人教版九年级数学下册《第26章反比例函数》知识点及经典例题(无答案)
初三数学下册(人教版)第二十六章反比例函数26.1知识点总结含同步练习及答案
k S = P M ⋅ P N = |y| ⋅ |x| = |xy| .因为 y = ,所以 k = xy ,故 S = |k|.连接 P O ,MN ,则 △P MO 和 △MON x 1
1 和 △P NO 的面积都相等,其值为 |k| . 2
x
常见模型 ① A ,B 为反比例函数上任意不重合两点,连接 OA ,OB ,过 A ,B 分别作 AE ⊥ x 轴,BF ⊥ x 轴于点 E,F , 则 S △OAB = S 四边形AEFB .
k1 k 上一点,向 x,y 轴上作垂线,交反比例函数 y = 2 上于点 A ,B ,交 x 轴于点 x x
③ 当反比例函数过矩形对角线交点时,则 S 四边形OABC = 4k .
④ 当反比例函数过矩形一个顶点,并且原点在矩形的一条对角线上时,则 S 1 = S 2 = k.
⑤ 四边形 ABCD 为平行四边形,对角线的交点与原点重合,A 、B 、C 、D 在反比函数图象上,则
10 ,当 1 < x < 2 时,y 的取值范围是( ) x B. 1 < y < 2 C. 5 < y < 10 D. y > 10
如图,A 、B 两点在双曲线 y =
S 1 + S 2 =(
)
4 上,分别经过 A 、B 两点向轴作垂线段,已知阴影部分的面积为 1 ,则 x
A. 3 B. 4 C. 5 D. 6 解:D. 因为过 A 、B 两点所作出的矩形面积为 4 ,所以 S 1 = S 2 = 3 . 如图,原点O 是矩形 ABCD 的对称中心,顶点 A 、C 在反比例函数图象上,AB 平行 x 轴.若矩形 ABCD 的面积 为 8 ,那么反比例函数的解析式是______.
人教版初三数学9年级下册 第26章(反比例函数)26.1反比例函数 课后练习
人教九下26.1反比例函数一、选择题1. 下列函数中,是反比例函数的是( )A.y=−x2B.y=−12xC.y=1x−1D.y=1x22. 已知函数y=kx,当x=1时,y=−3,那么这个函数的解析式是( )A.y=3x B.y=−3xC.y=13xD.y=−13x3. 下列函数关系中,是反比例函数的是( )A.等边三角形面积S与边长a的关系B.直角三角形两锐角A与B的关系C.长方形面积一定时,长y与宽x的关系D.等边三角形的顶角A与底角B的关系4. 若点(3,6)在反比例函数y=kx(k≠0)的图象上,那么下列各点在此图象上的是( ) A.(−3,6)B.(2,9)C.(2,−9)D.(3,−6)5. 在反比例函数y=k−1x的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是( )A.k>1B.k>0C.k≥1D.k<16. 下列反比例函数的图象一定在第一、三象限的是( )A.y=mx B.y=m+1xC.y=m2+1xD.y=−mx7. 已知函数y=kx的图象经过(2,3),下列说法正确的是( )A.y随着x增大而增大B.函数的图象只在第一象限C.当x<0时,必有y<0D.点(−2,−3)不在此函数的图象上8. 已知A(x1,y1),B(x2,y2)是反比例函数y=kx(k≠0)的图象上的两点,当x1<x2<0时,y1 >y2,那么一次函数y=kx−k的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限9. 一次函数y=kx+b(k≠0)与反比例函数y=kx(k≠0)的图象在同一平面直角坐标系中的大致图象如图所示,则k,b的取值范围是( )A.k>0,b>0B.k<0,b>0C.k<0,b<0D.k>0,b<010. 如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上,反比例函数y=kx (x>0)的图象经过顶点B,则k的值为( )A.12B.20C.24D.3211. 在反比例函数y=k(k<0)的图象上有两点A(x1,y1),B(x2,y2),且x1>x2>0,则y1−y2的x值为( )A.正数B.负数C.非正数D.非负数二、填空题12. 设三角形的底边、对应高、面积分别为a,ℎ,S.(1)当a=10时,S与ℎ的关系式为,是函数;(2)当S=18时,a与ℎ的关系式为,是函数.13. 已知变量y,x成反比例,且当x=2时,y=6,则这个函数关系是.14. 若函数y=(n−1)x n2−2是反比例函数,则n=.15. 点(1,3)在反比例函数y=k的图象上,则k=,在图象的每一支上,y随x的增大x而.16. 如图所示,某反比例函数的图象经过点(−2,1),则此反比例函数表达式为.17. 反比例函数y=2a−1的图象有一支位于第一象限,则常数a的取值范围是.x18. 已知点A(2,y1),B(4,y2)都在反比例函数y=k(k<0)的图象上,则y1y2(填“>”“<”x或“=”).19. 已知函数y=(m+1)x m2−5是反比例函数,且图象在第一、三象限内,则m=.20. 反比例函数y=k+1,点(x1,y1),(x2,y2)在其图象上,当x1<0<x2时,有y1>y2,则k x的取值范围是.图象上的概率21. 从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数y=12x是.三、解答题22. 已知y−1与x成反比例,当x=3时,y=5,求y与x的函数关系式.23. 作出反比例函数y=−4的图象,并结合图象回答:x(1) 当x=2时,y的值;(2) 当1<x≤4时,y的取值范围;(3) 当1≤y<4时,x的取值范围.的图象的一支位于第一象限.24. 已知反比例函数y=m−7x(1) 判断该函数图象的另一支所在的象限,并求出m的取值范围;(2) 如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.25. 如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数y=k(x>0,k≠0)的图象经过线段BC的中点D.x(1) 求k的值;(2) 若点P(x,y)在该反比例函数的图象上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式,并写出x的取值范围.26. 已知反比例函数的图象过点(1,−2).(1) 求这个函数的解析式,并画出图象;(2) 若点A(−5,m)在该图象上,则点A关于两坐标轴和原点的对称点是否也在图象上?27. 如图,一次函数y=kx+b的图象l分别与x轴,y轴交于点E,F,与双曲线y=−4x (x<0)交于点P(−1,n),F是PE的中点.(1) 求直线l的解析式;(2) 若直线x=a与l交于点A,与双曲线交于点B(不同于A),问a为何值时,PA=PB?答案一、选择题1. 【答案】B2. 【答案】B3. 【答案】C4. 【答案】B5. 【答案】A6. 【答案】C7. 【答案】C8. 【答案】B9. 【答案】D10. 【答案】D11. 【答案】A二、填空题12. 【答案】S=5ℎ;正比例;a=36;反比例ℎ13. 【答案】y=12x14. 【答案】−115. 【答案】3;减小16. 【答案】y=−2x17. 【答案】a>1218. 【答案】<19. 【答案】220. 【答案】k<−121. 【答案】16三、解答题22. 【答案】y=12+x.x23. 【答案】(1) y=−2.(2) −4<y≤−1.(3) −4≤x<−1.24. 【答案】(1) 第三象限;m−7>0,则m>7.(2) m=13.25. 【答案】(1) k=2.(2) S=2x−2,x>12−2x,0<x<1.26. 【答案】(1) y=−2,图略.x(2) m=2,点A−5,关于两坐标轴对称的点均不在函数图象上,关于原点对称的点在函数图5象上.27. 【答案】(1) y=−2x+2.(2) 当a=−2时,PA=PB(提示:过点P作PD⊥AB).。
人教版九年级数学反比例函数知识点归纳
人教版九年级数学反比例函数知识点归纳本文介绍了新人教版九年级数学下册第26章反比例函数的知识点和研究目标。
其中,重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用。
难点是反比例函数及其图象的性质的理解和掌握。
基础知识包括反比例函数的概念和反比例函数的图象。
反比例函数的图象与x轴、y轴无交点,称取点关于原点对称。
反比例函数的图象的形状是双曲线,与坐标轴没有交点,称两条坐标轴是双曲线的渐近线。
图象关于原点对称,对称性是反比例函数的重要性质。
如图1所示,设点P(a,b)在双曲线上。
作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积等于三角形PAO和三角形PBO的面积之和。
由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上。
作QC⊥XXX的延长线于C,则三角形PQC的面积为(图2)。
需要注意的是,双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论。
直线与双曲线的关系有两种情况:一种是两图象必有两个交点,另一种是两图象没有交点;当有交点时,这两个交点关于原点成中心对称。
反比例函数与一次函数有联系。
求函数解析式的方法有两种:待定系数法和根据实际意义列函数解析式。
需要注意学科间知识的综合,但重点放在对数学知识的研究上。
在解决问题时,可以充分利用数形结合的思想。
对于例题,若y是x的反比例函数,则应选C或A。
对于已知函数的图象在第二、四象限内和y随x的增大而减小的情况,可以求出k的值。
已知一次函数y=ax+b的图象经过第一、二、四象限时,可以确定它的图象位于第三象限。
若反比例函数经过点(a,b),则直线不经过的象限为第四象限。
若P (2,2)和Q(m,n)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过第一、三、四象限。
对于函数的增减性问题,需要分别讨论。
y轴作垂线,得到三个小矩形和一个三角形,它们的面积之和为20平方单位,求函数的解析式.2)已知函数y=f(x)的图象如图所示,其中ABCD为一矩形,E为函数图象上一点,且E在ABCD内部.若矩形ABCD的长为4,宽为2,求函数的解析式.答案:(1)设函数解析式为y=ax²+bx+c,由题意可列出方程组:a+b+c=54a+2b+c=2016a+4b+c=80解得a=2,b=-4,c=7,因此函数的解析式为y=2x²-4x+7.2)设函数解析式为y=f(x)=kx+m,由题意可得:f(0)=m=2f(2)=2k+m=4f(4)=4k+m=0解得k=-1/2,m=2,因此函数的解析式为y=-1/2x+2.1) 在图中,通过每个点作两条垂线段,分别与x轴和y轴围成一个矩形。
新人教版九年数学下第二十六章-反比例函数知识点总结
新人教版九年数学下第二十六章 反比例函数知识点总结26.1知识点1 反比例函数的定义 一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①xky =(0k ≠), ②1kx y -=(0k ≠),③k y x =⋅(定值)(0k ≠);⑸函数x k y =(0k ≠)与ykx =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。
(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,xky =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
26.2知识点2用待定系数法求反比例函数的解析式由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
26.3知识点3反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
26.4知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:反比例函数xky =(0k ≠) k 的符号0k >0k <图像性质①x 的取值范围是0x ≠,y 的取值范围是0y ≠②当0k >时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y 随x 的增大而减小。
九年级数学人教版第26章反比例函数整章知识详解
有的土地面积s(单位:平方千米/人)随全市总人口
n(单位:人)的变化而变化.
1.68×104
【解析】 s=
1.68×104
n
或 s·n =
九年级数学第26章反比例函数
1.由上面的问题我们得到这样的三个函数
v=
1463 t
y=
1000 x
s=
1.68×104 n
2.上面的函数解析式形式上有什么的共同点?
都是
y=
k x
的形式,其中k是常数.
3.反比例函数的定义
一般地,形如 y= k (k为常数,k≠0) 的函数称为反比例
函数.
x
4.反比例函数的自变量x的取值范围是_不__等__于__0__的__一__切__实__数
九年级数学第26章反比例函数
等价形式:(k≠0)
y k
y=kx-1
x
xy=k
y是x的反比例函数
足
的图象上,∴点的坐标应满
xy=-6;满足条件的是C.
九年级数学第26章反比例函数
4.下列关系中是反比例函数的是( )
(A) y= k
x
(B) y= x
2
(C) y= 5
3x
(D)y= 5 -1
x
【解析】选C.∵B、D都不符合 y= k
x
们都
(k≠0)的形式,因而它
不是反比例函数;A不一定是反比例函数,因为k可能为零;C是
2
答案:答案不惟一,如(-2,-1)
九年级数学第26章反比例函数
5.已知反比例函数 y= 2k+4 的图象在第一、三象限,反
x
比例函数 y= k-3 在x>0时,y随x的增大而增大,则k的
人教版九年级数学下册26.2.1-1反比例函数中k的几何意义(基础训练)(无答案)
反比例函数中k 的几何意义一知识要点:k 的几何意义如图1,设点P (a ,b )是双曲线xk=y 上任意一点,作PA ⊥x 轴于A 点,PB ⊥y 轴于B 点,则矩形PBOA 的面积是(三角形PAO 和三角形PBO 的面积都是).如图2,由双曲线的对称性可知,P 关于原点的对称点Q 也在双曲线上,作QC ⊥PA 的延长线于C ,则有三角形PQC 的面积为.图1 图2二例题解析:例1:如图,在函数xy 3-=的图象上有三个点A 、B 、C ,过这三个点分别向x 轴、y 轴作垂线,过每一点所作的两条垂线段与x 轴、y 轴围成的矩形的面积分别为、、,则( ). A .B .C .D .第(1)题图例2:如图,已知正方形OABC 的面积为9,点O 为坐标原点,点A 、C 分别在x 轴、y 轴上,点B 在函数x k =y (k >0,x >0)的图象上,点P (m ,n )是函数xk=y (k >0,x >0)的图象上任意一点,过P 分别作x 轴、y 轴的垂线,垂足为E 、F ,设矩形OEPF 在正方形OABC 以外的部分的面积为S . ① 求B 点坐标和k 的值; ② 当29=S 时,求点P 的坐标; ③ 写出S 关于m 的函数关系式.:三 巩固练习 一)选择题1.如图,A 、B 是函数的图象上关于原点O 对称的任意两点,AC//y 轴,BC//x 轴,△ABC的面积S ,则( ).A .S=1B .1<S <2C .S=2D .S >22.、反比例函数xky=的图象如图所示,点M是该函数图象上一点,MN垂直于x轴,垂足是点N,如果S△MON=2,则k的值为()(A)2 (B)-2 (C)4 (D)-42题图 3题图 4题图3、如图,A、B是函数2yx=的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC 的面积记为S,则()A.2S=B.4S=C.24S<<D.4S>4.反比例函数xky=的图象如图所示,则k的值可能是()A.-1 B.21C.1 D.25. 双曲线xyxy21==与在第一象限内的图象如图所示,作一条平行于y轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A.1 B.2 C.3 D.4DBAyxOC5题图6题图7题图8题图ABCDEyxOM6、如图,双曲线)0(>k xky =经过矩形QABC 的边BC 的中点E ,交AB 于点D 。
九年级下册数学第26章知识点分析:反比列函数
九年级下册数学第26章知识点分析:反比列函数
九年级下册数学第26章知识点分析:反比列函
数
学习是一个循序渐进的过程,也是一个不断积累不断创新的过程。
下面小编为大家整理了九年级下册数学第26章知识点分析:反比列函数,欢迎大家参考阅读!
反比例函数的定义
定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x 的取值范围是不等于0的一切实数。
反比例函数的性质
函数y=k/x 称为反比例函数,其中k≠0,其中X是自变量,1.当k0时,图象分别位于第一、三象限,同一个象限内,y 随x的增大而减小;当k0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。
2.k0时,函数在x0上同为减函数、在x0上同为减函数;k0时,函数在x0上为增函数、在x0上同为增函数。
3.x的取值范围是:x≠0;
y的取值范围是:y≠0。
4..因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。
但随着x无限增大或是无限减少,函数值无限趋近于0,故。
人教版数学九年级下册第二十六章《反比例函数》知识总结及考点分析
第26章 反比例函数一、教学内容:反比例函数 教学目标:1. 理解反比例函数、图像及其主要性质,能根据所给信息确定反比例函数表达式,画出反比例函数的图像,并利用它们解决简单的实际问题。
2. 初步了解数学在实际生活中的应用,增强应用意识,体会数学的重要性。
二、重点、难点: 重点:1.能根据所给信息确定反比例函数表达式,画出反比例函数的图像,并利用它们解决简单的实际问题。
2、反比例函数的图像特点及性质的探究3、通过观察图像,归纳总结反比例函数图像 难点:1、理解反比例函数的概念2、画反比例函数的图像,并从图像中获取信息3、从反比例函数的图像中归纳总结反比例函数的主要性质 4.反比例函数的应用。
三、知识要点1、经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式2、一般地,如果两个变量x ,y 之间的关系可以表示成y=xk 〔k 为常数,k 不等于0〕的形式,那么称y 是x 的反比例函数.从y=xk中可知,x 作为分母,所以不能为零3、画反比例函数图像时要注意以下几点a 列表时自变量的取值应取绝对值相等而符号相反的一对数值,这样既可以简化计算,又便于标点b 列表、描点时,要尽量多取一些数值,多描一些点,这样方便连线c 在连线时要用“光滑的曲线〞,不能用折线 4、反比例函数的性质反比例函数 ()0≠=k xky k 的取值范围0>k 0<k图像性质①x 的取值范围是0≠x ,y 的取值范围是0≠y②函数图像的两个分支分别在第一、三象限,在每一个象限内y 随x 的增大而减小①x 的取值范围是0≠x ,y 的取值范围是0≠y②函数图像的两个分支分别在第二、四象限,在每一个象限内y 随x 的增大而增大注意:1〕反比例函数是轴对称图形和中心对称图形;2〕双曲线的两个分支都与x 轴、y 轴无限接近,但永远不能与坐标轴相交; 3〕在利用图像性质比拟函数值的大小时,前提应是“在同一象限〞内。
人教版九年级数学下册-- 第26章 反比例函数(共19页)--(附解析答案)
第二十六章 反比例函数测试1 反比例函数的概念学习要求理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.课堂学习检测一、填空题1.一般的,形如____________的函数称为反比例函数,其中x 是______,y 是______.自变量x 的取值范围是______. 2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.(1)商场推出分期付款购电脑活动,每台电脑12000元,首付4000元,以后每月付y 元,x 个月全部付清,则y 与x 的关系式为____________,是______函数.(2)某种灯的使用寿命为1000小时,它的使用天数y 与平均每天使用的小时数x 之间的关系式为__________________,是______函数. (3)设三角形的底边、对应高、面积分别为a 、h 、S .当a =10时,S 与h 的关系式为____________,是____________函数; 当S =18时,a 与h 的关系式为____________,是____________函数.(4)某工人承包运输粮食的总数是w 吨,每天运x 吨,共运了y 天,则y 与x 的关系式为______,是______函数.3.下列各函数①x k y =、②x k y 12+=、③x y 53=、④14+=x y 、⑤x y 21-=、⑥31-=x y 、⑦24xy =和⑧y =3x -1中,是y 关于x 的反比例函数的有:____________(填序号). 4.若函数11-=m x y (m 是常数)是反比例函数,则m =____________,解析式为____________.5.近视眼镜的度数y (度)与镜片焦距x (m)成反比例,已知400度近视眼镜片的焦距为0.25m ,则y 与x 的函数关系式为____________.二、选择题 6.已知函数xky =,当x =1时,y =-3,那么这个函数的解析式是( ). (A)x y 3=(B)xy 3-= (C)xy 31=(D)xy 31-= 7.已知y 与x 成反比例,当x =3时,y =4,那么y =3时,x 的值等于( ). (A)4 (B)-4 (C)3 (D)-3三、解答题8.已知y 与x 成反比例,当x =2时,y =3. (1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.综合、运用、诊断一、填空题9.若函数522)(--=kx k y (k 为常数)是反比例函数,则k 的值是______,解析式为_________________________.10.已知y 是x 的反比例函数,x 是z 的正比例函数,那么y 是z 的______函数. 二、选择题11.某工厂现有材料100吨,若平均每天用去x 吨,这批原材料能用y 天,则y 与x 之间的函数关系式为( ).(A)y =100x(B)xy 100=(C)xy 100100-= (D)y =100-x 12.下列数表中分别给出了变量y 与变量x 之间的对应关系,其中是反比例函数关系的是( ).三、解答题13.已知圆柱的体积公式V =S ·h .(1)若圆柱体积V 一定,则圆柱的高h (cm)与底面积S (cm 2)之间是______函数关系; (2)如果S =3cm 2时,h =16cm ,求: ①h (cm)与S (cm 2)之间的函数关系式; ②S =4cm 2时h 的值以及h =4cm 时S 的值.拓展、探究、思考14.已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.15.已知函数y =y 1-y 2,且y 1为x 的反比例函数,y 2为x 的正比例函数,且23-=x 和x =1时,y 的值都是1.求y 关于x 的函数关系式.测试2 反比例函数的图象和性质(一)学习要求能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.课堂学习检测一、填空题 1.反比例函数xky =(k 为常数,k ≠0)的图象是______;当k >0时,双曲线的两支分别位于______象限,在每个象限内y 值随x 值的增大而______;当k <0时,双曲线的两支分别位于______象限,在每个象限内y 值随x 值的增大而______. 2.如果函数y =2+1的图象是双曲线,那么k =______.3.已知正比例函数y =kx ,y 随x 的增大而减小,那么反比例函数xky =,当x <0时,y 随x 的增大而______. 4.如果点(1,-2)在双曲线xky =上,那么该双曲线在第______象限. 5.如果反比例函数xk y 3-=的图象位于第二、四象限内,那么满足条件的正整数k 的值是____________. 二、选择题 6.反比例函数xy 1-=的图象大致是图中的( ).7.下列函数中,当x >0时,y 随x 的增大而减小的是( ). (A)y =x(B)xy 1=(C)xy 1-= (D)y =2x8.下列反比例函数图象一定在第一、三象限的是( ).(A)x my =(B)xm y 1+=(C)xm y 12+=(D)xmy -=9.反比例函数y =221)(2--mx m ,当x >0时,y 随x 的增大而增大,则m 的值是( ).(A)±1 (B)小于21的实数 (C)-1 (D)110.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数xky =(k >0)的图象上的两点,若x 1<0<x 2,则有( ). (A)y 1<0<y 2 (B)y 2<0<y 1(C)y 1<y 2<0 (D)y 2<y 1<0三、解答题11.作出反比例函数xy 12=的图象,并根据图象解答下列问题: (1)当x =4时,求y 的值; (2)当y =-2时,求x 的值; (3)当y >2时,求x 的范围.综合、运用、诊断一、填空题12.已知直线y =kx +b 的图象经过第一、二、四象限,则函数xkby =的图象在第______象限.13.已知一次函数y =kx +b 与反比例函数xkb y -=3的图象交于点(-1,-1),则此一次函数的解析式为____________,反比例函数的解析式为____________. 二、选择题14.若反比例函数xky =,当x >0时,y 随x 的增大而增大,则k 的取值范围是( ). (A)k <0(B)k >0(C)k ≤0(D)k ≥015.若点(-1,y 1),(2,y 2),(3,y 3)都在反比例函数xy 5=的图象上,则( ). (A)y 1<y 2<y 3 (B)y 2<y 1<y 3(C)y 3<y 2<y 1(D)y 1<y 3<y 216.对于函数xy 2-=,下列结论中,错误..的是( ). (A)当x >0时,y 随x 的增大而增大 (B)当x <0时,y 随x 的增大而减小 (C)x =1时的函数值小于x =-1时的函数值(D)在函数图象所在的每个象限内,y 随x 的增大而增大 17.一次函数y =kx +b 与反比例函数xky =的图象如图所示,则下列说法正确的是( ).(A)它们的函数值y 随着x 的增大而增大 (B)它们的函数值y 随着x 的增大而减小 (C)k <0(D)它们的自变量x 的取值为全体实数 三、解答题18.作出反比例函数xy 4-=的图象,结合图象回答: (1)当x =2时,y 的值;(2)当1<x ≤4时,y 的取值范围; (3)当1≤y <4时,x 的取值范围.拓展、探究、思考19.已知一次函数y =kx +b 的图象与反比例函数xmy =的图象交于A (-2,1),B (1,n )两点.(1)求反比例函数的解析式和B 点的坐标;(2)在同一直角坐标系中画出这两个函数的图象的示意图,并观察图象回答:当x 为何值时,一次函数的值大于反比例函数的值? (3)直接写出将一次函数的图象向右平移1个单位长度后所得函数图象的解析式.测试3 反比例函数的图象和性质(二)学习要求会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.课堂学习检测一、填空题 1.若反比例函数xky =与一次函数y =3x +b 都经过点(1,4),则kb =______.2.反比例函数xy 6-=的图象一定经过点(-2,______). 3.若点A (7,y 1),B (5,y 2)在双曲线xy 3-=上,则y 1、y 2中较小的是______. 4.函数y 1=x (x ≥0),xy 42=(x >0)的图象如图所示,则结论:①两函数图象的交点A 的坐标为(2,2); ②当x >2时,y 2>y 1; ③当x =1时,BC =3;④当x 逐渐增大时,y 1随着x 的增大而增大,y 2随着x 的增大而减小. 其中正确结论的序号是____________. 二、选择题5.当k <0时,反比例函数xky =和一次函数y =kx +2的图象大致是( ).(A)(B)(C)(D)6.如图,A 、B 是函数xy 2=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴, △ABC 的面积记为S ,则( ).(A)S =2 (B)S =4 (C)2<S <4(D)S >47.若反比例函数xy 2-=的图象经过点(a ,-a ),则a 的值为( ). (A)2 (B)2-(C)2±(D)±2三、解答题8.如图,反比例函数xky =的图象与直线y =x -2交于点A ,且A 点纵坐标为1,求该反比例函数的解析式.综合、运用、诊断一、填空题9.已知关于x 的一次函数y =-2x +m 和反比例函数xn y 1+=的图象都经过点A (-2,1),则m =______,n =______.10.直线y =2x 与双曲线xy 8=有一交点(2,4),则它们的另一交点为______. 11.点A (2,1)在反比例函数xky =的图象上,当1<x <4时,y 的取值范围是__________. 二、选择题12.已知y =(a -1)x a 是反比例函数,则它的图象在( ).(A)第一、三象限 (B)第二、四象限 (C)第一、二象限(D)第三、四象限13.在反比例函xky -=1的图象的每一条曲线上,y 都随x 的增大而增大,则k 的取值可以是( ). (A)-1(B)0(C)1(D)214.如图,点P 在反比例函数xy 1=(x >0)的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后得到点P ′.则在第一象限内,经过点P ′的反比例函数图象的解析式是( )(A))0(5>-=x xy(B))0(5>=x xy (C))0(5>-=x xy(D))0(6>=x xy 15.如图,点A 、B 是函数y =x 与xy 1=的图象的两个交点,作AC ⊥x 轴于C ,作BD ⊥x 轴于D ,则四边形ACBD 的面积为( ).(A)S >2 (B)1<S <2 (C)1(D)2三、解答题16.如图,已知一次函数y 1=x +m (m 为常数)的图象与反比例函数xky2(k 为常数,k ≠0)的图象相交于点A (1,3).(1)求这两个函数的解析式及其图象的另一交点B 的坐标; (2)观察图象,写出使函数值y 1≥y 2的自变量x 的取值范围.拓展、探究、思考17.已知:如图,在平面直角坐标系xOy 中,Rt △OCD 的一边OC 在x 轴上,∠C =90°,点D 在第一象限,OC =3,DC =4,反比例函数的图象经过OD 的中点A .(1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt △OCD 的另一边交于点B ,求过A 、B 两点的直线的解析式.18.已知正比例函数和反比例函数的图象都经过点A (3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA 向下平移后与反比例函数的图象交于点B (6,m ),求m 的值和这个一次函数的解析式; (3)在(2)中的一次函数图象与x 轴、y 轴分别交于C 、D ,求四边形OABC 的面积.测试4 反比例函数的图象和性质(三)学习要求进一步理解和掌握反比例函数的图象和性质;会解决与一次函数和反比例函数有关的问题.课堂学习检测一、填空题1.正比例函数y =k 1x 与反比例函数x ky 2=交于A 、B 两点,若A 点坐标是(1,2),则B 点坐标是______.2.观察函数xy 2-=的图象,当x =2时,y =______;当x <2时,y 的取值范围是______;当y ≥-1时,x 的取值范围是______. 3.如果双曲线xky =经过点)2,2(-,那么直线y =(k -1)x 一定经过点(2,______). 4.在同一坐标系中,正比例函数y =-3x 与反比例函数)0(>=k xky 的图象有______个交点.5.如果点(-t ,-2t )在双曲线xky =上,那么k ______0,双曲线在第______象限. 二、选择题6.如图,点B 、P 在函数)0(4>=x xy 的图象上,四边形COAB 是正方形,四边形FOEP 是长方形,下列说法不正确的是( ).(A)长方形BCFG 和长方形GAEP 的面积相等 (B)点B 的坐标为(4,4) (C)xy 4=的图象关于过O 、B 的直线对称 (D)长方形FOEP 和正方形COAB 面积相等 7.反比例函数xky =在第一象限的图象如图所示,则k 的值可能是( ).(A)1(B)2(C)3(D)4三、解答题8.已知点A (m ,2)、B (2,n )都在反比例函数xm y 3+=的图象上. (1)求m 、n 的值;(2)若直线y =mx -n 与x 轴交于点C ,求C 关于y 轴对称点C ′的坐标.9.在平面直角坐标系xOy 中,直线y =x 向上平移1个单位长度得到直线l .直线l 与反比例函数xky =的图象的一个交点为A (a ,2),求k 的值.综合、运用、诊断一、填空题10.如图,P 是反比例函数图象上第二象限内的一点,且矩形PEOF 的面积为3,则反比例函数的解析式是______.11.如图,在直角坐标系中,直线y =6-x 与函数)0(5>=x xy 的图象交于A ,B ,设A (x 1,y 1),那么长为x 1,宽为y 1的矩形的面积和周长分别是______.12.已知函数y =kx (k ≠0)与xy 4-=的图象交于A ,B 两点,若过点A 作AC 垂直于y 轴,垂足为点C ,则△BOC 的面积为____________.13.在同一直角坐标系中,若函数y =k 1x (k 1≠0)的图象与xky 2=)0(2≠k 的图象没有公共点,则k 1k 2______0.(填“>”、“<”或“=”)二、选择题14.若m <-1,则函数①)0(>=x xmy ,②y =-mx +1,③y =mx ,④y =(m +1)x 中,y 随x 增大而增大的是( ). (A)①④(B)②(C)①②(D)③④15.在同一坐标系中,y =(m -1)x 与xmy -=的图象的大致位置不可能的是( ).三、解答题16.如图,A 、B 两点在函数)0(>=x xmy 的图象上.(1)求m 的值及直线AB 的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.17.如图,等腰直角△POA 的直角顶点P 在反比例函数xy 4=)0(>x 的图象上,A 点在x 轴正半轴上,求A 点坐标.拓展、探究、思考18.如图,函数xy 5=在第一象限的图象上有一点C (1,5),过点C 的直线y =-kx +b (k >0)与x 轴交于点A (a ,0).(1)写出a 关于k 的函数关系式;(2)当该直线与双曲线xy 5=在第一象限的另一交点D 的横坐标是9时,求△COA 的面积.19.如图,一次函数y =kx +b 的图象与反比例函数xmy =的图象交于A (-3,1)、B (2,n )两点,直线AB 分别交x 轴、y 轴于D 、C 两点.(1)求上述反比例函数和一次函数的解析式; (2)求CDAD的值.测试5 实际问题与反比例函数(一)学习要求能写出实际问题中的反比例函数关系式,并能结合图象加深对问题的理解.课堂学习检测一、填空题1.一个水池装水12m 3,如果从水管中每小时流出x m 3的水,经过y h 可以把水放完,那么y 与x 的函数关系式是______,自变量x 的取值范围是______.2.若梯形的下底长为x ,上底长为下底长的31,高为y ,面积为60,则y 与x 的函数关系是______ (不考虑x 的取值范围). 二、选择题3.某一数学课外兴趣小组的同学每人制作一个面积为200 cm 2的矩形学具进行展示.设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形的长y (cm)与宽x (cm)之间的函数关系的图象大致是( ).4.下列各问题中两个变量之间的关系,不是反比例函数的是( ). (A)小明完成百米赛跑时,所用时间t (s)与他的平均速度v (m/s)之间的关系 (B)长方形的面积为24,它的长y 与宽x 之间的关系 (C)压力为600N 时,压强p (Pa)与受力面积S (m 2)之间的关系(D)一个容积为25L 的容器中,所盛水的质量m (kg)与所盛水的体积V (L)之间的关系 5.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:体积x /ml 100 80 60 40 20 压强y /kPa6075100150300(A)y =3000x (B)y =6000x(C)xy 3000=(D)xy 6000=综合、运用、诊断一、填空题6.甲、乙两地间的公路长为300km ,一辆汽车从甲地去乙地,汽车在途中的平均速度为v (km/h),到达时所用的时间为t (h),那么t 是v 的______函数,v 关于t 的函数关系式为______. 7.农村常需要搭建截面为半圆形的全封闭蔬菜塑料暖房(如图所示),则需要塑料布y (m 2)与半径R (m)的函数关系式是(不考虑塑料埋在土里的部分)__________________.二、选择题8.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y与x的函数图象是( ).三、解答题9.一个长方体的体积是100cm3,它的长是y(cm),宽是5cm,高是x(cm).(1)写出长y(cm)关于高x(cm)的函数关系式,以及自变量x的取值范围;(2)画出(1)中函数的图象;(3)当高是3cm时,求长.测试6 实际问题与反比例函数(二)学习要求根据条件求出函数解析式,运用学过的函数知识解决反比例函数的应用问题.课堂学习检测一、填空题1.一定质量的氧气,密度ρ是体积V的反比例函数,当V=8m3时,ρ=1.5kg/m3,则ρ与V 的函数关系式为______.2.由电学欧姆定律知,电压不变时,电流强度I与电阻R成反比例,已知电压不变,电阻R=20Ω时,电流强度I=0.25A.则(1)电压U=______V;(2)I与R的函数关系式为______;(3)当R=12.5Ω时的电流强度I=______A;(4)当I=0.5A时,电阻R=______Ω.3.如图所示的是一蓄水池每小时的排水量V/m3·h-1与排完水池中的水所用的时间t(h)之间的函数图象.(1)根据图象可知此蓄水池的蓄水量为______m3;(2)此函数的解析式为____________;(3)若要在6h内排完水池中的水,那么每小时的排水量至少应该是______m3;(4)如果每小时的排水量是5m3,那么水池中的水需要______h排完.二、解答题4.一定质量的二氧化碳,当它的体积V=4m3时,它的密度p=2.25kg/m3.(1)求V与ρ的函数关系式;(2)求当V=6m3时,二氧化碳的密度;(3)结合函数图象回答:当V≤6m3时,二氧化碳的密度有最大值还是最小值?最大(小)值是多少?综合、运用、诊断一、选择题5.下列各选项中,两个变量之间是反比例函数关系的有( ).(1)小张用10元钱去买铅笔,购买的铅笔数量y(支)与铅笔单价x(元/支)之间的关系(2)一个长方体的体积为50cm3,宽为2cm,它的长y(cm)与高x(cm)之间的关系(3)某村有耕地1000亩,该村人均占有耕地面积y(亩/人)与该村人口数量n(人)之间的关系(4)一个圆柱体,体积为100cm3,它的高h(cm)与底面半径R(cm)之间的关系(A)1个(B)2个(C)3个(D)4个二、解答题6.一个气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)写出这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?7.一个闭合电路中,当电压为6V时,回答下列问题:(1)写出电路中的电流强度I(A)与电阻R(Ω)之间的函数关系式;(2)画出该函数的图象;(3)如果一个用电器的电阻为5Ω,其最大允许通过的电流强度为1A,那么把这个用电器接在这个闭合电路中,会不会被烧?试通过计算说明理由.拓展、探究、思考三、解答题8.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释效过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x 成反比例,如图所示.根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?9.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:第1天第2天第3天第4天第5天第6天第7天第8天售价400 250 240 200 150 125 120 x(元/千克)销售量y/千克30 40 48 60 80 96 100价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?参考答案第二十六章 反比例函数测试1 反比例函数的概念1.xky =(k 为常数,k ≠0),自变量,函数,不等于0的一切实数. 2.(1)xy 8000=,反比例; (2)xy 1000=,反比例; (3)s =5h ,正比例,ha 36=,反比例; (4)xwy =,反比例. 3.②、③和⑧. 4.2,x y 1=. 5.)0(100>⋅=x xy 6.B . 7.A . 8.(1)xy 6=; (2)x =-4. 9.-2,⋅-=xy 410.反比例. 11.B . 12.D . 13.(1)反比例; (2)①Sh 48=; ②h =12(cm), S =12(cm 2). 14.⋅-=325x y 15..23x xy -=测试2 反比例函数的图象和性质(一)1.双曲线;第一、第三,减小;第二、第四,增大. 2.-2. 3.增大. 4.二、四. 5.1,2. 6.D . 7.B . 8.C . 9.C . 10.A .11.列表:x … -6 -5 -4 -3 -2 -112 3 4 5 6 … y… -2 -2.4 -3 -4 -6 -12 126432.42…由图知,(1)y =3;(2)x =-6; (3)0<x <6.12.二、四象限. 13.y =2x +1,⋅=xy 1 14.A . 15.D 16.B 17.C 18.列表:x…-4-3-2-11234…y (1)34 2 4 -4 -2 -34-1 …(1)y =-2; (2)-4<y ≤-1; (3)-4≤x <-1.19.(1)xy 2-=, B (1,-2); (2)图略x <-2或0<x <1时; (3)y =-x .测试3 反比例函数的图象和性质(二)1.4. 2.3. 3.y 2. 4.①③④. 5.B . 6.B . 7.C . 8.xy 3=. 9.-3;-3. 10.(-2,-4). 11..221<<y . 12.B . 13.D. 14.D . 15.D . 16.(1)xy 3=,y =x +2;B (-3,-1); (2)-3≤x <0或x ≥1. 17.(1))0(3>=x x y ;(2).332+-=x y 18.(1)x y x y 9,==;(2)23=m ;;29-=x y(3)S 四边形OABC =1081. 测试4 反比例函数的图象和性质(三)1.(-1,-2). 2.-1,y <-1或y >0,x ≥2或x <0. 3..224-- 4.0. 5.>;一、三. 6.B . 7.C 8.(1)m =n =3;(2)C ′(-1,0). 9.k =2. 10.⋅-=xy 311.5,12. 12.2. 13.<. 14.C . 15.A . 16.(1)m =6,y =-x +7;(2)3个. 17.A(4,0).18.(1)解⎩⎨⎧=+-=+-0,5b ak b k 得15+=k a ;(2)先求出一次函数解析式95095+-=x y ,A (10,0),因此S △COA =25. 19.(1)2121,3--=-=x y x y ;(2).2=CD AD测试5 实际问题与反比例函数(一)1.xy 12=;x >0. 2.⋅=x y 903.A . 4.D . 5.D .6.反比例;⋅=tV 3007.y =30πR +πR 2(R >0). 8.A . 9.(1))0(20>=x x y ; (2)图象略; (3)长cm.320. 测试6 实际问题与反比例函数(二)1.).0(12>=V vρ 2.(1)5; (2)R I 5=; (3)0.4; (4)10.3.(1)48; (2))0(48>=t tV ; (3)8; (4)9.6. 4.(1))0(9>=ρρV ; (2)ρ=1.5(kg/m 3); (3)ρ有最小值1.5(kg/m 3).5.C . 6.(1)V p 96=; (2)96 kPa ; (3)体积不小于3m 3524. 7.(1))0(6>=R RI ; (2)图象略; (3)I =1.2A >1A ,电流强度超过最大限度,会被烧. 8.(1)x y 43=,0≤x ≤12;y =x108 (x >12); (2)4小时. 9.(1)xy 12000=;x 2=300;y 4=50; (2)20天。
新人教版九年级数学下册第26章反比例函数知识点归纳和典型例题
新人教版九年级数学下册第26章反比率函数知识点概括和典型例题(一)知识结构(二)学习目标1.理解并掌握反比率函数的看法,能依据实质问题中的条件确立反比率函数的分析式(k 为常数,),能判断一个给定函数能否为反比率函数.2.能描点画出反比率函数的图象,会用代定系数法求反比率函数的分析式,进一步理解函数的三种表示方法,即列表法、分析式法和图象法的各自特色.3.能依据图象数形联合地剖析并掌握反比率函数(k 为常数,)的函数关系和性质,能利用这些函数性质剖析和解决一些简单的实质问题.4.对于实质问题,能“找出常量和变量,成立并表示函数模型,议论函数模型,解决实质问题”的过程,领会函数是刻画现实世界中变化规律的重要数学模型.5.进一步理解常量与变量的辨证关系和反应在函数看法中的运动变化看法,进一步认识数形联合的思想方法.(三)要点难点1.要点是反比率函数的看法的理解和掌握,反比率函数的图象及其性质的理解、掌握和运用.2.难点是反比率函数及其图象的性质的理解和掌握.二、基础知识(一)反比率函数的看法1.()能够写成()的形式,注意自变量x 的指数为,在解决相关自变量指数问题时应特别注意系数这一限制条件;2.()也能够写成xy=k 的形式,用它能够快速地求出反比率函数分析式中的k,进而获得反比率函数的分析式;3.反比率函数的自变量,故函数图象与x 轴、 y 轴无交点.(二)反比率函数的图象在用描点法画反比率函数的图象时,应注意自变量x 的取值不可以为 0,且 x 应付称取点(对于原点对称).(三)反比率函数及其图象的性质1.函数分析式:()2.自变量的取值范围:3.图象:( 1)图象的形状:双曲线.越大,图象的曲折度越小,曲线越平直.越小,图象的曲折度越大.( 2)图象的地点和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大.(3)对称性:图象对于原点对称,即若( a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象对于直线对称,即若( a, b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4. k 的几何意义矩形如图 1,设点 P(a,b)是双曲线上随意一点,作PA⊥x轴于 A点, PB⊥y轴于 B 点,则PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图 2,由双曲线的对称性可知,P 对于原点的对称点Q也在双曲线上,作QC⊥PA 的延长线于C,则有三角形PQC的面积为.图1图2 5.说明:( 1)双曲线的两个分支是断开的,研究反比率函数的增减性时,要将两个分支分别讨论,不可以混为一谈.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点对于原点成中心对称.(3)反比率函数与一次函数的联系.(四)实质问题与反比率函数1.求函数分析式的方法:( 1)待定系数法;( 2)依据实质意义列函数分析式.2.注意学科间知识的综合,但要点放在对数学知识的研究上.(五)充足利用数形联合的思想解决问题.三、例题剖析1☆.反比率函数的看法( 1)以下函数中,y 是x 的反比率函数的是().A. y=3x B. C .3xy=1D.( 2)以下函数中,y 是x 的反比率函数的是().A.B.C.D.答案:( 1) C;(2) A.2.图象和性质(1)已知函数是反比率函数,①若它的图象在第二、四象限内,那么k=___________ .②若 y 随 x 的增大而减小,那么k=___________.(2)已知一次函数y=ax+b 的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比率函数经过点(, 2),则一次函数的图象必定不经过第_____象限.(4)已知 a·b< 0,点 P( a, b)在反比率函数的图象上,则直线不经过的象限是().A.第一象限 B .第二象限 C .第三象限 D .第四象限(5)若P(2,2)和Q(m,)是反比率函数图象上的两点,则一次函数 y=kx+m 的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限( 6)已知函数和( k≠0),它们在同一坐标系内的图象大概是().A.B.C.D.答案:( 1)①② 1;( 2)一、三;(3)四;(4) C;(5) C;( 6) B.3.函数的增减性( 1)在反比率函数的图象上有两点,,且,则的值为().A.正数B.负数 C .非正数D.非负数( 2)在函数( a 为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<( 3)以下四个函数中:①;②;③;④.y 随 x 的增大而减小的函数有().A.0个 B .1个C.2个D.3个( 4)已知反比率函数的图象与直线y=2x 和 y=x+1的图象过同一点,则当x>0时,这个反比率函数的函数值y 随 x 的增大而(填“增大”或“减小”).答案:( 1) A;(2) D;(3) B.注意,( 3)中只有②是切合题意的,而③是在“每一个象限内”y 随 x 的增大而减小.4.分析式确实定( 1)若与成反比率,与成正比率,则y 是 z 的().A.正比率函数 B .反比率函数C.一次函数D.不可以确立( 2)若正比率函数y=2x 与反比率函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.( 3)已知反比率函数的图象经过点,反比率函数的图象在第二、四象限,求的值.( 4)已知一次函数y=x+m与反比率函数()的图象在第一象限内的交点为P ( x 0,3).①求 x 0 的值;②求一次函数和反比率函数的分析式.( 5)☆为了预防“非典”,某学校正教室采纳药薰消毒法进行消毒.已知药物焚烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比率,药物焚烧完后,y 与 x 成反比率(如下图),现测得药物 8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请依据题中所供给的信息解答以下问题:①药物焚烧时y 对于 x 的函数关系式为___________,自变量 x 的取值范围是_______________ ;药物焚烧后y 对于 x 的函数关系式为_________________.②研究表示,当空气中每立方米的含药量低于毫克时学生方可进教室,那么从消毒开始,起码需要经过 _______分钟后,学生才能回到教室;③研究表示,当空气中每立方米的含药量不低于3毫克且连续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒能否有效?为何?答案:( 1) B;(2)4,8,(,);(3)依题意,且,解得.(4)①依题意,解得②一次函数分析式为,反比率函数分析式为.(5)①,,;②30;③消毒时间为(分钟),所以消毒有效.5.面积计算( 1)☆如图,在函数的图象上有三个点A、B、C,过这三个点分别向x 轴、y 轴作垂线,过每一点所作的两条垂线段与x 轴、 y 轴围成的矩形的面积分别为、、,则().A.B.C.D.第( 1)题图第(2)题图(2)☆如图, A、B 是函数的图象上对于原点 O对称的随意两点, AC//y 轴, BC//x 轴,△ABC的面积 S,则().A. S=1B. 1<S< 2C.S=2D.S> 2( 3)如图, Rt△AOB 的极点 A 在双曲线上,且S△AOB=3,求m的值.第( 3)题图第( 4)题图( 4)☆已知函数的图象和两条直线y=x, y=2x 在第一象限内分别订交于P1和P2两点,过 P1分别作 x 轴、 y 轴的垂线 P1Q1, P1R1,垂足分别为Q1, R1,过 P2分别作 x 轴、 y 轴的垂线 P2 Q 2,P2 R 2 ,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1并比较它们的大小.( 5)如图,正比率函数y=kx( k>0)和反比率函数的图象订交于轴垂线交x 轴于 B,连结 BC,若△ ABC面积为 S,则 S=_________.和OQ2P2R2 的周长,A、C两点,过 A 作 x第( 5)题图第(6)题图( 6)如图在Rt△ABO中,极点 A 是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.①求这两个函数的分析式;②求直线与双曲线的两个交点A、 C的坐标和△ AOC 的面积.( 7)如图,已知正方形OABC的面积为 9,点 O为坐标原点,点A、C 分别在 x 轴、 y 轴上,点 B 在函数( k> 0, x>0)的图象上,点P ( m, n)是函数( k> 0, x> 0)的图象上随意一点,过P 分别作 x 轴、 y 轴的垂线,垂足为E、F,设矩形 OEPF在正方形OABC之外的部分的面积为S.①求 B 点坐标和 k 的值;②当时,求点P 的坐标;③写出 S 对于 m的函数关系式.答案:( 1) D;(2)C;(3)6;(4),,矩形 O Q 1P1 R 1 的周长为 8, O Q 2P2 R 2 的周长为,前者大.(5) 1.(6)①双曲线为,直线为;②直线与两轴的交点分别为(0,)和(, 0),且 A( 1,)和 C(, 1),所以面积为 4.(7)① B( 3, 3),;②时, E(6, 0),;③.6.综合应用( 1)若函数y=k1x (k1≠0)和函数( k2≠0)在同一坐标系内的图象没有公共点,则k1和 k2().A.互为倒数 B .符号同样C.绝对值相等 D .符号相反( 2)如图,一次函数的图象与反比率数的图象交于A、 B 两点: A(, 1), B( 1, n).①求反比率函数和一次函数的分析式;②依据图象写出使一次函数的值大于反比率函数的值的x 的取值范围.( 3)如下图,已知一次函数( k≠0)的图象与x 轴、 y 轴分别交于 A、B 两点,且与反比率函数(m≠0)的图象在第一象限交于C 点,CD垂直于 x 轴,垂足为 D,若OA=OB=OD=1.①求点 A、 B、D 的坐标;②求一次函数和反比率函数的分析式.(4)☆如图,一次函数的图象与反比率函数的图象交于第一象限C、D 两点,坐标轴交于 A、 B 两点,连结 OC, OD(O是坐标原点).①利用图中条件,求反比率函数的分析式和m的值;②双曲线上能否存在一点P,使得△ POC和△ POD的面积相等?若存在,给出证明并求出点 P 的坐标;若不存在,说明原因.(5)不解方程,判断以下方程解的个数.①;②.答案:(1) D.(2)① 反比率函数为,一次函数为;②范围是或.(3)① A( 0,), B( 0,1), D( 1,0);②一次函数为,反比率函数为.(4)①反比率函数为,;②存在( 2, 2).(5)①结构双曲线和直线,它们无交点,说明原方程无实数解;②结构双曲线和直线,它们有两个交点,说明原方程有两个实数解.。
九年级下册数学二十六章知识点
九年级下册数学二十六章知识点提高数学考试成果诀窍方法之一是,在考试前进行高水平高效率的复习,花时间去攻克自己不熟识的题目,不断地把生疏转化为熟识。
下面是我整理的九年级下册数学二十六章学问点,仅供参考盼望能够关心到大家。
九年级下册数学二十六章学问点反比例函数的定义定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。
反比例函数的性质函数y=k/x称为反比例函数,其中k≠0,其中X是自变量,1.当k0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。
2.k0时,函数在x0上同为减函数、在x0上同为减函数;k0时,函数在x0上为增函数、在x0上同为增函数。
3.x的取值范围是:x≠0; y的取值范围是:y≠0。
4..因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不行能与x轴相交,也不行能与y轴相交。
但随着x无限增大或是无限削减,函数值无限趋近于0,故图像无限接近于x轴5.反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。
反比例函数解析式的特征⑴等号左边是函数,等号右边是一个分式。
分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。
⑵比例系数⑶自变量的取值为一切非零实数。
⑷函数的取值是一切非零实数。
数学圆的对称性学问点1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。
学数学的最快方法课前预习阅读预习课文时,要预备一张纸、一支笔,将课本中的关键词语、产生的疑问和需要思索的问题顺手记下,对定义、公理、公式、法则等,可以在纸上进行简洁的复述,推理。
人教版九年级数学下册知识点总结:第二十六章反比例函数
人教版九年级数学下册知识点总结第二十六章、反比例函数知识点一:反比例函数的概念及其图象、性质1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下2种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.。
人教版初三数学9年级下册 第26章(反比例函数)复习讲义及例题和习题(含答案)
第二十六章 反比例函数本章知识结构图:中考说明中对本章知识的要求:考试内容A 层次B 层次C 层次反比例函数能结合具体情境了解反比例函数的意义;能画出反比例函数的图象;理解反比例函数的性质能根据已知条件确定反比例函数的解析式;能用反比例函数的知识解决有关问题主要内容:1.定义:一般地,形如)0(≠=k k x ky 是常数,且的函数,叫反比例函数. 反比例函数的解析式有三种形式:(1)xky =(k ≠0的常数);(2)k xy =(k ≠0的常数);(3)1-=kx y (k ≠0的常数).2. 反比例函数的图象及性质:(1)反比例函数的图象是双曲线;(2)当k >0时,两支曲线分别位于第一、三象限,在每一象限内,y 的值随x 值的增大而减小;当k <0时,两支曲线分别位于第二、四象限,在每一象限内,y 的值随x 值的增大而增大;(3)反比例函数图象的两个分支无限接近x 轴和y 轴,但永远不会与x 轴和y 轴相交;(4)反比例函数的图象是对称图形,反比例函数的图象既是轴对称图形又是中心对称图形:①)0(≠=k x ky 是轴对称图形,其对称轴为x y x y -==和两条直线;②)0(≠=k x ky 是中心对称图形,对称中心为原点(0,0)。
③xky x k y -==和在同一坐标系中的图像关于x 轴、y 轴成轴对称。
(5)反比例函数的几何意义:在反比例函数)0(≠=k xky 的图象上任取一点M ,从几何意义上看,从点M 向两轴作垂线,两垂线段与坐标轴所围成的矩形的面积为定值k ;(6)k 越大,双曲线越远离原点。
3.反比例函数在代数、几何及实际问题中的应用。
四、例题与习题:1.下面的函数是反比例函数的是 ( )A . 13+=x yB .x x y 22+= C . 2xy =D .xy 2=2.用电器的输出功率与通过的电流、用电器的电阻之间的关系是,下面说法正确的是()A .为定值,与成反比例B .为定值,与成反比例C .为定值,与成正比例D .为定值,与成正比例3.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图3所示,当310m V =时,气体的密度是( )A .5kg/m 3B .2kg/m 3C .100kg/m 3D .1kg/m 34. 已知三角形的面积一定,则它底边上的高与底边之间的函数关系的图象大致是( )B .C .D .5.某物体对地面的压力为定值,物体对地面的压强p (Pa )与受力面积S (m 2)之间的函数关系如图所示,这一函数表达式为p = .6.点在反比例函数的图象上,则 .7.点(3,-4)在反比例函数ky x=的图象上,则下列各点中,在此图象上的是( )A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)P I R 2P I R =P I R P 2I R P I R P 2I R a h a (231)P m -,1y x=m =8.已知某反比例函数的图象经过点()m n ,,则它一定也经过点( )A .()m n -,B .()n m ,C .()m n -,D .()m n ,9.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .10.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________.11.在平面直角坐标系中,将点(53)P ,向左平移6个单位,再向下平移1个单位,恰好在函数ky x=的图象上,则此函数的图象分布在第 象限.12.对于反比例函数(),下列说法不正确的是( )A. 它的图象分布在第一、三象限B. 点(,)在它的图象上C. 它的图象是中心对称图形D. 每个象限内,随的增大而增大13. 一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 .14.已知反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ).(A )k >2 (B ) k ≥2(C )k ≤2(D ) k <215.若反比例函数的图象经过点,其中,则此反比例函数的图象在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限16.若反比例函数1k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是( )A.-1B.3C.0D.-317.若点00()x y ,在函数ky x=(0x <)的图象上,且002x y =-,则它的图象大致是( )18.设反比例函数中,在每一象限内,随的增大而增大,则一次函数的图象不经过()xk y 2=0≠k k k y x ky x=(3)m m ,0m ≠)0(≠-=k xky y x k kx y -=A .B .C .D .(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限19.如果点11()A x y ,和点22()B x y ,是直线y kx b =-上的两点,且当12x x <时,12y y <,那么函数ky x=的图象大致是( )20.若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( )A .b c>B .b c<C .b c=D .无法判断21.已知点A (3,y 1),B (-2,y 2),C (-6,y 3)分别为函数xky =(k<0)的图象上的三个点.则y 1 、y 2 、y 3的大小关系为 (用“<”连接).22.在反比例函数的图象上有两点A ,B ,当时,有,则的取值范围是( )A 、B 、C 、D 、23.若A (,)、B (,)在函数的图象上,则当、满足______________________________________时,>.24. 已知直线与双曲线的一个交点A 的坐标为(-1,-2).则=_____;=____;它们的另一个交点坐标是______.25.在平面直角坐标系xoy 中,直线yx =向上平移1个单位长度得到直线l .直线l 与反比例函数ky x=的图象的一个交点为(2)A a ,,则k 的值等于 .26.如果函数x y 2=的图象与双曲线)0(≠=k xky 相交,则当0<x 时,该交点位于A .第一象限B .第二象限C .第三象限D .第四象限27.在同一平面直角坐标系中,函数xy 1=与函数x y =的图象交点个数是( )A 、0个B 、1个C 、2个D 、3个28.函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( ) A .1k > B .1k < C .1k >- D .1k <-12my x-=()11,x y ()22,x y 120x x <<12y y <m 0m <0m >12m <12m >1x 1y 2x 2y 12y x=1x 2x 1y 2y mx y =xky =m k xxxx.D .29.在同一坐标系中,一次函数(1)21y k x k =-++与反比例函数ky x=的图象没有交点,则常数k 的取值范围是.30.如图,直线)0(>=k kx y 与双曲线xy 2=交于A 、B 两点,若A 、B 两点的坐标分别为A ()11,y x ,B ()22,y x ,则1221y x y x +的值为()A . -8B .4C . -4D . 031.已知反比例函数2y x=,下列结论中,不正确的是( ) A .图象必经过点(12),B .y 随x 的增大而减少C .图象在第一、三象限内D .若1x >,则2y <32.已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是( ) A .1y <- B .1y ≤- C .1y ≤- 或0y > D .1y <-或0y ≥33.如图,一次函数与反比例函数的图象相交于A、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是_____________.34.如图,正方形ABOC 的边长为2,反比例函数xky =过点A ,则K 的值是( )A .2B .-2C .4D .-435.过反比例函数(0)ky k x=>的图象上的一点分别作x 、y 轴的垂线段,如果垂线段与x 、y 轴所围成的矩形面积是6,那么该函数的表达式是______;若点A(-3,m)在这个反比例函数的图象上,则m=______.36.如图,若点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k =.37.在反比例函数4y x=的图象中,_4-1-1yx第32题图第34题图第33题图第36题图阴影部分的面积不等于4的是( )A .B .C .D .38.两个反比例函数k y x =和1y x =在第一象限内的图象如图所示,点P 在ky x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 .(把你认为正确结论的序号都填上,少填或错填不给分).39.如图,第四象限的角平分线OM 与反比例函数()0≠=k xky 的图象交于点A ,已知OA=23,则该函数的解析式为( )A .xy 3=B .xy 3-= C .xy 9=D .xy 9-=40.如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)k y k x =>的图象于Q ,32OQC S ∆=,则k的值和Q 点的坐标分别为______________.ky x =1y x=(第38题图)第39题图41.当m 取什么数时,函数2)1(--=m xm y 为反比例函数式?42.已知反比例函数102)2(--=m x m y 的图象,在每一象限内y 随x 的增大而减小,求反比例函数的解析式.43.平行于直线y x =的直线l 不经过第四象限,且与函数3(0)y x x=>和图象交于点A ,过点A 作AB y ⊥轴于点B ,AC x ⊥轴于点C四边形ABOC 的周长为8.求直线l 的解析式.44.已知正比例函数的图象与反比例函数(为常数,)的图象有一个交点的横坐标是2.(1)求两个函数图象的交点坐标;(2)若点,是反比例函数图象上的两点,且,试比较的大小.45.已知一次函数y kx b =+的图象与反比例函数my x=的图象相交于A (-6,-2)、B (4,3)两点.(1)求出两函数解析式;(2)画出这两个函数的图象;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值?46.如图,直线y =x +1与双曲线x2y =交于A 、B 两点,其中A 点在第一象限.C 为x 轴正半轴上一点,且S △ABC =3.(1)求A 、B 、C 三点的坐标;(2)在坐标平面内,是否存在点P ,使以A 、B 、C 、P 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标,若不存在,请说明理由.47.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与y kx =5ky x-=k 0k ≠11()A x y ,22()B x y ,5ky x-=12x x <12y y ,3(0)x x>(第47题)t 的函数关系式为tay =(a 为常数),如图所示.据图中提供的信息,解答下列问题: (1)写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量的取值范围; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?48.我们学习了利用函数图象求方程的近似解,例如:把方程的解看成函数的图象与函数的图象交点的横坐标.如图,已画出反比例函数在第一象限内的图象,请你按照上述方法,利用此图象求方程的正数解.(要求画出相应函数的图象;求出的解精确到0.1)49.如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O点.训练时要求A 、B 两船始终关于O 点对称.以O 为原点.建立如图所示的坐标系,轴、y 轴的正方向分别表示正东、正北方向.设A 、B 两船可近似看成在双曲线上运动,湖面风平浪静,双帆远影优美.训练中当教练船与A 、B 两船恰好在直线上时,三船同时发现湖面上有一遇险的C 船,此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置213x x -=-21y x =-3y x =-1y x=210x x --=x 4y x=y x=不再改变,A 、B 、C 三船可分别用A 、B 、C 三点表示).(1)发现C 船时,A 、B 、C 三船所在位置的坐标分别为 A( , )、B( ,)和C(,);(2)发现C 船,三船立即停止训练,并分别从A 、O 、B 三点出发沿最短路线同时前往救援,设A 、B 两船 的速度相等,教练船与A 船的速度之比为3:4,问教练船是否最先赶到?请说明理由。
人教九年级数学下册第二十六章反比例函数必考知识点归纳
(名师选题)人教九年级数学下册第二十六章反比例函数必考知识点归纳单选题1、下列关系式中,y是x的反比例函数的是()A.y=4x B.yx =3C.y=﹣1xD.y=x2﹣1答案:C分析:根据反比例函数的定义逐一判断即可.A、y=4x是正比例函数;B、yx=3,可以化为y=3x,是正比例函数;C、y=﹣1x是反比例函数;D、y=x2﹣1是二次函数;故选:C.小提示:本题考查反比例函数的定义,掌握反比例函数的定义是解题的关键.2、如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y=kx(k>0,x>0)的图象经过AE上的两点A,F,且AF=EF,△ABE的面积为18,则k的值为()A.6B.12C.18D.24答案:B分析:先证明OB∥AE,得出S△ABE=S△OAE=18,设A的坐标为(a,ka),求出F点的坐标和E点的坐标,可得S △OAE =12×3a×k a =18,求解即可.解:如图,连接BD ,∵四边形ABCD 为矩形,O 为对角线,∴AO=OD ,∴∠ODA=∠OAD ,又∵AD 为∠DAE 的平分线,∴∠OAD=∠EAD ,∴∠EAD=∠ODA ,∴OB ∥AE ,∵S △ABE =18,∴S △OAE =18,设A 的坐标为(a ,k a ), ∵AF=EF ,∴F 点的纵坐标为k 2a ,代入反比例函数解析式可得F 点的坐标为(2a ,k 2a ),∴E 点的坐标为(3a ,0),S △OAE =12×3a×k a =18, 解得k=12,故选:B .小提示:本题考查了反比例函数和几何综合,矩形的性质,平行线的判定,得出S △ABE =S △OAE =18是解题关键.3、若反比例函数y=3−2m的图象在二、四象限,则m的值可以是()xA.−1B.2C.1D.0答案:B的图象在二、四象限,可知3-2m<0,从而可以求得m的取值范围,然后即分析:根据反比例函数y=3−2mx可解答本题.解:∵反比例函数y=3−2m的图象在二、四象限,x∴3-2m<0,解得,m>3,2故选:B.小提示:本题考查反比例函数的性质、反比例函数的图象,解答本题的关键是明确题意,利用反比例函数的性质解答.(c是常数,4、如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2B.x<﹣3或x>2C.﹣3<x<0或x>2D.0<x<2答案:C图象上方的部分对应的自变量的取值范围即为所求.分析:一次函数y1=kx+b落在与反比例函数y2= cx∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2= c(c是常数,且c≠0)的图象相交于A(﹣3,x﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.小提示:本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.在同一坐标系中的图象如图所示,下列结论正确的是()5、函数y=kx﹣k与y=mx<0A.k<0B.m>0C.km>0D.km答案:D分析:根据一次函数与反比例函数图象的特点与系数的关系解答即可.解:由图象可知双曲线过二、四象限,m<0;一次函数过一、三,四象限,所以k>0.故选:D.小提示:本题主要考查了反比例函数的图象性质和一次函数的图象性质,解题的关键是熟练掌握一次函数和反比例函数的性质.6、阿基米德说:“给我一个支点,我就能撬动整个地球”这句话精辟地阐明了一个重要的物理学知识——杠杆原理,即“阻力×阻力臂=动力×动力臂”.若已知某一杠杆的阻力和阻力臂分别为1200N和0.5m,则这一杠杆的动力F和动力臂l之间的函数图象大致是()A .B .C .D .答案:A 分析:直接利用阻力×阻力臂=动力×动力臂,进而得出动力F 关于动力臂l 的函数关系式,从而确定其图象即可.解:∵阻力×阻力臂=动力×动力臂,且阻力和阻力臂分别为1200N 和0.5m ,∴动力F 关于动力臂l 的函数解析式为:1200×0.5=Fl ,即F =600l ,是反比例函数,故A 选项符合题意.故选:A .小提示:本题主要考查了反比例函数的应用,正确读懂题意得出关系式是解题关键.7、某城市市区人口x 万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y 与x 之间的函数表达式为( )A .y =x +50B .y =50xC .y =50x D .y =x 50 答案:C分析:根据:平均每人拥有绿地y =总面积总人数,列式求解.解:依题意,得:平均每人拥有绿地y =50x. 故选:C 小提示:本题考查了反比例函数,解题的关键是掌握题目中数量之间的相互关系.8、一次函数y =mx +n 的图像与反比例函数y =m x 的图像交于点A 、B ,其中点A 、B 的坐标为A (-1m ,-2m )、B (m ,1),则△OAB 的面积( )A .3B .134C .72D .154 答案:D分析:将点A 的坐标代入可确定反比例函数关系式,进而确定点B 的坐标,再利用待定系数法求出一次函数关系式;求出直线AB 与y 轴交点D 的坐标,确定OD 的长,再根据三角形的面积公式进行计算即可. 解:∵A (-1m ,-2m )在反比例函数y =m x 的图像上, ∴m =(-1m ) • ( -2m )=2,∴反比例函数的解析式为y =2x ,∴B (2,1),A (-12,-4), 把B (2,1)代入y =2x +n 得1=2×2+n ,∴n =-3,∴直线AB 的解析式为y =2x -3,直线AB 与y 轴的交点D (0,-3),∴OD =3,∴S △AOB =S △BOD +S △AOD=12×3×2+12×3×12 =154.故选:D . .小提示:本题考查一次函数与反比例函数的交点,把点的坐标代入函数关系式是解决问题常用的方法.9、为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产进行治污改造,其月利润y (万元)与月份x 之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的一部分,下列选项错误..的是()A.4月份的利润为50万元B.治污改造完成后每月利润比前一个月增加30万元C.治污改造完成前后共有4个月的利润低于100万元D.9月份该厂利润达到200万元答案:C分析:直接利用已知点求出一次函数与反比例函数的解析式进而分别分析得出答案.A、设反比例函数的解析式为y=kx,把(1,200)代入得,k=200,∴反比例函数的解析式为:y=200x,当x=4时,y=50,∴4月份的利润为50万元,正确意;B、治污改造完成后,从4月到6月,利润从50万到110万,故每月利润比前一个月增加30万元,正确;C、当y=100时,则100=200x,解得:x=2,则只有3月,4月,5月共3个月的利润低于100万元,不正确.D、设一次函数解析式为:y=kx+b,则{4k+b=506k+b=110,解得:{k=30b=−70,故一次函数解析式为:y=30x−70,故y=200时,200=30x−70,解得:x=9,则治污改造完成后的第5个月,即9月份该厂利润达到200万元,正确.故选:C.小提示:此题主要考查了一次函数与反比函数的应用,正确得出函数解析式是解题关键.10、下列函数中,y与x之间是反比例函数关系的是()A.xy=√2B.3x+2y=0C.y=kx D.y=2x+1答案:A分析:根据反比例函数定义判定即可.A、xy=√2属于反比例函数,故此选项正确;B、3x+2y=0是一次函数,故此选项错误;C、y=kx(k≠0),故该项不属于反比例函数,此选项错误;D、y=2x+1,是y与x+1成反比例,故此选项错误.故选A.小提示:此题考查反比例函数的定义,注意反比例函数的三种形式,y=kx,xy=k,y=kx−1,熟记这三种形式即可正确判断.填空题11、已知点A(1,2),B在反比例函数y=kx(x>0)的图象上,若OA=OB,则点B的坐标为_________.答案:(2,1)分析:根据点A,B关于y=x(y-x=0)的对称,求解即可解:∵点A(1,2),B在反比例函数y=kx(x>0)的图象上,OA=OB,∴点A,B关于直线y=x(y-x=0)的对称,设点(1,2)关于直线y=x(y-x=0)的对称点设为(a,b)由两点中点在直线y=x上及过两点的直线垂直直线y=x(斜率之积为-1)可以得到:{1+a2=2+b2(b−2)(a−1)=−1,解得:a=2,b=1,∴点B的坐标为(2,1)所以答案是:(2,1)小提示:本题考查了反比例函数图象上点的坐标特征,利用已知条件得出:点A,B关于直线y=x(y-x=0)的对称是解题的关键.12、已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣4x图象上的两个点,则y1与y2的大小关系为__________.答案:y1<y2分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小,从而可以解答本题.详解:∵反比例函数y=-4x,-4<0,∴在每个象限内,y随x的增大而增大,∵A(-4,y1),B(-1,y2)是反比例函数y=-4x图象上的两个点,-4<-1,∴y1<y2,故答案为y1<y2.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.13、如图,已知直线y=2x与反比例函数y=2x的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是______.答案:(-1,-2)分析:直接利用正比例函数和反比例函数的性质得出M,N两点关于原点对称,进而得出答案.的图象交于M,N两点,解:∵直线y=2x与反比例函数y=2x∴M,N两点关于原点对称,∵点M的坐标是(1,2),∴点N的坐标是(-1,-2).所以答案是:(-1,-2).小提示:此题主要考查了反比例函数与正比例函数图象的性质,正确得出M,N两点位置关系是解题关键.解答题14、为检测某品牌一次性注射器的质量,将注射器里充满一定量的气体,当温度不变时,注射器里的气体的压强p(kPa)是气体体积V(ml)的反比例函数,其图象如图所示.(1)求这个函数的表达式;(2)当气体体积为40ml时,求气体压强的值;(3)若注射器内气体的压强不能超过400kPa,则其体积V要控制在什么范围?答案:(1)p=6000V(2)气体压强为150kPa(3)体积V应不少于15ml分析:(1)利用待定系数法进行求解即可;(2)把V=40ml代入反比例函数解析式求解即可;(3)把p=400kPa代入反比例函数解析式求解即可.(1),解:设p=kV由图可得,反比例函数图象过(30,200),,∴200=k30解得k=6000,∴反比例函数的解析式为p=6000;V(2)当V=40ml时,=150,p=600040∴气体压强为150kPa;(3)当p=400kPa时,,400=6000V解得V=15,∴体积V应不少于15ml.小提示:本题考查了反比例函数的应用,熟练掌握知识点是解题的关键.15、如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=6(x>x0)和y=kx(x<0)的图象交于点P、点Q.(1)求点P的坐标;(2)若△POQ的面积为8,求k的值.答案:(1)P点坐标为(3, 2);(2)k=−10.分析:(1)求出P点的纵坐标,再代入函数解析式,即可求出答案;(2)根据三角形的面积公式求出PQ,求出MQ,求出点Q的坐标,即可求出答案.解:(1)∵PQ // x轴,∴点P的纵坐标为2,把y=2代入y=6x得x=3,∴P点坐标为(3, 2);(2)∵S△POQ=S△OMQ+S△OMP,∴12|k|+12×|6|=8,∴|k|=10,而k<0,∴k=−10.小提示:本题考查了用待定系数法求反比例函数的解析式和反比例函数图象上点的坐标特征等知识点,能灵活运用知识点进行计算是解此题的关键.。
(人教版)南京九年级数学下册第二十六章《反比例函数》知识点总结
一、选择题1.如图,A 、B 是函数1y x=的图像上关于原点对称的任意两点,BC //x 轴,AC //y 轴,ABC 的面积记为S ,则( )A .1S =B .2S =C .24S <<D .4S =2.如图,在平面直角坐标系中,菱形OBCD 的边OB 在x 轴上,反比例函数()0ky x x=>的图象经过菱形对角线的交点,A 且与边BC 交于点F ,点C 的坐标为()8,4,则OBF ∆的面积为( )A .104B .83C .103D .1143.如图,已知双曲线()0ky x x=>经过矩形OABC 的边AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为2.则k =( )A .2B .12C .1D .44.(2017广东省卷)如图,在同一平面直角坐标系中,直线()110y k x k =≠与双曲线()220k y k x=≠相交于A B 、两点,已知点A 的坐标为()1,2,则点B 的坐标为( )A .()1,2--B .()2,1--C .()1,1--D .()2,2--5.已知0k >,函数y kx k =+和函数ky x=在同一坐标系内的图象大致是( ) A . B .C .D .6.如图,反比例函数ky x=的图像经过平行四边形ABCD 的顶点C ,D ,若点A 、点B 、点C 的坐标分别为()3,0,()0,4,(),a b ,且7.5a b +=,则k 的值是( )A .7.5B .9C .10D .127.若反比例函数()2221my m x -=-的图象在第二、四象限,则m 的值是( )A .-1或1B .小于12的任意实数 C .-1 D .不能确定8.如图,在平面直角坐标系中,直线y x =-与双曲线ky x=交于A 、B 两点,P 是以点(2,2)C 为圆心,半径长1的圆上一动点,连结AP ,Q 为AP 的中点.若线段OQ 长度的最大值为2,则k 的值为( )A .12-B .32-C .2-D .14-9.如图,已知正比例函数y 1=x 与反比例函数y 2=9x的图像交于A 、C 两点,AB ⊥x 轴,垂足为B , CD ⊥x 轴,垂足为D .给出下列结论:①四边形ABCD 是平行四边形,其面积为18;②AC =32;③当-3≤x<0或x≥3时,y 1≥y 2;④当x 逐渐增大时,y 1随x 的增大而增大,y 2随x 的增大而减小.其中正确的结论有( )A .①④B .①③④C .①③D .①②④10.同一坐标系中,函数()1y k x +=与ky x=的图象正确的是( ) A . B .C .D .11.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( ) A .①③ B .③④ C .②④ D .②③12.如图,直线y =x +2与y 轴交于点A ,与直线y =﹣3x +10交于点B ,P 是线段AB 的中点,已知反比例函数y =kx的图象经过点P ,则k 的值为( )A .1B .3C .6D .813.如图, O 为坐标原点,点B 在x 轴的正半轴上,四边形OBCA 是平行四边形,45sin AOB ∠=,反比例函数()0m y m x=>在第一象限内的图像经过点A ,与BC 交于点F ,若点F 为BC 的中点,且AOF 的面积为12,则m 的值为( )A .16B .24C .36D .4814.已知1(3A -,1)y 、1(2B -,2)y 、3(1,)C y 是一次函数3y x b =-+的图象上三点,则1y ,2y ,3y 的大小关系是( )A .123y y y <<B .213y y y <<C .312y y y <<D .321y y y <<15.如图,正方形ABCD 的顶点A ,B 分别在x 轴和y 轴上与双曲线18y x=恰好交于BC 的中点E ,若2OB OA =,则ABO S △的值为( )A.6 B.8 C.12 D.16第II卷(非选择题)请点击修改第II卷的文字说明参考答案二、填空题16.如图,设点P在函数5yx=的图象上,PC⊥x轴于点C,交函数y=2x的图象于点A,PD⊥y轴于点D,交函数y=2x的图象于点B,则四边形PAOB的面积为_____.17.某药品研究所开发一种抗新冠肺炎的新药,经大量动物实验,首次用于临床人体实验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间的函数关系如图所示,即2,(04)32,(4)x xyxx≤≤⎧⎪=⎨>⎪⎩,若血液中药物浓度不低于4微克/毫升的持续时间不低于7小时,则称药物治疗有效.请根据图中信息计算并判断:血液中药物浓度不低于4微克/毫升的持续时间为______个小时,这种抗菌新药________(“可以”或“不可以”)作为有效药物投入生产.18.如图,在平面直角坐标系xOy 中,已知直线(0)y kx k =>分别交反比例函数1y x=和9y x=在第一象限的图象于点A ,B ,过B 作BD x ⊥轴于点D ,交1y x =的图象于点C .若BA BC =,则k 的值为________.19.如图,已知双曲线()0ky x x=>经过矩形OABC 边BC 的中点E ,与AB 交于点F ,且四边形OEBF 的面积为3,则k=________.20.如图,正方形ABCD 的边长为10,点A 的坐标为()8,0-,点B 在y 轴上,若反比例函数(0)ky k x==的图象过点C ,则该反比例函数的解析式为_________.21.在平面直角坐标系中,点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限.若反比例函数y =kx(k ≠0)的图象经过其中两点,则m 的值为_____. 22.如图所示,正比例函数y 1=k 1x (k 1≠0)的图像与反比例函数y 2=2k x(k 2≠0)的图像相交于A 、B 两点,其中A 的横坐标为2,当y 1<y 2<0时,则x 的取值范围是______.23.点(),A a b 是一次函数3y x =-+与反比例函数2y x =的交点,则11a b+的值__________.24.如图,点()11,P x y ,点()22,P x y ,…点(),n n P x y 在函数()90y x x=>的图象上, 112123231,,n n n POA P A A P A A P A A -⋅⋅⋅都是等腰直角三角形,斜边112231,,,n n OA A A A A A A -⋅⋅⋅都在x 轴上(n 是大于或等于2的正数数),则12n y y y ++⋅⋅⋅+=__________.(用含n 的式子表示)25.如图,已知反比例函数y =kx(x >0)与正比例函数y =x (x ≥0)的图象,点A (1,4),点A '(4,b )与点B '均在反比例函数的图象上,点B 在直线y =x 上,四边形AA 'B 'B 是平行四边形,则B 点的坐标为______.26.如图,平面直角坐标系中,等腰Rt ABC ∆的顶点.A B 分别在x 轴、y 轴的正半轴,90,ABC =∠CA x ⊥轴, 点C 在函数()0k y x x=>的图象上.若2,AB =则k 的值为_____.三、解答题27.如图,已知(4,)A n -,(1,4)B -是一次函数y kx b =+的图象和反比例函数my x=的图象的两个交点.(1)求反比例函数和一次函数的解析式.(2)求直线AB 与x 轴的交点C 的坐标及AOB 的面积.(3)求不等式0mkx b x+-<的解集(请直接写出答案). 28.如图,直线y kx b =+y kx b =+与反比例函数12y x=相交于A(2,)-m 、B(n,3).(1)连接OA 、OB ,求AOB 的面积;(2)根据(1)中的图象信息,请直接写出不等式12kx b x>+的解集. 29.如图,一次函数y 1=kx +b (k ≠0)和反比例函数()20my m x=≠的图象相交于点A (﹣4,2),B (n ,﹣4)(1)求一次函数和反比例函数的表达式;(2)观察图象,直接写出不等式y 1<y 2的解集.30.如图,在直角坐标系中,双曲线ky x=与直线y ax b =+相交于()2,3,6,)(A B n -两点,(1)求双曲线和直线的函数解析式;(2)点P 在x 负半轴上,APB △的面积为14,求点P 的坐标;(3)根据图象,直接写出不等式组0k ax bx ax b⎧+⎪⎨⎪+⎩﹤﹥的解集.。
最新整理初三数学教案新人教版初三数学下册第二十六章知识点总结.docx
最新整理初三数学教案新人教版初三数学下册第二
十六章知识点总结
新人教版初三数学下册第二十六章知识点总结
一、反比例函数
形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
反比例函数的图像为双曲线。
二、实际问题与反比例函数
1.反比例函数与几何图形、一次函数的综合应用
反比例函数与几何图形、一次函数知识综合起来应用可解决如下几种问题:
(1)已知一次函数和反比例函数的解析式,求它们图象的交点坐标,这类题目可通过列方程组来求解;
(2)判断含有同一字母系数的一次函数和反比例函数的图象在同一直角坐标系中的位置情况,可先由两者中的某一图象确定出字母系数的取值情况,再与另一图象相对照解决;
(3)已知含有一次函数或反比例函数的信息,求一次函数或反比例函数的关系式;
(4)利用反比例函数的几何意义求与面积有关的问题。
解这类问题要注意抓住其中的“定点”或对应的值解题。
两种函数有时还会综合到其他题目中,解决时要注意结合相关知识点。