微生物生物传感器 PPT
合集下载
生物传感器.pptx
返回
上页
下页
图库
10.1.2 生物传感器的类型
生物传感器可以根据其分子识别元件的敏感物 质分为:酶传感器、微生物传感器、组织传感 器、细胞传感器和免疫传感器。还可以根据换 能器和测声型生物传感器等。生物传感器的分 类如图10-1所示。
返回
上页
下页
图库
▪
图10-1 生物传感器的基本结构
返回
上页
下页
生物传感器通常将生物物质固定在高分子膜等 固体载体上,例如酶、微生物组织、动物细胞、 底物、抗原、抗体等,被识别的生物分子作用 于生物功能性人工膜(生物传感器)时,将会 产生生理变化或化学变化,换能器将此信号转 换为电信号,从而检测出待测物质。转换包括 电化学反应、热反应、光反应等,输出为可处 理的电信号。人们把这类固定化的生物物质: 酶、抗原、抗体、激素等,或生物体本身:细 胞、细胞体(器)、组织作为敏感元件的传感 器,称为生物分子传感器或简称生物传感器。
返回
上页
下页
图库
10.3.2 生物场效应晶体管结构类型
一 生物场效应晶体管有分离型和结合型 二 结合型生物场效应晶体管 三 酶场效应晶体管差分输出
返回
上页
下页
图库
10.3.3 应用研究实例
1 尿素测定 2 NAD+-NADH测定 3 肌酸酐测定 4 青霉素测定 5 甲醛测定 6 有机磷农药测定 7 活细胞场效应晶体管 8 昆虫触角天线场效应晶体管 9 其他用途
返回
上页
下页
图库
▪ DNA在固体电极上的固定化方法: ▪ (1)吸附法 ▪ (2)共价键结合法 ▪ (3)自组装膜法
返回
上页
下页
图库
10.2.3 电化学传感器中的标识物
13生物传感器PPT课件
Outline:
生物传感器概念 生物传感器类 生物传感器结构和原理 生物传感器的信号转换器 微生物传感器 生物传感器应用领域
第1页/共111页
一、what is biosensor?
1、概述
传感器是一种信息获取与处理的装置。 对物质成分传 感的器件就是化学传感器,它是一种小型化的、能专一和可 逆地对某种化学成分进行应答反应的器件,并能产生与该成 分浓度成比例的可测信号。
第21页/共111页
1.2 基本电化学信号测量技术
• (1)电位信号测量方法 对于一个选择性膜电极,当其他外界
条件固定时,膜电位与溶液中待测离子 活度(或浓度)的对数值呈线性关系, 即符合能斯特关系式。由于单个电极电 位值是无法测量的,通常将待测电极与 一个参比电极组成一个电池,测量其电 位差值。采用的参比电极处理可使用标 准氢电极外常常使用甘汞电极和银-氯化 银电极(结第22构页/共如11下1页 图)。
第11页/共111页
生物传感器分类示意图
酶传感器 固定化酶
微生物传感器
固定化微生物 生物分子 固定化抗体 免疫传感器 识别元件
固定化寡链核苷酸
生物组织切片
基因传感器
组织传感器
生物传感器按生物分子识别元件敏感物质分类
第12页/共111页
3、根据生物传感器的信号转化器 分:
电化学生物传感器 (bioelectrode) 半导体生物传感器 (semiconductbiosensor) 测热型生物传感 (calorimetricbiosensor) 测光型生物传感器 (opticalbiosensor) 压电晶体生物传感器 (piezoelectricbiosensor)
1. Pt阳极 2. 聚四氟乙烯膜(作用) 3. 固相酶膜 4. 半透膜多孔层 5. 半透膜致密层
生物传感器概念 生物传感器类 生物传感器结构和原理 生物传感器的信号转换器 微生物传感器 生物传感器应用领域
第1页/共111页
一、what is biosensor?
1、概述
传感器是一种信息获取与处理的装置。 对物质成分传 感的器件就是化学传感器,它是一种小型化的、能专一和可 逆地对某种化学成分进行应答反应的器件,并能产生与该成 分浓度成比例的可测信号。
第21页/共111页
1.2 基本电化学信号测量技术
• (1)电位信号测量方法 对于一个选择性膜电极,当其他外界
条件固定时,膜电位与溶液中待测离子 活度(或浓度)的对数值呈线性关系, 即符合能斯特关系式。由于单个电极电 位值是无法测量的,通常将待测电极与 一个参比电极组成一个电池,测量其电 位差值。采用的参比电极处理可使用标 准氢电极外常常使用甘汞电极和银-氯化 银电极(结第22构页/共如11下1页 图)。
第11页/共111页
生物传感器分类示意图
酶传感器 固定化酶
微生物传感器
固定化微生物 生物分子 固定化抗体 免疫传感器 识别元件
固定化寡链核苷酸
生物组织切片
基因传感器
组织传感器
生物传感器按生物分子识别元件敏感物质分类
第12页/共111页
3、根据生物传感器的信号转化器 分:
电化学生物传感器 (bioelectrode) 半导体生物传感器 (semiconductbiosensor) 测热型生物传感 (calorimetricbiosensor) 测光型生物传感器 (opticalbiosensor) 压电晶体生物传感器 (piezoelectricbiosensor)
1. Pt阳极 2. 聚四氟乙烯膜(作用) 3. 固相酶膜 4. 半透膜多孔层 5. 半透膜致密层
第8章-生物传感器PPT课件
2021/7/2
返回主目录
2
第2页/共34页
8.1 生物传感器的工作原理
生物传感器是在基础传感器上再耦合一个生物敏感膜而形成的,生物 功能膜上(或膜中)附着有生物传感器的敏感物质,被测量溶液中待测 定的物质经扩散作用进入生物敏感膜层,经分子识别或发生生物学反 应,其所产生的信息可通过相应的化学或物理原理转变成可定量和可 显示的电信号,通过电信号的分析就可知道被测物质的成分或浓度。
➢ 多功能酶传感器、测定酶活性传感器、半导体酶传感器以及检测难 溶于水的物质的酶传感器正在研究之中。随着基因工程技术的开发,
2021/7/2
使酶传感器的特性会得到进一步的发展。
13
第13页/共34页
葡萄糖传感器
➢葡萄糖是典型的单糖类,是一切生物的良好能源,测定血液中葡萄
糖浓度对糖尿病患者作临床检查是很重要的。葡萄糖传感器是以葡
2021/7/2
22
第22页/共34页
➢图8-6为这种免疫传感器的结构原理图。图中2、3两室间有固定化 抗原膜,而1、3两室之间没有固定化抗原膜。正常情况下,1、2室 内电极间无电位差。若3室内注入含有抗体的盐水时,由于抗体和固 定化抗原膜上的抗原相结合,使膜表面吸附了特异的抗体,而抗体是 有电荷的蛋白质,从而使抗原固定化膜带电状态发生变化,因此1、2 室内的电极间有电位差产生。
2021/7/2
图8-1 生物传感器工作原理示意图
3
第3页/共34页
血糖-乳酸测定流程
2021/7/2
4
第4页/共34页
2021/7/2
体育上耐力训练
5
第5页/共34页
手掌型葡萄糖(glucose)分析仪
2021/7/2
《生物传感器》PPT课件
生物分子识别元件:葡萄糖氧化酶膜 可用的测量量:O2的减少量,葡萄糖酸或H2O2的
产生量
信号转换元件:氧电极,pH电极及H2O2电极
一种葡萄糖传感器-Glucowatch
•Glucose pulled through the skin by charged molecules •The ions migrate to the anode (+) and cathode (-) •Glucose reacts with glucose oxidase to form hydrogen peroxide •The reaction produces an electrochemical measured by the AutoSensor
灵敏。
完整版课件ppt
3
敏感元件:
酶、抗体、核酸、细胞等。
转换器:
电化学电极、光学检测元件、 场效应晶体管、压电石英晶体、 表面等离子共振。
酶 (Enzyme)
抗体(Antibody)
完整版课件ppt
DNA
4
2. 分类
根据输出信号产生的方式 生物亲和型、代谢型、催化型
根据生物分子识别元件上的敏感物质 酶传感器、组织传感器、微生物传感器、免疫传感器、基 因传感器等
根据信号转化器 电化学生物传感器、半导体生物传感器等
其他分类 被测对象、大小、功能
完整版课件ppt
6
3. 生物传感器的特点
➢ 高选择性。生物传感器是由选择性好的主 体材料构成的分子一识别元件,因此,一般不 需进行样品的预处理。测定时一般不需另加其 它试剂。
➢ 体积小、可以实现连续在位监测。
➢ 响应快、样品用量少,且由于敏感材料是固定化的,可以反复 多次使用。
产生量
信号转换元件:氧电极,pH电极及H2O2电极
一种葡萄糖传感器-Glucowatch
•Glucose pulled through the skin by charged molecules •The ions migrate to the anode (+) and cathode (-) •Glucose reacts with glucose oxidase to form hydrogen peroxide •The reaction produces an electrochemical measured by the AutoSensor
灵敏。
完整版课件ppt
3
敏感元件:
酶、抗体、核酸、细胞等。
转换器:
电化学电极、光学检测元件、 场效应晶体管、压电石英晶体、 表面等离子共振。
酶 (Enzyme)
抗体(Antibody)
完整版课件ppt
DNA
4
2. 分类
根据输出信号产生的方式 生物亲和型、代谢型、催化型
根据生物分子识别元件上的敏感物质 酶传感器、组织传感器、微生物传感器、免疫传感器、基 因传感器等
根据信号转化器 电化学生物传感器、半导体生物传感器等
其他分类 被测对象、大小、功能
完整版课件ppt
6
3. 生物传感器的特点
➢ 高选择性。生物传感器是由选择性好的主 体材料构成的分子一识别元件,因此,一般不 需进行样品的预处理。测定时一般不需另加其 它试剂。
➢ 体积小、可以实现连续在位监测。
➢ 响应快、样品用量少,且由于敏感材料是固定化的,可以反复 多次使用。
生物传感器ppt
生物传感器是一类特殊的化学传感 器,它是以生物活性单元(如酶、 蛋白质、DNA、抗体、抗原、生 物膜、微生物、细胞等)作为识别 元件,将生化反应转变成可定量 的物理、化学信号,从而能够进 行生命物质和化学物质检测和监 控的装置。
2、生物传感器与传统的分析方法 相比,具有如下的优点:
1).生物传感器是由选择性好的生 物材料构成的分子识别元件,因 此一般不需要样品的预处理,样 品中的检测组分的分离和检测同 时完成,且测定时一般不需加入 其它试剂;
转换器(换能器transducer )
生物传感器的选择性取决于它 的生物敏感元件,而生物传感器 的其他性能则和它的整体组成有 关。
生物传感器的传感原理
分子识别 生物功能性膜
化学物质 热 光 质量
介电性质
电极、半导体等
热敏电阻
电
光纤、光度计 信
压电晶体等
号
表面等离子共振
信号转换器
四、生物传感器中的信 号转换器
采用TTL-IC振荡 电路驱使石英晶 体谐振于其固有 的频率,图是压 电石英晶体传感 器的工作系统。
压电石英晶体传感器的工作系统
当石英晶体便面附着层的质量改变时 其频率随之改变,用Sauerbrey方程来 描述。即△F =KF2 △m /A,式中, △F 是晶体吸附外表物质后振动频率 (Hz)的变化;K为常数;F为压电晶 体的基础频率(MHz); △m 为附 着层物质的质量变化。通常可检测低 至10-10g/cm2级的痕量物质,因此常称 之为石英晶体微天平。
三、生物传即感感受器器,结具有构分子和识原别能理 力的生物活性物质(如组织 切片、细胞、细胞器、细胞 膜、酶、抗体、核酸、有机 分子识别元物件分子等); 主要有电化学电极(如电位、电流 的测量)、光学检测元件、热敏电阻、 场效应晶体管、压电石英晶体及表面等 离子共振器件等,从而达到分析监测的 目的。
《生物传感器》课件
2
研究热点和挑战
纳米技术、生物信息学和人工智能等领域的发展,将会推动生物传感器的研究和 创新。
3
广阔前景
生物传感器在医疗保健、环境保护、食品安全等方面的应用前景广阔,将为人类 健康和生活质量带来积极影响。
总结和展望
优势与比较
生物传感器相较于其他类型传感器的优势,为其在各个领域的广泛应用提供了巨大潜力。
生物传感器的工作原理和分类决定了其在不同领域中的应用方式和效果。
构成和组成元素
了解生物传感器的构成和组成元素对于实现更高的灵敏度和选择性至关重要。
主要技术
生物传感器中的主要技术,如纳米材料和生物分子探测技术,环境监测
生物传感器在水质、空气污染等环境监测中的应用,有助于实时监测和保护我们 的生态环境。
《生物传感器》PPT课件
生物传感器是一种用于检测、测量和监测生物过程的先进技术。了解生物传 感器的概念、原理和应用将对我们的日常生活和科学研究产生重要影响。
引言
生物传感器的概念和应用以及生物传感器的种类和分类。了解生物传感器的基础知识是深入研究其原理和应用 的关键。
生物传感器的原理和构成
工作原理
2
医学检测
通过生物传感器,可以实现早期疾病诊断、药物监测等医学检测的快速和准确。
3
食品安全
生物传感器在食品安全领域的应用,能够检测有害物质和食品质量,保障消费者 的健康。
生物传感器的发展趋势
1
未来发展方向
生物传感器将越来越普遍应用于生命科学研究、医疗诊断、环境监测等领域,为 人类带来更多的机会和挑战。
发展现状和前途
了解生物传感器的发展现状,并为未来的研究和应用提供展望。
研究与发展
进一步深入研究和开发生物传感器,将推动其在科学研究和工程应用中的创新和突破。
《微电子生物传感器》课件
微生物传感器的未来展望
1 智能化、可穿戴化
微生物传感器将发展智能、可穿戴的形态,实现个性化、实时监测。
2 安全、便携、低功耗
未来微生物传感器将更加注重安全性、便携性和低功耗,满足用户需求。
3 与物联网、云计算的结合
微生物传感器将与物联网和云计算相结合,实现数据的实时传输和分析。
结束语
微电子生物传感器作为一种前沿技术,将为医疗、环境保护和生物科学等领 域带来巨大的发展潜力。
环境监测
微生物传感器可监测水质、空 气质量等环境参数,帮的发展趋势
新材料的应用
新型材料,如纳米材料和仿生材 料的应用,将推动微生物传感器 的发展。
微纳制造技术的发展
微纳制造技术的不断发展将实现 微生物传感器的高灵敏度和大规 模制备。
多模态检测技术的应 用
多种检测技术的结合将提高微生 物传感器的可靠性和应用范围。
2
生物识别元件制备
通过生物纳米技术制备生物识别元件,如DNA、蛋白质或细胞。
3
生物元件的固定
将生物识别元件固定到微电子生物传感器的微结构上,以完成生物传感器的制备。
微生物传感器的应用
生化分析
微生物传感器可用于医疗诊断、 食品检测等生化分析领域,提 供准确和快速的结果。
异物检测
微生物传感器能够检测环境中 的异物,如细菌、病毒和重金 属等,保护人类和环境的安全。
《微电子生物传感器》 PPT课件
本课件将介绍微电子生物传感器的原理、制备流程、应用、发展趋势以及未 来展望,以便为您提供有关这一领域的全面知识。
概述
微电子生物传感器是一种利用微加工技术制备的生物识别元件,用于生化分 析、异物检测和环境监测等领域。
生物传感器的制备流程
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近年来,随着微生物固定化技术的发展,微生物传感器 的研究和应用取得很大进展。开发了使用固定化微生物的 各种传感器,如发光型微生物传感器、硝化细菌传感器、 全细胞微生物传感器等用于水质分析。这些传感器以很高 的灵敏度对各种污染物的浓度进行监测,而且具有简便、 快速、灵敏、经济等优点,在环境监测中应用前景十分广 阔。
微生物传感器在污染物生物毒性 分析中的应用
• 传统的化学分析方法虽能准确定量分析污染物中主要成分 的含量,但不能直接反映各种有毒物质对环境和生物的综 合影响。
• 传统的生物毒性监测以水蚤、藻类或鱼类等为受试对象, 虽然能反映毒物对生物的直接影响,但是这些方法的最大 缺点是实验周期长,操作复杂,不能及时反映水质情况。
4.藻类(algae)与蓝细菌(cyanobacteria)传感器
• 藻类容易培养,结构简单,是最常见的构建生物传感器的生物元件之一。它 的工作原理是:通过产氧型光合作用,叶绿素吸收光量子转变为激发态,回 到基态时产生荧光;此类光合作用与绿色植物一致,而除草剂等毒物可阻断 光合作用的电子传递链而产生抑制乃至致死效应。用藻构建的生物传感器主 要是通过氧气释放、pH值,电子传递链及叶绿体的变化给出污染物影响信号 的。
用一个氨敏电极可以检测产生的氨,把含有所需酶的 固氮菌株耦合到一个氨敏电极中,从而得到对硝酸盐敏感 的细菌式传感器。这种细菌式电极,以气敏电极为基础, 相对地不受离子的干扰。
3.埃希氏菌属(E.coli)和假单胞菌属(Pseudomonas)传 感器
均为化能异养型、革兰氏阴性无芽孢杆菌。
• 埃希氏菌属仅包括大肠杆菌一个种,该菌具有对有机底物的广谱食性, 耐渗透压能力强,能长久保持酶的活力等优点,是人们研究最为彻底 的微生物,常用作遗传工程宿主菌株。
• 假单胞菌属由于生物体多样化,而且在污染物降解中起着重要的作用, 适合构建各种生物传感器。
目前,许多研究将大肠杆菌和假单胞菌的代谢过程作为检测指标, 以氧电极测定基质溶解氧的消耗、以CO2电极检测呼吸作用CO2的产 生或添加氧化还原介质(mediator),如苯醌类、铁氰化钾,测定细胞 转化介质过程中电极产生的电流变化。
• 蓝细菌传感器,其工作原理与藻类很类似,都是可进行产氧型光合作用,有 研究者利用聚球蓝细菌细胞作为生物基质构建的生物传感器可以用于检测水 体中的除草剂,通过检测细胞中光合成电子传输系统,当有污染物存在时, 会对传输系统产生干扰。该方法非常简单方便,可迅速提供污染信息,适于 在线监测。
5.全细胞生物传感器
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
细菌荧光酶
FMNH2+RCHO+O2
荧光 +FMN+H2O+RCOOH
正常生理状况下,在氧气与细菌荧光素酶的参与 下,细胞可发出波长为420~670nm的可见光。如果有 有毒物质存在,会抑制酶的活性,使发光量降低,其 减弱的程度与毒物的毒性大小和浓度成负相关,因而 可以根据发光菌发光强度判断毒物毒性大小,用发光 强度表征毒物所在环境的急性毒性。
一、微生物传感器工作原理
微生物在利用物质进行呼吸或代谢的过程中,将消耗溶液中的 溶解氧或产生一些电活性物质。在微生物的数量和活性保持不变的 情况下,其所消耗的溶解氧量或所产生的电活性物质的量反映了被 检测物质的量,再借助气体敏感膜电极(如溶解氧电极、氨电极、 二氧化碳电极、硫化氢电极)或离子选择电极(如pH玻璃电极)以及 微生物燃料电池检测溶解氧和电活性物质的变化,就可求得待测物 质的量,这是微生物传感器的一般原理。
微生物全细胞传感器,利用完整的微生物活细胞作为实 体通过修饰微生物遗传物质,引入报告基因系统使同一细胞 具备敏感多种污染物的功能的装置。商业上可行的、最早的 全细胞生物传感器是用于监控废水和污水处理厂中的可被生 物降解的有机化合物。目前,开发微生物传感器的复合应用 功能正是科研工作者研究的热点与重点,并已取得一系列进 展。
硝化细菌是一群化能自养型细菌,从氧化NH3及HNO2 中取得能量,以CO2为碳源进行生活。
硝化细菌对毒物非常敏感,因此以固定化硝化细菌做指 示物、以氧电极(也可采用氨电极)作为换能器构建的硝化细 菌传感器可用于氨、亚硝酸盐、尿素等物质的测定。
Kobos研究了测定硝酸盐的细菌膜电极,硝酸根在细 菌细胞的硝酸盐还原酶和亚酸盐还原 第一部分是微生物膜,此膜是由微生物与基质(如醋酸纤 维素等)以一定的方式固化形成;
• 第二部分是信号转换器(如O2电极、气敏电极或离子选择 电极等)。 将这两部分耦合便可构成微生物传感器。
二、微生物传感器的分类与生物毒性检测
1. 发光微生物传感器 2. 硝化细菌传感器 3. 埃希氏茵属和假单胞茵属传感器 4. 藻类与蓝细菌传感器 5. 全细胞生物传感器
1.发光微生物(luminous microbes)传感器
发光微生物指自然界存在、细胞内具有生物发光代谢 系统的原核和真核微生物,近来还包括导入发光基因而使 原本不发光的微生物具备发光特性的基因工程发光微生物。
发光微生物毒性测试中应用最多的是明亮发光杆菌, 可以检测各种水体中的有毒物质,对于气体中可溶性有毒 物质,可通过把它吸收、溶解在溶液中,然后观察其对发 光细菌的影响。
•采用光纤探头结构、以明亮发光杆菌作为指示物制作了光纤式发光菌传感 器,以Zn2+为测试对象,实验结果表明,Zn2+的EC50大约为5.06mg/L,检 测范围为10ppb~200ppm,与采用国标推荐的方法测得的结果有很好的一 致性。
1.2.硝化细菌(nitrifying bacteria)传感器
•以明亮发光杆菌为生物识别元件,以硅光电二极管作为细胞光信号和电 信号转换的敏感元件,构建了细菌发光传感器,分别对苯酚、乐果、乙 醛、Hg+、Cu2+、Zn2+等污染物急性毒性进行快速检测研究,同时和哺乳 动物毒性实验结果做对比。毒性测试结果表明,在pH=7.0,温度20℃, 3.0%NaCI底液条件下,固定化菌膜发光强度达2~4nw,稳定发光时间6 0~80min,毒性测试结果的EC50值与哺乳动物毒性试验的LD50具有良好 的相关性,相关系数r=0.95。