(-1).答案:D【例1-3】定义在R上的函数f(x)是增函数,A(0,-1),B(3,1)是其图象上的两点,那么不等式|f(x+1)|<1的解集为( )A.(-1,2) B.[3,+∞)C.[2,+∞) D.(-∞,-1]∪(2,+∞)解析:∵A(0,-1),B(3,1)是函数f(x)图象上的两点,∴f(0)=-1,f(3)=1.由|f(x+1)|<1,得-1<f(x+1)<1,即f(0)<f(x+1)<f(3).∵f(x)是定义在R上的增函数,∴由单调函数的定义,可知0<x+1<3.∴-1<x<2.答案:A2.函数单调性的判断方法(1)图象法对于简单函数或可化为简单函数的函数,由于其图象较容易画出,因此,可利用图象的直观性来判断函数的单调性,写出函数的单调区间.【例2-1】写出下列函数的单调区间: (1)y =|2x -1|;(2)y =|x 2-3x +2|;(3)2=3xy x -+. 分析:本题画出各个函数的图象后,就可以得出相应的单调递增或单调递减区间了.图1解:(1)y =|2x -1|=121,,2121,<.2x x x x ⎧-≥⎪⎪⎨⎪-+⎪⎩ 如图1所示,函数的单调递增区间是1,2⎡⎫+∞⎪⎢⎣⎭;单调递减区间是1,2⎛⎤-∞ ⎥⎝⎦.(2)y =|x 2-3x +2|=2232,12321<<2.x x x x x x x ⎧-+≤≥⎨-(-+)⎩或,, 如图2所示,函数的单调递增区间是31,2⎡⎤⎢⎥⎣⎦和[2,+∞);单调递减区间是(-∞,1]和3,22⎡⎤⎢⎥⎣⎦.图2图3(3)255==1=1333xyx x x-⎛⎫---+⎪+++⎝⎭.如图3所示,函数的单调递减区间是(-∞,-3)和(-3,+∞).谈重点由图象得出函数的单调区间对于函数求单调区间,可以根据图象及结合基本函数的单调性来寻找的.对于有些函数,如果能够画出函数的图象,那么寻找单调区间就比较容易了,此类题目通常是与基本函数(如一次函数、二次函数、反比例函数以及后面学的指数函数与对数函数等)有关的函数.【例2-2】已知四个函数的图象如下图所示,其中在定义域内具有单调性的函数是( )解析:已知函数的图象判断其在定义域内的单调性,应从它的图象是上升的还是下降的来考虑.根据函数单调性的定义可知选项B中的函数在定义域内为增函数.答案:B谈重点单调函数的图象特征函数的单调性反映在图象上是在指定的区间(也可以是定义域)从左到右图象越来越高或越来越低(注意一个点也不能例外,如本例C中的函数只有一个点例外,受此点影响,该函数在整个定义域上不具有单调性),这是函数单调性在函数图象上的直观表现.【例2-3】画出函数f(x)=-x2+2|x|+3的图象,说出函数的单调区间,并指明在该区间上的单调性.分析:含有绝对值符号的函数解析式,可根据绝对值的意义,将其转化为分段函数,画出函数图象后,观察曲线在哪些区间上是上升的,在哪些区间上是下降的,即可确定函数的单调区间及单调性.解:2223,0, ()=23,<0.x x xf xx x x⎧-++≥⎨--+⎩当x≥0时,f(x)=-(x-1)2+4,其开口向下,对称轴为x=1,顶点坐标为(1,4),且f(3)=0,f(0)=3;当x<0时,f(x)=-(x+1)2+4,其开口向下,对称轴为x=-1,顶点坐标为(-1,4),且f(-3)=0.作出函数的图象(如图),由图看出,函数在(-∞,-1],[0,1]上是增函数,在[-1,0],[1,+∞)上是减函数.辨误区写函数的单调区间易忽略的问题1.如果一个函数有多个单调增(减)区间,这些增(减)区间应该用逗号隔开(即“局部”)或用“和”来表示,而不能用并集的符号“∪”连接;2.确定已知函数的单调区间要有整体观念,本着宁大勿小的原则,即求单调区间则应求“极大”区间.如虽然函数y=x2在区间[2,3],[5,9],[1,+∞)上都是递增的,但在写这个函数的递增区间时应写成[0,+∞),而不能写区间[0,+∞)的任一子区间;3.书写函数的单调区间时,区间端点的开或闭没有严格规定,若函数在区间端点处有定义且图象在该点处连续,则书写函数的单调区间时,既可以写成闭区间,也可以写成开区间;若函数在区间端点处没有定义,则书写函数的单调区间时必须写成开区间.(2)定义法如果要证明一个函数的单调性,目前只能严格按照定义进行,步骤如下:①取值:设x1,x2为给定区间内任意的两个值,且x1<x2(在证明函数的单调性时,由于x1,x2的取值具有任意性,它代表区间内的每一个数,所以,在证题时不能用特殊值来代替它们);②作差变形:作差Δy=f(x2)-f(x1),并通过因式分解、配方、有理化等方法,向有利于判断差值的符号的方向变形(作差后,尽量把差化成几个简单因式的乘积或几个完全平方式的和的形式,这是值得学习的解题技巧,在判断因式的正负号时,经常采用这种变形方法);③定号:确定差值Δy的符号,当符号不确定时,可考虑分类讨论(判断符号的依据是自变量的范围、假定的大小关系及符号的运算法则);④判断:根据定义作出结论(若Δx=x2-x1与Δy=f(x2)-f(x1)同号,则给定函数是增函数;异号,就是减函数).【例2-4】(1)证明函数()=f x在定义域上是减函数;(2)证明函数f(x)=x3+x在R上是增函数;(3)证明函数f(x)=x+1x在(0,1)上为减函数.分析:证明函数的单调性,关键是对函数在某一区间上任意两个函数值f(x1),f(x2)的差Δy=f(x2)-f(x1)进行合理的变形,尽量变为几个最简单的因式的乘积或几个完全平方式的和的形式.证明:(1)()=f x的定义域为[0,+∞),任取x1,x2∈[0,+∞),且x1<x2,则Δx=x2-x1>0,Δy=f(x2)-f(x1)=((--=<0,由单调函数的定义可知,函数()=f x在定义域[0,+∞)上是减函数.(2)设x1,x2∈R,且x1<x2,则Δx=x2-x1>0,Δy=f(x2)-f(x1)=(x23+x2)-(x13+x1)=(x23-x13)+(x2-x1)=(x 2-x 1)(x 22+x 1x 2+x 12)+(x 2-x 1)=(x 2-x 1)(x 22+x 1x 2+x 12+1)=222121113()1024x x x x x ⎡⎤⎛⎫-+++>⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,由单调函数的定义可知,函数f (x )=x 3+x 在R 上是增函数.(3)设x 1,x 2∈(0,1),且x 1<x 2,则Δx =x 2-x 1>0,Δy =f (x 2)-f (x 1)=212111x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭ =(x 2-x 1)+1212x x x x -=(x 2-x 1)1211x x ⎛⎫- ⎪⎝⎭=2112121x x x x x x (-)(-).∵0<x 1<x 2<1,∴x 1x 2-1<0,x 1x 2>0.∴Δy =f (x 2)-f (x 1)<0.∴由单调函数的定义可知,函数1()=f x x x+在(0,1)上为减函数.辨误区 利用定义证明函数的单调性需谨慎在第(1)题中,有的同学认为由0≤x 1<x 2,可得0≤x 1<x 2,这种证明实际上利用了函数y =x 的单调性,而y =x 的单调性我们没作证明,因此不能使用;在第(1)题中还使用了“分子有理化”的变形技巧,要注意观察这类题目的结构特点.3.利用函数的单调性比较两个函数值的大小若函数y =f (x )在给定的区间A 上是增函数,设x 1,x 2∈A ,且x 1<x 2,则有f (x 1)<f (x 2);若函数y =f (x )在给定的区间A 上是减函数,设x 1,x 2∈A ,且x 1<x 2,则有f (x 1)>f (x 2).所以,当给定的两个自变量在同一单调区间上时,可直接比较相应的两个函数值的大小.否则,可以先把它们转化到同一单调区间上,再利用单调性比较大小.【例3】设函数f (x )是区间(0,+∞)上的减函数,那么f (a 2-a +1)与34f ⎛⎫⎪⎝⎭的大小关系为________.解析:∵a 2-a +1=2133244a ⎛⎫-+≥ ⎪⎝⎭>0,又∵f (x )在(0,+∞)上是减函数,∴当12a ≠时,a 2-a +1>34,有f (a 2-a +1)<34f ⎛⎫ ⎪⎝⎭;当1=2a 时,a 2-a +1=34,有f (a 2-a +1)=34f ⎛⎫ ⎪⎝⎭.综上可知,f (a 2-a +1)≤34f ⎛⎫ ⎪⎝⎭.答案:f (a 2-a +1)≤34f ⎛⎫ ⎪⎝⎭4.利用函数的单调性确定参数范围已知函数的单调性,求函数解析式中参数的取值范围时,要注意利用数形结合的思想,运用函数单调性的逆向思维思考问题.这类问题能够加深对概念、性质的理解.例如:已知函数f (x )=x 2-2(1-a )x +2在(-∞,4]上是减函数,求实数a 的取值范围.由于二次函数是我们最熟悉的函数,遇到二次函数就画图象,会给我们研究问题带来很大方便.要使f (x )在(-∞,4]上是减函数,由二次函数的图象可知,只要对称轴x =1-a ≥4即可,解得a ≤-3.谈重点 对分段函数的单调性的理解求分段函数在定义域上的单调性问题时,不但要考虑各段上函数的类型及其单调性,而且还要考虑各段图象之间的上下关系.【例4】已知函数(3)4,<1,()=,1a x a x f x a x x-+⎧⎪⎨≥⎪⎩是(-∞,+∞)上的减函数,求实数a 的取值范围.分析:函数f (x )是一个分段函数,其图象由两部分组成.当x <1时,f (x )=(3-a )x +4a ,其图象是一条射线(不包括端点);当x ≥1时,()=af x x,其图象由a 的取值确定,若a =0,则为一条与x 轴重合的射线,若a ≠0,则为反比例函数图象的一部分(曲线).已知函数f (x )是(-∞,+∞)上的减函数,则在两段上必须都是递减的,且要保证x <1时的图象位于x ≥1时的图象的上方.解:由题意知,函数f (x )=(3-a )x +4a (x <1)与()=af x x(x ≥1)都是递减的,且前者图象位于后者图象的上方(如图所示).∴3<0,>0,34,a a a a a -⎧⎪⎨⎪(-)+≥⎩即>3,>0,3.2a a a ⎧⎪⎪⎨⎪⎪≥-⎩ ∴a >3.∴实数a 的取值范围是{a |a >3}. 5.利用函数的单调性求函数的最值若函数在给定的区间上是单调函数,可利用函数的单调性求最值.若给定的单调区间是闭区间,函数的最值在区间的两个端点处取得,也就是说,若函数f (x )在某一闭区间[a ,b ]上是增函数,则最大值在右端点b 处取得,最小值在左端点a 处取得;若函数f (x )在某一闭区间[a ,b ]上是减函数,则最大值在左端点a 处取得,最小值在右端点b 处取得.解题时也可结合函数的图象,得出问题的答案.【例5-1】求()=f x x +的最小值.分析:求函数()=f x x +的最小值,可先利用单调函数的定义判断其在定义域上的单调性,再利用单调性求出最值.解:()=f x x +的定义域为[1,+∞),任取x 1,x 2∈[1,+∞),且x 1<x 2,Δx =x 2-x 1>0,则Δy =f (x 2)-f (x 1)=(x 2)-(x 1=(x 2-x 1)+(-=(x 2-x 1)=(x 2-x 1)·1⎛ ⎝.∵Δx =x 2-x 1>0,1>0,∴f (x 2)-f (x 1)>0.∴f (x )在[1,+∞)上为增函数,∴f (x )min =f (1)=1.【例5-2】已知函数2=1xy x +(x ∈[-3,-2]),求函数的最大值和最小值. 解:设-3≤x 1<x 2≤-2,则f (x 1)-f (x 2)=12122211x x x x -++=122112212111x x x x x x (+)-(+)(+)(+)=1212211x x x x (-)(+)(+).由于-3≤x 1<x 2≤-2,则x 1-x 2<0,x 1+1<0,x 2+1<0. 所以f (x 1)<f (x 2). 所以函数2=1xy x +在[-3,-2]上是增函数. 又因为f (-2)=4,f (-3)=3,所以函数的最大值是4,最小值是3. 6.利用函数的单调性解不等式函数的单调性具有可逆性,即f (x )在区间D 上是递增的,则当x 1,x 2∈D 且f (x 1)>f (x 2)时,有x 1>x 2〔事实上,若x 1≤x 2,则f (x 1)≤f (x 2),这与f (x 1)>f (x 2)矛盾〕.类似地,若f (x )在区间D 上是递减的,则当x 1,x 2∈D 且f (x 1)>f (x 2)时,有x 1<x 2.利用函数单调性的可逆性,可以脱去某些函数符号,把抽象的不等式化为具体的不等式.此时要特别注意处在自变量位置的代数式必须满足定义域要求,最后取几个不等式的解的交集即可.利用函数的单调性可以比较函数值或自变量值的大小,在解决比较函数值的大小问题时,要注意将对应的自变量放在同一个单调区间上.【例6】已知y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (a 2-1),求a 的取值范围.分析:由于函数y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (a 2-1),所以由单调函数的定义可知1-a ∈(-1,1),a 2-1∈(-1,1),且1-a >a 2-1,解此关于a 的不等式组,即可求出a 的取值范围.解:由题意可得221<1<1,1<1<1,1>1,a a a a --⎧⎪--⎨⎪--⎩①②③由①得0<a <2,由②得0<a 2<2,∴0<|a |,∴a ,且a ≠0.由③得a 2+a -2<0,即(a -1)(a +2)<0, ∴1>0,2<0a a -⎧⎨+⎩或1<0,2>0,a a -⎧⎨+⎩∴-2<a <1.综上可知0<a <1, ∴a 的取值范围是0<a <1.7.复合函数单调性的判断方法一般地,如果f(x),g (x)在给定区间上具有单调性,则可以得到如下结论:(1)f(x),g(x)的单调性相同时,f(x)+g(x)的单调性与f(x),g(x)的单调性相同.(2)f(x),g(x)的单调性相反时,f(x)-g(x)的单调性与f(x)的单调性相同.(3)y=f(x)在区间I上是递增(减)的,c,d都是常数,则y=cf(x)+d在I上是单调函数.若c>0,y=cf(x)+d在I上是递增(减)的;若c<0,y=cf(x)+d在I上是递减(增)的.(4)f(x)恒为正或恒为负时,y=1f x与y=f(x)单调性相反.(5)若f(x)>0,则函数y=f(x)与y=f x具有相同的单调性.(6)复合函数y=f[g(x)]的单调区间求解步骤:①将复合函数分解成基本初等函数y=f(u),u=g(x);②分别确定各个函数的定义域;③分别确定分解成的两个函数的单调区间;④若两个函数在对应区间上的单调性相同,则y=f[g(x)]为增函数;若不同,则y=f[g(x)]为减函数.该法可简记为“同增异减”.值得注意的是:在解选择题、填空题时我们可直接运用此法,但在解答题中不能利用它作为论证的依据,必须利用定义证明.【例7】求y的单调区间,并指明在该区间上的单调性.分析:这是一个复合函数,应先求出函数的定义域,再利用复合函数单调性的判断法则确定其单调性.解:要使函数y需满足x2+2x-3≥0,即(x-1)(x+3)≥0.∴10,30xx-≥⎧⎨+≥⎩或10,30.xx-≤⎧⎨+≤⎩∴x≥1,或x≤-3.∴函数y的定义域为{x|x≥1,或x≤-3}.令u=x2+2x-3,则=y u=(x+1)2-4,其开口向上,对称轴为x=-1.∴当x≥1时,u是x的增函数,y是u的增函数,从而y是x的增函数;当x≤-3时,u是x的减函数,y是u的增函数,从而y是x的减函数.∴y的递增区间是[1,+∞),递减区间是(-∞,-3].辨误区求函数的单调区间易忽略的问题由于函数的单调区间一定是函数定义域的子集,所以我们在求函数的单调区间时,一定要先求函数的定义域,在函数的定义域内讨论函数的单调区间;在处理函数的相关问题时,往往会把函数问题转化成方程问题或简单不等式问题来处理,但要注意转化时应确保转化前后式子的等价性.8.抽象函数的单调性问题没有具体的函数解析式的函数,我们称为抽象函数,关于抽象函数的单调性,常见的有以下题型:(1)抽象函数单调性的证明.证明抽象函数的单调性,必须用单调函数的定义作出严格证明,而不能用几个特殊值的大小来检验,证明时要同时注意特殊值的应用.(2)抽象函数单调性的应用.如,利用抽象函数的单调性求函数的最值、解不等式等.解决抽象函数的有关问题,常采用赋值法.在解不等式时关键是将已知不等式转化为f(x1)≥f(x2)的形式,然后利用单调性结合定义域求解.【例8】已知函数f(x)对任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,2 (1)=3f .求证:f(x)在R上是减函数;证明:令x=y=0,得f(0)+f(0)=f(0),∴f(0)=0. 令y=-x,得f(x)+f(-x)=f(0),∴f(-x)=-f(x).任取x1,x2∈R,且x1<x2,Δx=x2-x1>0,则Δy=f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1).∵x1<x2,∴x2-x1>0.又∵当x>0时,f(x)<0,∴f(x2-x1)<0,即Δy<0.∴f(x)在R上是减函数.。
高中数学-对数函数单调性

对数函数单调性
1.解决对数函数有关的复合函数的单调性问题,一要注意利用单调性的定义,二要灵活运用对数函数的性质;
2.求与对数函数有关的复合函数的单调区间,首先要弄清楚这个函数是怎样复合而成的,再按“同增异减”原则来求其单调区间,注意单调区间应是定义域的子集;
3.对数式比较大小的常用方法:
(1)底数相同真数不同时,用单调性比较;
(2)底数不同真数相同时,用图象与底数的关系比较,也可利用换底公式转化为底数相同的问题;
(3)底数和真数均不同时,可寻求中间值作媒介比较.
例1.求函数的反函数.
分析:应首先按照求反函数的步骤去操作,求值域时应注意按复合函数求值域去操作.
解:由
得,
.
,又
于是有.又
的值域为
,
所求反函数为
.
例2.比较下列各组数的大小:
(1)与
;(2)p=0.95.1,m=5.10.9,n=log0.95.1 (3)若.
分析:比较两个对数形的数若同底可利用对数函数的单调性,若不同底可以借助常数为媒介搭桥比较也可以借助对数函数图象来确定对数值的取值范围进行比较.
解:(1)由在
上单调递增,且
,故<
.
(2),而
,
,
(3)令,由
可知
,即.
则,
,
在同一坐标系下画出这三个函数的图象,如图示:
可知最大,
最小,即
.。
函数单调性的应用

2
a≥(2-a)×1+1,
7. 已知函数 () = ቐ
( − 2), ≥ 2,
满足对任意的实数 1 ≠ 2 ,都有
− 1, < 2
13
(−∞, ]
8
(1 )−(2 )
< 0 成立,则实数 的取值范围为_______________.
1
( )
2
1 −2
2
1
,+∞.
2
a(x+2)+1-2a
1-2a
方法二:f(x)=
=a+
,∵f(x)在(-2,+∞)上单调递
x+2
x+2
1
增,∴1-2a<0,∴a>2.
(1,2)
4. 已知函数 y=loga(2-ax)在[0,
1]上是减函数,
则实数 a 的取值范围是________.
【解析】 设 u=2-ax,∵a>0,且 a≠1,
2 − > 0,
[解析] 由已知可得 ൞ + 3 > 0,
解得 −3 < < −1 或 > 3 ,所以实数 的
2 − > + 3,
取值范围为 (−3, −1) ∪ (3, +∞) .
1
2. 已知函数 () 为 上的减函数,则满足 (| |) < (1) 的实数 的取值范围
− 2 < 0,
1 2
[解析] 由题意知函数 () 是 上的减函数,于是有 ൝
( − 2) × 2 ≤ ( ) − 1,
2
由此解得 ≤
13
13
,即实数 的取值范围是 (−∞, ] .
对数函数单调性中的常见错解剖析

ʏ张志远函数的单调性是函数的重要性质㊂函数的单调性问题综合性强,难度大,稍有疏忽就可能出现错误,下面就对数函数的单调性中的常见错解进行举例剖析㊂一㊁求单调区间忽视函数的定义域例1 求函数f (x )=l o g 12(-x 2+2x +1)的单调区间㊂错解:设y =g (u )=l o g 12u ,u =-x 2+2x +1=-(x -1)2+2㊂因为u =-(x -1)2+2在区间(-ɕ,1]上为增函数,在区间(1,+ɕ)上为减函数,又y =g (u )=l o g 12u 在定义域内是减函数,所以由复合函数单调性知,函数f (x )=l o g 12(-x 2+2x +1)的单调递减区间是(-ɕ,1],单调递增区间是(1,+ɕ)㊂错解剖析:错解中忽视了函数f (x )的定义域,因为单调区间是定义域的子集,在解函数问题时,一定要树立 定义域优先 的意识㊂正解:由-x 2+2x +1>0,可得函数f (x )的定义域为(1-2,1+2)㊂设y =g (u )=l o g 12u ,u =-x 2+2x +1=-(x -1)2+2㊂因为u =-(x -1)2+2在区间(1-2,1]上为增函数,在区间(1,1+2)上为减函数,又y =g (u )=l o g 12u 在定义域内是减函数,所以由复合函数单调性知,函数f (x )=l o g 12(-x 2+2x +1)的单调递减区间是(1-2,1],单调递增区间是(1,1+2)㊂二㊁求单调区间忽视对底数的分类讨论例2 求函数f (x )=l o g a (x 2-2x -3)的单调区间㊂错解:由x 2-2x -3>0,可得函数f (x )的定义域为(-ɕ,-1)ɣ(3,+ɕ)㊂令u =x 2-2x -3,则y =g (u )=l o g au ㊂因为u =x 2-2x -3=(x -1)2-4在区间(-ɕ,-1)上单调递减,在区间(3,+ɕ)上单调递增,所以函数f (x )的单调递减区间是(-ɕ,-1),单调递增区间是(3,+ɕ)㊂错解剖析:上述错解没有注意到底数对单调性的影响,当底数不确定时,要对底数分情况进行讨论㊂正解:由x 2-2x -3>0,可得函数f (x )的定义域为(-ɕ,-1)ɣ(3,+ɕ)㊂令u =x 2-2x -3,则y =g (u )=l o g au ㊂函数u =x 2-2x -3=(x -1)2-4在区间(-ɕ,-1)上单调递减,在区间(3,+ɕ)上单调递增㊂当0<a <1时,函数g (u )=l o g a u 在定义域内为减函数,当a >1时,函数g (u )=l o g au 在定义域内为增函数㊂故当0<a <1时,f (x )=l og a (x 2-2x -3)的单调增区间是(-ɕ,-1),单调减区间是(3,+ɕ);当a >1时,f (x )=l o g a (x 2-2x -3)的单调减区间是(-ɕ,-1),单调增区间是(3,+ɕ)㊂已知函数f (x )=l o g 12(x 2-a x +a )在区间(-ɕ,2)上是增函数,求实数a 的取值范围㊂提示:设h (x )=x 2-a x +a ,则函数y =l o g 12h (x )㊂因为y =l o g 12h (x )在定义域内是减函数,所以要使f (x )=l o g 12(x 2-a x +a )在区间(-ɕ,2)上是增函数,只需h (x )=x 2-a x +a 在区间(-ɕ,2)上是减函数且h (x )=x 2-a x +a 在区间(-ɕ,2)上恒正,所以a2ȡ2且h (2)ȡ0,解得22ɤa ɤ2(2+1),即所求实数a ɪ[22,22+2]㊂作者单位:河北承德双滦区实验中学(责任编辑 郭正华)43 易错题归类剖析 高一数学 2023年11月。
对数函数单调性的应用题型归纳

对数函数单调性的应用题型归纳对数函数)1,0(log ≠>=a a x y a 且的单调性为:当a>1时,)1,0(log ≠>=a a x y a 且在)(+∞,0上为增函数; 当10<<a 时,)1,0(log ≠>=a a x y a 且在)(+∞,0上为减函数。
理解和应用这个性质时应注意两点:(1)不能忽视定义域,注意它在定义域内是单调函数;(2)注意性质的可逆性,在定义域内,由函数值的大小关系,可判断参数的范围。
下面举例介绍此性质的几个应用。
一、最值问题例1、若函数)1,0(log )(≠>=a a x x f a 且在区间[a ,2a]上的最大值是最小值的3倍,则实数a =___________.解:(1)当10<<a 时,函数x x f a log )(=在)(+∞,0上是减函数,所以在区间[a ,2a]上,1log )()(max ===a a f x f a ,)2(log )2()(min a a f x f a ==,结合题意可知)2(log 31a a =,解得.42=a (2)当a>1时,函数x x f a log )(=在)(+∞,0上是增函数,所以在区间[a ,2a]上,)2(log )2()(max a a f x f a ==,1log )()(min ===a a f x f a ,结合题意可知3)2(log =a a ,解得.2=a 综上可知, .42=a 或.2=a 二、值域问题例2、已知3log 212≤≤x ,求函数)4)(log 2(log 22x x y =的值域。
分析:所求函数的解析式是两个对数的积的形式,可利用对数的运算性质将其化为两 个差的积。
解:)4)(log 2(log 22x x y =)2)(log 1(log 22--=x x 41)23(log 22--=x , 因为3log 212≤≤x ,所以当23log 2=x ,即22=x 时,41min -=y ; 当3log 2=x ,即x =8时,2max =y ,所以函数的值域为].2,41[- 三、比较大小例3、已知0,0,log )(21>>=x x x x f a ,试比较)2(21x x f +与2)()(21x f x f +的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学例题:对数函数的单调性及其应用
利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.
例2. 比较下列各组数中的两个值大小: (1)33log 3.6,log 8.9; (2)0.20.2log 1.9,log 3.5; (3)2log 5与7log 5; (4) 3log 5与6log 4.
(5)log 4.2,log 4.8a a (01a a >≠且).
【思路点拨】利用函数的单调性比较函数值大小。
【答案】(1)< ;(2) <;(3) >;(4) >;(5) 略. 【解析】由数形结合的方法或利用函数的单调性来完成. (1)解法1:画出对数函数3log y x =的图象,横坐标为3.6的点在横坐标为8.9的点的下方,所以,33log 3.6log 8.9<;
解法2:由函数3log y x =在R +上是单调增函数,且3.6<8.9,所以
33log 3.6log 8.9<;
(2)与第(1)小题类似,0.2log y x =在R +上是单调减函数,且1.9<3.5,所以0.20.2log 1.9log 3.5>;
(3)函数2log y x =和7log y x =的图象如图所示.当1x >时,
2log y x =的图象在7log y x =的图象上方,这里5x =,27log 5log 5∴>.
(4) 3366log 5log 31log 6log 4,>==>
36log 5log 4∴>
(5) 注:底数是常数,但要分类讨论a 的范围,再由函数单调性判断大小.
解法1:当1a >时,log a y x =在(0,+∞)上是增函数,且5.1<5.9,所以,log 4.2log 4.8a a <
当01a <<时,y=log a x 在(0,+∞)上是减函数,且4.2<4.8,所以,
log 4.2log 4.8a a >
解法2:转化为指数函数,再由指数函数的单调性判断大小, 令1log 4.2a b =,则1
b a =4.2,令2log 4.8a b =,则2
4.8b a =,
当1a >时,x y a =在R 上是增函数,且4.2<4.8, 所以,b 1<b 2,即log 4.2log 4.8a a <
当时01a <<,x y a =在R 上是减函数,且4.2<4.8 所以,b 1>b 2,即a a log 4.2>log 4.8.
【总结升华】比较两个对数值的大小的基本方法是:
(1)比较同底的两个对数值的大小,常利用对数函数的单调性. (2)比较同真数的两个对数值的大小,常有两种方法:①先利用对数换底公式化为同底的对数,再利用对数函数的单调性和倒数关系比较大小;②利用对数函数图象的互相位置关系比较大小.
(3)若底数与真数都不同,则通过一个恰当的中间量来比较大小.
例3.比较11log ,log ,log ,log a b a b b a b
a
其中0<a <1<b 且a ·b >1的大小.
【答案】11log log log log a b b a b a a b
<<<
【解析】由0<a <1<b 且a ·b >1,得1
a b
>,1b a
>
∴1log log 1a a a b >=,1log log 1b b b a
<=
11
log log b a a b
∴<
∴11log log b a a b --<,即log log b a a b -<- log log b a a b ∴>
11log log log log a b b a b a a b
∴<<<
【总结升华】若底数与真数都不同,则通过一个恰当的中间量来比较大小,中间变量常常用“0”和“1”.用“0”和“1”把所给的数先分两组,然后组内再比较大小.
举一反三: 【变式1】已知324log 0.3
log 3.4
log 3.6
15,5
,,5a b c ⎛⎫=== ⎪
⎝⎭
则( )
A .a b c >>
B .b a c >>
C .a c b >>
D .c a b >>
【答案】C
【解析】另2log 3.4m =,4log 3.6n =,3
10
log 3
l =,在同一坐标系下作出三个函数图像,由图像可得m l n >>
又∵5x y =为单调递增函数,
∴ a c b >> 故选C .
【变式2】比较的大小. 【答案】c b a <<
【解析】3233log 2log log 1log 3log π<<=<
c b a ∴<<
例4.求函数212
log (21)y x x =-++的值域和单调区间.
【思路点拨】先解不等式2210x x -++>,保证原式有意义,然后再在定义域范围内求内函数221t
x x =-++的单调区间,然后根据复合函数的单调性就是内函数与外函数的单调性“同增异减”来求解.
【答案】[-1
,+∞);增区间为1,1⎡+⎣;减区间为()1. 【解析】设221t x x =-++,则2(1)2t x =--+.∵ y=12
log t 为减函数,
且02t <≤,
∴ 12
log 21y ≥=-,即函数的值域为[-1,+∞).再由:函数
212
log (21)
x x -+
+的定义域为2210x x -++>,即11x
<<∴ 221t
x x =-++在()1上递增而在1,1⎡+⎣上递减,
而y=12
log t 为减函数.
∴ 函数2
12
log (21)y x x =-++的增区
间为1,1⎡
⎣,减区间
为
()
1-
.
【总结升华】对数型复合函数一般可分为两类:一类是对数函数
323log ,log log a b c π===
为外函数,即log ()a y f x =型;另一类是内函数为对数函数,即
(log )a y f x =型.对于log ()a y f x =型的函数的单调性,有以下结论:函
数log ()a y f x =的单调性与函数()u f x =[]()0f x >的单调性,当1a >时相同,当01a <<时相反.
研究(log )a y f x =型复合函数的单调性,一般用复合法来判定即可.复合函数的单调性就是内函数与外函数的单调性“同增异减”.
研究对数型复合函数的单调性,一定要注意先研究函数的定义域,也就是要坚持“定义域优先”的原则.
举一反三:
【变式1】求函数()22log 4y x =+的值域和单调区间. 【答案】[)2,+∞;减区间为(),0-∞,增区间为()0,+∞.
【解析】设24t x =+,则244t x =+≥,∵ y=2log t 为增函数,
2222log log (4)log 42t x ∴=+≥=
()22log 4y x ∴=+的值域为[)2,+∞.
再由:22log (4)y x =+的定义域为R
24t x ∴=+在()0,+∞上是递增而在(),0-∞上递减,而y=2log t 为增函
数
∴ 函数y=22log (4)x +的减区间为(),0-∞,增区间为()0,+∞. 【变式2】求函数log ()x a y a a =-的单调区间 【答案】减区间是:(),1-∞和()1,+∞
【解析】①若1,a >则log a y t =递增,且x t a a =-递减,而0x a a ->,
即,1x a a x <∴<,
log ()x a y a a ∴=-在(),1-∞上递减.
② 若01a <<,则log a y t =递减,且x t a a =-递增,而0x a a ->,
即,1x a a x <∴>,
log ()x a y a a ∴=-在()1,+∞上递减.
综上所述,函数log ()x a y a a =-的单调递减区间是:(),1-∞和
()1,+∞.。