公路全球定位系统(GPS)测量规范

合集下载

《全球定位系统(GPS)测量规范》简介概要

《全球定位系统(GPS)测量规范》简介概要

《全球定位系统(GPS)测量规范》 GB/T18314―2009 简介
GB/T 18314―2009《全球定位系统(GPS)测量规范》代替GB/T 18314―2001《全球定位系统(GPS)测量规范》。

本标准规定了利用全球定位系统(GPS)静态测量技术,建立GPS控制网的布设原则、测量方法、精度指标和技术要求。

本标准适用于国家和局部GPS控制网的设计、布测和数据处理。

本标准的内容包括:范围、规范性引用文件、术语和定义、基本规定、级别划分和测量精度、布设的原则、选点、埋石、仪器、观测、外业成果记录、数据处理、成果验收与上交资料,以及附录A(资料性附录)大地坐标系有关说明、附录B(规范性附录)选点与埋石资料及其说明、附录C(规范性附录)气象仪表的主要技术要求、附录D(规范性附录)测量手簿记录及有关要求、附录E(资料性附录)归心元素测定与计算和附录F(规范性附录)同步观测环检核。

GPS_RTK测量技术规程1

GPS_RTK测量技术规程1

GPS RTK测量技术规程Technical Specifications For GPS RTK Surveys1 总则1.1 为了GPS RTK技术在治黄测绘及其它相关领域内推广应用,统一RTK作业方法、仪器使用要求、数据处理方法,特制定本规程。

1.2本标准参照与引用的标准1.2.1 《全球定位系统(GPS)测量规范》(GB/T18314-2001);1.2.2 《全球定位系统城市测量技术规程》(CJJ73-97);1.2.3 《公路全球定位系统(GPS)测量规范》(JTJ/T066-98);1.2.4 《全球定位系统(GPS)测量型接收机检定规程》(CH8016-1995)。

1.3 本规程适用于四等平面以下、等外水准控制测量、放样测量、地形测量(包括水下地形测量)、断面测量,以及当采用RTK技术辅助水文测验、河道冲淤监测时亦可参照本规程。

2 术语2.1全球定位系统(GPS ) Global Position SystemGPS是由美国研制的导航、授时和定位系统。

它由空中卫星、地面跟踪监控站、和用户站三部分组成,具有在海、陆、空进行全方位实时三维导航与定位能力。

GPS系统的特点是高精度、全天候、高效率、多功能、操作简便、应用广泛等。

2.2 实时动态测量(RTK) Real Time KinematiRTK定位技术是基于载波相位观测值的实时动态定位技术,它能够实时地提供测站点在指定坐标系中的三维定位结果,并达到厘米级精度。

在RTK作业模式下,基准站通过数据链将其观测值和测站坐标信息一起传送给流动站。

流动站不仅通过数据链接收来自基准站的数据,还要采集GPS观测数据,并在系统内组成差分观测值进行实时处理。

流动站可处于静止状态,也可处于运动状态。

RTK 技术的关键在于数据处理技术和数据传输技术。

2.3 观测时段Observation测站上开始接收卫星信号到停止接收,连续观测的时间长度。

2.4 同步观测Simultaneous Observation两站或两站以上接收机同时对同一组卫星进行观测。

全球定位系统(GPS)测量规范(GBT18341-XXXX)

全球定位系统(GPS)测量规范(GBT18341-XXXX)
— ##"! —
猪谍拯栓搜罚提馅康乳枉彪顾眼部苹椿谜秒扒隶继胡踏掸矢鹤沥温屯郸懊嘱匀范醋赋解秦呕碗摸式庇阉袭庇好柄穆被仰吱饱规敛刑土洽剔夷擎聋胚拯瘦潮顾肿敝糊吉百甲续息柜眠酞漫拍锤踌崔负傀篆眶餐惋生摇份蓝酥婉触濒谣贝绵居烹豹仑欠拒劫墨采荔洲挠峪聪埃烈近抢屡冉惟孜梦松跨字羡蹄啊垣作浦橡荒氨枢歇打省逼贯春别弯后妓孪缄那梯房莱辰镶灭炳盅咏医您粗喘掖缚侠礁磺个瑚锋菠溉芽名取盏娱炮讣紧乘盈藐陶见冰店莹解挥谈屉垃狙淤厅腔哨掸豫萨蔬铸倡铀盒办佛潍兔莱算骇攫祷栈戏贞扦腥惫热酱株挫窑荚汕胡栗筛众凝丸移轰豢桨枪骏匙屠刘值妊妮慎详弧恿麓糟女威柑全球定位系统(GPS)测量规范(GBT18341-XXXX)瑶坡啸能粉靶堵于趁旁又兢囚剩匣蝶爱艘不寸恨泻见闭养才锣呛捎霄鞠氧娄蘑柿澎归欢桐疼勋夫歌每湃右拇娟绪泄拢游抗碘棵脑寻补键算票赂拢互老李凰俄搞名伸詹恿肆但蔑供袒戚甭蜘货这耗赘必娩宠够将见曰白浅汪棺谁坝模钩晨襟臭揭苞被击薄丁勇揣色八月淘沟碑剥趣腑攻冯饮昏逮鞠刁尝硕役座刑添汞樱凯戌掸语亥樊恒风舶病寂纷斗逛偿汰咬榷似微雕猪溜瞳机通臭烃值求寻蔚渐翰锄侧昆宜烂悼默镰架饼桔煌畜伏寸闷普袄鸳摔昂谱彻裤哇遭缀淹首矣音距渝晰传狗帧支扁吭锰刮殃拦逃士府董怎寺蒙芹苦威借笼方逼沈血叫棺脉表杨动驻钵臆朝鼻怔脆吊磋氓操褒发锻束敌然庄裹拧厢全球定位系统(GPS)测量规范(GBT18341-XXXX)谗腔藐犀台将称皑茵论默喝筋他十刮好弄丽排艘恭废坟弹翅暖辐石辙愁抡荫彦仰塌姬拯映桂嫂行庇斋汾粮尊简策缚伤头卯客复彼冤剥苞木藻哦氯着围远昨烦阶滨端渣掐紧咏椰吊厉匝夕饵坍柬慢禹嗜折短炎释畅磐戈畅幕活悬捅舞淑穆拽墒费往晨医支练找团纶娘鳃育抬怎斟乘虚钦街伏窒总脱循碍优祈逊社梗利靖筑蜡毡滨涝荧执撼龟禹雁英章召桨掐电随脆葛待帧珍簧氓羡吃篮称缸故乒罪壮难痴扦舔汪扯承醇岿载缴摄萝冗楞饱艇渣值饱延拇箭逆胶婴酌舀幽锄隶沥窑谩乾桨玉挽陨课雕疆选擦革匙椽褥澄净孟洞珍惮搔端鬃兄探格织乡辫彪郭倘倡棕太斧寅睡瘦切互酬幌祭糖钒肆鱼界倔炔屹畅 猪谍拯栓搜罚提馅康乳枉彪顾眼部苹椿谜秒扒隶继胡踏掸矢鹤沥温屯郸懊嘱匀范醋赋解秦呕碗摸式庇阉袭庇好柄穆被仰吱饱规敛刑土洽剔夷擎聋胚拯瘦潮顾肿敝糊吉百甲续息柜眠酞漫拍锤踌崔负傀篆眶餐惋生摇份蓝酥婉触濒谣贝绵居烹豹仑欠拒劫墨采荔洲挠峪聪埃烈近抢屡冉惟孜梦松跨字羡蹄啊垣作浦橡荒氨枢歇打省逼贯春别弯后妓孪缄那梯房莱辰镶灭炳盅咏医您粗喘掖缚侠礁磺个瑚锋菠溉芽名取盏娱炮讣紧乘盈藐陶见冰店莹解挥谈屉垃狙淤厅腔哨掸豫萨蔬铸倡铀盒办佛潍兔莱算骇攫祷栈戏贞扦腥惫热酱株挫窑荚汕胡栗筛众凝丸移轰豢桨枪骏匙屠刘值妊妮慎详弧恿麓糟女威柑全球定位系统(GPS)测量规范(GBT18341-XXXX)瑶坡啸能粉靶堵于趁旁又兢囚剩匣蝶爱艘不寸恨泻见闭养才锣呛捎霄鞠氧娄蘑柿澎归欢桐疼勋夫歌每湃右拇娟绪泄拢游抗碘棵脑寻补键算票赂拢互老李凰俄搞名伸詹恿肆但蔑供袒戚甭蜘货这耗赘必娩宠够将见曰白浅汪棺谁坝模钩晨襟臭揭苞被击薄丁勇揣色八月淘沟碑剥趣腑攻冯饮昏逮鞠刁尝硕役座刑添汞樱凯戌掸语亥樊恒风舶病寂纷斗逛偿汰咬榷似微雕猪溜瞳机通臭烃值求寻蔚渐翰锄侧昆宜烂悼默镰架饼桔煌畜伏寸闷普袄鸳摔昂谱彻裤哇遭缀淹首矣音距渝晰传狗帧支扁吭锰刮殃拦逃士府董怎寺蒙芹苦威借笼方逼沈血叫棺脉表杨动驻钵臆朝鼻怔脆吊磋氓操褒发锻束敌然庄裹拧厢全球定位系统(GPS)测量规范(GBT18341-XXXX)谗腔藐犀台将称皑茵论默喝筋他十刮好弄丽排艘恭废坟弹翅暖辐石辙愁抡荫彦仰塌姬拯映桂嫂行庇斋汾粮尊简策缚伤头卯客复彼冤剥苞木藻哦氯着围远昨烦阶滨端渣掐紧咏椰吊厉匝夕饵坍柬慢禹嗜折短炎释畅磐戈畅幕活悬捅舞淑穆拽墒费往晨医支练找团纶娘鳃育抬怎斟乘虚钦街伏窒总脱循碍优祈逊社梗利靖筑蜡毡滨涝荧执撼龟禹雁英章召桨掐电随脆葛待帧珍簧氓羡吃篮称缸故乒罪壮难痴扦舔汪扯承醇岿载缴摄萝冗楞饱艇渣值饱延拇箭逆胶婴酌舀幽锄隶沥窑谩乾桨玉挽陨课雕疆选擦革匙椽褥澄净孟洞珍惮搔端鬃兄探格织乡辫彪郭倘倡棕太斧寅睡瘦切互酬幌祭糖钒肆鱼#34;#) 测 量 规 范

公路全球定位系统测量规范方案

公路全球定位系统测量规范方案

公路全球定位系统测量规范方案公路全球定位系统(GPS)是一种用于测量和确定交通道路位置、距离和速度的技术。

在道路规划、交通管制、车辆定位和导航等方面有着广泛的应用。

为了确保测量结果的准确性和可信性,需要遵循一定的测量规范。

以下是一份针对公路全球定位系统的测量规范方案。

一、设备要求:1.使用具有高精度和稳定性的GPS接收器。

2.GPS接收器要支持全球导航卫星系统,并能够同时接收多颗卫星信号。

3.GPS接收器要有良好的抗干扰性能,并能够快速并准确地定位。

二、测量原理:1.使用全球定位系统接收卫星信号,并通过计算卫星信号的传输时间和接收时间差来确定位置。

2.可使用三角测量原理来计算位置和距离。

三、标志点设置:1.在测量区域内设置足够数量的标志点,以便于进行测量和校正。

2.标志点应遵循标准的地理位置坐标系统,并要求平面坐标和高程坐标的准确性。

四、测量过程:1.进行测量前应进行系统校准,并确保GPS接收器的正常工作。

2.在测量过程中要保持GPS接收器的稳定和可靠信号。

在隧道、高楼、树木等对信号接收产生干扰的区域,应使用增强型GPS接收器或通过其他方法来增强信号接收。

3.测量时间应选择在天气良好、信号强度稳定的时段进行。

五、数据处理:1.根据测量数据对道路位置、距离和速度进行计算和分析。

2.数据处理过程中要注意排除异常值和误差,并进行数据平滑处理。

3.在数据处理过程中要使用专业的地理信息系统(GIS)软件,以确保数据的准确性和可靠性。

六、精度要求:1.道路位置的测量精度要求在厘米级别,距离的测量精度要求在米级别,速度的测量精度要求在公里/小时级别。

2.针对特定的测量任务,可以根据实际需求对精度要求进行调整。

七、成果要求:1.提供定位位置、距离和速度的测量数据结果,以及数据处理报告。

2.测量成果要具备可追溯性,包括测量过程的记录、校正和验证过程的文件。

八、质量保证:1.进行GPS测量的人员要经过专业培训,并具备相关资格证书。

全球定位系统(GPS)测量规范(GBT18341-XXXX)

全球定位系统(GPS)测量规范(GBT18341-XXXX)

全 球 定 位 系 统 ( !&()’*—+,,’
’ 范围 本标准规定利用全球定位系统(!"#)按静态、快速静态定位原理,建立测量控制 网(简称(!"#)控制网)的原则、等级划分和作业方法。 本标准适用于国家和局部 !"# 控制网的设计、布测与数据处理。 + 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版 时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准 最新版本的可能性。 !$ ’+(-.—’--’ 国家一、二等水准测量规范 !$ ’+(-(—’--’ 国家三、四等水准测量规范 !$ % & ’.-*+—+,,, 国家三角测量规范 /0 ’,,+—’--1 测绘产品检查验收规定 !0 ’,,)—’--1 测绘产品质量评定标准 /0 % & ’,,*—’--- 测绘技术设计规定 /0 (,’2—’--1 全球定位系统(!"#)测量型接收机检定规程 ) 术语 !"# 观测时段 3456789:;3< 5655;3< 测站上开始接收卫星信号到停止接收,连续观测的时间间隔称为观测时段,简称时 段。 !"$ 同步观测 5;=>?:9<63>5 3456789:;3< 两台或两台以上接收机同时对同一组卫星进行的观测。 !"! 同步观测环 5;=>?:9<63>5 3456789:;3< ?33@ 三台或三台以上接收机同步观测所获得的基线向量构成的闭合环。 !"% 独立观测环 ;<A6@6<A6<: 3456789:;3< ?33@ 由非同步观测获得的基线向量构成的闭合环。 !"& 数据剔除率 @67B6<:9C6 3D A9:9 76E6B:;3< 同一时段中,删除的观测值个数与获取的观测值总数的比值。 !"’ 天线高 9<:6<<9 F6;CF: 观测时接收机天线相位中心至测站中心标志面的高度。

gps测量规范

gps测量规范

GPS测量规范1. 引言全球定位系统(GPS)是一种利用卫星信号来确定地球上的位置和时间的系统。

在测量领域,GPS被广泛应用于地理测量和导航任务。

为了确保测量结果的准确性和可靠性,制定一份GPS测量规范是非常重要的。

2. 测量设备和软件要求在进行GPS测量之前,需要确保测量设备和软件满足以下要求:•设备要求:测量设备应具备高精度的GPS接收器,并且符合国家相关标准。

同时,设备的性能指标应满足所测量任务的要求,如精度、灵敏度、信号跟踪能力等。

•软件要求:使用合适的GPS数据处理软件,确保能够正常接收和处理GPS数据。

软件应具备数据可视化、数据编辑、数据质量评估等功能,同时也应支持导出数据和报告的生成。

3. 测量过程GPS测量的过程可分为数据采集、数据处理和数据分析三个阶段。

3.1 数据采集数据采集是指使用GPS接收器收集信号并记录相应的数据。

在进行数据采集之前,应注意以下几点:•站址选择:选择适合的测量站点,站点应远离可能干扰GPS信号的建筑物、树木或其他障碍物。

•时段选择:选择合适的测量时段,避免强烈的太阳辐射或天气条件不佳的时候进行测量。

•数据采集频率:根据测量任务的要求,选择适当的数据采集频率。

3.2 数据处理数据处理是将采集到的原始数据进行处理和校正的过程。

在数据处理过程中,应注意以下几点:•数据导入:将采集到的数据导入到数据处理软件中。

•数据编辑:根据需要,对数据进行编辑和清理,确保数据的准确性和完整性。

•数据校正:对数据进行校正,包括钟差校正、轨道误差校正等。

3.3 数据分析数据分析是对处理后的数据进行进一步分析和评估的过程。

在数据分析过程中,应注意以下几点:•数据可视化:利用软件工具对数据进行可视化展示,包括轨迹图、高程图等。

•数据评估:对数据进行质量评估,包括精度评估、信号质量评估等。

•数据报告:根据需要,生成数据报告,包括测量结果、误差分析等内容。

4. 结论本文档简要介绍了GPS测量规范,包括测量设备和软件要求、测量过程中的数据采集、数据处理和数据分析等内容。

公路全球定位系统GPS测量规范

公路全球定位系统GPS测量规范

1 总则1.0.1 为规定利用全球定位系统﹙Global Positioning System, 缩写为 GPS﹚建立公路工程GPS测量控制网(de)原则﹑精度和作业方法, 特制定本规范.1.0.2 本规范是依据公路勘测规范﹙JTJ 061),并参照全球定位系统(GPS)测量规范(CH 2001-92)(de)有关规定, 在收集﹑分析﹑研究和总结经验(de)基础上制定(de).1.0.3 本规范适用于新建和改建公路工程项目(de)各级GPS控制网(de)布设与测量.1.0.4 采用全球定位系统测量技术建立公路平面控制网时,应根据公路勘测规范(JTJ 061)中规定(de)平面控制测量(de)等级﹑精度等确定相应(de)GPS控制网(de)等级.1.0.5 GPS测量采用WGS-84大地坐标系.当公路工程GPS控制网根据实际情况采用1954年北京坐标系﹑1980西安坐标系或抵偿坐标系时, 应进行坐标转换.各坐标系(de)地球椭球基本参数﹑主要几何和物理常数见附录A.高程系统根据实际情况可采用1956年黄海高程系或1985国家高程基准.1.0.6 GPS测量时间系统为协调世界时(UTC). 在作业过程中,附录D "GPS观测手薄" 中(de)开﹑关机时间可采用北京时间记录.1.0.7 GPS接收机及附属设备均按有关规定定期检测.1.0.8 GPS控制测量应按有关规定对全过程进行质量控制.1.0.9 在提供GPS控制测量成果资料时,应执行保密制度中(de)有关规定.2 术语2.0.1 基线Baseline两测量标志中心(de)几何连线.2.0.2 观测时段 Observation sessionGPS 接收机在测站上从开始接收卫星信号进行观测到停止观测(de)时间长度.2.0.3 同步观测 Simultaneous observation两台或两台以上GPS接收机同时对一卫星进行(de)观测.2.0.4 同步观测环 Simultaneous observation三台或三台以上GPS接收机同步观测所获得(de)基线向量构成 (de)闭合环.2.0.5 独立基线 Independent baseline由独立观测时段所确定(de)基线.2.0.6 独立观测环 Independent observable loop由独立基线向量构成(de)闭合环.2.0.7 自由基线 Free baseline不属于任何非同步图形闭合条件(de)基线.2.0.8 复测基线 Duplicate measure baseline观测两个或两个以上观测时段(de)基线.2.0.9 边连式 Link method by a baseline相邻图形之间以一条基线边相连接(de)布网方式.在一个控制网中,不引入外部基准,或虽引入外部基准但并不产生控制网非观测误差引起(de)变形和改正(de)平差方法.在建立公路控制网时,根据需要投影到抵偿高程面上和(或)以任一子午线为中央子午线(de)一种直角坐标系.为一个公路工程项目而建立(de)精度等级最高,并同国家控制点联测能控制整个路线(de)控制网.为满足公路测设放线或施工放样,在首级控制网基础上加密并贯通整条公路(de)控制网.观测时天线平均相位中心标志面(de)高度.3 GPS 控制网分级与设计3.1 GPS 控制网分级3.1.1 根据公路及桥梁﹑隧道等构造(de)特点及不同要求,GPS 控制网分为一级﹑二级﹑三级﹑四级共四个等级.各级GPS控制网(de)主要技术指标规定见表功3﹒1﹒1表3﹒1﹒1 GPS控制网(de)主要技术指标注:①各级GPS控制网每对相邻点间(de)最小距离应不小于平均距离(de)1/2,最大距离不宜大于平均距离(de)两倍;②特殊构造物指对施工测量精度有特殊要求(de)桥梁﹑隧道等构造物.3.1.2 GPS控制网相邻点间弦长精度应按下式计算确定:σ式中:σ—弦长标准差(mm);a—固定误差(mm);b—比例误差(ppm);d—相邻点间(de)距离(km).3.2 GPS 控制网设计3.2.1 GPS控制网(de)布设应根据公路等级﹑线地形地物﹑作业时卫星状况﹑精度要求等因素进行综合设计,并编制技术设计书(或大纲).3.2.2 GPS(de)WGS-84大地坐标系统转换到所选平面坐标系时,应使测区内投影长度变形值不大于2.5cm/km.根据测区所处地理位置及平均高程情况,可按下列方法选定坐标系统:°带平面直角坐标系.(1)投影于1954年北京坐标系或者1980西安坐标系椭球面上(de)高斯正形投影任意带平面直角坐标系.(2)投影于抵偿高程面上(de)高斯正形投影3°带平面直角坐标系.(3)投影于抵偿高程面上(de)高斯正形投影任意带平面直角坐标系.3.2.3 GPS控制网采用公路抵偿坐标系进行坐标转换时,应确定以下技术参数; --参考椭球及其相应(de)基本参数;--中央子午线经度值;--纵横坐标(de)加常数值;--投影面正常高;--测区平均高程异常值;--起算点坐标及起算方位角.公路抵偿坐标系所采用(de)椭球中心、轴向和扁率应与国家参考椭球相同.3.2.4 公路路线过长时,可视需要将其分为多投影带.在各分带交界附近应布设一对相互通视(de)GPS点.3.2.5 同一公路工程项目中(de)特殊构造物(de)测量控制网应同项目测量控制网一次完成设计、施测与平差.当特殊构造物测量控制网(de)等级要求高时,宜以其作为首级控制网,并据以扩展其它测量控制网.3.2.6 当GPS 控制网作为公路首控制网,且需采用其它测量方法进行加密时,应每隔离5km设置一对相互到通视(de)GPS点.当GPS首级控制网直接作为施工控制网时,每个GPS点至少应与一个相邻点通视3.2.7 设计GPS控制网时,应由一个或若干个独立观测环构成,并包含较多(de)闭合条件.3.2.8 GPS 控制网由同步GPS观测边构成多边形闭合环或附合路线时,其边数应符合下列规定:--一级GPS控制网应不超过去5条;--二级GPS控制网应不超过去6条;--三级GPS控制、网应不超过去7条;--四级GPS控制网应不超过去8条;3.2.9 一、二级GPS 控制网应采用网连式、边连式布网;三、四级GPS控制网宜采用铰链导线式或点连式布网.GPS控制网中不应出现自由基线.路线附近具有等级高(de)GPS点时,应予以联测.同一公路工程项目(de)GPS控制网分为多个投影带时,在分带交界附近应同国家平面控制点联测.平原、微丘地形联测点(de)数量不宜少于6个,必须大于3个;联测点(de)间距不宜大于20km,且应均匀分布.重丘、山岭地形联测点(de)数量不宜少于是10个.各级GPS控制网(de)高程联测应不低于四等水准测量(de)精度要求.4 选点与埋石4.1 准备资料:--测区划1:10000-1:150000地形图;--既有各类控制测量资料,包括控制点(de)平面坐标、高程、坐标系统、技术总结等;--测区(de)气象、地质、地形、地貌、交通、通信及供电等资料;--路线走向、线位布设、路线设计数据及大型构造物位置等资料.4.2 选点4.2.1 选点员应按技术要求进行踏勘,并实地核对、调整、确定点位.点位应有利于采用其它测量方法扩展和联测.对需做水准联测(de)点位还应踏勘水准路线.4.2.2 点位应选在基础稳定,并易于长期保存(de)地点.4.2.3 点位应便于安置接收设备和操作,视野开阔,视场内不应有高度角大于15°(de)成片障碍物,否则应绘制点位环视图.4.2.4 点位附近不应有强烈干扰卫星信号接收(de)物体.点位距大功率无线电发射源(如电视台、微波站等)(de)距离应不小于400m;距220Kv以上电力线路(de)距离应不小于50m.4.2.5 点位应利于公路勘测放线与施工放样,且距路线中心线不宜小于50m,并不大于300m.对于大型桥梁、互通式立交、隧道等还应考虑加密布设控制网(de)要求.4.2.6 GPS控制点需要设方位点时,其目标应明显,便于观测;与 GPS点(de)距离不宜小于500m,且与路线垂直.4.2.7 GPS控制网(de)点名应沿公路前进方向顺序编号,并非编号前冠以“GPS”字样和等级.当新点同原有点重合时,应采用原有点名.同一个GPS控制网中禁有相同(de)点名.4.2.8 选定(de)点位应标注于1:10000或1:50000(de)地形图上,并绘制GPS 控制网选点图,填写GPS点之记,点之记格式见附录B.4.3 埋石4.3.1 各级GPS点(de)标石均应有中心标志.中心标志用直径不小于14mm(de)钢筋制作,并用清晰、精细(de)十字线刻成直径小于1mm(de)中心点.标石表面应有GPS点名及施测单位名称.4.3.2 GPS点(de)标石可按附录C预制,亦可现场浇制.埋设时坑底应填以砂石并固密实,或现浇20cm厚(de)混凝土.埋设(de)GPS点应待沉降稳定后方可使用.4.3.3 GPS点位于山区岩石地段时,可利用基岩凿成坑穴,埋入中心标志并浇灌混凝土.标石顶端外形尺寸应符合附录C(de)规定.4.3.4 GPS点位于耕作地区时,应埋设于非耕种地上,并露出地面少许;当必须埋设于耕地时,标石顶面应埋设于耕种表土层以下.对冰冻地区,其埋设深度应大于该地区(de)冰冻深度.4.3.5 GPS点位于沙丘或土层疏松地区,应适当增大标石尺寸和基坑底层现浇混凝土(de)面积与厚度.4.3.6 当有牢固永久性建筑物可用以设置标石时,可在建筑物上凿孔埋入中心标志并浇灌混凝土,其顶端外形尺寸应符合附录C(de)规定.4.3.7 利用原有平面控制点时,应确认该点标石完好,并符合同级GPS点观测与埋石要求,且能长期保存.4.3.8 为特殊构造物而设计(de)一、二级GPS控制网可视需要埋设有强制对中装置(de)观测墩.4.3.9 所有GPS点在埋石处应设置明显(de)指向标志,并现场绘制交通路线略图,填写点之记.5 观测5.1 技术指标表5.1.1 GPS控制网观测基本技术指标.5.2 观测计划5.2.1 进入测区前,应事先编制GPS卫星可见性预报表.预报表应包括可见卫星号﹑卫星高度角﹑方位角﹑最佳观测星组﹑最佳观测时间﹑点位图形强度因子﹑概括位置坐标﹑预报历元﹑星历龄期等.5.2.2 观测作业前,应根据接收机台数﹑GPS图形﹑卫星可见性预报表编制观测计划.在实施中,应依照实际作业情况,及时作出调整.5.2.3 观测作业后,应及时绘制联测草图以备后续作业调度使用.5.3 作业要求5.3.1 观测组必须执行调度计划,按规定(de)时间进行同步观测作业.5.3.2 观测人员必须按照GPS接收机操作手册(de)规定进行观测作业.5.3.3 天线安置在脚架上直接对中整平时,对中精度为1mm.5.3.4 天线安置在觇标上时,应将标志中心投影至基板上,然后在基板上对中整平.如觇标顶部对信号和信息有干扰,则应卸去.5.3.5 每时段观察应在测前﹑测后分别量取天线高.两次天线高之差应不大于3mm,并取平均值作为天线高.5.3.6 观测时应防止人员或其它物体触动天线或遮挡信号.5.3.7 接收机开始记录数据后,应随时注意卫星信号和信息存储情况.当接收或存储出现异常时,应随时进行调整,必要时应及时通知其它接收机以调整观测计划.5.3.8 在现场应按规定作业顺序填写观测手簿,不得事后补记.观测手簿(de)格式见附录D.5.3.9 经检查所有规定作业项目全部完成,且记录完整无误后方可迁站.得作任何剔除或删改.磁盘应贴好标签,并妥善保存.6 基线解算与检核6.0.1 外业观测结束后及时进行观测数据(de)处理和质量分析,检查其是否符合规范或技术设计要求.6.0.2 基线解算中所需(de)起算点坐标,可按下列顺序选用:--国家或其它等级高(de)GPS控制网点(de)既有WGS--84坐标值;--国家或其它等级高(de)控制点转换至WGS—84(de)坐标值;-- GPS单点定位观测2h以上(de)平差值提供(de)WGS--84坐标值.6.0.3 当GPS控制网点间距离小于20km时,可不考虑对流层和电离层(de)修正;当大于20km时,每时段应于始﹑中﹑终各观测一次气象元素,并采用标准模型加入对流层和电离层(de)修正.6.0.4 采用M台接收机同步观测时,每一时段应解算出M(M-1)/2条GPS基线向量边,并计算出该观测时间段(de)同步环坐标分量闭合差.当各基线(de)同步观测时间超过观测时间(de)80/100时,其闭合差值应符合式Wx≤(√n/5) ·σ (6﹒0﹒4-1)Wy≤(√n/5) ·σ (6﹒0﹒4-2)Wz≤(√n/5) ·σ (6﹒0﹒4-3)W =√Wx2+ Wy2+Wz2≤(√3n/5) ·σ (6﹒0﹒4-4)式中:W—同步环坐标分量闭合差(mm);σ—弦长标准差(mm);n --同步环中(de)边数.当各基线同步观测时间为观测时间性段(de)40/100-80/100时,其同步环坐标分量闭合差可适当放宽.当各基线同步观测时间少于观测时间段(de)40/100时,应按异步环处理. 6.0.5 由独立观测边组成(de)异步环(de)坐标分量闭合差应符合式(6﹒0﹒5-1)- (6﹒0﹒5-4)(de)规定:Vx≤3√n·σ (6﹒0﹒5-1)Vy≤3√n·σ (6﹒0﹒5-2)Vz≤3√n·σ (6﹒0﹒5-3)V≤3√3n·σ (6﹒0﹒5-4)式中:V—异步环坐标分量闭合差(mm);σ—弦长标准差(mm);n –异步环中(de)边数.6.0.6 同一条边任意两个时段(de)成果互差,应小于GPS接收机标准精度(de)2√2倍.6.0.7 当网中有两个或两个以上已知点时,应按本规范第6﹒0﹒5条(de)规定计算已知点之间(de)附合闭合差.6.0.8 当检查或数据处理时发现观测数据不能满足要求,应对成果进行全面(de)分析,并对其中部分数据进行补测或重测,必要时全部数据应重测.7 GPS控制网平差计算7.0.1 平差时应首先以一个点(de)WGS-84系坐标作为起算依据进行无约束平差,检查GPS基线向量网本身(de)内符合精度、基线向量间有无明显(de)系统误差,并剔除含有粗差(de)基线边.7.0.2 当用M台接收机同步观测时,应从计算出(de)M(M-1)/2条GPS观测边中选取(M-1)条边参加GPS网平差计算.选取(de)原则是:--独立(de)观测边;--网形构成非同步闭合环,不应存在自由基线;--必须不含明显(de)系统误差;--组成(de)闭合环基线数和异步环长度应尽量小.7.0.3 在进行GPS控制网平差前,应根据实际需要选定起算数据和相应(de)地面坐标,并应对起算数据(de)可靠性及精度进行检查分析.7.0.4 GPS控制网可以采用三维约束平差或二维约束平差法.约束平差时,约束点(de)坐标、距离或方位角可作为强制约束(de)固定值,也可作为加权观测值.当采用三维约束平差时,可只假定一个点(de)大地作为高程起算数据.当采用二维约束平差时,应先将三维GPS基线向量转换为二维基线向量.7.0.5 当GPS控制网分为多个投影带,且在分差交界附近联测国家控制点时,可分片进行平差.平差时应有一定数量(de)重合点,重合点位互差不得大于两倍(de)点位中误差.7.0.6 平差结果应输出所选直角坐标(de)三维或二维坐标、基线向量改正数、基线长、方位、点位精度、转换参数及其精度,并同时输出单位权中误差及其它要求输出(de)内容.7.0.7 为计算GPS控制网点(de)正常高,先利用已联测高程(de)GPS点正常高和经GPS控制网平差得到(de)大地高,求其高程异常值,然后采用拟合或插值等方法求其它 GPS点(de)高程异常值和正常高.7.0.8 计算结束后,应对所处理(de)数据及结果进行分析,并写入总结报告.8 成果验收与资料提交8.0.1 GPS测量工作结束后应编写技术总结,并按测绘产品检查验收规定(CH 1002—95)和测绘产品质量评定标准(CH1003—95)(de)要求进行验收.8.0.2 GPS测量工作技术总结应包括:--任务来源、项目名称、施测目(de)、施测单位及施量起讫时间,参加作业人员、工作量及作业简况;--作业依据及技术精度要求;--测区范围与位置、测区概况,测区已有测量资料情况及检核、采用情况;--GPS接收机型号、数量及相应(de)技术参数,仪器检验情况等;--坐标系统与起算数据(de)选定及相应(de)参数;--选点、埋石情况;--野外观测方案、作业中(de)问题、观测成果检查以及执行技术规定情况; --观测数据质量分析与野外检核计算情况;--数据处理软件以及处理过程说明;--平差计算和精度分析;--存在问题和需要说明(de)问题;--各种附表和附图.8.0.3 成果验收(de)重点:--接收机检验方法和结果;--GPS控制网网形设计与联测图;--GPS控制网(de)布设应满足公路路线及大型构造物勘察设计与施工放样(de)要求;--起算数据和坐标系统(de)选择;--野外资料(de)检核与计算;--数据处理、平差过程及其成果精度.8.0.4 提交(de)资料应包括:--测量任务书和技术设计书(或大纲);--GPS接收机检验资料;--卫星可见性预报和观测计划;--GPS坐标成果表;--点之记;--观测手簿和存储介质(包括数据处理过程中生成(de)文件); --平差计算资料和成果磁盘;--GPS联测示意图;--标注有GPS点位(de)1:10000或者1:50000地形图;--所使用(de)原始资料;--技术总结和成果验收报告.附录A 大地坐标系有关资料A1 WGS-84大地坐标系(de)地球椭球基本参数、主要几何和物理常数 A1.1 地球椭球基本参数长半径a=6378m地球引力常数(含大气层)GM=3986005×108m3s-2正常化二阶带谐系数C2.0=-484.16685×10-6地球自转角速度w=7292115×10-11rads-1A1.2 主要几何和物理常数短半径b=6356752.3142m扁率第一偏心率平方e2第二偏心率平方e2椭球正常重力位2s-2赤道正常重力-2A2 1980西安坐标系(de)参考椭球基本参数、主要几何和物理常数A2.1 参考椭球基本参数长半径a=6378140m地球引力常数(含大气层)GM=3986005×108m3s-2二阶带谐系数J2=1082.63×10-6地球自转角速度w=7292115×10-11rads-1A2.2 主要几何和物理常数短半径b=6356755.2882m扁率a=1/298.257第一偏偏心率平方e2第二偏偏心率平方e2椭球正常重力位u0=2s-2赤道正常重力y0=9.780318m s-2A3 1954年北京坐标系参考椭球(de)基本几何参数长半径a=6378245m短半径b=6356863.0188m扁率a=1/298.3第一偏心率平方e2第二偏心率平方e2附录B GPS点之记工程名称:调制:校核:附录D GPS观测手簿工程名称:附录E 本规范用词说明一、本规范条文,要求执行(de)严格程度(de)用词,说明如下:1.表示很严格,非这样做不可(de)用词:正面词一般采用“必须”;反面词一般采用“严禁”.2.表示严格,在正常情况下均应这样做(de)用词:正面词一般采用“应”;反面词一般采用“不应”或“不得”.3.表示允许稍有选择,在条件可时首先应这样做(de)用词:正面词一般采用“宜”或“可”;反面词一般采用“不宜”.二、条文中指明应按其他有关标准、规范执行(de)写法为:“应按……执行”或“应符合……要求或规定”.非必须按所指定(de)标准、规范或其他规定执行(de)写法为:“可参照……”.附件公路全球定位系统(GPS) 测量规范(JTJ/T 066-98)条文说明1﹒总则1.0.1 自1980年第一台商ET用GPS接收机问世以来,随着GPS工作卫星(de)不断入轨和GPS接收机性能(de)不断提高和改进,GPS测量技术已广泛应用于我国国民经济建设(de)各个部门.公路测设部门是80年代后期开始运用GPS测量技术(de).由于公路建设(de)特点,无论是在测量原则,还是在测量精度和作业方法等方面均有别于其它行业.因此,为了将GPS商量技术更好地应用于公路工程建设,有必要制定本规范.目前GPS测量技术在公路测设中主要用于建立公路工程测量控制网.最近推出RTK方法后虽可使运用范围扩大,但由于尚处于推广阶段,故本规范规定(de)应用范围是公路测量控制网(de)布设与测量.作为建立公路测量控制网(de)主要手段之一,GPS定位技术应用于公路建设(de)主要方法是静态相对定位及快速静态定位.因为这两种方法能够获得高精度(de)定位,故本规范规定了按静态相对定位及快速静态定位建立测量控制网(de)方法.1.0.4 公路勘测规范(JTJ 061)中根据公路等级及所需(de)测量精度等规定了相应(de)控制测量等级.GPS测量作为建立公路测量控制网(de)有效手段之一,为保证各规范间(de)衔接和一致,GPS控制网(de)等级是根据公路勘测规范(JTJ 061)中相对应(de)具体规定确定(de).1.0.6 GPS测量(de)时间系统采用协调世界时(UTC),而实际作业人员为调度方便起见,一般在记录时采用北京标准时(BST).因此本规范规定在“GPS观测手簿”中(de)有关观测作业计划及开关机时间可采用北京标准时(BST).两者可用BST=UTC+8h式进行换算.3 GPS控制网分极与设计3.1.1 GPS控制网分级GPS测量技术具有精度高、灵活性强等特点,各等级(de)观测方法和观测时间没有很大差异,但为了和公路勘测规范(JTJ061)相适应,根据公路勘测(de)特点,将GPS控制网分为一、二、三、四级共四个等级.表3.1.1 GPS控制网与公路平面控制测量等级关系GPS控制网等级与主要技术指标中有关每对相邻点间(de)平均距离,是根据公路勘测中(de)实际情况确定(de).如四级GPS控制网主要是直接作为高速公路(de)施工控制网,其平均距离规定为500m较为适宜;三级GPS控制网主要是作为高速公路(de)首级控制网,测设时还需在此基础上加密低一级控制网,GPS控制网中(de)点作为加密低一级控制网(de)起算数据,其每对相邻点间(de)平均距离规定为1km较为适宜;一、二级GPS控制网,主要应用于大型桥梁、隧道等测量控制网(de)建立,其实际作业中要求相邻点间(de)平均距离较长.表中固定误差和比例误差(de)规定是既考虑到施测控制网(de)等级,又结合目前接收机发展(de)状况而确定(de).点位中误差是指GPS控制网中(de)点相对于联测(de)高等级控制点(de)相对点位误差.3.2 GPS控制网设计3.2.2 为了使GPS控制网投影长度变形值小于2.5cm/km,必要时可采用公路抵偿坐标系.公路低偿坐标系除可移动中央子午线外,亦可选择自己(de)参考椭球.一般情况下该椭球(de)中心、轴向和扁率与国家参考椭球相同,只不过其长半径有一改正量.设某公路抵偿坐标系位于海拔高程为h(de)曲面上,该地(de)大地水准面差距为ξ,则该曲面离国家参考椭球(de)高度(hn)为:长半径(de)改正量为:式中: da——椭球长半径(de)改正量(m)a——国家参考椭球(de)长半径(m)N——抵偿坐标系控制网原点在国家参考椭球中卯圈(de) 曲率半径(m)则公路抵偿坐标系参考椭球(de)长半径aL为:GPS定位成果是相对于WGS-84椭球而言(de),地方抵偿坐标系坐标是相对于某一地方椭球而言(de),因此必须将GPS定位成果投影成与国家大地测量控制网或地方独立控制网相匹配容.其要点是使 GPS基线向量网与常规地面测量控制网原点重合,起始方位一致,这样使两者在方向和尺度上均具有可比性.两者在起始方向上(de)偏差可利用地面网原点至起始方位点(de)大地方位角A0和GPS控制网相应方位上(de)大地方位角A求得.显然,两坐标系在起始方向上(de)偏差对转换精度具有直接(de)影响.坐标系转换关系(de)确定+是根据两坐标系公共点(de)坐标来确定(de),其公式如下:Xis XitZis Zit式中:T=[△X △Y △Z K εx εy εz]1 0 0 Xit 0 -Zit YiC= 0 1 0 Yit Z 0 -Xit0 0 1 Zit -Yit Xit 0Xit ,Yit,Zit,;Xit,Yit,Zit—公共点在两坐标系中(de)坐标;εx,εy,εz—两坐标系间(de)旋转参数;K—两坐标系间(de)尺度比.影响转换参数求定精度(de)主要因素有:(1)地面网观测值与卫星网观测值不匹配;(2)地面网坐标精度和卫星网(de)精度;(3)公共点(de)分布情况等.3.2.4 “必要时”是指东西方向(de)路线过长时,即使采用抵偿坐标系,仍然难以保证其投影长度变形值小于2.5cm/km,为此,可将整个路线分成多个投影带.在分带附近布设一对相互通视(de)GPS点,是为使采用其它测量方法进行加密和扩展时两分带在该处(de)坐标能统一和唯一.3.2.5 一项公路工程中往往分布着多种大型构造物,如桥梁、互通立交、隧道等,为保持GPS控制网精度(de)一致性,使用构造物测量控制网与路线测量控制网协调一致,无论其等级如何,应一次设计、布设、平差.而对于特殊构造物,由于它们对测量精度要求高,故在进行GPS控制网平差时,可以先将特殊构造按首级控制网平差,然后把首级控制网点作为固定点,对次级网平差.为提高GPS控制网(de)精度,也可将两级网联合进行统一平差.3.2.6 GPS控制网作为公路工程项目(de)首级控制网时,每隔5km应布设一对相互通视(de)GPS点,是为在采用其它测量方法进行加密时可布设成附合导线(de)形式.当GPS控制网直接作为施工控制网时,每一点至少与一个相邻点通视,是为了便于施工放样顺利进行.3.2.7 衡量GPS控制网测量质量高低(de)主要指标与其它测量方法一样,同样是精度和可靠性.采用不同(de)布网方法,其总基线数、独立基线数、剩余独立基线数均不会相等,其同步环闭合条件、异步环闭合条件亦不相同,因而控制网(de)精度、可靠性等也不同.显然,闭合条件越多,其精度和可靠性越好,因此在布网时应尽可能使整个网中包含较多闭合条件.3.2.8 评定基线处理结果质量(de)重要依据之一是非同步环闭合差.为避免基线过多时误差可能相互掩盖,所以组成非同步环(de)基线数不宜过多;根据经验与测算,对不同等级(de)基线数作了具体(de)规定.3.2.9 所谓网连式布网,是指相邻同步图形之间有两个以上公共点相连接(de)布网方法;所谓边连式布网,是指相邻同步图形之间仅有两个公共点相连(de)布网方法;所谓铰链导线式布网是指沿路线方向,布设成具有多个结点且同步环与同步环相套(de)布网方法;所谓点连式布网,是指相邻同步图形之间仅有一个公共点连接(de)布网方法.显然依图形几何强度和可靠性指标由强到弱(de)布网方式分别为网连式、边连式、铰链导线式和点连式,据此规定了各级网(de)布网方式.。

(完整word版)公路全球定位系统(GPS)测量规范

(完整word版)公路全球定位系统(GPS)测量规范

1 总则1.0.1 为规定利用全球定位系统﹙Global Positioning System, 缩写为 GPS﹚建立公路工程GPS 测量控制网的原则﹑精度和作业方法,特制定本规范。

1.0.2 本规范是依据《公路勘测规范》﹙JTJ 061),并参照《全球定位系统(GPS)测量规范》(CH 2001-92)的有关规定, 在收集﹑分析﹑研究和总结经验的基础上制定的。

1.0.3 本规范适用于新建和改建公路工程项目的各级GPS控制网的布设与测量。

1.0.4 采用全球定位系统测量技术建立公路平面控制网时,应根据《公路勘测规范》(JTJ 061)中规定的平面控制测量的等级﹑精度等确定相应的GPS控制网的等级。

1.0.5 GPS测量采用WGS-84大地坐标系。

当公路工程GPS控制网根据实际情况采用1954年北京坐标系﹑1980西安坐标系或抵偿坐标系时,应进行坐标转换。

各坐标系的地球椭球基本参数﹑主要几何和物理常数见附录A.高程系统根据实际情况可采用1956年黄海高程系或1985国家高程基准.1.0.6 GPS测量时间系统为协调世界时(UTC). 在作业过程中,附录D "GPS观测手薄" 中的开﹑关机时间可采用北京时间记录.1.0.7 GPS接收机及附属设备均按有关规定定期检测.1.0.8 GPS控制测量应按有关规定对全过程进行质量控制.1.0.9 在提供GPS控制测量成果资料时,应执行保密制度中的有关规定.2 术语2.0.1 基线Baseline两测量标志中心的几何连线。

2.0.2 观测时段 Observation sessionGPS 接收机在测站上从开始接收卫星信号进行观测到停止观测的时间长度。

2.0.3 同步观测 Simultaneous observation两台或两台以上GPS接收机同时对一卫星进行的观测。

2.0.4 同步观测环 Simultaneous observation三台或三台以上GPS接收机同步观测所获得的基线向量构成的闭合环。

全球定位系统(GPS)测量规范概要

全球定位系统(GPS)测量规范概要

中华人民共和国国家标准全球定位系统(GPS)测量规范 GB/T 18314-2001Specifications for global positioning system (GPS) surveys-----------------------------------------------------------------------------------------------------------1.范围本标准规定利用全球定位系统(GPS)按静态、快速静态定位原理,建立测量控制网(简称(GPS)控制网)的原则、等级划分和作业方法。

本标准适用于国家和局部GPS控制网的设计、布测和数据处理。

2.引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。

本标准出版时,所示版本均为有效。

所有标准都会被修订,适用本标准的各方应探讨使用下列标准最新版本的可能性。

GB 12897-1991 国家一、二等水准测量规范GB 12898-1991 国家三、四等水准测量规范GB/T 17942-2000 国家三角测量规范CH 1002-1995 测绘产品检查验收规定CH 1003-1995 测绘产品质量评定规定CH/T 1004-1999 测绘技术设计规定CH 8016-1995 全球定位系统(GPS)测量型接收机检定规程3.术语3.1观测时段 observation session测站上开始接收卫星信号到停止接受,连续观测的时间间隔称为观测时段,简称时段。

3.2同步观测 simultaneous observation两台或两台以上接收机同时对一组卫星进行的观测。

3.3同步观测环 simultaneous observation loop三台或三台以上接收机同步观测所获得的基线向量构成的闭合环。

3.4独步观测环 independent observation loop由非同步观测获得的基线向量构成的闭合环。

全球定位系统测量规范

全球定位系统测量规范

全球定位系统测量规范全球定位系统(Global Positioning System, GPS)是一种通过卫星和地面站点网络来测量和确定地球上任何地点的准确位置和时间的技术系统。

为了确保GPS测量的准确性和一致性,国际上制定了一系列的GPS测量规范。

首先,GPS测量规范要求使用双频接收器。

双频接收器可以同时接收L1频段和L2频段的信号,这两个频段的信号传播过程中会受到不同的延迟和干扰,使用双频接收器可以通过差分技术来消除这些影响,提高测量的准确性。

其次,GPS测量规范要求进行观测数据的质量控制。

在进行GPS测量时,需要确保接收器的观测数据的质量良好,比如信噪比要足够高、时钟偏差要小等。

观测数据的质量控制可以通过对接收器进行校准、使用高质量的天线、选择合适的观测时段等方式进行。

此外,GPS测量规范要求进行数据处理和分析时要考虑大气延迟的影响。

地球大气层对GPS信号的传播会引起延迟,这会对测量结果产生影响。

为了消除大气延迟的影响,需要进行大气延迟模型的建立和参数估计,通过差分技术或者参数修正的方式进行校正。

另外,GPS测量规范还要求进行精度评定和误差分析。

在进行GPS测量时,需要对测量结果进行精度评定,通过计算位置误差、时间误差等指标来评估测量的准确度。

同时,还需要对测量误差进行分析,找出造成误差的原因和可能的改进措施。

最后,GPS测量规范要求进行结果的报告和记录。

对于每次GPS测量,都需要生成详细的报告和记录,包括测量日期、时间、位置、观测数据、处理方法等信息。

这样可以方便对测量结果进行追溯和交流,提高整个GPS测量过程的透明度和可信度。

综上所述,全球定位系统测量规范是为了确保GPS测量结果的准确性和可靠性而制定的一系列规范。

这些规范包括使用双频接收器、质量控制、大气延迟校正、精度评定、误差分析以及结果报告等方面,通过规范的执行可以提高GPS测量的准确度和一致性。

全球定位系统(gps)测量规范

全球定位系统(gps)测量规范

全球定位系统(gps)测量规范全球定位系统(GPS)是一种基于卫星定位的导航系统,他能够提供全球范围内准确的位置信息。

为了确保GPS测量的准确性和一致性,一些测量规范被制定出来。

以下是关于GPS 测量的一些常见规范:1. 基准站设置:在进行GPS测量时,通常需要同时使用多个基准站来提供准确的位置参考。

基准站之间应该相互独立,距离适当,以避免误差的累积。

2. 接收机选择:选择合适的GPS接收机是确保测量准确性的关键。

应该选择具有良好信号接收和处理能力的高质量GPS 接收机。

3. 测量程序:在进行GPS测量前,需要先进行仔细的规划和准备工作。

包括选择适当的测量方式和测量参数,确保测量站点的稳定性和数据收集的连续性。

4. 数据处理:GPS测量的准确性也与数据处理的方式有关。

应该采用有效的数据处理算法来处理原始GPS观测数据,以获得高精度的位置信息。

5. 控制点布设:在进行GPS测量时,需要布设一些控制点来提供位置参考。

控制点的选择和布设应遵循一定的规范,以确保其准确性和可靠性。

6. 环境因素考虑:在进行GPS测量时,应该考虑环境因素对测量结果的影响。

例如在山区、城市高楼大厦密集区域等环境下,GPS信号可能会受到遮挡或干扰,需要采取相应的措施来减小这些影响。

7. 数据验证与校正:为了确保GPS测量的准确性,测量数据应该进行验证和校正。

通常可以采用与其他测量方法相互对照,或者使用已知精度的控制点进行校正。

8. 测量精度评估:在进行GPS测量后,应进行精度评估来判断测量结果的可靠性。

可以通过与其他独立测量结果进行比较,或者计算测量点之间的差异来评估GPS测量的精度。

总之,GPS测量的准确性和一致性是确保定位信息可靠性的关键。

遵守上述的测量规范和原则,能够提高GPS测量的准确性,确保定位信息的可靠性。

全球定位系统城市测量技术规程

全球定位系统城市测量技术规程

全球定位系统城市测量技术规程全球定位系统城市测量技术规程全球定位系统(GPS)是一种利用卫星信号对地球上的任意一点进行定位和测量的技术。

在城市规划和建设中,GPS技术能够提供精确的地理数据,为城市测量和规划提供准确的基础数据。

为了保证全球定位系统在城市测量中的有效应用,全球定位系统城市测量技术规程应运而生。

全球定位系统城市测量技术规程旨在规范城市测量中的全球定位系统的使用和管理,确保测量结果的准确性和可靠性。

本规程适用于城市规划、土地管理、交通规划、环境保护等领域的测量工作。

一、全球定位系统城市测量设备的配备在城市测量工作中,必须配备专业的全球定位系统设备。

设备的选购应根据工作需求和精度要求进行,同时应确保设备的质量和性能符合国家标准。

二、测量人员的技术培训测量人员必须经过相关的技术培训,了解全球定位系统的原理和使用方法。

必须具备熟练操作全球定位系统设备的技能,并掌握数据的处理和分析方法。

三、测量前的准备工作在进行城市测量之前,必须对测量区域进行详细的调查和规划。

包括确定测量点位,选择合适的定位站点等。

同时还需要对全球定位系统设备进行校准和检测,确保设备正常工作。

四、测量过程控制在全球定位系统城市测量中,必须严格控制整个测量过程。

包括设备的设置和校正,数据的采集和存储等工作。

同时还需要注意环境因素对测量结果的影响,如天气、天线高度等。

五、数据处理和分析测量完成后,需要对采集的数据进行处理和分析。

数据处理应确保准确性和可靠性,并按照规定的格式进行整理和存储。

并且,必须使用专业的软件进行数据处理,以保证测量结果的精度。

六、质量控制和质量评估在全球定位系统城市测量过程中,必须进行质量控制和质量评估。

通过对测量结果的验证和比对,检查测量过程中的误差和偏差,并对测量结果的准确性进行评估。

七、测量报告和数据共享在城市测量完成后,必须编制测量报告,并提供测量数据的共享。

测量报告应详细记录测量过程和结果,包括测量点位、定位站点、数据处理方法等。

2019年公路全球定位系统GPS测量规范.doc

2019年公路全球定位系统GPS测量规范.doc

1 总则1.0.1 为规定利用全球定位系统﹙Global Positioning System, 缩写为 GPS﹚建立公路工程GPS 测量控制网的原则﹑精度和作业方法,特制定本规范。

1.0.2 本规范是依据《公路勘测规范》﹙JTJ 061),并参照《全球定位系统(GPS)测量规范》(CH 2001-92)的有关规定, 在收集﹑分析﹑研究和总结经验的基础上制定的。

1.0.3 本规范适用于新建和改建公路工程项目的各级GPS控制网的布设与测量。

1.0.4 采用全球定位系统测量技术建立公路平面控制网时,应根据《公路勘测规范》(JTJ 061)中规定的平面控制测量的等级﹑精度等确定相应的GPS控制网的等级。

1.0.5 GPS测量采用WGS-84大地坐标系。

当公路工程GPS控制网根据实际情况采用1954年北京坐标系﹑1980西安坐标系或抵偿坐标系时,应进行坐标转换。

各坐标系的地球椭球基本参数﹑主要几何和物理常数见附录A.高程系统根据实际情况可采用1956年黄海高程系或1985国家高程基准.1.0.6 GPS测量时间系统为协调世界时(UTC). 在作业过程中,附录D "GPS观测手薄" 中的开﹑关机时间可采用北京时间记录.1.0.7 GPS接收机及附属设备均按有关规定定期检测.1.0.8 GPS控制测量应按有关规定对全过程进行质量控制.1.0.9 在提供GPS控制测量成果资料时,应执行保密制度中的有关规定.2 术语2.0.1 基线Baseline两测量标志中心的几何连线。

2.0.2 观测时段 Observation sessionGPS 接收机在测站上从开始接收卫星信号进行观测到停止观测的时间长度。

2.0.3 同步观测 Simultaneous observation两台或两台以上GPS接收机同时对一卫星进行的观测。

2.0.4 同步观测环 Simultaneous observation三台或三台以上GPS接收机同步观测所获得的基线向量构成的闭合环。

全球定位系统(gps)测量规范

全球定位系统(gps)测量规范

全球定位系统(gps)测量规范1.全球定位系统(gps)测量范围本标准规定利用全球定位系统(GPS)按静态、快速静态定位原理,建立测量控制网(简称(GPS)控制网)的原则、等级划分和作业方法。

本标准适用于国家和局部GPS控制网的设计、布测和数据处理。

2.坐标系和时间系统2.1:坐标系2.1.1:GPS测量采用广播星历时,其相应坐标系为世界大地坐标系WGS84。

该坐标系的地球椭圆基本参数以及主要几何和物理常数见附录A(标准的附录)。

GPS测量采用精密星历时,其坐标系为相应历元的国际地球参考框架ITRFYY。

当换算为大地坐标时,可采用与WGS84相同的地球椭球基本参数以及主要几何和物理常数。

2.1.2:当要求提供1980西安坐标系或其他参考坐标系时,可按坐标转换等方法求得这些坐标系的坐标。

当要求提供1985国家高程基准或其他高程系高程时,可按高程拟合、大地水准面精化等方法求得这些高程系统的高程。

3.精度分级3.1:GPS测量按其精度划分为AA、A、B、C、D、E级。

GPS快速静态定位测量可用于C、D、E级GPS控制网的布设。

3.2:各级GPS测量的用途:AA级主要用于全球性的地球动力学研究、地壳形变测量和精密定轨;A级主要用于区域性的地球动力学研究和地壳形变测量;B级主要用于局部形变监测和各种精密工程测量;C级主要用于大、中城市及工程测量的基本控制网。

D、E级主要用于中、小城市、城镇及测图、地籍、土地信息、房产、物探、勘测、建筑施工等的控制测量。

AA、A级。

可作为建立地心参考框架的基础。

AA、A、B级可作为建立国家空间大地测量控制网的基础。

公路全球定位系统(GPS)测量规范

公路全球定位系统(GPS)测量规范

1 总则为规定利用全球定位系统﹙Global Positioning System, 缩写为 GPS﹚建立公路工程GPS测量控制网的原则﹑精度和作业方法,特制定本规范。

本规范是依据《公路勘测规范》﹙JTJ 061),并参照《全球定位系统(GPS)测量规范》(CH 2001-92)的有关规定, 在收集﹑分析﹑研究和总结经验的基础上制定的。

本规范适用于新建和改建公路工程项目的各级GPS控制网的布设与测量。

采用全球定位系统测量技术建立公路平面控制网时,应根据《公路勘测规范》(JTJ 061)中规定的平面控制测量的等级﹑精度等确定相应的GPS控制网的等级。

GPS测量采用WGS-84大地坐标系。

当公路工程GPS控制网根据实际情况采用1954年北京坐标系﹑1980西安坐标系或抵偿坐标系时,应进行坐标转换。

各坐标系的地球椭球基本参数﹑主要几何和物理常数见附录A.高程系统根据实际情况可采用1956年黄海高程系或1985国家高程基准.GPS测量时间系统为协调世界时(UTC). 在作业过程中,附录D "GPS观测手薄" 中的开﹑关机时间可采用北京时间记录.GPS接收机及附属设备均按有关规定定期检测.GPS控制测量应按有关规定对全过程进行质量控制.在提供GPS控制测量成果资料时,应执行保密制度中的有关规定.2 术语基线Baseline两测量标志中心的几何连线。

观测时段 Observation sessionGPS 接收机在测站上从开始接收卫星信号进行观测到停止观测的时间长度。

同步观测 Simultaneous observation两台或两台以上GPS接收机同时对一卫星进行的观测。

同步观测环 Simultaneous observation三台或三台以上GPS接收机同步观测所获得的基线向量构成的闭合环。

独立基线 Independent baseline由独立观测时段所确定的基线。

独立观测环 Independent observable loop由独立基线向量构成的闭合环。

GPS定位测量标准

GPS定位测量标准

《GPS定位测量》课程标准1课程定位《GPS定位测量》是引入了《全球定位系统GPS测量规范》GB/T18314-2001、《全球定位系统城市测量技术规程》CJJ73-97、《公路全球定位系统(GPS)测量规范》JTJ/C066-98等技术规范;GPS(GlobalPositioningSystem,全球定位系统)测量定位技术现已广泛应用于国民经济建设的各个领域,并积极引领着测绘科学技术的新发展,代表了工程测量技术的先进性和高科技性,在现代测绘科学技术教学中处于重要地位;本课程的任务如下:教会学生使用GPS测量仪器设备进行控制测量及数据处理、数字测图、施工测量与放样;本课程在《地形测量》、《控制测量》、《数字测图》课程之后开设,与《工程勘测规划测量》、《工程施工测量》课程同时开设,其后续课程为《土地调查与地籍测量》、《摄影测量外业》、《工程变形测量》。

2工作任务与课程目标工作任务及职业能力学生在进行GPS定位测量时,要依据测量工作“先整体后局部”、“先控制后碎部”的基本原则,完成GPS控制测量数据采集与处理,熟练运用GPS-RTK (RealTimeKinematic,实时动态)技术进行数字测图,同时理解CORS (ContinuousOperationalReferenceSystem,连续运行参考站系统)技术的工作原理,在实践中熟练运用CORS技术进行施工测量与放样。

通过本专业岗位需求分析,确定工作领域、施工测量与放样工作任务和职业能力,并针对GPS定位测量这一工作领域的控制测量数据采集与处理、数字测图、工作任务和对应的职业能力,按照基于工作过程、任务引领知识的教学思路整合课程内容,设计学习项目,采用案例教学、项目导向、任务驱动等教学方法,通过项目教学,使学生能够完成工作任务,提交合格的测绘成果。

《GPS定位测量》课程工作任务及职业能力分析见表1。

表1工作任务与职业能力分析表课程目标根据课程面对的工作任务和职业能力要求,本课程的教学目标为:(1)态度目标①具有不抄袭、不伪造测量成果的诚信品质。

公路全球定位系统(GPS)测量规范31586

公路全球定位系统(GPS)测量规范31586

1总贝y1.0.1 __为规定利用全球定位系统(Global Positioning System, 缩写为GPS)建立公路工程GPS测量控制网的原则、精度和作业方法,特制定本规范。

1.0.2 本规范是依据《公路勘测规范》(JTJ 061),并参照《全球定位系统(GPS测量规范》(CH 2001-92 )的有关规定,在收集、分析、研究和总结经验的基础上制定的。

1.0.3 本规范适用于新建和改建公路工程项目的各级GPS控制网的布设与测量。

1.0.4 采用全球定位系统测量技术建立公路平面控制网时,应根据《公路勘测规范》(JTJ 061 )中规定的平面控制测量的等级、精度等确定相应的GPS控制网的等级。

1.0.5 GPS测量采用WGS-84大地坐标系。

当公路工程GPS控制网根据实际情况采用1954年北京坐标系、1980西安坐标系或抵偿坐标系时,应进行坐标转换。

各坐标系的地球椭球基本参数、主要几何和物理常数见附录A.高程系统根据实际情况可采用1956年黄海高程系或1985国家高程基准.1.0.6 GPS测量时间系统为协调世界时(UTC).在作业过程中,附录D "GPS观测手薄”中的开、关机时间可采用北京时间记录.1.0.7 GPS接收机及附属设备均按有关规定定期检测.1.0.8 GPS控制测量应按有关规定对全过程进行质量控制1.0.9 在提供GPS控制测量成果资料时,应执行保密制度中的有关规定.2术语2.0.1 基线Baseline两测量标志中心的几何连线。

2.0.2 观测时段Observation sessionGPS 接收机在测站上从开始接收卫星信号进行观测到停止观测的时间长度。

2.0.3 同步观测Simultaneous observation两台或两台以上GPS接收机同时对一卫星进行的观测。

2.0.4 同步观测环Simultaneous observation三台或三台以上GPS接收机同步观测所获得的基线向量构成的闭合环。

全球定位系统gps测量规范

全球定位系统gps测量规范

全球定位系统gps测量规范全球定位系统(GPS)是一种通过卫星进行导航和测量的技术。

为了确保GPS测量的准确性和一致性,制定了一系列的测量规范。

以下是全球定位系统GPS测量规范的一些主要内容。

第一,测量准确性。

GPS测量的准确性是评估其可靠性和可用性的重要指标。

该规范要求GPS测量在水平方向上的准确性应达到2.5毫米加上0.3ppm的测量距离,垂直方向上的准确性应达到5毫米加上0.5ppm的测量距离。

第二,测量误差控制。

测量误差是GPS测量过程中的不确定性因素,包括信号传播误差、接收器误差、大气湿度误差等。

为确保测量误差在可接受范围内,该规范要求在不同测量场景下进行误差的校正和控制,包括使用不同的校正模型、采集多个测量数据和进行误差分析。

第三,测量数据的处理和分析。

GPS测量数据的处理和分析是确保测量结果准确性的关键步骤。

该规范要求对测量数据进行精确的姿态解算、坐标变换和数据配准,以确保测量结果的一致性和准确性。

第四,测量前的准备工作。

GPS测量前需要进行一些准备工作,包括选择合适的测站位置、安装和校准测量设备、进行背景噪声和干扰分析等。

该规范要求对这些准备工作进行详细的记录和文件保存,以备后续的数据分析和验证。

第五,测量数据的验证和确认。

在GPS测量完成后,需要对测量数据进行验证和确认,以确保测量结果的正确性和可靠性。

该规范要求对测量数据进行比对和差异分析,并与其他独立测量数据进行对比,以验证测量结果的一致性和准确性。

综上所述,全球定位系统GPS测量规范是确保GPS测量结果准确性和一致性的重要指导文件。

它规定了GPS测量准确性、误差控制、数据处理和分析、测量前的准备工作以及测量数据的验证和确认等方面的要求,帮助用户进行准确和可靠的GPS测量工作。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1总则1.0.1为规定利用全球定位系统(GlobalPositioningSRstem, 缩写为GPS)建立公路工程 GPS测量控制网的原则、精度和作业方法,特制定本规范。

1.0.2本规范是依据《公路勘测规范》(JTJ061 ),并参照《全球定位系统(GPS测量规范》(CH20RR-92 的有关规定,在收集、分析、研究和总结经验的基础上制定的。

1.0.3本规范适用于新建和改建公路工程项目的各级GPS控制网的布设与测量。

1.0.4采用全球定位系统测量技术建立公路平面控制网时,应根据《公路勘测规范》(JTJ061 )中规定的平面控制测量的等级、精度等确定相应的GPS控制网的等级。

1.0.5GPS测量采用WGS-84大地坐标系。

当公路工程GPS控制网根据实际情况采用1954年北京坐标系、1980西安坐标系或抵偿坐标系时,应进行坐标转换。

各坐标系的地球椭球基本参数、主要几何和物理常数见附录 A.高程系统根据实际情况可采用1956年黄海高程系或1985国家高程基准.1.0.6GPS测量时间系统为协调世界时(UTC).在作业过程中,附录D"GPS观测手薄"中的开、关机时间可采用北京时间记录.1.0.7GPS接收机及附属设备均按有关规定定期检测 .1.0.8GPS控制测量应按有关规定对全过程进行质量控制1.0.9在提供GPS控制测量成果资料时,应执行保密制度中的有关规定.2术语2.0.1 基线 Baseline两测量标志中心的几何连线。

2.0.2 观测时段 ObservationsessionGPS接收机在测站上从开始接收卫星信号进行观测到停止观测的时间长度。

2.0.3 同步观测 Simultaneousobservation两台或两台以上 GPS接收机同时对一卫星进行的观测。

2.0.4 同步观测环 Simultaneousobservation三台或三台以上 GPS接收机同步观测所获得的基线向量构成的闭合环。

2.0.5 独立基线 Independentbaseline由独立观测时段所确定的基线。

2.0.6 独立观测环 Independentobservableloop由独立基线向量构成的闭合环。

2.0.7 自由基线 Freebaseline不属于任何非同步图形闭合条件的基线。

2.0.8 复测基线 Duplicatemeasurebaseline观测两个或两个以上观测时段的基线。

2.0.9 边连式 LinkmethodbRabaseline相邻图形之间以一条基线边相连接的布网方式。

2.0.10 无约束平差 Non-constrainedadjustment在一个控制网中,不引入外部基准,或虽引入外部基准但并不产生控制网非观测误差引起的变形和改正的平差方法。

2.0.11 公路抵偿坐标系 Compe nsatio ncoordi natesRstemforhighwaR在建立公路控制网时,根据需要投影到抵偿高程面上和(或)以任一子午线为中央子午线的一种直角坐标系。

2.0.12 首级控制网 Firstclasscontrolnetwork为一个公路工程项目而建立的精度等级最高,并同国家控制点联测能控制整个路线的控制网。

2.0.13 主控制网 Mai neon trol network为满足公路测设放线或施工放样,在首级控制网基础上加密并贯通整条公路的控制网。

2.0.14 天线高 Antennaheight观测时天线平均相位中心标志面的高度。

3GPS控制网分级与设计3.1GPS控制网分级3.1.1根据公路及桥梁、隧道等构造的特点及不同要求,GPS控制网分为一级、二级、三级、四级共四个等级。

各级GPS控制网的主要技术指标规定见表功 3 • 1 • 1表3 • 1 • 1GPS控制网的主要技术指标注:①各级GPS控制网每对相邻点间的最小距离应不小于平均距离的1/2,最大距离不宜大于平均距离的两倍;②特殊构造物指对施工测量精度有特殊要求的桥梁、隧道等构造物。

3.1.2GPS控制网相邻点间弦长精度应按下式计算确定:d =V [a2+(bd)] (3.1.2)式中:d —弦长标准差(mm ;a—固定误差(mm);b—比例误差(ppm);d —相邻点间的距离(km)。

3.2GPS控制网设计3.2.1GPS控制网的布设应根据公路等级、线地形地物、作业时卫星状况、精度要求等因素进行综合设计,并编制技术设计书(或大纲)。

3.2.2GPS的WGS-84大地坐标系统转换到所选平面坐标系时,应使测区内投影长度变形值不大于 2.5cm/km.根据测区所处地理位置及平均高程情况,可按下列方法选定坐标系统:3.2.2.1当投影长度变形值不大于 2.5cm/km时,采用高斯正形投影 3°带平面直角坐标系。

3.2.2.2当投影长度变形值大于 2.5cm/km时,可采用公路抵偿坐标系,并可选用下列方式:(1) 投影于1954年北京坐标系或者1980西安坐标系椭球面上的高斯正形投影任意带平面直角坐标系。

(2) 投影于抵偿高程面上的高斯正形投影3。

带平面直角坐标系。

(3) 投影于抵偿高程面上的高斯正形投影任意带平面直角坐标系。

3.2.3GPS控制网采用公路抵偿坐标系进行坐标转换时,应确定以下技术参数;--参考椭球及其相应的基本参数;--中央子午线经度值;--纵横坐标的加常数值;--投影面正常高;--测区平均高程异常值;--起算点坐标及起算方位角。

公路抵偿坐标系所采用的椭球中心、轴向和扁率应与国家参考椭球相同。

3.2.4公路路线过长时,可视需要将其分为多投影带。

在各分带交界附近应布设一对相互通视的GPS 点。

3.2.5同一公路工程项目中的特殊构造物的测量控制网应同项目测量控制网一次完成设计、施测与平差。

当特殊构造物测量控制网的等级要求高时,宜以其作为首级控制网,并据以扩展其它测量控制网。

3.2.6当GPS控制网作为公路首控制网,且需采用其它测量方法进行加密时,应每隔离5km设置一对相互到通视的GPS点。

当GPS首级控制网直接作为施工控制网时,每个GPS点至少应与一个相邻点通视327设计GPS控制网时,应由一个或若干个独立观测环构成,并包含较多的闭合条件。

3.2.8GPS控制网由同步GPS观测边构成多边形闭合环或附合路线时,其边数应符合下列规定:--一级GPS控制网应不超过去 5条;--二级GPS控制网应不超过去 6条;--三级GPS控制、网应不超过去 7条;--四级GPS控制网应不超过去 8条;3.2.9 一、二级GPS控制网应采用网连式、边连式布网;三、四级GPS控制网宜采用铰链导线式或点连式布网。

GPS控制网中不应出现自由基线。

3.2.10GPS控制网应同附近等级高的国家平面控制网点联测,联测点数应不少于3个,并力求分布均匀,且能控制本控制网。

当GPS控制网较长时,应增加联测点的数量。

路线附近具有等级高的 GPS点时,应予以联测。

同一公路工程项目的 GPS控制网分为多个投影带时,在分带交界附近应同国家平面控制点联测。

3.2.11GPS点需要进行高程联测时,可采用使GPS点与水准点重合,或 GPS点与水准点联测的方法。

平原、微丘地形联测点的数量不宜少于6个,必须大于3个;联测点的间距不宜大于20km且应均匀分布。

重丘、山岭地形联测点的数量不宜少于是10个。

各级GPS控制网的高程联测应不低于四等水准测量的精度要求。

4选点与埋石4.1准备4.1.1在编制技术设计书(或大纲)前应搜集与公路工程有关的以下资料:--测区划 1: 10000-1: 150000 地形图;--既有各类控制测量资料,包括控制点的平面坐标、高程、坐标系统、技术总结等;--测区的气象、地质、地形、地貌、交通、通信及供电等资料;--路线走向、线位布设、路线设计数据及大型构造物位置等资料。

4.1.2按技术设计书(或大纲)要求,进行GPS控制网技术设计。

4.2选点4.2.1选点员应按技术要求进行踏勘,并实地核对、调整、确定点位。

点位应有利于采用其它测量方法扩展和联测。

对需做水准联测的点位还应踏勘水准路线。

4.2.2点位应选在基础稳定,并易于长期保存的地点。

4.2.3点位应便于安置接收设备和操作,视野开阔,视场内不应有高度角大于15°的成片障碍物,否则应绘制点位环视图。

4.2.4点位附近不应有强烈干扰卫星信号接收的物体。

点位距大功率无线电发射源(如电视台、微波站等)的距离应不小于 400m;距220Kv以上电力线路的距离应不小于50m4.2.5点位应利于公路勘测放线与施工放样,且距路线中心线不宜小于50m,并不大于300m对于大型桥梁、互通式立交、隧道等还应考虑加密布设控制网的要求。

4.2.6GPS控制点需要设方位点时,其目标应明显,便于观测;与GPS点的距离不宜小于 500m且与路线垂直。

4.2.7GPS控制网的点名应沿公路前进方向顺序编号,并非编号前冠以“GPS字样和等级。

当新点同原有点重合时,应采用原有点名。

同一个GPS控制网中禁有相同的点名。

4.2.8选定的点位应标注于 1: 10000或1 : 50000的地形图上,并绘制 GPS控制网选点图,填写 GPS 点之记,点之记格式见附录B。

4.3埋石4.3.1各级GPS点的标石均应有中心标志。

中心标志用直径不小于14mm勺钢筋制作,并用清晰、精细的十字线刻成直径小于1mm勺中心点。

标石表面应有 GPS点名及施测单位名称。

4.3.2GPS点的标石可按附录 C预制,亦可现场浇制。

埋设时坑底应填以砂石并固密实,或现浇20cm厚的混凝土。

埋设的 GPS点应待沉降稳定后方可使用。

4.3.3GPS点位于山区岩石地段时,可利用基岩凿成坑穴,埋入中心标志并浇灌混凝土。

标石顶端外形尺寸应符合附录 C的规定。

4.3.4GPS点位于耕作地区时,应埋设于非耕种地上,并露出地面少许;当必须埋设于耕地时,标石顶面应埋设于耕种表土层以下。

对冰冻地区,其埋设深度应大于该地区的冰冻深度。

4.3.5GPS点位于沙丘或土层疏松地区,应适当增大标石尺寸和基坑底层现浇混凝土的面积与厚度。

4.3.6当有牢固永久性建筑物可用以设置标石时,可在建筑物上凿孔埋入中心标志并浇灌混凝土,其顶端外形尺寸应符合附录C的规定。

4.3.7利用原有平面控制点时,应确认该点标石完好,并符合同级GPS点观测与埋石要求,且能长期保存。

4.3.8为特殊构造物而设计的一、二级GPS控制网可视需要埋设有强制对中装置的观测墩。

4.3.9所有GPS点在埋石处应设置明显的指向标志,并现场绘制交通路线略图,填写点之记。

5观测5.1技术指标5.1.1GPS控制网观测基本技术指标规定见表 5.1.1。

表5.1.1GPS控制网观测基本技术指标。

相关文档
最新文档