HeNe激光器模式分析
He-Ne激光器纵横模分析与分裂
He-Ne 激光器的纵横模分析与纵模分裂0610130018 况吕林 物理系06级本科 实验日期:2009-4-3 指导老师:何琛娟【摘要】本实验利用He-Ne 激光器和扫描干涉仪等仪器,观察了长管和短管的He-Ne 激光的横纵模式,并测量相应的模间隔. 实验还观察了晶体双折射引起的纵模分裂和分裂光谱偏振态.关键字:纵模,横模,自由光谱区,晶体光折射,纵模分裂一、 引言激光器由增益介质﹑光学谐振腔和激励能源组成. 根据驻波条件,激光谐振腔每一种本征频率对应一种光场分布,叫做一种纵模模式,它描述轴向光场分布状态,然而纵模越多,单色性、相干性越差,谐振腔越短,纵模越少,因此在要求高单色性的时候,应尽量减小谐振腔长度. 由于光的衍射造成的场横向分布用横模模式来描述,但是多横模却损害了激光器输出的良好方向性,对聚焦非常不利,因此在需要完美聚焦的情况下,应当尽量减少横模. 激光器在今天应用越来越广,对通过模式的研究,减少其不利因素利用其有用特性显得尤其重要. 在本实验中将利用He-Ne 激光观察和分析激光模谱的一些基本性质.二、 实验原理1、He-Ne 激光器纵横模及对应的频率间隔(1)纵模激光器是由增益介质、激励能源和光学谐振腔组成的,谐振腔是激光发生来回反射的地方,其中增益介质对于特定频率的光具有放大作用,其他的光则会被反射掉,这些被放大的光的频率,频率满足谐振腔的驻波条件:L2qcq μν=(1) 其中q 为整数(又称纵模序数),c 为光速,L 为谐振腔的腔长,μ为增益介质的折射率,可近似取为空气的折射率,即为1. 这种驻波的分布被称为纵模.相邻两纵模的间隔为:Lμν2c q =∆ (2)(2)横模由于谐振腔的反射面和横截面都是有限大小的,当平行光通过它们时,会发生衍射,波阵面会发生畸变,使得在垂直于光传播的方向上(即横向上),出现各种不同的场强分布,每一种分布称为一个横模,用记为TEM m,n 模. 其中m 、n 为横模序数,加上纵模序数q ,这三个指标完善地描述了一个模式. 用υm ,n ,q 来表示TEM m,n,q 模的频率,则纵模的频率间隔为:Lq n m q q n m μννν2c ,,,,=-=∆∆+纵 (3)横模的间隔(对于同样的横模序数m 、n )为:q n m q n n m m ,,,,ννν-=∆∆+∆+横 (4)旋转对称腔对应的模式为旋转对称模式,用TEM p,l,q 来标记,p 表示暗环的数目,l 表示暗直径的条数目.谐振腔中一个特定的模式三位空间中的场分布.横模的频率间隔与腔的结构有关,对于非共焦腔,横模的间隔为:})]11[(cos )(1{2c 21211R LR L n m L --∆+∆=∆-πμν横(5) 其中R 1和R 2为两反射镜的曲率半径.若腔长L 比反射镜的曲率半径小,则横模间隔比纵模间隔要小. 实验中R 2为一平面镜,即R 2→∞,则])1(cos )(1[2c2111R Ln m L -∆+∆=∆-πμν横(6) 落到增益曲线中的那些模式,如果其增益大于损耗,就能够形成激光输出. 因此,实际的激光器一般包含多个模式.2、公焦曲面扫描干涉仪(1)结构原理共焦球面扫描干涉仪的结构如图1所示,有两个共焦球面构成反射腔,当在压电陶瓷上加上周期的锯齿波电压,腔长L 在一定的范围内发生周期性的变化.从图2中可以看出,一束入射光有两组透射光:反射了4m 次的Ⅰ型和反射4m+2次的Ⅱ型.若相邻两束光的光程差满足:λK L 4=(7)其中K 为整数,则透射光束干涉极大,当入射光波长改变时,只需要改变L ,使上式仍然满足即可产生干涉极大.因此干涉仪的腔长是入射光波长的线性函数.透射光经过放大,接到示波器Y 轴上,既得到了透过干涉仪的激光模谱.而透过干涉仪的激光频率ν满足:L L 4cK2δν-=∆(8) 这说明了ν的变化与腔长的变化量成正比,即与扫描电压成正比.扫描电压加在示波器的X 轴上,则X 轴即可表示干涉仪的频率变化. (2)干涉仪的自由光谱区当干涉仪的腔长变化量δL=λ1/4,即L i =L 1+λ1/4时有:41K 4K 1i λλ)(+= (9) 波长为λ1和λi 的光同时透过干涉仪,因此无法分辨,测量不再有意义.它相当于干涉级次不变,而频率改变:LcSR 4=∆ν (10) 其物理意义是干涉仪所能够测量的不重序的最大频率差,即测量有意义的范围. 在实验中利用自由光普区作为一参照标准,可以间接测量模间隔.3、He-Ne 激光器纵横模分裂当激光器的谐振腔中有双折射元件时,谐振腔中的介质对于o 光和e 光将具有不同的折射率. 这时,对于o 光和e 光谐振腔相当于分裂成了两个具有不同L 的谐振腔,将有不同的谐振频率,即发生了频率的分裂. 谐振腔光程之差ΔL 记为δ,则造成的频率分裂为:Lνν=∆ (11)实现双折射的方法除了上述的自然双折射法,还有应力双折射法,即通过对腔内的石英片进行加压也可以产生频率分裂.三、 实验内容实验仪器:光具座,长短激光管,扫描干涉仪,激励电源,示波器,驱动电压等. 内容:1、调节实验仪器,并搞清自由光谱区.2、测量改变偏置电压、锯齿波幅度,观察这些因素对于模谱的影响.3、利用自由光谱区范围,分别测量长度不同的两根He-Ne 激光管的模谱间隔,并绘制谱分布图.4、测量出光带宽,利用五点法描制激光管增益曲线大致轮廓.5、观察纵模分裂现象以及分裂谱线间偏振关系.四、 结果分析讨论一、定性观察偏置电压、锯齿波幅和扫描周期对模谱的影响示波器显示结果如表1:表格1 定性观察电压等因素对模谱的影响变化自由光普区纵模间隔横模间隔偏置电压↑↓不变锯齿幅度↑↓↓↓↓↑↑↑扫描周期↑↓注:表中↑↓分别表示增大和减小示波器显示的自由光谱区、纵横模间隔在电压等因素的影响下都会变化,而我们知道,实际上自由光谱区、纵横模间隔等是由激光器本身属性决定的,不会因为测量的条件改变而变化的,所以敢肯定只是扫描仪测量到模谱的时间改变了.二、模谱分析(1)长管第一次测量得到的模谱如图3所示:图3中,我们可以观察到有两组模谱,每组模谱有4组纵模,每组纵模里可以观察到横模最多的有3个,最少的只有一个,可以推知实际上都应该有三个,因为观察光斑可以看见有两个暗区(如图4). 之所以有的看不到完整的横模,是因为其幅度太小位于阈值之下,故无法观测到. 利用原理中(6)式可以知道图中包含了横模的三个模式分别Δm+Δn=0、1、2,其中,Δm+Δn=0有TEM0,0;Δm+Δn=1有TEM0,1或者TEM1,0;Δm+Δn=2的可能是TEM2,0、TEM0,2或图4 长管激光光斑示意图TEM1,1. 进一步,随着时间增长,锯齿波电压变大,干涉仪的谐振腔变长,在任一个纵模序列中(如3、4、5),3、4、5对应的波长逐渐增大,所以对应的频率逐渐减小,于是可知分别对应Δm+Δn=2、1、0所对应的可能模式.再测量每条谱线的位置(时间),两组谱线之间对应谱线之间的间隔即为自由光谱区宽度,如图中1-10、2-11、3-12、…;各组中如1-4、3-6、4-7、6-9、…为纵模间隔;而1-2、3-4、4-5、…之类为横模间隔. 实验测量得到对应谱线时间及间隔如附表2“第一组”所示. 由表中结果横模、纵模时间间隔及自由光普区分别为:0.19ms、0.93ms、3.95ms,再由附表1中自由光谱区的频率值1800MHz,利用MHz t t 1800⨯∆∆=∆自模ν (12)可计算出横纵模的频率间隔. 式中,模t ∆代表横模或者纵模的时间间隔,自t ∆则代表自由光谱区的时间长度,自模t t ∆∆即为表中的相对值一项. 计算结果,横模纵模间隔分别为85.75MHz 和423.68MHz. 再与用式(6)和(3)得到的理论值:87.85MHz 和445.10MHz 比较,相对误差分别为2.40%和4.81%.对长管进行再次测量观察到谱线如图5所示: 观察这组谱线可以发现,只能观察到3组纵模,而像第一组中第9和18条谱线却看不见了. 测量各种间隔分别为0.18ms 、0.87ms 、3.72ms ,都比第一组的值小,有“一”定性结果知道,实验中改变了(增大)锯齿幅值,这也可以解释第四组纵模消失的原因——间隔减小加之其本身幅度很小,故无法显示出来. 按同样的办法,利用(12)式计算频率间隔横纵模的分别为89.15MHz 和422.50MHz ,相对理论值误差分别是1.60%和5.08%.对两次结果取平均得横纵模的频率间隔分别为87.40MHz 和423.09MHz ,误差0.40%和4.95%.造成实验误差的原因主要在于各个模式之间相互竞争,使得模谱不断的变动,而测量时是将谱暂停下来取其一瞬进行测量。
氦氖激光器模式分析
模式分析1.氦-氖(He-Ne)激光器简介氦氖激光器(或He-Ne激光器)由光学谐振腔(输出镜与全反镜)、工作物质(密封在玻璃管里的氦气、氖气)、激励系统(激光电源)构成。
二电极通过毛细管放电激励激光工作物质,在氖原子的一对能级间造成集居数反转,产生受激辐射。
由于谐振腔的作用,使受激辐射在腔内来回反射,多次通过激活介质而不断加强。
如果单程增益大于单程损耗,即满足激光振荡的阈值条件时,则有稳定的激光输出。
内腔式激光器的腔镜封装在激光管两端。
二.氦-氖(He-Ne)激光器的工作原理氦氖激光器的激光放电管内的气体在涌有一定高的电压及电流(在电场作用下气体放电),放电管中的电子就会由负极以高速向正极运动。
在运动中与工作物质内的氦原子进行碰撞,电子的能量传给原子,促使原子的能量提高,基态原子跃迁到高能级的激发态。
这时如有基态氖原子与两能级上的氦原子相碰,氦原子的能量传递给氖原子,并从基态跃迁到激发的能级状态,而氦原子回到了基态上。
因为放电管上所加的电压,电流连续不断供给,原子不断地发生碰撞。
这就产生了激光必须具备的基本条件。
在发生受激辐射时,分别发出波长3.39μm,632.8nm,1.53μm三种激光,而这三种激光中除632.8nm为可见光中的红外光外,另二种是红外区的辐射光。
因反射镜的反射率不同,只输出一种较长的光波632.8nm的激光。
3.He-Ne激光器结构及谐振腔He-Ne激光器的结构形式很多,但都是由激光管和激光电源组成。
激光管由放电管、电极和光学谐振腔组成。
放电管是氦一氖激光器的心脏,它是产生激光的地方。
放电管通常由毛细管和贮气室构成。
放电管中充入一定比例的氦(He)、氖(Ne)气体,当电极加上高电压后,毛细管中的气体开始放电使氖原子受激,产生粒子数反转。
贮气室与毛细管相连,这里不发生气体放电,它的作用是补偿因慢漏气及管内元件放气或吸附气体造成He,Ne气体比例及总气压发生的变化,延长器件的寿命。
11 实验十一 He-Ne激光器实验
择仪器安装场地时应注意以下几点:
1. 环境温度 20±5℃ 2. 净化湿度 < 65% 3. 无强振动源、无强电磁场干扰。 4. 室内保持清洁、无腐蚀性气体。 5. 仪器应放置在坚固的平台上。 6. 仪器放置处不可长时间受阳光照射。 7. 室内应具稳压电源装置对仪器供电,装有地线,保证仪器接地良好。
E2
hν
hν
EE1 2
E2 EE1 2
(a) 自发辐射
hν
hν
hν
高能态原子 (c) 低受能激态发原射子
(b) 受激吸收 E2
EE1 2
双能级原子中的三种跃迁
3.3 粒子数反转
一个诱发光子不仅能引起受激辐射,而且它也能引起受激吸收,所以只有当处 在高能级的原子数目比处在低能级的还多时,受激辐射跃迁才能超过受激吸收,而 占优势。由此可见,为使光源发射激光,而不是发出普通光的关键是发光原子处在 高能级的数目比低能级上的多,这种情况,称为粒子数反转。但在热平衡条件下, 原子几乎都处于最低能级(基态)。因此,如何从技术上实现粒子数反转则是产生激 光的必要条件。
5 氦氖激光器系列实验
5.1 实验一 氦氖激光束光斑大小和发散角 实验目的
1.掌握测量激光束光斑大小和发散角的方法。 2.深入理解基模激光束横向光场高斯分布的特性及激光束发散角的意义。
-4-
天津市港东科技发展有限公司
实验仪器用具
氦氖激光器、光功率指示仪、硅光电池接收器、狭缝、微动位移台。
实验原理
激光束的发散角和横向光斑大小是激光应用中的两个重要参数,激光束虽有方
4.2 激励源
为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处 于上能级的粒子数增加。一般可以用气体放电的办法来利用具有动能的电子去激发 介质原子,称为电激励;也可用脉冲光源来照射工作介质,称为光激励;还有热激 励、化学激励等。各种激励方式被形象化地称为泵浦或抽运。为了不断得到激光输 出,必须不断地“泵浦”以维持处于上能级的粒子数比下能级多。
He-Ne激光器模式分析实验
He-Ne 激光器模式分析一、 实验目的 1、 了解激光器模式的形成及特点,加深对其物理概念的理解; 2、 通过测试分析,掌握模式分析的基本方法; 3、 了解实验使用的共焦球面扫描干涉仪的工作原理及性能,学会正确使用 二、 实验原理1. 激光模式的一般分析 稳定腔的输出频率特性:(1)其中:L —谐振腔长度;q 纵横序数;R 、艮一两球面反射镜的曲率半径; m n 横模序数;n 腔内介质的折射率。
(1)式看出,对于同一纵模序数,不同横模之间的频差为: (1--) (1 - - )] 1/2R 1 R 2(其中 A m=n- m' ; A n=n_ rT )对于相同的横模,不同纵模间的频差为 3 ' = —A q q :q 2耳 L 相邻两纵模的频差为 C 2 F(3)由(2)、( 3)式看出,稳定球面腔有如图 2— 1的频谱。
△表示不同的两横模(比如U 00与U 10)之间的频差与相邻两纵模之间的频差之比,2. 共焦球面扫描干涉仪的工作原理C1Vmnq「辽[q_(m n 1)]C0S-1[(1LR 1 )(1L R 2 )]1/2 Avmn:m'n'_1(m ;n)cos [(2)(△q=q — q ')(2)式除以(3)式得=mn:m ,n\l c ^ . .;n )cos _1[(1 —丄)(1 -丄)]AvqR 1R 2「/2(4)设:Avmn:m'nAu qS=丄 cos -1 [(1 -丄)(1 一 丄)]1/2兀R 1 R 2于是(4)式可简写作:(二m =n ) _ ': S(5)V 00q+1(1) 共焦球面扫描干涉仪由两块镀有高反射率的凹面镜构成,如图 射镜的曲率半径R=R=L 。
(2) 正入射时,干涉相长条件为:4L=m ・(n 为折射率;L 为腔长)(3) 通常情况下,R 固定,而F 2装在一块管状压电陶瓷上。
如果在压电陶瓷 y 方 向上加一周期性的信号电压,那么 Fb 将随压电陶瓷周期变形并沿轴向在中心位置 附近做微小振动,因而干涉仪的腔长 L 也做微小的周期变化。
氦氖激光器模式分析
He-Ne激光器的模式分析实验简介:相对一般光源,激光还具有单色性好的特点。
也就是说,它可以具有非常窄的谱线宽度。
这样窄的谱线,并不是从能级受激辐射就自然形成了,而是受激辐射后又经过谐振腔等多种机制的作用和相互干涉,最后形成的一个或多个离散的、稳定的又很精细的谱线,这些谱线就是激光器的模。
每个模对应一种稳定的电磁场分布,即具有一定的光频率。
而相邻两个模的光频率相差很小,我们用分辨率比较高的分光仪器可以观测到每个模。
当从与光输出的方向平行(纵向)和垂直(横向)两个不同的角度去观测和分析每个模式,发现又分别具有许多不同的特性,因此,为方便称呼,每个模又可以相应称做纵模和横模。
在激光器的生产与应用中,我们常常需要先知道激光器的模式状况,如定向、精密测量、全息技术等工作需要基横模输出的激光器,而激光稳频和激光测距离等不仅要基横模而且要求单纵横运行的激光器,因此,进行模式分析是激光器一项基本又重要的性能测试。
本实验是以几支具有不同模式的He-Ne 激光器为例,从它们展示出的频谱结构入手,来分析和研究激光器不同的纵模、不同的横模所具有的场分布特征,从而得出纵横个数、纵模频率间隔、横模个数、横模频率间隔、横模模序等结果。
本实验目的:(1)了解激光器模的形成及特点,加深对其物理概念的理解。
(2)通过测试分析,掌握模式分析的基本方法。
(3)对本实验使用的重要分光仪器一共焦球面扫描干涉仪,了解其原理、性能,学会正确的使用。
实验装置图1 实验装置示意图实验装置各部分说明:(1)激光器,具有不同模式结构的激光器四支,可分别了解它们不同的模式状况,从中学习模式分析的基本方法。
(2)激光电源,用来激发激光器。
工作电流等参数由“实验说明书”提供。
(3)小孔光阑,用于调光的辅助工具,起正负两方向光束准直作用。
(4)扫描干涉仪,使激光器的各个不同模按频率展开,透射光中心波长为6328Å。
自由光谱范围应在1500~2000MH z,每伏电压使腔长改变24~25Å,具体数据由实验室给出(分析40cm 长的激光器,精细常数应大于100;而分析1m 长的激光器,精细常数要求更高,应大于200)。
He-Ne激光器的输出模式实验研究
相邻纵模的频率间隔大小:
不同的横纵模就会有不同的波长,序数越大,波长越短。
通常只需要知道具有几个不同的横模和不同的纵模间的频率差:
(3)其中,Δm,Δn 分别表示x,y方向上横模模序数差,R1,R2是谐振腔的两个反射镜的曲率半径。
相邻横模频率间隔为[4]:
2 实验结果分析与讨论
实验中使用的器材有:半外腔
焦球面扫描干涉仪、示波器、锯齿波发生器和光电
图1 He-Ne激光器模式分析实验装配图TEM00
频谱图图2 He-Ne激光器基横模TEM00光斑和频谱图
TEM01
频谱图图3 He-Ne激光器TEM01模光斑和频谱图
TEM10
频谱图图4 He-Ne激光器TEM10模光斑和频谱图
TEM11
频谱图图5 He-Ne激光器TEM11模光斑和频谱图。
He—Ne激光器纵模分析实验
第 2 期
光
学
仪
器
V0 . 2 13 .No 2 .
2 1 年 4月 00
OPTI CAL N S I TRUM ENTS
Ap i 0 0 r ,2 1 l
文章 编号 : O 55 3 (O 0 0 —0 90 1 0— 6 O 2 1 ) 20 2— 5
HeNe — 激光器纵模分析实验 *
Ke r s y wo d :H eN e ls r o g t d n l o e - a e ;l n i i a d ;m o e a a y i ;r s n t r u m d n l ss e o a o
引 言
激 光模式 是激 光技术 应用 中的一个 重 要 的基 本 概念 , 诸 多 激光 器 的 生产 和 应 用 中 , 需 要 先 知激 在 都 光器 的模 式 , 如 : 精密测 量 、 息技 术 等 工作 需要 基 横模 输 出的激 光 器 , 在激 光 稳 频 和激 光测 距 工 例 在 全 而 作 中 , 仅需要 基横模 而且 需要单 纵模 运行 的激光 器E 不 ¨。然 而 , 光模 式所 涉及 的理论 性 很 强 , 论课 讲 激 理 到的结论 一般是 通过 复杂 的数 学 推 导得 到 的 , 抽 象 , 须 借 助 实 验 环节 , 很 必 而且 不 能 像 传 统激 光 实 验 那
( c o l tc lElcrc l n m p trEn ie rn S h o Op ia— e tia dCo ue gn e ig,Unv riyo a g a o of a iest fSh n h ifr
c e c n c n lg S in ea dTe h oo y,S a g a 0 0 3,Chi ) hnhi 09 2 na
He-Ne激光模式及参数测量
不相等,因此可以判断A、B是两个纵模,而 C、D、E、F 是跳模。
(3)出现跳模的原因可能是:由于腔内温度的升高,使得粘贴在放电管两端的两个反射镜
片之间的距离加大,也就是谐振腔的腔长变大。
这将使得各本证纵模的谐振频率向低频方向漂移,输出激光的频率也随之减小。当 ������������:1
模的频率变成比������������模频率更接近中心频率 ������0 时,由于谱线竞争,������������:1模就可能战胜 ������������ 模取
(2) 保证倾角、高度不变,大范围内移动水平距离 Z,在不同距离观察 M,N,光电接
收器上的光斑位置,是否出现大幅度移动;
倘若大幅度移动,说明没有达到“平行、等高、垂直”;这时调节方向是往光斑反方向
运动的方向调节;直到光斑在 M、N、光电转换器上的光斑不随着水平距离 Z 的变化发生大
幅度移动。其原理如下:
e
2
x xc w2
2
π /2
严格满足高斯型表达式。按照高斯光束理论,w 即为光斑半径,代表着光强下降到最大
值的 ������;2。因此第一组数据测量所得的光斑半径为:
������ = 0.068 + ������������������������ × ������������������[− 2(������;26.8.644266)2]
������1 = 2.84 mm,相关系数 :γ = 0.998。满足实验精度要求。理想情况下表达式为:
������(������,
������)
=
������(������,
0)������������������[−
2������2 ������(������ )2
9HeN讲义e激光模式分析
(c) TEM02
(d) TEM03
圆形反射镜的横模图形
横模电场分布及强度示意图
(a) TEM00 (b) TEM10 (c) TEM20
激光谐振腔内电场横模分布示意图
TEM00
TEM11
激光多横模振荡示意图
激光模式的测量方法
横模的测量方法:在光路中放置一个光屏;拍照
;小孔或刀口扫描方法获得激光束的强度分布,确定 激光横模的分布形状
F
c 4l
l 20mm F3.75GHz
感谢聆听!
L=10厘米的He-Ne气体激光器
q 1.5109Hz
L=30厘米的He-Ne气体激光器
q 0.5109Hz
Ne原子的中心频率: 4.7 41104 /s
Ne原子的中心波长: 6328À
荧光光谱线宽: q 1.5109Hz
激光器中出现的纵模数
工作原子自发辐射 的荧光线宽越大, 可能出现的纵模数 越多。
光电探测器:接收扫描到的激光频率 双凸薄透镜:待测的激光光束变换为无源腔的高斯光束。使待测激光 束的全部能量耦合到无源腔的基模中去。 偏振器和1/4波片组成光学隔离器,防止光重新回到待测激光器中去
球面扫描干涉仪
相干极大透射 4la ka
自由光谱范围
4ldkd(k1)a
d
a
ad
4ld
F
2 4l
基模(横向单模): m=n=0, 其它的横模称为高阶 横模
放电毛细管反馈产生衍射
方形反射镜和圆形反射镜的横模图形
m n 2 c n L 1( m n)ar c ( 1 cRL1 o )1 s ( RL2) 1 2
方形反射镜的横模图形ห้องสมุดไป่ตู้
基于He—Ne激光器模式分析实验研究
激光 器 输 出 的激光 光 谱 线宽 是 由 自然 增 宽 、 碰
传播 方 向 的横 向 x—y 面 内也 存 在 稳 定 的 场分 布 , 这 就是横 模 , 同的横 模 对 应 于 不 同横 向稳 定 的光 不
场分 布 和频率 . 谐振 腔对 光进 行多次 正反 馈 , 光每经
过放 电毛 细管反 馈一 次 , 相 当于一 次衍射 , 次反 就 多 复衍 射就 在横 向形 成 了稳 定 的衍 射 分 布 , 这种 分 布 通常是 几种 横模 叠 加 的结 果 . 个 模 由三个 量 子 数 一
0 引 言
激光 模 式 是反 映 激光 特 性 的一 个 基本 参 数 , 依 据不 同 的应 用场 合对 激光模 式参 数有着 不 同的技 术 要求 . 在现代 技 术应用 中 , 如定 向 、 精密 测量 、 全息 技 术等 需要基 横模 输 出 的激 光 器 , 激 光 稳频 和 激 光 而
曲艳 玲 ,张 萍 ,王 丽梅 ,吴 云 峰
( 连 民族 学院 理 学 院 , 大 大连 1 6 0 ) 1 60
摘 要 : 绍 了用 于 激 光 模 式 的 产 生 原 理 及 分 析 实 验 装 置 , 激 光 模 式 理 论 进 行 了提 炼 和归 纳 , 理 出 了 适 合 介 对 整
稳 定震荡 的条 件是 , 光在 谐 振 腔 内 往返 一 周 的 光程 差 应是 波长 的整 数 倍 , 2 L: 即 这 正 是 光 波相
测距 等应用 不仅要 求 基横模 而且 要求单 纵模 运行 的
近代物理实验报告—He-Ne激光模谱分析与模分裂
2
q
( 1) 。当一片双折射元件放入激光谐振腔中,由于双折射元件
对两正交偏振方向的光(o 光和 e 光)有不同折射率,o 光和 e 光在激光腔中的光程不同,所以原本唯一的
谐振腔长 “分裂” 为两个腔长, 两个腔长又不同的本征频率, 一个激光频率变成了两个。 其中 为光程差。 (3)模竞争
6.92ms
△t2,4
6.92ms
即自由光谱区 :3.28ms 表 7 短激光管的纵模实验测量与计算值
△t1,2
平均值
1.24ms
△t3,4
1.12ms
即纵模间距:1.18ms 计算的结果为: 短激光管的纵模间距为:647.6MHz,误差为:4.5%。 观察的短管激光器的光斑如图 10:
4 L K (5)
其中 K 为整数。只有满足该驻波条件的光才可以因为干涉极大而透过干涉仪进入光电计测量光强。可 以证明光频率 v 的变化与腔长的变化量成正比, 也就是与加在压电陶瓷环上的电压成正比。 实验中示波器的 横向扫描采用与干涉仪的腔长扫描同步,示波器的横坐标 t 的变化就可以表示干涉仪的频率变化, 即 V L v t 。
将这些参数代入公式(3)、(4)中,可得两种激光管的出射光若存在不同的模式,则其纵模间隔与横模间 隔的理论值如表 2。 表 2 纵横模理论值
长激光管 纵模间隔 横模间隔 445.10MHz 87.75MHz 短激光管 619.83MHz 101.47MHz
5 / 9
2、长激光管模谱的实验测量与分析 实验中在示波器上观察到的长激光管的模谱如图 6 所示
1 2
3
4
5
6
7
8
9 10
11 12
He-Ne激光器纵模分裂和模竞争及模谱分析
He-Ne激光器纵模分裂和模竞争及模谱分析【摘要】:本实验主要利用氦氖激光器、扫描干涉仪、示波器观察了不同激光器的纵模横模,认识了自由光谱区;又利用了纵模分裂和模竞争测量了增益曲线,测得出光带宽,观察了模分裂现象,观测了激光偏振态。
关键词:氦氖激光器、纵模、横模、自由光谱区、增益曲线、出光带宽、模分裂一、实验引言:激光是20世纪60年代的伟大发明。
它的诞生影响到自然科学的各个领域。
激光是受激辐射光,所以它具备与普通光源不同的性质,即极好的方向性、单色性和极高的亮度。
激光器由增益介质、光学谐振腔和激励能源组成。
激光谐振腔有本征频率,每一个频率对应一种光场分布,叫做一种模式。
纵模描述轴向光场分布状态,横模描述横向光场分布状态。
谐振腔的结构不同,它的模式也不同。
激光模分裂指的是由物理效应,如双折射和塞曼效应等把激光器的一个频率分裂成两个的现象。
激光束由受激辐射产生,光束中的光子都具有相同的偏振状态,所以大多数类型的激光器输出的每一个纵模(频率)也都是线偏振的,而且相邻的两个纵模要么是正交偏振的,要么是平行偏振的。
本实验正式利用激光器输出光束的偏振特性研究由双折射效应引起的激光频率分裂。
二、实验原理:2.1激光以及氦氖激光器如果一个腔体中同时存在着原子体系和光讯号,它们之间的相互作用可以归结为三个基本过程,即自发辐射、受激吸收和受激发射。
对于激光束,同时存在着受激吸收和受激发射。
有激光输出,要求受激发射超过受激吸收,必须是高能级的原子数密度N2大于低能级的原子数密度N1。
我们把出现N2>N1的情况称为“粒子数反转”。
用放电激励的方法使N2>N1,那么,由于激光器两端有两块互相平行的高反射镜子,使光讯号在激光器的腔体中不断来回振荡,不断放大,最终就形成强烈的激光束。
受激发射的光子具有相同的能量(频率)、相同的相位、偏振态,且从同一方向发出。
图一、激光管结构示意图2.2氦氖激光器的纵模横模纵模是描述谐振腔内轴向光场的分布状态,横模是描述腔内横向光场的分布状态。
HeNe激光器模式分析
实验二 He-Ne激光器的模式分析一、实验目的1.用共焦球面扫描干涉仪测量He-Ne激光器的相邻纵模间隔,判别高阶横模的阶次。
2.了解激光的频谱结构,掌握扫描干涉仪的使用方法及测定其性能指标的实验技能。
3.观察激光器的频率漂移及跳模现象,了解其影响因素;观察激光器的输出横向光场分布花样,体会谐振腔的调整对它的影响。
二实验设备He-Ne激光器、激光电源、小孔光阑、共焦球面扫描干涉仪、锯齿波发生器、放大器、示波器等三、实验原理1.激光的频率特性激光器的光学谐振腔内可存在一系列具有分立谐振频率的本征模式,但其中频率位于工作物质增益带宽范围内,并满足阈值条件的本征模才会振荡形成激光。
通常把激光光波场的空间分布,分解为沿传播方向(腔轴方向)的分布E(z)和垂直于传播方向在横截面内的分布E(x,y),即谐振腔模式可分为纵模和横模,用符号TEM标志不同模式的模式分布。
对激光束的模式进行频率分析,可以分辨出它的精细mn结构。
由无源腔理论可知:共轴稳定球面谐振腔TEM mn 模的频率为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-+++=2111arccos )1(12R L R L n m q nL C v mnq π (2.1)式中m 、n 为横模阶次,q 为纵模阶次,L 为腔长,R 1R 2是腔面两反射镜的曲率半径,n是工作物质的折射率。
当m=n=0时为基横模,而m 或n ≠0时叫做高阶横模。
对于不同的横模(m 、n 不同)有不同的横向光强分布,所以观察光斑图案或测量光强分布也能分析横模结构。
但对于含有高阶横模的结构,则必须借助于频率分析才能分辨。
由(2.1)式可知,q 一定时,不同的横模对应有不同的振荡频率,其频率间隔为 ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-∆+∆=∆21'',1111arccos )(12R R n m nL C v n m mn π (2.2) 式中:m m m -=∆',n n n -=∆'。
He-Ne激光器模式分析
尚的亮度 . t婴 原 冈足 它 的发 光 机 理 ——受 激 辐
射, 容 易被忽 视 的足 , 激 光器 光学 谐振 腔 的模 式选
择 也起 到 r啦 螫 的 作 川 . 为 全 J 解 激 光 形 成 的
.
重点 和难 点.但要 解 释 具体 的 实验 现 象 . 只J 解
谐振 腔 是不 够 的 , 建 议 教 学 f l 要 简 单 介 绍 激 光
度, 陔 实 验 主 曼 目 的 在 于 学 习 激 光 器 模 式 这 一 承
放 电条 什实验 ” 研 究一 1 作物 质 He干 I 】 Ne C 体
比、 总 气 以 及 放 电 【 u流 对 激 光 { 替 } 输 出 功 牢 的 影
响. J 解 增 介质 干 u 激励源的f 1 : 川; 通过“ He — N e 激 光 器的 旁侧 光 谱实 验 ” 可 研 究增 益 介 质激 光跃
[ i 1 f 粒 子 数 分 的 对 比 . r l 『 直 观 地 验 址 增 益 介 质 的
作川 ; 通 过“ H c , - N。激 光 器 的模 式 分 析 实 验 ” 研
究激 光器 输 f H 的 模 式 特 . 贝 l J 可 r解 谐 振 腔 的 作
』 H 共 焦扫 描 _ r 涉仪得到模 谱。 并测 城 卡 } i 应 的频 率
隔.
川千 ¨ 影响 .… 于教 学 汁划 、 课程I I 、 f 问 等 限制 , / f 少
、
: 校 只红 物
业 的近 代 物 理 实 验 课 中 没 了
1 模 式 形成 的 物 理 原 理
He — Ne激 光 器 谐 抓 腔 由 问 隔 为 』 的 介 顷 膜
He-Ne激光器的纵模横模分析
误差:
=
6.78-6.2 =9.4% 6.2
长管:示波器显示如下模谱:
由图可知,长管既有横模,又有纵模。一个周期内有两个自由光谱区。 利用示波器光标测得 1、4 之间间隔 11ms,2、3 之间间隔 2.6ms。 根据仪器参数可以求得: 理论值:
2.6 =4.43*108 Hz 11 c 3*108 m/s 纵 = = =4.34*108 Hz 2 L 0.69m 纵 =1.875*109 *
频率间隔(ms) 幅度 (V) 0 0 1.5 76 2.9 174 4.7 290 5.5 262 6.4 146 7.2 80 7.8 0
测得自由光谱区频率间隔为 13ms,所以出光带宽=7.8/13*18.75*108Hz=1.125*109Hz (4)激光偏振态的观测:调整石英晶片晶轴与光束夹角,使纵模谱线产生足够的分裂 间距。在激光纵模分裂后,将偏振片置于激光器输出镜和扫描干涉仪之间,旋转偏振片,在 示波器上观察两个分裂谱线的幅值变化情况, 确定两分裂谱线之间的偏振关系, 并解释原因。 在示波器上观察到如下两个分裂谱线:
误差: 调整示波器,观察横模:
=
4.43-4.34 =2.1% 4.34
测得 1、2、3、4 之间的间隔均为 520 微秒。
根据仪器参数求得:
横=1.875*109*
0.52 =8.87*107Hz 11
理论值:
1 2 c 1 L 1 横 = m+n cos 1 =8.74*107Hz 2L R
图 1 共焦球面扫描干涉仪结构
图2
Hale Waihona Puke 光路图从图 2 中可以看出, 一束入射光有两组透射光: 反射了 4m 次的Ⅰ型和反射 4m+2 次的Ⅱ 型。若相邻两束光的光程差满足: 4L=k ,其中 K 为整数,则透射光束干涉极大,当入射 光波长改变时,只需要改变 L,使上式仍然满足即可产生干涉极大.因此干涉仪的腔长是入
实验12 He-Ni激光器的分析模式
2L qq
图12-1 粒子数反转分布
实验原理
1.激光器模的形成
2L qq
每一个 q对应纵向一种稳定的电磁场分布,叫作一个纵模,q 称作纵模序数。 q值反映的恰是驻波波腹的数目,纵模的频率为
q
c q 2L
同样,一般我们不去求它,而关心的是相邻两个纵模的频率间隔
c c q1 2 L 2 L
实验步骤
8.根据干涉序个数和频谱的周性期,确定哪些模属于同一个干涉序。 1 .按实验装置图连接线路。经检查无误,方可进行实验。 2.改变驱动器的输出电压(即调节“幅度”旋钮),观察示波器上干涉序数目的变化。 9 .开启激光电源。 3.用直尺测量扫描干涉仪光孔的高度。 10 .根据自由光谱范围的定义,确定哪两条谱线之间对应着自由光谱范围(本实验使用的扫描 4.使激光束通过小孔光阑。 干涉仪的自由光谱范围, = 3.75GHz)。 11 .在同一干涉序内,根据纵模定义,测出纵模频率间隔。 5.开启扫描干涉仪驱动器和示波器的电源开关。 12 .确定示波器荧光屏上频率增加的方向,以便确定在同一纵模序数内哪个模是基横模,哪些 注意:如果在光屏上形成两个光斑,要在保持反射光斑的中心与光阑的小孔大致重合的 模是高阶横模。 条件下,调节扫描干涉仪的鼓轮,使经过扫描干涉仪后形成的两个光斑重合。 13 .测出不同横模的频率间隔,并与理论值相比较,检查辨认是否正确,确定的数值。 6.降低驱动器的频率,观察光屏上的干涉条纹 ,调节干涉仪上的四个鼓轮,使干涉条纹 14 .观察激光束在远处光屏上的光斑形状。 最宽。 7.将光电二极管对准扫描干涉仪输出光斑的中心,调高驱动器的频率,观察示波器上展 现的频谱图。
实验数据
K序 峰
X1 -0.28ms
X2 0.32ms
He-Ne激光器模式分析
He-Ne 激光器模式分析一 实验目的1 了解激光器的模式结构,加深对模式概念的理解。
2 通过测试分析,掌握模式分析的基本方法。
3 对本实验使用的分光仪器——共焦球面扫描干涉仪,了解其原理、性能,学会正确使用。
二 实验仪器实验装置如图1所示。
实验装置的各组成部分说明如下: 1 待测He-Ne 激光器。
2 激光电源。
3 小孔光阑。
4 共焦球面扫描干涉仪。
5 接收器。
6 电子计算机。
三 实验原理1 激光器模的形成我们知道,激光器的三个基本组成部分是增益介质、谐振腔和激励能源。
如果用某种激励方式,在介质的某一对能级间形成粒子数反转分布,由于自发辐射和受激辐射的作用,将有一定频率的光波产生,在腔内传播,并被增益介质逐渐增强、放大,如图2所示。
实际上,由于能级总有一定的宽度以及其它因素的影响,增益介质的增益有一个频率分布,如图3所示,图中)( G 为光的增益系数。
只有频率落在这个范围内的光在介质中传播时,光强才能获得不同程度的放大。
但只有单程放大,还不足以产生激光,要产生激光还需要有谐振腔对其进行光学反馈,使光在多次往返传播中形成稳定、持续的振荡。
形成持续振荡的条件是,光在谐振腔内往返一周的光程差应是波长的整数倍,即q q L λμ=2 (1)式中,μ为折射率,对气体μ≈1;L 为腔长;q 为正整数。
这正是光波相干的极大条件,满足此条件的光将获得极大增强。
每一个q 对应纵向一种稳定的电磁场分布,叫作一个纵模,q 称作纵模序数。
q 是一个很大的数,通常我们不需要知道它的数值,而关心的是有几个不同的q 值,即激光器有几个不同的纵模。
从(1)式中,我们还看出,这也是驻波形成的条件,腔内的纵模是以驻波形式存在的,q 值反映的恰是驻波波腹的数目,纵模的频率为Lc qq μν2= (2)同样,一般我们不去求它,而关心的是相邻两个纵模的频率间隔LcLc q 221≈=∆=∆μν (3) 从(3)式中看出,相邻纵模频率间隔和激光器的腔长成反比,即腔越长,相邻纵模频率间隔越小,满足振荡条件的纵模个数越多;相反,腔越短,相邻纵模频率间隔越大,在同样的增益曲线范围内,纵模个数就越少。
激光实验报告
激光实验报告He-Ne 激光器模式分析一.实验目的与要求目的:使学生了解激光器模式的形成及特点,加深对其物理概念的理解;通过测试分析,掌握模式分析的基本方法。
对本实验使用的重要分光仪器——共焦球面扫描干涉仪,了解其原理,性能,学会正确使用。
要求:用共焦球面扫描干涉仪测量He-Ne 激光器的相邻纵横模间隔,判别高阶横模的阶次;观察激光器的频率漂移记跳模现象,了解其影响因素;观察激光器输出的横向光场分布花样,体会谐振腔的调整对它的影响。
二.实验原理1.激光模式的一般分析由光学谐振腔理论可以知道,稳定腔的输出频率特性为:LCV mnq η2=[1q (m 2n 1)+++π]cos -1[(1—1R L )(1—2R L )]1/2(17)其中:L —谐振腔长度; R 1、R 2—两球面反射镜的曲率半径;q —纵横序数; m 、n —横模序数; η—腔内介质的折射率。
横模不同(m 、n 不同),对应不同的横向光场分布(垂直于光轴方向),即有不同的光斑花样。
但对于复杂的横模,目测则很困难。
精确的方法是借助于仪器测量,本实验就是利用共焦扫描干涉仪来分析激光器输出的横模结构。
由(17)式看出,对于同一纵模序数,不同横模之间的频差为:)(12'':n m L C n m mn ∆∆πηυ∆+=cos -1[(1-1R L )(1-2R L )]1/2 (18)其中:Δm=m -m ′;Δn=n -n ′。
对于相同的横模,不同纵模间的频差为q LCq q ∆ηυ∆2':=其中:Δq=q -q ′,相邻两纵模的频差为LCq ηυ∆2=(19)由(18)、(19)式看出,稳定球面腔有如图2—1的频谱。
(18)式除以(19)式得cos )(1'':n m n m mn q ∆∆πν∆∆+=-1[(1-1R L )(1-2R L )]1/2(20)设:qn m mn υ∆υ∆∆'':=; S=π1cos -1[(1-)]1)(21R LR L -1/2 Δ表示不同的两横模(比如υ00与υ10)之间的频差与相邻两纵模之间的频差之比,于是(20)式可简写作:Sn m ∆=∆+∆)( (21)只要我们能测出Δ,并通过产品说明书了解到L 、R 1、R 2(这些数据生产厂家常给出),那么就可以由(21)式求出(Δm +Δn )。
氦氖激光器模式分析.
普通物理实验C课程论文题目:氦氖激光器模式分析学院:物理科学与技术学院专业:物理学师范年级:2011级学号:222011315231231 姓名:李生宝指导教师:雷衍涟论文成绩:答辩成绩:2012年12月12 日氦氖激光器模式分析李生宝西南大学物理科学与技术学院,重庆 400715摘要:激光的模式结构是激光器性能指标中的一项重要内容,本实验基于激光的形成、激光模式的形成;共焦球面扫描干涉仪的工作原理、性能及使用方法等相关知识对He-Ne激光器的模式结构进行分析测量。
同时又是对于前面所述知识点的一个复习和巩固。
同时,实验过程中的一些小技巧和注意事项也在讨论之列。
关键词:He-Ne激光器;模式结构及分析;共焦球面扫描干涉仪引言:相信激光这名词对大家来说一点也不陌生。
在日常生活中,我们常常接触到激光,例如在课堂上我们所用的激光指示器,与及在计算机或音响组合中用来读取光盘资料的光驱等等。
高亮度、高方向性、高单色性和高相干性是激光的四大特性。
He-Ne激光器是目前应用最广泛的激光器。
它结构简单,由三大部分组成,即工作物质,谐振腔和激励电源。
其基本结构如下图。
激光的单色性好,说明它具有非常窄的谱线宽度,这样窄的谱线是受激辐射后,经过谐振腔等多种机制的作用和相互干涉,最后形成的一个或多个离散的、稳定的、精细的谱线,这些谱线就是激光器的模。
每个模对应一种稳定的电磁场分布,即具有一定的光频率。
当从与光输出方向平行(纵向)或垂直(横向)两个不同方向观测时,发现其分别具有许多不同的特征,为方便讨论,分别称为纵模和横模。
在激光器的生产和应用中,我们常常需要先知道激光器的模式状况如精密测量、全息技术等工作需要基横模输出的激光器,而激光器稳频和激光测距等除此之外还要求单纵模运行的激光器。
因此,对激光器的模式分析是一项基本又重要的性能测试。
模式分析的主要内容包括,利用共焦球面扫描干涉仪观察激光器的模式频谱结构,分析哪些频谱属于同一纵模(横模);哪些是基横模,哪些是高阶横模并测量和分析出激光器所具有的纵模个数、纵模频率间隔值,横模个数、横模频率间隔值。
9HeNe激光模式分析
量,实验中利用球面扫描干涉仪
纵模的测量方法:球面扫描干涉仪测量
高斯光束 光学隔离
1/4波片 测量原理:通过测量激光输出的频率谱来判定模式
球面扫描干涉仪
两球面镜:组成无源腔 小孔光阑:增加高次横模的衍射损耗 压电陶瓷:通过改变电压而改变腔长因而导致改无源腔所允许通过激光频率 改变 示波器的锯齿波扫描电压,对激光允许通过的频率作周期性的扫描
激光器腔长越大,相 邻纵模的频率间隔 越小,同样的荧光 谱线线宽内可以容 纳的纵模数越多。
激光谐振腔内低阶纵模分布示意图
激光纵模分布示意图
横模-横向X-Y面内的稳定场分布
激光的模式用符号: TEMmnq
q为纵模的序数(纵向驻波波节数),m,n (p,l)为横模的序数。 对于方形镜,M表示X方向的节线数, N表示Y方向的节线数; 对于圆形 镜, p 表示径向节线数,即暗环数,l表示角向节线数,即暗直径数
基模(横向单模): m=n=0,
其它的横模称为高阶 横模
放电毛细管反馈产生衍射
方形反射镜和圆形反射镜的横模图形
m n
c 2nL
1
(m
n ) arccos(1
L )(1 R1
L R2
)
1 2
方形反射镜的横模图形
(a) TEM00
q
c
q
Байду номын сангаас
q c 2nL
纵模频率间隔
q1
c 2nL
腔的纵模在频率尺度上是等距离排列的
激光的纵模(轴模):由整数q所表征的腔内纵向稳定场分布 整数q称为纵模的序数,驻波系统在腔的轴线上零场强度的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二 He-Ne 激光器的模式分析
一、实验目的
1. 用共焦球面扫描干涉仪测量He-Ne 激光器的相邻纵模间隔,判别高阶横模的阶次。
2. 了解激光的频谱结构,掌握扫描干涉仪的使用方法及测定其性能指标的实验技能。
3. 观察激光器的频率漂移及跳模现象,了解其影响因素;观察激光器的输出横向光场分布花样,体会谐振腔的调整对它的影响。
二 实验设备
He-Ne 激光器、激光电源、小孔光阑、共焦球面扫描干涉仪、锯齿波发生器、放大器、示波器等
三、实验原理
1.激光的频率特性
激光器的光学谐振腔内可存在一系列具有分立谐振频率的本征模式,但其中频率位于工作物质增益带宽范围内,并满足阈值条件的本征模才会振荡形成激光。
通常把激光光波场的空间分布,分解为沿传播方向(腔轴方向)的分布E(z)和垂直于传播方向在横截面内的分布E(x,y),即谐振腔模式可分为纵模和横模,用符号TEM mn 标志不同模式的模式分布。
对激光束的模式进行频率分析,可以分辨出它的精细
结构。
由无源腔理论可知:共轴稳定球面谐振腔TEM mn 模的频率为
⎥⎥⎦
⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-+++=2111arccos )1(12R L R L n m q nL C v mnq π (2.1)
式中m 、n 为横模阶次,q 为纵模阶次,L 为腔长,R 1R 2是腔面两反射镜的曲率半径,n
是工作物质的折射率。
当m=n=0时为基横模,而m 或n ≠0时叫做高阶横模。
对于不同的横模(m 、n 不同)有不同的横向光强分布,所以观察光斑图案或测量光强分布也能分析横模结构。
但对于含有高阶横模的结构,则必须借助于频率分析才能分辨。
由(2.1)式可知,q 一定时,不同的横模对应有不同的振荡频率,其频率间隔为
⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-∆+∆=∆21'',1111arccos )(12R R n m nL C v n m mn π (2.2)
式中:m m m -=∆',n n n -=∆'。
利用频率差,即可精细地分析激光的横模结构。
不同纵模(即q 值不同)对应有不同的纵向(沿腔轴线方向)光强分布,但这种差异是肉眼不能分辨的,而只能根据频率来分析纵模结构。
相邻纵模的频率间隔为
nL
c v q 2=∆ (2.3) 可见,腔长越短,相邻纵模的频率间隔越大,在一定的增益带宽情况下,则有可能形成单纵模振荡。
通常情况下,激光器包含有若干纵模和横模。
激光的横模源于光腔的衍射,横模阶次越高,光腔对它的衍射损耗越大,因而高阶横模的阈值高,相对来说不易产生激光振荡。
2. 共焦球面扫描干涉仪的工作原理
共焦球面扫描干涉仪由两块镀有高反射膜,曲率半径相同的凹面反射镜组成,其曲率半径R 1R 2和腔长L 满足R 1=R 2=L ,因此它们的近轴焦点重合,构成一共焦系统。
如图2.1所示,两块反射镜中,一块固定不动,另一块固定在压电陶瓷环上,压电陶瓷环的长度变化量和所加电压成正比。
当用一定幅度的锯齿波电压调制压电陶瓷环时,扫描干涉仪的腔长将在L 附近发生微小变化(约波长量级)。
图2.1共焦球面扫描干涉仪简图
当有某一波长为λ的光束近轴入射到干涉仪,可以证明,光线在干涉仪内经四次反射 后恰好闭合(见图2.1),与起始光线的光程差为
nL 4=∆
其中n 为两块反射镜间介质的折射率,当满足
λm nL =4 (m 为正整数)
时,干涉仪对入射光有最大透过率。
因此,改变腔长L 即可实现光谱扫描。
具体地说,
用压电陶瓷环驱动M2,使该镜片在轴线方向作微小的周期性振动,从而使激光模式发生变化并依次通过干涉仪;激光由光电接收器转换成电信号,该信号经放大接到专用示波器的Y 输入端,同时将改变腔长的锯齿波电压接到示波器的X 输入端。
这时,示波器的横向坐标就是干涉仪的频率,从而荧光屏上显示的即为出透过干涉仪的激光模式频谱,如图2.2所示。
图2.2示波器显示的激光模谱
扫描干涉仪有以下性能指标:
(1) 自由光谱区F v ∆。
由λm L =4(介质是空气,n=1)可知,当共焦腔长变化4
/λ时,波长λ(q )的模可再次透过干涉仪。
通常把腔长改变4/λ所对应的频率变化量L c v F 4/=∆ (L 4/2λλ=∆)称为干涉仪的自由光谱区。
如果F v ∆小于激光工作物质的增益线宽,不同级的模式频谱就有可能重叠,这是应该避免的。
(2) 仪器带宽v δ。
仪器带宽v δ是指干涉仪透射峰的频率宽度,也就是干涉仪能分
辨的最小频差。
通常,反射镜的反射率越高,调整精度越高,腔内损耗越小,则窄带越窄。
(3) 精细常数F 。
精细常数F 是用来表征扫描干涉仪分辨本领的参数。
它的定义是:
自由光谱区与最小分辨率极限宽度之比。
即在自由光谱区内能分辨的最多的谱线数目。
根据精细常数的定义
v
v F F δ∆=
精细常数的理论公式为 R R
F -=1π (2.4)
R 为凹面镜的反射率,从(2.4)式子可以看出,F 至与镜片的反射率有关。
实际
上还与共焦腔的调整精度、镜片的加工精度、干涉仪的入射和出射光孔的大小及使用时的准直精度等因素有关。
3. 激光模式的测量
利用扫描干涉仪可以测定激光器输出模式的频率间隔。
由图2.2可见,F X ∆正比于干涉仪的自由光谱区F v ∆,X ∆正比于激光器相邻纵模的频率间隔q v ∆。
当存在高阶横模时,可在基模q TEM 00旁边看到(如图中的mnq TEM ),1X ∆正比于0mn v ∆(即基模q TEM 00和高次横模mnq TEM 的频率间隔)。
由实验测得1X ∆和X ∆,即可得 X X v v q mn ∆∆=∆∆10 由公式(2.2)和(2.3)可得
⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝
⎛-∆+∆=∆∆21011arccos )(1R L R L n m v v q mn π (2.5)
将测量值与根据式(2.5)计算的理论值相比较,可估计横模阶次(△m+△n )。
4. 实验装置
图2.3实验装置示意图
实验装置各部分的说明:
(1)激光器 本实验提供一支多模内腔式He-Ne 激光器。
(2)激光电源 用来激发激光器。
工作电流等参数由实验室说明提供。
(3)小孔光阑 用于调光的辅助工具,起正负两方向光束准直作用。
(4)扫描干涉仪 使激光器的各个不同模按频率展开。
透射光中心波长为632.8nm .自由光谱区应在1500—2000MHz 。
每伏电压使腔长改变2.4—2.5nm ,具体数据由实验室给出. 仪器上有两个方位螺旋,用于调节腔的轴向方位.
(5)接收放大器 内有光电二极管,将扫描干涉仪输出的光信号转变成电信号,经放大输入到示波器的Y 轴。
(6)放大器电源 提供放大器内光电二极管的工作电压,一般用5-10V 。
注意正负极不要接错。
(7)锯齿波发生器 本实验采用的信号发生器,电压峰值在0-150V 内连续可调,周期用20ms. 锯齿波电压除了加在扫描干涉仪的压电陶瓷上,同时输到示波器X 轴上作同步扫描。
为便于观察,希望能移动序的中心波长在频谱图中的位置,使每个序中所有模能完整地展现在示波器上。
这可通过增设一个直流偏置电源,用以改变对腔扫描的电压的起点,协助调节。
偏置电源的输出电压在0-100V 内连续可调。
(8)示波器 用于显示经扫描和放大后的He-Ne 激光器的频谱图.
四、实验步骤与内容
1. 按照实验装置图连接线路,经检查无误后方可接通电源。
2. 点燃激光器,调整光路,首先使激光束从小孔光阑通过,调整扫描干涉仪上下、左右位置,使光束正入射孔中心,再细调干涉仪板架上的两个方位螺丝,使从干涉仪腔镜反射的最亮的光点回到光阑小孔的中心附近,这时表明入射光束和扫描干涉仪的光轴基本重合。
3. 将放大器的接收部位对准扫描干涉仪的输出端。
4. 接通放大器、锯齿波发生器、示波器的开关。
5. 观察示波器上的频谱图,进一步细调干涉仪的两个方位螺丝,使谱线尽量强,噪声最小。
6. 分辨扫描干涉仪的自由光谱区,确定示波器横轴上每厘米所对应的频率数。
7. 观察多模激光器的模谱,记下其波形及光斑图形(可在远场直接观察)。
并且
(1)测出F X ∆,1X ∆和X ∆。
(2)由干涉仪的自由光谱区计算激光器相邻纵模间隔q v ∆,并与理论值比较。
(3)测出纵模个数,由纵模个数及相邻纵模间隔估计出激光器工作物质的增益线宽
(通常认为He-Ne激光器的多普勒线宽约为1300MHz)。
(4)分析判断是否存在高阶横模,估计其阶次,并与远场光斑加以比较。
思考题
1.观测时为何要先确定示波器上被扫出的干涉序的数目?
2.在示波器的不同位置,纵模频率间隔有所差异是何原因?如何提高测量的准确
度?
3.为什么说非均匀加宽类型激光器容易产生多纵模振荡?。