机械基础原理连杆机构简介
机械基础-平面连杆机构
![机械基础-平面连杆机构](https://img.taocdn.com/s3/m/9750d1c889eb172ded63b78c.png)
Planar Linkage Mechanism
案例引入:四杆机构的典型应用
(1)基本型式四杆机构的应用 (2)演化型式四杆机构的应用
问题提出: 1.长度不同(杆长)? 2.运动不同(类型)? 3.应用特点(特性)? 4.如何分析(方法)?
3 2
1 4
3
2 4
1
§3-1 连杆机构案例分析与思考
=00
Folding Furniture
二.压力角与传动角
α 压力角
从动件受力点的受力方向与速度方向所夹的锐角。
pressure angle
传动角γ 压力角的余角(锐角)。
Transmission angle
γ=90°-α≤90°
注意:原动构件 B
B
传动角越大(压力角越小),
AA
机构传力性能越好。
设计时应使 min≥
C γ
Fn
Fvn C γFα
F
v
DD
1.最小传动角 min 发生位置
结论:
min 可能发生在主动曲柄与机架两次共线(AB′,AB″) 的位置之一处,即 0(o 或180o) 处。
2.确定滑块机构的最小传动角
min
偏 置 滑 块 机 构 如 何 分 析 ?
3.分析传动角的实际意义
(2)曲柄滑块机构的演化
两个转动副转化成两个移动副
(3)双滑块四杆机构的演化 (4)改变运动副尺寸 曲柄 偏心轮
三.同一机构在不同机器中的应用
五.典型连杆机构特性分析(自主掌握)
1.曲柄摇杆机构
曲柄AB为原动件作匀速转动,当它由AB1转到AB2位置时,转角φ1=180°+θ, 摇杆由右极限位置C1D摆到左极限位置C2D摆角为ψ,当曲柄从AB2转到AB1时,转角 φ2=180°-θ,摇杆由位置C2D返回C1D,其摆角仍为ψ,因为 φ1>φ2 ,对应时间t1>t2, 因此摇杆从C2D转到C1D较快,即具有急回特性,其中θ为摇杆处于两极限位置时曲柄 两个位置之间所夹的锐角,称为极位夹角。
机械设计基础第四章连杆机构
![机械设计基础第四章连杆机构](https://img.taocdn.com/s3/m/5dd9fd4a1ed9ad51f11df219.png)
课件
48
例
y
6
K E
5
F
I级杆
RRP杆组
C
H
I级杆
3
2
RRR杆组
A1B
x
O
4
D
(1)用I级杆数学模型计算B点的运动
(2)用RRR杆组数学模型计算C点的运动
(3)用I级杆数学模型计算E点的运动
(4)用RRP杆组数学模型计算F点的运动
2019/9/14
课件
49
4-5 平面连杆机构的力分析机械效率
rA
B
i
已知:A (xA ,yA )l,i,li,δ , i
数学模型
位置:
xB yB
xA li yA li
cosi sini
dxB
速度: dt
xB
xA -ili sini
dyB dt
yB
yA ili cosi
O
2019/9/14
x
加速度:
d2xB dt2
t1
t1
1 1
180 1
3
t2
t2
2 1
180 - 1
K
180 180
180 K1
K1
2019/9/14
课件
31
四、机构的死点位置
1. 死点位置 所谓死点位置就是指从动件的传动角等于零或者压力角等于90∘时 机构所处的位置。
xB
xA-i2li
c osi
-ili
s
ini
d2yB d课t2件
yB
yA-i2li
机械原理 第03章 连杆机构
![机械原理 第03章 连杆机构](https://img.taocdn.com/s3/m/48366330a32d7375a417801b.png)
平面四杆机构具有急回特性的条件: (1)原动件作等速整周转动;
(2)输出件作往复运动;
(3)
0
B2
2.曲柄滑块机构中,原动件AB以 1等速转动 B 2 b B 1 C2 C3 a b 2 1 1 1 a B1 C2 C 3 C1 B1 H A
A
C1
4
4
H
B2
偏置曲柄滑块机构
对心曲柄滑块机构 H=2a, 0 ,无急回特性。
一.平面四杆机构的功能及应用
1 .刚体导引功能 2.函数生成功能 3.轨迹生成功能 轨迹生成功能 是指连杆上某点通过某一 预先给定轨迹 的功能。 连杆
§2-4 平面四杆机构运动设计的基本问题与方法
一.平面四杆机构的功能及应用
1 .刚体导引功能 3.轨迹生成功能 2.函数生成功能 4.综合功能 O1 D1 上剪刀 D2 下剪刀
(b>c) (2b)
'
B
1
a
A
b
c
d
4
D r 3
C b 3 c
a-d
B2
r2
d c a b (2a )
d b a c (2b')
由(1)及(2a' )(2b')可得
d+a
d a , d b, d c
铰链四杆机构的类型与尺寸之间的关系:
在铰链四杆机构中: (1)如果最短杆与最长杆的长度之和小于或等于其它两杆 长度之和 ——满足杆长和条件 且: 1 以最短杆的相邻构件为机架,则此机构为以最短杆 为曲柄的曲柄摇杆机构; 2 以最短杆为机架,则此机构为双曲柄机构;
2 4
摆动导杆 机构
导杆:
C 3
收集的几种连杆机构机器人行走背后的机械原理(一)
![收集的几种连杆机构机器人行走背后的机械原理(一)](https://img.taocdn.com/s3/m/795510ff4128915f804d2b160b4e767f5acf80fc.png)
收集的几种连杆机构机器人行走背后的机械原理(一)机器人概念已经红红火火好多年了,目前确实有不少公司已经研制出了性能非常优越的机器人产品,我们比较熟悉的可能就是之前波士顿动力的“大狗”和会空翻的机器人了,还有国产宇树科技的机器狗等,这些机器人动作那么敏捷,背后到底隐藏了什么高科技呢,控制技术太过复杂,一般不太容易了解,不过其中的机械原理倒是相对比较简单,大部分都是一些连杆机构。
连杆机构(Linkage Mechanism)又称低副机构,是机械的组成部分中的一类,指由若干(两个以上)有确定相对运动的构件用低副(转动副或移动副)联接组成的机构。
低副是面接触,耐磨损;加上转动副和移动副的接触表面是圆柱面和平面,制造简便,易于获得较高的制造精度。
由若干刚性构件用低副联接而成的机构称为连杆机构,其特征是有一作平面运动的构件,称为连杆,连杆机构又称为低副机构。
其广泛应用于内燃机、搅拌机、输送机、椭圆仪、机械手爪、牛头刨床、开窗、车门、机器人、折叠伞等。
主要特征连杆机构构件运动形式多样,如可实现转动、摆动、移动和平面或空间复杂运动,从而可用于实现已知运动规律和已知轨迹。
优点:(1)采用低副:面接触、承载大、便于润滑、不易磨损,形状简单、易加工、容易获得较高的制造精度。
(2)改变杆的相对长度,从动件运动规律不同。
(3)两构件之间的接触是靠本身的几何封闭来维系的,它不像凸轮机构有时需利用弹簧等力封闭来保持接触。
(4)连杆曲线丰富,可满足不同要求。
缺点:(1)构件和运动副多,累积误差大、运动精度低、效率低。
(2)产生动载荷(惯性力),且不易平衡,不适合高速。
(3)设计复杂,难以实现精确的轨迹。
百度百科的相关词条图片如下下面我们就看看一般都有什么连杆机构适于用于行走(或者移动)的。
第一、平面四杆机构(Planar four-bar mechanism )平面四杆机构是由四个刚性构件用低副链接组成的,各个运动构件均在同一平面内运动的机构。
《机械设计基础》第2章_平面连杆机构解析
![《机械设计基础》第2章_平面连杆机构解析](https://img.taocdn.com/s3/m/ec4ca911b90d6c85ec3ac67b.png)
由上式可知,机构的急回程度取决于极位夹
角θ的大小。θ角越大,K值越大,机构的急回程
度也越高,但机构运动的平稳性就越差。反之反 然。 一般机械中1≤K≤2。
5.连杆机构具有急回特性的条件
⑴ 输入件等速整周转动;
⑵ 输出件往复运动;
⑶ 极位夹角
。 0
6.常见具有急回特性的四杆机构
二、平面连杆机构的特点及应用
1.平面连杆机构的特点
⑴寿命长 低副联接,接触表面为平面或圆柱面,
压力小;便于润滑,磨损较小。
⑵易于制造 连杆机构以杆件为主,结构简单。 ⑶可实现远距离操纵控制 因连杆易于作成较长
的构件。
⑷可实现比较复杂的运动规律 ⑸设计计算较繁复,当机构复杂时累计误差较大,
2、双曲柄机构
具有两个曲柄的铰链四杆机构。
⑴平行四边形机构:连杆与机架的长度相等,且曲
柄的转向相同长度也相等的双曲柄机构。 这种机构两曲柄的角速度始终保持相等,且连杆 始终做平动,故应用较广。
运动的不确定性
有辅助构件的重复机构
有辅助构件的错列机构
⑵逆平行四边形机构:连杆与机架的长度相等,两
含有两个移动副的四杆机构应用实例
2.3 平面四杆机构的基本特性
一、铰链四杆机构存在曲柄的条件
设 AB 为曲柄,
由 △BCD :
且 a <d .
b+c>f 、 b+f >c 、 c+f >b
以 fmax = a + d , fmin = d - a b+c >a+d 、 b+d >a+c 、 c+d >a+b 化简后得: a<b 、 a<c 、 a< d 若 d <a d<a、d<b、d<c 代入并整理得:
机械工程基础平面连杆机构
![机械工程基础平面连杆机构](https://img.taocdn.com/s3/m/324a216286c24028915f804d2b160b4e777f8179.png)
第4章 平面连杆机构
图 4 - 7 惯性筛
第4章 平面连杆机构
B
2
1
A
4
C 3
D
图 4 - 8 平行四边形机构
第4章 平面连杆机构
图 4 - 9 机车车轮联动机构
第4章 平面连杆机构
机车车轮平行四边形机构使各车轮与主动轮具有相 同的速度, 其内含有一个虚约束, 以防止在曲柄与机架共 线时运动不确定。 如图4 - 10所示, 当共线时, B点转到B2 点, 而C点位置可能转到C2或C′2位置, 运动不确定。
第4章 平面连杆机构
4.1 概 述
4.1.1 根本概念 构件之间只有低副连接的机构称为平面连杆机构。
最常见的平面连杆机构是平面四杆机构。 由四个构件 通过低副连接而成的平面连杆机构称为平面四杆机构。 所有低副均为转动副的平面四杆机构称为铰链四杆机 构, 它是平面四杆机构中最根本的形式, 其他形式的四 杆机构都是在它的根底上演化而成的。 连杆机构中的 构件称为杆。
第4章 平面连杆机构
1
A
B
2
3 C
2 B1
3
A
C
(a)
(b )
图 4 - 19 摇块机构 (a) 运动简图; (b) 自卸卡车翻斗机构
第4章 平面连杆机构
5. 定块机构 (1) 转化: 当曲柄滑块机构中取滑块为机架时, 即可 转化为定块机构, 如图4 - 20(a)所示。 (2) 应用: 图4 - 20(b)所示的手动压水机是定块机 构的应用实例。
第4章 平面连杆机构
在双曲柄机构中, 假设相对的两杆长度分别相等, 那么称为平行双曲柄机构。 当两曲柄转向相同时, 它们 的角速度时时相等, 连杆也始终与机架平行, 四根杆形 成一平行四边形, 故又称平行四边形机构, 如图4 - 8所 示。 图4 - 9所示的机车车轮联动机构就是平行四边形 机构的应用实例。
机械设计常用机构
![机械设计常用机构](https://img.taocdn.com/s3/m/e2a26e4f53ea551810a6f524ccbff121dd36c5ac.png)
机械设计常用机构机械设计是一门综合性的学科,涉及到各种各样的机构和装置。
在机械设计中,机构是非常重要的一部分,它负责传递和转换力、运动和能量,从而实现机械装置的各项功能。
在机械设计中,常用的机构有很多种。
这些机构可以根据其功能、结构和运动特性进行分类和归纳。
下面,我将对一些常用的机构进行介绍。
一、连杆机构连杆机构是机械设计中最基本也是最常用的一种机构。
它由杆件和关节组成,通过杆件的连接和关节的运动,实现力和运动的传递。
连杆机构广泛应用于各种机械装置中,如汽车发动机的连杆机构、拉杆机构等。
二、齿轮机构齿轮机构是一种通过齿轮的相互啮合来传递运动和力的机构。
齿轮机构具有传动比恒定、传递力矩大、传递效率高等特点,广泛应用于各种传动装置中,如汽车变速器、机床传动等。
三、减速机构减速机构主要通过齿轮、皮带等传动元件将输入的高速运动转换为输出的低速运动。
减速机构在机械设计中非常常见,用于满足不同场合的运动速度要求。
四、滑块机构滑块机构是一种通过滑块在导轨上做直线运动来实现运动转换和力传递的机构。
滑块机构广泛应用于各种机械装置中,如工具机的进给机构、压力机的传动机构等。
五、摆线机构摆线机构是一种通过连杆和摆线来实现直线运动的机构。
它通过摆线的特殊形状和连杆的运动,将旋转运动转换为直线运动,广泛应用于各种机械装置中,如剪切机的摆线滑块机构、织机上纬缸的摆线机构等。
六、万向节机构万向节机构是一种通过球面和容器来实现输动与变动传动的机构。
它具有结构简单、运动灵活等优点,广泛应用于汽车、船舶和航空等领域。
以上介绍的只是机械设计中的一小部分常用机构,还有很多其他的机构在实际设计中也扮演着重要的角色。
在进行机械设计时,我们需要根据具体的应用要求和设计目标选择合适的机构,合理地组合和运用这些机构,以实现设计的目的。
总结起来,机械设计中常用的机构有连杆机构、齿轮机构、减速机构、滑块机构、摆线机构和万向节机构等。
这些机构在机械装置中起着重要的作用,通过它们的运动和力传递,实现了各种功能和要求。
机械设计基础——平面连杆机构
![机械设计基础——平面连杆机构](https://img.taocdn.com/s3/m/819551671ed9ad51f01df2a0.png)
B
A
C
B
曲柄滑块机构
A B
导杆机构
C
AB > AC
A
转动导杆机构
C A
AB < AC C B
摆动导杆机构
A
C
曲柄摇块机构
B
A
定块机构 (移动导杆机构) C
B
(1)导杆机构
演化过程:曲柄滑块机构
曲柄改为机架
导杆机构。
转动导杆机构的应用
简易刨床
摆动导杆机构的应用
牛头刨床机构
(2)曲柄摇块机构
M 相距 h F
。
(3)不含力偶的三力杆件:三个力汇交于一点。
(4)确定摩擦总反力 FRik 方位: 判断 F 指向 Rik
确定
ki转向
使 F 与摩擦圆相切, Rik
并
ki与转向相反
例. 已知:驱动力F,f, φ=arctanf, 各销钉半径r,
当量摩擦系数f0, ρ=r f0, 求:Mq
Fr
Fr
Fr 作用在契块上的力
Fr f 驱动力:F 2 Ff f Fr fV Fr sin sin
f fV 楔形槽面当量摩擦系数 sin
fV f
2 . 转动副中的摩擦力
已知:M、ω21 、Fr . 摩擦力矩:
21
M f FR 21 Fr
(2)当螺母沿轴向与Fa方向相同移动时
支持力(阻力)
' M tan( ) ' d ' M do tan
' Md 支持阻力力矩 ' M do 理想支持阻力矩
Fd'
机械原理四连杆机构全解
![机械原理四连杆机构全解](https://img.taocdn.com/s3/m/0f391a6d2b160b4e767fcf82.png)
双摇杆机构
一、 曲柄摇杆机构
在铰链四杆机构中,若两个连架杆, 一个为曲柄,另一个为摇杆,则此铰链 四杆机构称为曲柄摇杆机构。
图4-2所示为调整雷达天线俯仰角的 曲柄摇杆机构。曲柄1缓慢地匀速转动, 通过连杆2使摇杆3在一定的角度范围内 摇动,从而调整天线俯仰角的大小。
图4-2 雷达天效的回转力矩, 显然Pt越大越好。而P在垂直于vc方向的 分力Pn=Psin则为无效分力,它不仅无 助于从动件的转动,反而增加了从动件 转动时的摩擦阻力矩。因此,希望Pn越 小越好。由此可知,压力角越小,机 构的传力性能越好,理想情况是=0, 所以压力角是反映机构传力效果好坏的 一个重要参数。一般设计机构时都必须 注意控制最大压力角不超过许用值。
死点会使机构的从动件出现卡死或 运动不确定的现象。可以利用回转机构 的惯性或添加辅助机构来克服。如家用 缝纫机中的脚踏机构,图4-3a。 有时死点来实现工作,如图4-6所示 工件夹紧装置,就是利用连杆BC与摇杆 CD形成的死点,这时工件经杆1、杆2传 给杆3的力,通过杆3的传动中心D。此力 不能驱使杆3转动。故当撤去主动外力F 后,工件依然被可靠地夹紧。
图4-3a所示为缝纫机的踏板机构, 图b为其机构运动简图。摇杆3(原动 件)往复摆动,通过连杆2驱动曲柄1 (从动件)做整周转动,再经过带传 动使机头主轴转动。
图4-3 缝纫机的踏板机构
曲柄摇杆机构的主要特性有。
急回 压力与传动角 死点
1.急回运动
如图4-4所示为一曲柄摇杆机构, 其曲柄AB在转动一周的过程中,有两 次与连杆BC共线。在这两个位置,铰 链中心A与C之间的距离AC1和AC2分别 为最短和最长,因而摇杆CD的位置C1D 和C2D分别为其两个极限位置。摇杆在 两极限位置间的夹角称为摇杆的摆角。
机械设计基础第二章平面连杆机构
![机械设计基础第二章平面连杆机构](https://img.taocdn.com/s3/m/5660a02e2f3f5727a5e9856a561252d380eb20e8.png)
(4)AC1=L2-L1, AC2=L2+L1→ L1=1/2(AC2-AC1)
→无数解
以L1为半径作圆,交B1,B2点 →曲柄两位置
M
N
在圆上任选一点A
C1M与C2N交于P点
作∠C1C2N=90-θ,
P
2.导杆机构: P.33
→取决于机构各杆的相对长度
A
D
B
B’
B”
C
C’
C”
三式相加 → ┌ l1≤l2 │ l1≤l3 └ l1≤l4
当杆1处于AB ”位置→ △AC ”D
→ l1+l2≤l3+l4 (2-3)
→┌(l2-l1) +l3 ≥l4 →┌l1+l4≤l2+l3 (2-1) └(l2-l1) +l4 ≥l3 └l1+l3≤l2+l4 (2-2)
图2-4
曲柄摇杆机构
φ1
φ2
ψ
(2-4)
(二)压力角和传动角 P.30
1.压力角α-
2.传动角γ
:BC是二力杆,驱动 力F 沿BC方向
作用在从动件上的驱动力F与该力作用点绝对速度VC之间所夹的锐角。
工作行程: 空回行程:
B2→B1 (φ 2) →摇杆C2→C1 (ψ) ∵ φ 1> φ 2 , 而ψ不变
B1→B2 (φ1) → 摇杆C1→C2 (ψ)
→ 工作行程时间>空回行程时间
曲柄(主)匀速转动(顺) 摇杆(从)变速往复摆动
图2-4
曲柄摇杆机构
φ1
φ2
ψ
极位:
缺点:
2.应用:
优点
1.手动冲床: ← 两个四杆机构组成 (双摇杆~+摇杆滑 块机构)
2.筛料机构: 六杆机构←两个四杆 机构组成(双曲柄~ +曲柄滑块~)
机械基础-平面连杆机构
![机械基础-平面连杆机构](https://img.taocdn.com/s3/m/9f00d158f08583d049649b6648d7c1c708a10bd1.png)
化工机械
如搅拌机、反应器等, 利用平面连杆机构实现
物料的混合和反应。
02
平面连杆机构的基本类型
曲柄摇杆机构
总结词
曲柄摇杆机构是平面连杆机构中最基本的一种形式,它由一个曲柄和一个摇杆 组成,曲柄通过转动将动力传递给摇杆,使摇杆进行摆动或转动。
详细描述
曲柄摇杆机构广泛应用于各种机械装置中,如缝纫机、搅拌机、车窗升降器等。 曲柄通常作为主动件,通过转动将动力传递给摇杆,使摇杆进行摆动或转动, 从而实现特定的运动形式。
机械基础-平面连杆机构
• 引言 • 平面连杆机构的基本类型 • 平面连杆机构的运动特性 • 平面连杆机构的传力特性 • 平面连杆机构的设计 • 平面连杆机构的实例分析
01
引言
平面连杆机构简介
01
平面连杆机构是由若干个刚性构 件通过低副(铰链或滑块)连接 而成的机构,构件在互相平行的 平面内运动。
机构的承载能力分析
总结词
机构的承载能力分析是评估 平面连杆机构在承受载荷时
的承载能力和稳定性。
详细描述
通过承载能力分析,可以确 定机构在各种工况下的最大 承载能力,为机构的安全使
用和优化设计提供保障。
总结词
在进行承载能力分析时,需要综合考虑机 构中各个构件的强度、刚度和稳定性等因 素。
详细描述
通过对这些因素的评估和分析,可以确定 机构在各种工况下的承载能力和稳定性, 为机构的安全使用和优化设计提供依据。
压力角和传动角
总结词
压力角是指在平面连杆机构中,主动件与从动件之间所形成的夹角。传动角是指连杆与曲柄之间所形成的夹角。
详细描述
压力角的大小直接影响到机构的传动能力和效率。较小的压力角可以减小作用在从动件上的力,提高传动效率。 而传动角的大小则与机构的传动性能和曲柄的形状有关。在设计平面连杆机构时,需要综合考虑压力角和传动角 的影响,以获得最佳的传动效果。
机械原理_第2章 连杆机构Thinsong
![机械原理_第2章 连杆机构Thinsong](https://img.taocdn.com/s3/m/fb25f4e5e009581b6bd9eb77.png)
(4)双曲柄机构的其他类型
1)平行四边形机构:两相对构件互相平行,呈平行四 边形的双曲柄机构。
案例:单盘秤机构、火车车轮联动装置等
平行四边形机构 单盘秤机构
正平行双曲柄机构:对边平行且相等 特点:主、从动曲柄匀速且相等 运动不确定现象:
2)反平行四边形机构:两相对构件长度相等,一对构 件互相平行的双曲柄机构。 应用案例:公共汽车的车门开关机构
Page
54
一.运动特性
(一)、运动副为整转副的条件(曲柄存在条件)
机构中具有整转副的构件是关键构件,因为只有这样才有 可能用电机等连续转动的装置来驱动。
Page
55
设:一曲柄摇杆机构ABCD,各杆长为a、b、c、d,AB 为曲柄
则在曲柄整周回转的过程中必会通过与机架AD平行的 两位置 ,即杆1和杆4拉直共线和重叠共线,如所示
顺序通过给定的各个位臵 图中,要求连杆依次占据
B1C1 、 B2C2 、 B3C3 ,当 AB
B3 B1 1 A C1 2 C3
C2
沿 逆时针 转动可以满足要
求,但沿顺时针转动,则 不能满足连杆预期的次序 要求。
3
D
B2 4
二. 传力特性
1. 压力角与传动角
压力角: 在不计摩擦力、重力、惯性力的条件下,机构中驱使输出件运 动的力的方向线与输出件上受力点的速度方向线所夹的锐角 压力角的余角 C B Fn
在实际工作机械中,平面四杆机构还远远不能满足需要,生产实践 中,常常采用多种不同外形、结构和特性的四杆机构,都可以认为是 平面四杆机构的演化形式。
常用的的演化方法:
(1)转动副转化为移动副;(2)取不同的构件作机架; (3)变换构件的形态;(4)扩大转动副和移动副的尺寸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机架
连杆
连 架 杆
图4-1 铰链四杆机构
图中,机构的固定件4称为机架;与 机架用回转副相联接的杆1和杆3称为连 架杆;不与机架直接联接的杆2称为连杆。 另外,能做整周转动的连架杆,称为曲
柄。仅能在某一角度摆动的连架杆,架杆是曲柄还 是摇杆,将铰链四杆机构分为三种基本型 式:
图4-3a所示为缝纫机的踏板机构, 图b为其机构运动简图。摇杆3(原动 件)往复摆动,通过连杆2驱动曲柄1 (从动件)做整周转动,再经过带传 动使机头主轴转动。
图4-3 缝纫机的踏板机构
曲柄摇杆机构的主要特性有。 急回 压力与传动角 死点
1.急回运动
如图4-4所示为一曲柄摇杆机构, 其曲柄AB在转动一周的过程中,有两 次与连杆BC共线。在这两个位置,铰 链中心A与C之间的距离AC1和AC2分别 为最短和最长,因而摇杆CD的位置C1D 和C2D分别为其两个极限位置。摇杆在
图4-6 利用死点夹紧工件的夹具
二、双曲柄机构 两连架杆均为曲柄的铰链四杆机构称
为双曲柄机构。
图4-7 插床双曲柄机构
双曲柄机构中,用得最多的是平行 双曲柄机构,或称平行四边形机构,它 的连杆与机架的长度相等,且两曲柄的 转向相同、长度也相等。由于这种机构 两曲柄的角速度始终保持相等。且连杆 始终作平动,故应用较广。
机械基础原理 连杆机构简介
平面连杆机构是将各构件用转动 副或移动副联接而成的平面机构。
最简单的平面连杆机构是由四个 构件组成的,简称平面四杆机构。它 的应用非常广泛,而且是组成多杆机 构的基础。
§4-1 铰链四杆机构的基本形式 和特性
全部用回转副组成的平面四杆机构 称为铰链四杆机构,如图4-1所示。
所以压力角是反映机构传力效果好坏的
一个重要参数。一般设计机构时都必须 注意控制最大压力角不超过许用值。
在实际应用中,为度量方便起见,
常用压力角的余角来衡量机构传力性 能的好坏,称为传力角。显然值越大 越好,理想情况是=90。
一般机械中,=40~50。
大功率机构,min=50。
非传动机构,<40,但不能过小。
此力对A点不产生力矩,因此不能使曲柄 转动。机构的这种位置称为死点。
死点会使机构的从动件出现卡死或 运动不确定的现象。可以利用回转机构 的惯性或添加辅助机构来克服。如家用 缝纫机中的脚踏机构,图4-3a。
有时死点来实现工作,如图4-6所示 工件夹紧装置,就是利用连杆BC与摇杆 CD形成的死点,这时工件经杆1、杆2传 给杆3的力,通过杆3的传动中心D。此力 不能驱使杆3转动。故当撤去主动外力F 后,工件依然被可靠地夹紧。
的锐角称为压力角。由图可见,力P在vc 方向的有效分力为Pt=Pcos,
图4-5 压力角与传动角
它可使从动件产生有效的回转力矩, 显然Pt越大越好。而P在垂直于vc方向的
分力Pn=Psin则为无效分力,它不仅无
助于从动件的转动,反而增加了从动件 转动时的摩擦阻力矩。因此,希望Pn越
小越好。由此可知,压力角越小,机 构的传力性能越好,理想情况是=0,
急回特性可用行程速比系数K表示,即
Kv v1 2C C 1 1C C 2 2//tt1 2tt1 2 1 21 18 8 0 0
整理后,可得极位夹角的计算公式:
180 K1
K1
2.压力角和传动角
在生产实际中往往要求连杆机构不仅 能实现预期的运动规律,而且希望运转轻 便、效率高。图4-5所示的曲柄摇杆机构, 如不计各杆质量和运动副中的摩擦,则连 杆BC为二力杆,它作用于从动摇杆3上的 力P是沿BC方向的。作用在从动件上的驱 动力P 与该力作用点绝对速度vc之间所夹
也不等(t1>t2),从而反映了摇杆往复摆 动的快慢不同。
令摇杆自C1D摆至C2D为工作行 程,这时铰链C的平均速度是 v1=C1C2/t1;摆杆自C2D摆回至C1D为 空回行程,这时C点的平均速度是 v2=C1C2/t2,v1<v2,表明摇杆具有急回 运动的特性。牛头刨床、往复式运输
机等机械就利用这种急回特性来缩短 非生产时间,提高生产率。
当四个铰链中心处于同一直线如图 4-9a)所示时,将出现运动不确定状态, 例如在图4-9b)中,当曲柄1由AB2转到 AB3时,从动曲柄3可能转到DC3’,也可 能转到DC3’’。
一个即为该机构的最小传动角min。
3.死点
对于图4-4所示的曲柄摇杆机构,如 以摇杆3 为原动件,而曲柄1 为从动件, 则当摇杆摆到极限位置C1D和C2D时,连 杆2与曲柄1共线,若不计各杆的质量, 则这时连杆加给曲柄的力将通过铰链中
心A,即机构处于压力角=90(传力角 =0)的位置时,驱动力的有效力为0。
BCD分别最小和最大(见图4-4)。
当BCD为锐角时,传动角=BCD, 是传动角的最小值,也即BCD(min) ;
当BCD为钝角时,传动角=180-
BCD ,BCD(max)对应传动角的另一 极小值。
若BCD由锐角变钝角,机构运 动将在BCD(min)和BCD(max)位置两次 出现传动角的极小值。两者中较小的
确 定 最 小 传 动 角 min 。 由 图 4-5 中
∆ABD和∆BCD可分别写出
BD2=l12+l42-2l1l4cos BD2=l22+l32-2l2l3cosBCD
由此可得
co B s C lD 2 2l3 2l1 2l4 22l1l4co s
2l2l3
当=0和180时,cos=+1和-1,
两极限位置间的夹角称为摇杆的摆角。
图4-4 曲柄摇杆机构的急回特性
当曲柄由AB1顺时针转到AB2时,
曲柄转角1=180+,这时摇杆由C1D摆 到C2D,摆角为;而当曲柄顺时针再转 过角度2=180-时,摇杆由C2D摆回C1D, 其摆角仍然是 。虽然摇杆来回摆动的
摆角相同,但对应的曲柄转角不等
(12);当曲柄匀速转动时,对应的时间
曲柄摇杆机构
双曲柄机构
双摇杆机构
一、 曲柄摇杆机构
在铰链四杆机构中,若两个连架杆, 一个为曲柄,另一个为摇杆,则此铰链 四杆机构称为曲柄摇杆机构。
图4-2所示为调整雷达天线俯仰角的 曲柄摇杆机构。曲柄1缓慢地匀速转动, 通过连杆2使摇杆3在一定的角度范围内 摇动,从而调整天线俯仰角的大小。
图4-2 雷达天线俯仰角调整机构