1,4-二溴代萘83-53-4
dpa邻二甲苯标准物质

dpa邻二甲苯标准物质
DPA邻二甲苯是一种有机化合物,也称为1,4-二甲苯。
它通常作为标准物质用于化学分析和实验室测试中。
标准物质是一种已知浓度和纯度的化合物,用于校准仪器、验证分析方法和进行质量控制。
DPA邻二甲苯标准物质通常用于校准气相色谱仪、液相色谱仪和质谱仪等仪器,以确保这些仪器能够准确测量样品中DPA邻二甲苯的含量。
在实验室中,科学家和化验员经常需要使用标准物质来验证他们的分析方法是否准确、可重复和可靠。
DPA邻二甲苯标准物质的使用有助于确保实验结果的准确性,并且可以帮助实验室遵守质量管理和质量控制标准。
此外,DPA邻二甲苯标准物质还可用于环境监测、食品安全和药物研发等领域。
通过使用标准物质,科学家可以进行准确的定量分析,确保产品符合法规要求,并监测环境中有害物质的含量。
总之,DPA邻二甲苯标准物质在化学分析和实验室测试中扮演着重要的角色,它的使用有助于保证实验结果的准确性和可靠性,对于各种行业和领域都具有重要意义。
4-溴萘酚

Regiospecific Oxyhalogenation of Aromatics Over SBA-15-Supported Nanoparticle Group IV–VI Metal OxidesL.Saikia •M.Rajesh •D.Srinivas •P.RatnasamyReceived:18February 2010/Accepted:10April 2010/Published online:4May 2010ÓSpringer Science+Business Media,LLC 2010Abstract TiO x ,VO x ,MoO x and WO x supported on SBA-15exhibit efficient catalytic activity for oxyhalogenation of aromatics with the H 2O 2-halide ion system.Unlike the hitherto known solid catalysts,these reusable catalysts yield the para-halogenated product with 100%selectivity at 298K and moderate acidic pH (3–5).The catalytic activity was enhanced by five orders of magnitude when supported on SBA-15.Keywords Oxyhalogenation of aromatics ÁHaloperoxidase activity ÁSupported metal oxides ÁSBA-15ÁOrdered mesoporous silica1IntroductionHalogen-containing compounds constitute an important segment of fine and specialty chemicals,dyes,flame-retar-dants,pharmaceuticals and agrochemicals [1–3].Haloge-nated arenes are extensively used as precursors in the preparation of various bioactive molecules and pharma-ceuticals [4,5]and play a vital role in metal-catalyzed coupling reactions [6].Classical halogenations use molec-ular halogen,despite the fact that it is a pollutant and a safety and health hazard [7].Perbromide (Br 3-)-exchanged poly-mers are safer to handle and are commercially available.Nevertheless,their preparation,still,involves direct contact with Br 2and,like most supported stoichiometric reagentsthey lack adequate process productivity [8,9].In contrast to molecular bromine,stoichiometric brominating reagents such as N -bromosuccinimide (NBS),N -bromoacetamide (NBA)and bromodimethylsulfonium bromide do not pro-duce HBr in bromination of organic molecules,but are expensive and generate organic waste [10].In this context,oxyhalogenation,a bio-mimetic approach [11,12],is safer and greener since it avoids the hazardous X 2by replacing it with a halide salt in the presence of an oxidizing agent under acidic conditions (Eq.1).H 2O 2þX ÀþR ÀH þH þ!R ÀX þ2H 2Oð1ÞIn the past,Raja and Ratnasamy reported [13]the appli-cation of zeolite-encapsulated copper phthalocyanines as chloroperoxidase mimics.There was an enhancement in catalytic activity for substrate conversion when the copper complexes were encapsulated in the cavities of zeolites X,Y and L.There was,however,no regioselectivity among the products.In the oxidation of anisole and toluene,for example,both ortho (predominant)and para-halogenated products were formed.Significant quantities of di-and tri-halogenated products were also detected.Sels et al.[14,15]had reported the application of transition metal ion exchanged layered double hydroxides in oxyhalogenations.We had reported that tungsten oxide supported on SBA-15is highly efficient for oxyhalogenation of a range of aro-matic compounds [16].Aromatic compounds with electron releasing groups (ca.,aniline,anisole,phenol etc.)are found to be the most plete conversion of those substrates to the corresponding halogenated (iodo,bromo and chloro)compounds was achieved in just 4h at room temperature and moderate acidic conditions using the H 2O 2-halide ion as the halogenating system Interest-ingly,the para-isomer formed with 100%regioselectivity.We now report here a more detailed study of theL.Saikia ÁM.Rajesh ÁD.Srinivas (&)ÁP.Ratnasamy (&)Catalysis Division,National Chemical Laboratory,Pune 411008,Indiae-mail:d.srinivas@ncl.res.in P.Ratnasamye-mail:p.ratnasamy@ncl.res.inCatal Lett (2010)137:190–201DOI 10.1007/s10562-010-0350-zapplication of group IV–VI metal oxides(TiO x,VO x, MoO x and WO x)supported on SBA-15for this reaction. Regiospecific oxybromination of phenol red is investigated spectrophotometrically.The nature and dispersion of metal oxide on catalytic activity is investigated.Some insight into the mechanism of oxybromination is provided using in situ UV-visible spectroscopic studies.2Experimental2.1Material SynthesisSBA-15was prepared using tetraethyl orthosilicate(TEOS, Aldrich Co.)as a silica source,poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (EO20PO70EO20;average molecular weight=5800; Aldrich Co.)as a template and HCl as a pH controlling agent[17].2.1.1VO x-SBA-15This material was prepared in three steps.In thefirst-step, propyl amine functionalized SBA-15was prepared as reported earlier[18].Then,in the second-step,butylam-monium decavanadate was prepared:5g of V2O5and2.42g of butyl amine were added to10mL of water taken in a 250mL round-bottomflask equipped with a reflux con-denser.The reaction mixture was heated until the solid was completely dissolved.The pH of the solution was adjusted to 5by a drop-wise addition of conc.HClO4.The deep orange solution formed was refluxed overnight.The mixture was filtered and kept for evaporation.Brilliant,orange colored butylammonium decavanadate formed in several hours.The powder was highly soluble in water and recrystallized from acetone/water(10:1v/v)mixture.In the third-step,SBA-15 supported vanadia was prepared using amine functionalized SBA-15and butylammonium decavanadate as starting materials.For a11wt%(input)of V2O5catalyst,635mg of butylammonium decavanadate was added to a suspension of 1g of propyl amine functionalized SBA-15in40mL of water.The contents were stirred for12h,filtered,washed with water,and dried in air,yielding an orange powder, which was then calcined at823K for12h.2.1.2TiO x-SBA-15In a typical synthesis,tetrabutyl orthotitanate(0.05g)was taken in15mL of glycerol and hydrolyzed with tetrapro-pylammonium hydroxide(20wt%TPAOH)while stirring for4h.To that,calcined SBA-15(200mg)was added and stirred at373K for another72h.The contents werefil-tered under vacuum and the solid obtained was dried at 393K and calcined at773K for6h.2.1.3MoO x-SBA-15SBA-15(2g)was activated at473K prior to use and then dispersed in50mL of aqueous solution of ammonium heptamolybdate so that the molybdenum oxide loading was 20wt%.The mixture was refluxed for12h,evaporated to dryness and then calcined at823K to get a faint blue colored supported molybdenum oxide catalyst.2.1.4WO x-SBA-15Tungsten oxide supported on SBA-15was prepared in a similar manner as above using activated SBA-15(2g)and ammonium tungstate solution(50mL).Ammonium tung-state solutions were prepared in such a way that tungsten oxide loading was5,10,15and20wt%of the total catalyst.The catalysts,thus,prepared were designated as MO x(n)-SBA-15(Table1),where M represents Ti,V,Mo or W and n stands for weight percent of metal oxide loading.Table1Structural and textural properties of SBA-15-supported metal oxide catalystsCatalyst XRD N2physisorption Wall thickness(nm)EDAX—Si/metal at.%(wt%)d100 (nm)Unit cellparameter(nm)Pore diameter(nm)S BET(m2g-1)Total porevolume(cc g-1)WO x(5)-SBA-1511.012.77.24320.77 5.547.2(7.2)WO x(10-SBA-1511.012.77.24190.76 5.523.1(3.5)WO x(15)-SBA-1511.112.87.13910.70 5.718.2(2.8)WO x(20)-SBA-1511.012.7 6.53220.68 6.210.1(1.5)MoO x(20)-SBA-1511.313.1 6.64520.75 6.510.9(3.2)TiO x(6)-SBA-1511.413.2 6.5452 1.08 6.711.2(6.2)VO x(11)-SBA-1511.713.5 6.03490.527.58.8(4.8)SBA-159.511.0 6.5692 1.13 4.5–Regiospecific Oxyhalogenation of Aromatics1912.2Characterization TechniquesX-ray diffractograms(XRD)were recorded on an X’Pert Pro(Philips)diffractometer using Cu–K a radiation and a proportional counter as detector.A divergent slit of1/32°on the primary optics and an anti-scatter slit of1/16°on the secondary optics were used to measure the data in the low-angle region.The XRD patterns were recorded in the 2h range of0.5–108at a scan rate of18min-1.Mea-surements in higher2h range of10–808(for detection of crystalline metal oxides)were performed on a Rigaku Geigerflex X-ray diffractometer with Ni-filtered Cu–K a radiation(40kV,30mA).Crystallite size of the materials was determined using the Scherrer equation:L=K k/ b cos h,where h and k have their usual meanings;K is a constant approximately taken as0.9,and b is line width on2h scale in radians.Unit cell parameter for SBA-15was determined using the equation:a=d(111) H(h2?k2?l2).Here d is inter-planar distance obtained from the Bragg’s equation while considering the value of n as unity.Morphological characteristics of samples were determined using a high resolution transmission electron microscope(HRTEM,JEOL,model1200EX operating at 100kV).The specific surface area(BET)of the samples was determined using a NOVA1200Quanta Chrome instru-ment.The data points of p/p o in the range of about0.05–0.3were used in the calculations.The micropore volume was estimated from the t-plot and the pore diameter was estimated using the Barret–Joyner–Halenda(BJH)model.FTIR spectra(KBr pellets)were recorded on a Shima-dzu8201PC spectrophotometer in the region400–4000cm-1.Diffuse reflectance UV-visible(DRUV-vis) measurements for powder samples were conducted on a Shimadzu UV-2550spectrophotometer equipped with an integrating sphere attachment(ISR2200).Spectral grade BaSO4was used as a reference material.FT-Raman spectra were recorded on a Jobin-Yvon LabRam HR Laser Raman spectrometer.Green light(514.5nm)was used for exci-tation.X-ray photoelectron spectra(XPS)of calcined powder samples were acquired on a VG Microtech Mul-tilab ESCA3000with Mg K a radiation(h t=1253.6eV). Base pressure in the analysis chamber was maintained at 3–6910-10mbar.Binding energies(BE)were calibrated with respect to Au4f7/2core level(83.9eV).The error in BE values is±0.1eV.2.3Reaction Procedure:Oxybromination of PhenolRedPhenol red(phenolsulfonephthalein)is a conjugated system, which shows a visible band at430–450nm in aqueous solution.Bromination of phenol red at mild acidic conditions yields bromophenol blue(tetrabromophenolsulfonephthalein). The conversion of phenol red to bromophenol blue is a common test to monitor bromination activity under peroxi-dative conditions.The widespread use of this dye stems from its ability to undergo rapid and stoichiometric bromination and from the ease with which this can be monitored using UV-vis spectroscopy[14,15].Oxybromination of phenol red to bromo-phenol blue was performed over nanoscopic tungsten oxide,molyb-denum oxide,titanium oxide and vanadium oxide sup-ported on SBA-15.In a typical experiment,20mL of 0.05M phenol red solution(H2O:CH3OH=4:1)was taken in a double-necked round bottomflask.To it, 2mmol of KBr and2mmol of H2O2(30%aq.)were added.After addition of0.025g of the catalyst,the pH of the reaction mixture was adjusted to*5by adding drop-wise the buffer—HEPES(4-(2-hydroxyethyl)-1-piper-azineethanesulfonic acid).The progress of the reaction (298K)was monitored by taking out small aliquots of the samples at equal interval(15min),separating the catalyst by centrifugation and then by recording the UV-vis spectrum which showed a decrease in absorbance at k max=430–450nm corresponding to phenol red with a concomitant increase in absorbance at k max=590–600nm due to bromophenol blue.The reaction was also carried out with different loadings of tungsten oxide under similar conditions.Effect of temperature on the conver-sion of phenol red was studied over WO x(20)-SBA-15 catalyst.3Results and Discussion3.1Structure and Spectroscopic Characterizationof Catalysts3.1.1XRDThe SBA-15materials showed XRD peaks in the2h range of18–2.3°attributable to2D hexagonal p6mm symmetry [16,18–24].The well-resolved(110)and(200)reflections revealed that incorporation of metal oxides did not alter the long-range mesoporous ordering of the host SBA-15. WO x(n)-SBA-15showed distinct,additional peaks in the 2h range of208–70°,typical of nanocrystalline WO3. Intensity of these additional peaks increased with increas-ing WO x loading(5–20wt%).Similar peaks due to crys-talline metal oxides were not detected in the case of TiO x, VO x and MoO x supported on SBA-15.The d spacing(d100) and unit cell parameters,estimated from the position of the low-angle(100)peak(Table1)agree well with those reported by others[18–24].192L.Saikia et al.3.1.2N 2-PhysisorptionAll the materials exhibited type IV nitrogen adsorption–desorption isotherms with a H 1-type,broad,hysterisis loop corresponding to a large pore mesoporous material with one dimensional cylindrical channels.Capillary conden-sation of nitrogen within mesopores occurred causing a sudden step increase in nitrogen uptake in the characteristic relative pressure (P/P 0)range of 0.6–0.8,suggesting typical mesoporous structure with uniform pore diameters [25].The amount of nitrogen adsorbed decreased for SBA-15-supported metal oxides compared to ‘‘bare’’SBA-15.The decrease in BET surface area (from 692to 322m 2g -1)and pore volume (from 1.13to 0.52cc g -1)of the modi-fied SBA-15materials compared to ‘‘bare’’SBA-15(Table 1)is a clear indication of the location of the metal oxides inside the pores of SBA-15.The increase in pore diameter upon deposition of metal oxides is possibly due to that a small part of the metal substitutes Si 4?in the SBA-15lattice.It may be noted that the ionic radius of the metal chosen is bigger than that of silicon and hence causes an increase in the pore diameter of the lattice.3.1.3HRTEMHigh resolution transmission electron micrographs (HRTEM)of WO x (20)-and MoO x (20)-SBA-15revealed the highly ordered hexagonal arrays of mesopores charac-teristic of the SBA-15support (Fig.1).No separate,bulk metal oxide phase was detected.This observation reconfirms the conclusions drawn from N 2-physisorption measure-ments that all the metal content is inside the pores of SBA-15and not at the external surface.HRTEM images confirm the conclusions drawn from XRD measurements that the mes-oporosity of SBA-15is intact even after modification with metal oxides.The pore diameter calculated for WO x (20)-SBA-15from TEM matches well with that determined from the nitrogen physisorption measurements.3.1.4FTIRSBA-15showed FTIR peaks at 2900–3800,1040–1260,820and 500cm -1due to O–H of silanols,adsorbed water molecules and Si–O–Si stretching vibrations,respectively [17].SBA-15-supported metal oxides showedadditionalFig.1TEM images of a MoO x (20)-SBA-15and b WO x (20)-SBA-15Regiospecific Oxyhalogenation of Aromatics 193peaks in the spectral range of800–964cm-1which could be attributed to M–O–Si and M–O–M vibrations[25,26]. Intensity of these additional peaks increased with increase in WO x loading indicating that they originate from the supported metal oxide species.3.1.5DRUV-visDiffuse reflectance UV-visible(DRUV-vis)spectroscopy can differentiate the dispersed meal oxides from the bulk-phase metal oxides.Bulk titania,vanadia,molybdenum oxide and tungsten oxide show the O2-?M n?charge transfer band above380nm[26].In the case of dispersed metal oxides this band shifts to higher energy side(blue shift)[26].In fact,TiO x(6)-SBA-15and MoO x(20)-SBA-15showed an intense asymmetric band below300nm indicative of isolated metal oxide species(Fig.2). VO x(11)-SBA-15and WO x(20)-SBA-15showed additional bands at385–400nm due to bulk-like metal oxide species. Intensity of this additional band increased with the metal oxide content in WO x(n)-SBA-15.A blue shift of the absorption edge in all these materials with respect to the bulk-phase indicates formation of a spatially confined, dispersed,nanoparticulate metal oxide species[26].3.1.6Laser Raman SpectroscopyRaman spectroscopy of metal oxides is very sensitive to the coordination environment of the metal[27].Anatase exhibits intense bands at150,395,515and640cm-1. TiO x(6)-SBA-15shows a very weak Raman spectrum.No trace of the150cm-1band(a sensitive indicator of ana-tase)was detected for TiO x(6)-SBA-15.On the other hand, the sample showed bands at955and1100cm-1,corre-sponding to a symmetric and antisymmetric Ti–O–Si stretching vibratioins,respectively.The diffused spectral pattern and the absence of150cm-1band indicated that titania is in a highly dispersed state in TiO x(6)-SBA-15.Isolated vanadia centers in tetrahedral coordination show Raman bands at1042cm-1.Cluster-type VO x spe-cies show bands at994,697,286and147cm-1.Undis-torted VO6octahedra exhibit a strong and sharp band at 870–890cm-1.The V2O5phase exhibits typical spectral bands at994,701,526,284,144cm-1[28–30].Absence of these bands in VO x(11)-SBA-15revealed a different local environment for vanadium in VO x(11)-SBA-15. Raman bands associated with V=O usually appear at900–1000cm-1.This band for VO x(20)-SBA-15appeared at 1034cm-1.Intense,well-resolved Raman shifts were observed in the case of MoO x(20)-and WO x(20)-SBA-15(Fig.3). While the band at995cm-1in MoO x(20)-SBA-15corre-sponds to the Mo=O group of two dimensional polymo-lybdates(octahedral MoO6species)that at816cm-1 corresponds to MoO5type species[27].The intense sharp bands at805,717,273,137cm-1for WO x(20)-SBA-15 reveal the presence of octahedral MoO6units as in the MoO3phase[27].The Raman spectra,therefore,reveal that the supported metal oxides are in a dispersed state and the extent of dispersion differs in different SBA-15-sup-ported metal oxides.3.1.7XPSThe binding energy peak corresponding to W4f7/2in WO x(20)-SBA-15appeared at36.5eV.This does not match exactly the value for neat WO3(35.8eV),or WO2 (32.8eV)[31].The difference in binding energy found in the present study from that with neat WO3and WO2can be explained by the presence of SiO2in the neighborhood of the tungsten centers.The XPS study also reveals that all the tungsten oxide is dispersed and located inside the pores of SBA-15and not present as a separate phase bulk oxide outside or at the external surface of silica.The peaks194L.Saikia et al.arising from Mo3d levels in MoO x(20)-SBA-15appeared at235.8and233.1eV.Supported vanadia showed a broad peak at515.6eV corresponding to V2p3/2.This peak for extended V x O y aggregates such as in V2O5appears at 517.5[32–34].The shift to lower energy is an indication that vanadia is in dispersed and even in a partially reduced ?3state.Based on XPS we assign that the oxidation state of W and Mo in WO x(20)-SBA-15and MoO x(20)-SBA-15, respectively as?6.NH3-TPD confirmed the presence of weak Lewis acidic sites.The amount of NH3desorbed at373–573K from different supported catalysts decreased in the order: WO x(20)-SBA-15(0.35mmol g-1)[MoO x(20)-SBA-15 (0.224mmol g-1)[TiO x(6)-SBA-15(0.201mmol g-1).3.2Catalytic Activity3.2.1Oxybromination of Phenol RedWhen phenol red was reacted with a mixture of aqueous H2O2and KBr in the presence of SBA-15-supported nano-scopic metal oxide catalysts,the yellow color of the reaction mixture changed rapidly to deep-blue.Electronic absorption spectra recorded as a function of reaction time(Fig.4), provided clear evidence for the disappearance of phenol red (k max=434nm)and formation of a new compound—bro-mophenol blue(k max=595nm).The initial rate of bro-mination over different supported oxide catalysts decreased in the order:WO x(20)-SBA-15(3.42910-4)[MoO x (20)-SBA-15(2.61910-4)[TiO x(6)-SBA-15(2.249 10-4)[VO x(11)-SBA-15(1.65910-4mM min-1)indi-cating that the supported tungsten oxide catalysts are supe-rior to the rest of the metal oxides investigated in the present study(Table2).Controlled experiments revealed that oxy-bromination doesn’t occur in the absence of any catalyst.The supported metal oxides exhibited higher catalytic activity than the corresponding bulk oxides.The catalytic activity (turnover frequency(TOF)—moles of substrate converted per mole of metal per min)of tungsten oxide was enhanced byfive orders of magnitude when dispersed and supported on SBA-15(Table2,compare rows2and9).Mesoporous SBA-15enable better dispersion of the metal oxides.The dis-persed,nanoparticle metal oxides having a high exposed surface area and Lewis acidity showed better performance than the bulk metal oxides.Conversion of phenol red increased with the bromide ion concentration up to2mmol and beyond that it decreased with any further increase in the concentration(Fig.5).MgAl–WO42-and MgAl–MoO42-exhibited TOF values of about0.3min-1[14,15].The TOF values of32and16min-1observed for WO x(20)and MoO x(20)supported on SBA-15indicate that nature of the support influences the activity of the metal oxide species.3.2.2Oxyhalogenation of Aromatics3.2.2.1Oxyiodination Iodination of arenes(Table3)was achieved at a moderate pH(*4).The reaction occurred at room temperature(298K)and atmospheric pressure.The iodinating agent used was KI/H2O2;the pH of the medium was adjusted with plete conversion of a range of arenes into the corresponding iodo products was achieved in just4h.Iodination of aniline and anisole can occur at both ortho-and para-positions.However,only the para-isomer formed selectively over WO x(20)-SBA-15 (Table3,entry nos.1and2).Oxyiodination of phenol yielded both the para-and ortho-iodo products.However, the former has higher selectivity than the latter isomer (Entry no.3).In the case of styrene and a-methyl styrene, the olefinic bond is preferentially attacked forming diiodo and diol compounds with former being more selective. b-Methyl styrene yielded mainly the diol product(Table3, compare entry nos.8–11).Iodination of aniline was per-formed at different reaction temperatures.Increase in ani-line conversion beyond298K was only marginal.3.2.2.2Oxybromination The reaction was carried out at ambient temperature and pressure and under mild acidic (pH=4.4–5)conditions(Table4).Among various sub-strates investigated,substituted anilines,anisole,naphthol, phenol,1,3,5-trimethyl benzene were found to be the most reactive(100%conversion).In case of aniline,anisole etc., the para-brominated isomer formed with100%selectively (Table4,entry nos.1and2).In oxidative brominations,a mixture of acetonitrile and water was used as a solvent system.When naphthol was brominated under similar conditions,a-naphthol gave about92%para-isomer(entry no.8)and b-naphthol gave70%ortho-product along with dibrominated product(entry no.9).Non-activated aro-matics like toluene are weakly active compared to acti-vated aromatics.In the case of cyclohexane,a non-activated cyclic alkane,a conversion of63%was observed;Regiospecific Oxyhalogenation of Aromatics195only one brominated product was formed.Out of all the nanoscopic metal oxides investigated,WO x (20)-SBA-15was the most active.Catalytic activity increased with tungsten oxide loading up to 20wt%(Table 5).3.2.2.3Oxychlorination Organic chlorinated compounds play an important role in synthetic organic chemistry.p -Chloroaniline is used as an intermediate in the manufac-ture of dyes,pigments,agricultural chemicals and pharma-ceuticals.It is a persistent environmental degradationproduct of some herbicides and fungicides.p -Chloro anisole is used with formaldehyde for preparation of condensation polymers.The chlorophenols make up an important class of industrial chemical compounds.They are used as either intermediate in the synthesis of agrochemicals,dyestuffs,and pharmaceuticals or directly in formulations [35,36].Chlorination of various organic compounds was carried out at pH =3.Activated aromatics like anisole,aniline etc.gave very high conversion and chlorinated product selectivity (Table 6).As in the case of bromination and iodination,substrates like aniline and anisole gave para-chlorinated product regioselectively.3.2.3Catalyst Reusability StudiesThe stability of the catalyst (WO x (20)-SBA-15)was assessed by reusing it in several recycling experiments.In each run,after completion of the reaction,the catalyst was separated from the reaction mixture by filtration,washed with a solvent mixture of dichloromethane and acetone and dried in air followed by activation at 473K for 2h.The catalyst was,then,used in the next recycle.The results with the recycled catalyst invariably showed unaltered activity in para-bromination of anisole (Fig.6,left panel)suggesting that WO x (20)-SBA-15is a stable heterogeneous catalyst.WO x (20)-SBA-15,in contrast to enzymes andTable 2Oxybromination of phenol red over SBA-15-supported nanocrystalline metal oxidesO SO 3H OH BrBrBrBrOSO 3HOHPhenol red Bromo phenol blueCatalysts Temperature (K)Phenol redconversion (mol.%)TOF (min -1)Initial Rate (mM min -1)WO x (20)-SBA-1529349.832 3.15910-429862.640 3.42910-430363.040 4.11910-431370.145 4.43910-432382.0527.86910-4MoO x (20)-SBA-1529844.016 2.61910-4TiO x (6)-SBA-1529842.010 2.24910-4VO x (11)-SBA-1529812.02 1.65910-4NH 4WO 3.2H 2O 298 4.02910-4V 2O 529811.63.2910-4Reaction conditions :phenol red =0.05mM,catalyst =0.025gm (SBA-15supported metal oxides)and 0.1mmol (V 2O 5and NH 4WO 3Á2H 2O),KBr =2mmol,H 2O 2(30%aq.)=2mmol,solvent (water ?methanol (4:1))=20mL,pH *5(adjusted with HEPES buffer),reaction time =90min.Turnover frequency (TOF )=moles of phenol red converted per mole of metal per min196L.Saikia et al.Table 3Oxyiodination of organics over WO x (20)-SBA-15Entry No.SubstrateConversion (mol %)Product Selectivity (mol %)Para-productOthers1H 3CO100H 3COI(100)–2H 2N100H 2NI(100)–3HO 100HOI(66)HOI(34)4HOCl100–HOICl(100)5H 3CONH 2100–H 3CO NH 2I H 3CONH 2I I(60,40)6HONH 2100HONH 2I(100)–7HONO 2100HONO 2I(100)–8H 2NCH 381.5H 2NCH 3I(100)–9100–IIOHOH(60,40)10100–IIH OH OH(68,32)1117.8–OH OH(100)12OH100OH I(3)OHI(97)13OH17.8–IOH(100)Reaction conditions :Catalyst =0.050g,substrate =2mmol,H 2O 2(30%aq.)=5mmol,KI =5mmol,solvent =a mixture of CH 3CN and H 2O (5ml each),pH was adjusted to *4by adding required quantity of conc.HNO 3acid,temperature =298K,reaction time =4hRegiospecific Oxyhalogenation of Aromatics197homogeneous catalysts,is not sensitive to oxidative destruction and thereby,shows superior performance over homogeneous catalyst systems.Reusability was also con-firmed in the oxyiodination reaction.WO x (20)-SBA-15was reused in nine recycles with negligible loss in activity/product selectivity.To confirm that the observed catalytic activity was not due to metal ions leached into the reaction medium during the reaction,the catalyst was filtered and separated at the end of 1h and the reaction was continued without the solid catalyst for another 3h.The reaction did not proceed any further in the absence of catalyst (Fig.6;right panel).Table 4Oxybromination of aromatics using WO x (20)-SBA-15Entry No.SubstrateConversion (mol %)Product Selectivity Para-productOthers1H 3CO100H 3COBr(100)–2H 2N100(69)aBrH 2N(100,57a )H 2NBrBr(0,39a )3HO100HOBr(67)OHBr(33)4O 2NOCH 393.7–O 2NBr OCH 3(100)5H 3CONH 2100H 2NOBr H 2NO Br Br(60)HONH 2(60,40)6HONH 2Br100HONH 2BrBr (63)OH(37)7OHBr100OHBr(92)(8)8OH100–BrOHBrOH Br(70)(30)9H 2NCH 363H 2NCH 3Br(100)–10H 3C14H 3CBr(100)–Reaction conditions :Catalyst =0.050g,substrate =2mmol,H 2O 2=5mmol,NaBr =5mmol,HNO 3=0.180g,solvent =a mixture of acetonitrile and water (5ml each),reaction temperature =298K,reaction time =4haValues for neat tungsten oxideTable 5Oxybromination of anisole CatalystCoversion (mol.%)Selectivity of para-brominated product (%)WO x (20)-SBA-15100100WO x (15)-SBA-1568.6100WO x (10)-SBA-1551.2100MoO x (20)-SBA-1596.3100TiO x (6)-SBA-1562.8100VO x (11)-SBA-1544.3100Reaction conditions :substrate =2mmol,KBr =5mmol,30%aq.H 2O 2=5mmol,catalysts =0.05g,solvent (CH 3CN ?H 2O)=10mL,HNO 3=2mmol,time =4h198L.Saikia et al.。
水质 半挥发性性有机物的测定 气相色谱-质谱法

目录
1 项目背景............................................................................................................................................. 3 1.1 任务来源......................................................................................................................................... 3 1.2 工作过程......................................................................................................................................... 3 2 标准制修订的必要性......................................................................................................................... 3 2.1 标准被测对象(污染物项目)的环境危害................................................................................. 3 2.2 相关环保标准和环保工作的需要................................................................................................. 4 2.3 污染物分析方法的最新进展......................................................................................................... 5 2.4 标准修订的主要内容及说明......................................................................................................... 5 3 国内外相关分析方法研究................................................................................................................. 6 3.1 主要国家、地区及国际组织相关分析方法研究 ......................................................................... 6 3.2 国内相关分析方法研究................................................................................................................. 6 4 标准制定的基本原则和技术路线..................................................................................................... 7 4.1 标准制定的基本原则..................................................................................................................... 7 4.2 标准制定的技术路线..................................................................................................................... 7 5 方法研究报告..................................................................................................................................... 8 5.1 方法研究的目的............................................................................................................................. 8 5.2 方法原理......................................................................................................................................... 8 5.3 试剂和材料..................................................................................................................................... 8 5.4 仪器和设备..................................................................................................................................... 9 5.5 样品................................................................................................................................................. 9 5.6 分析步骤....................................................................................................................................... 10 5.7 结果计算....................................................................................................................................... 11 5.8 精密度和准确度............................................................................................................................. 7 6 标准内容的说明................................................................................................................................. 7 7 方法验证............................................................................................................................................. 9 8 对实施本标准的建议....................................................................................................................... 15 9 参考文献............……………………………………………………………………………………16
实验室药品

序号药品名称重量 (g)所有人1无水乙酸钠50张丽慧2邻氨基苯甲酸100张丽慧3碘化亚铜150张丽慧4还原铁粉300张丽慧5乙酸钾230张丽慧61-萘胺50张丽慧7环己醇450mL张丽慧82-氯苯甲酸30张丽慧9N,N-二甲基-乙二胺10ml张丽慧10硝基萘150张丽慧11二溴丙酸80张丽慧12甲苯-4-磺酸,一水50张丽慧13beta-氨基丙酸130张丽慧141,5-二氨基萘100张丽慧15阿司匹林25张丽慧16邻硝基氯化苯20张丽慧17金刚烷胺150张丽慧184-硝基邻苯二甲酸酐5张丽慧19一水,乙酸铜450张丽慧20对羟基苯乙酸250张丽慧218-羟基喹啉20张丽慧22L-精氨酸8张丽慧23茚三酮1张丽慧24L-脯氨酸胺50张丽慧252-氨基苯并咪唑15张丽慧262-氨基嘧啶75张丽慧27乌洛托品(六次甲基四胺)50张丽慧28氨基胍硝酸盐150张丽慧29硫脲300张丽慧30对甲苯磺酸,一水(甲苯-4-磺酸,一水)20张丽慧31丙二酸10张丽慧32脲素(脲)100张丽慧33L-α-丙氨酸1张丽慧34甲醇钠 ,甲醇溶液20张丽慧352-氨基吡啶30张丽慧364-二甲氨基吡啶(DMAP)1000张丽慧37盐酸羟胺200张丽慧38硅藻土张丽慧39氢溴酸480ml张丽慧40氯乙酸乙酯500ml张丽慧41正丁胺200ml张丽慧42水合肼,85%480ml张丽慧43N-甲基哌嗪500ml张丽慧44四氯化锡,无水100ml张丽慧45发烟硝酸500ml张丽慧46三溴化磷250ml张丽慧47氯乙腈110ml张丽慧48硼烷二甲基硫醚络合物100ml张丽慧49喹啉50ml张丽慧50多聚磷酸450ml张丽慧51间甲苯胺500ml张丽慧52氯乙酰200ml张丽慧53一溴代萘500ml张丽慧54硫代乙醇酸100ml张丽慧55溴化苄100ml张丽慧56氧化铝1000张雪57异丙醇铝50张雪58L(+)-酒石酸300张雪59中性氧化铝 100-200目,200-300目100张雪60亚硫酸氢钠150张雪611,3-双(二苯基膦)丙烷 (DPPP)80张雪62柠檬酸300张雪63季戊四醇50张雪64L-谷氨酸20张雪65顺丁烯二酸(马来酸)140张雪665-甲氧基吲哚40张雪67溴化锂,一水10张雪68二氨基吡啶10张雪69氯化锂,一水300张雪70氢氧化镁40张雪71三氯丙酸20张雪72一缩二乙二醇80ml张雪73间苯二酚200张雪74乳酸500ml张雪75水杨酸200张雪76二氧化锰200张雪77邻苯二甲酸450张雪78次硝酸铋250张雪79土霉素100张雪80六甲基二硅基氨基锂张雪81苄基三乙基氯化铵30张雪82重铬酸钾300张雪83草酸300张雪84抗坏血酸25*3张雪85三氧化铬100张雪86D-半乳糖20张雪87氨基脲5张雪88偏重亚硫酸钠(焦亚硫酸钠)250曹迪892,2-二甲氧基丙烷500ml曹迪90亚磷酸200曹迪91乙酰丙胺200曹迪92蔗糖500曹迪9330%过氧化氢50ml曹迪94次亚磷酸30%-50%300ml曹迪95硫酸钙,无水150曹迪96L-α-丙氨酸5曹迪971,3-二溴丙烷10ml曹迪984,6-二氯嘧啶30曹迪99香兰素30曹迪100二氨基吡啶105曹迪101丁炔二酸二甲酯20ml曹迪102六甲基磷酰三胺100ml曹迪103硝酸银40ml曹迪1042-吲哚酮15曹迪105丁二酸酐5曹迪106二水合乙酸钠480曹迪107磷酸氢二钾400曹迪108四丁基碘化胺50曹迪109磷酰基氯化苯20曹迪110反丁烯二酸(富马酸)35曹迪111四丁基碘化胺4曹迪112丙烯酸叔丁酯65曹迪113硝酸银5曹迪114氢化铝锂4曹迪115吲哚50曹迪116无水亚磷酸钠500曹迪117三甲基三嗪65曹迪1182-氯乙酰胺50曹迪119醋酸铜,无水10曹迪120锌粉500曹迪121无水乙酸钠500曹迪122HOBT400曹迪123溴化钠150曹迪124二水合氟化钾450曹迪125乙酸钙,一水150曹迪1261,8-二氮杂双环[5,4,0]十一碳-7-烯100ml张启景127甲酸200ml张启景128硝基甲烷100ml张启景129甲醛450ml张启景130三甲基氯硅烷80ml张启景131邻苯二甲酸二乙酯200ml张启景132聚乙二醇450ml张启景133丙二酸二乙酯150ml张启景134碳酸氢钾20张启景135NaBH3CN200张启景136碘化钠200张启景137干燥溴化锂5张启景138PCC17.68张启景139硫酸铵250张启景140叔丁醇500ml张启景141苯胺350ml张启景142四氯化碳350ml张启景143β-苯乙胺100ml张启景144二氰二胺100张启景145硫氰酸钾500张启景146糠醛500ml张启景147乙酸铵500张启景148多聚甲醛300张启景149碳酸铵500张启景150乙酰乙酸乙酯450ml张启景1511,2-二氯乙烷200ml张启景152三甲氧基苯乙酸170张启景153苯200ml张启景154N,N-二乙基苯胺500ml张启景1552-氯-5-硝基苯甲酸250张启景156红铝1000张启景157雷尼镍催化剂1000张启景158N,N-二环己基碳二亚胺20张启景159邻苯二甲酸酐500张启景160丁二酸酐10张启景1613-甲氧基苯乙酸5张启景162硅酸钠,九水500张启景163对氨基苯乙酸100张启景164对甲氧基苯乙酸60张启景165碘乙烷100ml张启景166邻氯苯甲酸50张启景167甲硫基四氮唑150张启景168异氰基乙酸乙酯100张启景169对甲氧基苯甲酸180张启景170甲胺盐酸盐50张启景171无水乙酸钠500张启景172L-脯氨酸20张启景173对硝基苯乙酸10张启景174氰乙酸10张启景175L-半胱氨酸25张启景176四乙基溴化铵20张启景177二甲胺醇溶液100ml张启景1781,3-丙酮二羧酸二乙酯100张启景179间苯三酚50张启景180无水氯化铬2张启景1815-溴香草醛1000张启景182D-葡萄糖酸钠400王洋183对氯氯苄300王洋1846号酸145王洋185苯磺酰氯400ml王洋186无水哌嗪200王洋187季戊四醇四苯磺酸酯200王洋188四溴化碳60王洋189乙酸锰,四水500王洋190邻硝基氯苯10王洋191季戊四溴十四唑20王洋1926-甲氧基-1萘满酮80王洋193二溴新戊二醇1000王洋194聚乙二醇600400ml王洋195乙酸酐500ml王洋196甲苯-4-磺酰氯250王洋1971,3,5-三甲苯100ml王洋198绣500王洋1993-氯丙酸100王洋200原甲酸三乙酯250ml王洋201氢溴酸500ml王洋202无水葡萄糖500王洋203葡萄糖150王洋204过硫酸氢钾复合盐400王洋205吡咯100ml王洋206咪唑20王洋2071-苯基-5-巯基四氮唑5王洋208三氯化铁50王洋209溴化钠400王洋2105-甲氧基吲哚15王洋211D-山梨醇20王洋212四水合酒石酸钾钠500王洋213四丁基溴化铵25王洋214三氟甲磺酸酐50ml王洋2151,2-二溴乙烷250ml王洋216三甲基铝100ml王洋217叠氮化钠20王洋218四硝基苯甲醛25王洋219茚三酮5王洋220二甲苯150ml王洋221丙三醇150ml王洋2222,3-二氯-1,4-萘醌100王洋223水杨酸100王洋224异硫氰酸苯酯25王洋225邻苯二胺25王洋226喹啉500ml王洋227乙酰乙酸乙酯500ml王洋228水杨醛250ml王洋229巴豆酸乙酯500周云鹏230对甲氧基氯苄500周云鹏2311-甲基-2-吡咯烷酮500ml周云鹏2322,4-二氟苯腈20周云鹏233溴代丙二酸二乙酯500周云鹏2342,4-二硝基甲苯100周云鹏235间甲氧基肉桂酸500周云鹏236糠醇500ml周云鹏237硫酸亚铁100周云鹏238磷化亚铜1000周云鹏2394-氨基吡咯250周云鹏240柠檬酸铵250周云鹏241无水硫酸铜500周云鹏242氯化锌200周云鹏243氯化钙250周云鹏244无水氯化钙250周云鹏245三氨基吡啶200周云鹏246氯化亚铁500周云鹏2472,6-氟苯腈250周云鹏248二水合柠檬酸,三钠500周云鹏249硫代硫酸钠250周云鹏250马来酸酐350周云鹏251丙二酸20周云鹏252溴百里香酚蓝8周云鹏253四硝基苯甲醛1周云鹏254原甲酸乙酯200ml肖景超255乙醇胺500ml肖景超256对溴苯酚20肖景超2572,-氨基吡啶30肖景超258半胱胺盐酸盐500肖景超2592,6-二氯吡嗪10肖景超2603,6-二氯哒嗪20肖景超261氢氧化锂30肖景超262无水氯化钙150肖景超2634-氯乙酰乙酸乙酯100肖景超2644-甲基胍10肖景超265氯化亚锡550肖景超266硫酸氢钠500肖景超2673-氯乙酸500肖景超268甲胺盐酸盐50肖景超269氟硼酸钠50肖景超270L-谷氨酸135肖景超271氧化铝50肖景超272二乙胺400ml肖景超273磷酸150ml肖景超274丙烯酸甲酯300ml肖景超275酚酞25肖景超2765-氟尿嘧啶300肖景超277丙二酸二甲酯50ml肖景超278碳酸钡200肖景超279氧化钙500肖景超280氯化钙100肖景超281乙二胺四乙酸二钠100肖景超282L-α-丙氨酸4肖景超283三聚氯氰250肖景超284环己烷800ml肖景超285二甲苯450ml肖景超286硝基苯200ml肖景超287N,N-二甲基乙酰胺100ml肖景超288二甲胺盐酸盐80肖景超2899-BBN100ml肖景超290N-甲基-N-亚硝基对甲苯磺酰胺10肖景超291二甲基乙酰胺300ml肖景超2922-环己酮甲酸乙酯20肖景超293溴代十三烷15ml肖景超294金刚烷甲酸80肖景超295一缩二乙二醇10ml肖景超2961,4-丁二醇40ml肖景超2976-溴-2-萘甲酸甲酯50肖景超298碳酸银5肖景超299碘化铋钾100肖景超300正辛醇500ml肖景超301苄氧碳酰氯20ml肖景超3022-氟苯甲酸10肖景超303乳酸500ml肖景超304苯酚450肖景超305对硝基苯甲醛80肖景超306苯甲酸乙酯250ml肖景超307磷钼酸80肖景超308碳酸铵1肖景超309氰基乙酸乙酯5ml肖景超310间硝基苯甲醛10肖景超311肌醇800肖景超312氯化钴20肖景超313甘氨酸70肖景超314草酰氯100ml肖景超315亚硝酸钠700411 316氧化铝50411 317盐酸胍10411 318甲苯-4-磺酰氯10411 319奥美拉唑10ml411 320甲酸150ml411 3216号酸34411 322氯化铵200411 323甘氨酸10411 324BOC-L-丙氨酸52411 3251-氨基-2-萘酚-4-磺酸10411 326BT150ml411 3272-氯-5-碘萘100411328对氯苯甲醛100411 329无水亚硫酸钠500411 330二氧化锰250411 331间氯过氧苯甲酸60411 332对甲苯磺酸10411 333N-溴代丁二酰亚胺200411 334溴酸钾200411 335一水合硫酸锰300411 336OTMD10411 337二氧化锡2411 338二甲胺盐酸盐100411 339六水合溴化镍500411 340硫氰酸胺500411 341碳酸钙400411 342吡啶350ml411 343二水合草酸500411 344金刚烷甲酸200411 345丁二酸酐10411 346氯化亚铈,七水50411 347二乙酸碘苯250411 348甲苯-4-磺酸,一水10411 3493,4,5-三甲氧基苯甲酸250411 350金刚烷二甲酸50411 3514-甲氧基酚10411 352硫代氨基脲60411 353对氯甲基苯甲酸200411 3543-甲氧基苯甲酸20411 3553-氨基-1-金刚烷醇100411 356乙酰乙酸乙酯5ml411 357环己酮100ml411 358硝基乙烷500ml411 359硝基甲烷100ml411 360乙二醛溶液100ml411 361无水乙酸钠350411 362氢溴酸80ml411 363亚硝酸钠350411 364溴化氰胺20411 365甲醇钠10411 366乙酰肼20411。
四溴双酚a熔点

四溴双酚a熔点一、四溴双酚a的定义与用途1.1 四溴双酚a的概述四溴双酚a,又称为tetrabromobisphenol A,化学式为C15H12Br4O2,是一种溴代的双酚A。
它是一种无色或白色结晶粉末,可溶于有机溶剂如二氯甲烷和乙醇。
四溴双酚a在高温下具有很好的热稳定性,广泛应用于阻燃剂、塑料、电子电器等领域。
1.2 四溴双酚a的用途四溴双酚a作为一种重要的阻燃剂,被广泛应用于各种塑料制品中,如聚碳酸酯、环氧树脂和聚酯树脂等。
这些塑料制品在火灾中能够起到有效的阻燃作用,减少火灾对人身和环境的伤害。
此外,四溴双酚a还可以用于生产环保塑料、塑胶制品和高溶解度树脂等。
二、四溴双酚a的熔点及相关影响因素2.1 四溴双酚a的熔点四溴双酚a的熔点是指在一定的温度条件下,它由固态转化为液态的温度。
根据文献资料,四溴双酚a的熔点约为183-185摄氏度。
然而,值得注意的是,四溴双酚a在不同的纯度和结晶程度下,熔点可能会有所不同。
2.2 影响四溴双酚a熔点的因素四溴双酚a的熔点受到多种因素的影响,以下是一些常见的因素: 1. 纯度:四溴双酚a的纯度越高,其熔点通常会越高。
2. 结晶程度:四溴双酚a的结晶程度越高,其熔点通常会越高。
3. 杂质:某些杂质的存在可能会对四溴双酚a的熔点产生影响。
4. 样品形态:四溴双酚a的熔点可能会因样品形态(如粉末、颗粒或块状)的不同而有所变化。
三、四溴双酚a的制备方法3.1 合成四溴双酚a的方法合成四溴双酚a的方法有多种,其中比较常用的方法是通过对双酚A与溴化氢反应来制备。
具体步骤如下: 1. 在适当的溶剂中,加入双酚A,使其溶解。
2. 加入过量的溴化氢,并将反应物混合均匀。
3. 在适当的温度下,对反应混合物进行搅拌和加热。
4. 反应一段时间后,将得到的产物进行结晶、分离和洗涤,得到最终的四溴双酚a产物。
3.2 四溴双酚a的纯化方法在合成四溴双酚a的过程中,通常会得到一定程度的杂质。
1-4-二(溴甲基)苯-安全技术说明书MSDS

第一部分化学品及企业标识化学品中文名:1,4-二(溴甲基)苯化学品英文名:α,α'-dibromo-p-xyleneCAS No.:623-24-5分子式:C8H8Br2产品推荐及限制用途:工业及科研用途。
第二部分危险性概述紧急情况概述造成严重皮肤灼伤和眼损伤。
GHS危险性类别皮肤腐蚀 / 刺激类别 1B标签要素:象形图:警示词:警告危险性说明:H314 造成严重皮肤灼伤和眼损伤●预防措施:—— P260 不要吸入粉尘/烟/气体/烟雾/蒸气/喷雾。
—— P264 作业后彻底清洗。
—— P280 戴防护手套/穿防护服/戴防护眼罩/戴防护面具。
●事故响应:—— P301+P330+P331 如误吞咽:漱口。
不要诱导呕吐。
—— P303+P361+P353 如皮肤(或头发)沾染:立即脱掉所有沾染的衣服。
用水清洗皮肤/淋浴。
—— P363 沾染的衣服清洗后方可重新使用。
—— P304+P340 如误吸入:将人转移到空气新鲜处,保持呼吸舒适体位。
—— P310 立即呼叫解毒中心/医生—— P305+P351+P338 如进入眼睛:用水小心冲洗几分钟。
如戴隐形眼镜并可方便地取出,取出隐形眼镜。
继续冲洗。
●安全储存:—— P403+P233 存放在通风良好的地方。
保持容器密闭。
—— P405 存放处须加锁。
●废弃处置:—— P501 按当地法规处置内装物/容器。
物理和化学危险:无资料。
健康危害:造成严重皮肤灼伤和眼损伤。
环境危害:无资料。
第三部分成分/组成信息√物质混合物第四部分急救措施急救:吸入:如果吸入,请将患者移到新鲜空气处。
皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。
如有不适感,就医。
眼晴接触:分开眼睑,用流动清水或生理盐水冲洗。
如有不适感,就医。
食入:饮水,禁止催吐。
如有不适感,就医。
对保护施救者的忠告:将患者转移到安全的场所。
咨询医生。
出示此化学品安全技术说明书给到现场的医生看。
气相色谱-串联质谱法测定2-氰基溴苄中3-氰基溴苄和4-氰基溴苄的含量

PTCACPART b:c h e m. a n a l.)工作筒报DOI : 10.11973/lhjy-hx202004011气相色谱-串联质谱法测定2-氰基溴苄中3-氰基溴苄和4-氰基溴苄的含量庄航(宿迁市食品药品检验所,宿迁223800)摘要:建立了气相色谱-串联质谱法测定苯甲酸阿格列汀关键起始物料2-氰基溴苄中基因毒性杂质3-氰基溴苄和4-氰基溴苄含量的分析方法。
采用50%苯基-50%二甲基聚硅氧烷为固定液的V F-17M S毛细管柱(30 m X0.25 m m,0.25 M m)进行程序升温;进样口温度260 °C ;以多反应监测(M R M)模式检测。
2种待测物均具有较好的线性关系,相关系数均大于0.998 0;检出限(3S/N)均为2.0 p g .L-】;3-氰基溴苄的回收率为92.1 %〜97.0%;4_氰基溴苄的回收率为102%〜109%;供试品溶液、杂质对照品溶液和系统适用性溶液在室温(25 °C)下放置18 h内稳定。
三批生产规模样品中均未检出3-氰基溴苄和4-氰基溴苄。
建立的分析方法灵敏度高、分离度好、结果准确,可 有效分离并测定2-氰基溴苄中的3-氰基溴苄和4-氰基溴苄含量,为苯甲酸阿格列汀的安全性提供了保障。
关键词:气相色谱-串联质谱法;2-氰基溴苄;3-氰基溴苄;4-氰基溴苄;基因毒性杂质;苯甲酸 阿格列汀中图分类号:0657.63 文献标志码:A文章编号:1001-4020(2020)04-0438-05苯甲酸阿格列汀是以3-甲基-6-氯尿嘧啶和2- 氰基溴苄为起始原料,在碱性条件下发生烷基化反应得到2-(6-氯-3-甲基-2,4-二氧代-3,4-二氢-2H-喃 啶-1-基甲基)-苄腈,再与(R)-3-氨基哌啶二盐酸发生取代反应得到(i?)-2-[(6-(3-氨基哌啶-1-基)-3_甲 基-2,4-二氧代-3,4-二氢嘧啶-1(2H)-基)甲基]苄腈(阿格列汀游离碱),阿格列汀游离碱再与苯甲酸成盐得到苯甲酸阿格列汀[15]。
1,4-二(吡啶亚甲基-硫亚甲基)萘的制备及其对Hg 2+的识别

中图分类号 : 2 . 4 0 6 5 2 文献标志码 : A
文 章 编 号 : 3 76 5 (0 0 0—0 60 0 6— 3 8 2 1 ) 20 9— 2
S n h ss o 4 Bi( y i i e t y e e s lu me h ln ) y t e i f1, - s p rd n me h ln — u f r t y e e 一
收 稿 日期 :0 90—8 20 —61
微熔点 测定仪 ( 温度 计未 校 正 ) 北 京 昌 阳永川 试 验 ( 器材公 司) B u e 0 ; rk r 0兆核 磁共 振 仪 ( 海法 玛 勤 4 上 医药科 技发展 有限公 司) 。 1 4二 氯 甲基 萘 、 氧 化钠 、 脲 、一 甲基 吡 ,一 氢 硫 2氯 啶盐酸 盐 、 无水 乙腈 、 水 甲醇 、 无 二氯 甲烷 等 , 以上试
和人体 的危害 已引起世界 各 国的极 大关 注 。因而环
境 、 品 中汞 的测 定是人 们十分关 注的课题 。 食
随着 超分子化 学的发展 , 分子识 别在合成 化学 、
别作 用 。
1 实验部分 1 1 主要仪 器与试 剂 .
生命科 学 、 信息科 学及 材 料科 学 中起 着 愈来 愈 重要 的作用 。分子识别 是 指分 子 之 间( 主体 与客 体 或称 之为受体 与底物 )靠共 价键或 非共价 键力 的选 择性
在分子逻辑 门系统 中 日益受 到 了研 究者 的重视 , 赵 焱[ 和 李 扬 [ 在 研 究 中发 现 萘 环 化 合 物 分 别 对 2 3 C 和 F 有识别 能力 。这些研 究显 示 了萘 系 化合 u ~
1,4-萘二酚互变异构条件

1,4-萘二酚互变异构条件
1,4-萘二酚是一种化合物,它有两种异构体,1-萘酚和4-萘酚。
它们是通过位置异构而相互转变的。
这种异构转变可以在化学反应
中发生,例如在酚的取代反应中。
当1,4-萘二酚与不同的试剂反应时,可能会发生位置异构,生成不同的产物。
此外,在一些特定的
溶剂条件下,1,4-萘二酚的异构转变也可能发生。
例如,在不同的
溶剂中,分子的构象和稳定性可能会发生变化,从而导致异构体的
相对稳定性发生改变。
因此,要控制1,4-萘二酚的异构转变,需要
考虑反应条件、溶剂选择以及可能的催化剂等因素。
总之,1,4-萘
二酚的异构转变是一个复杂的过程,需要综合考虑多种因素才能得
到准确的条件。
2-溴代异丁酸质量标准

2-溴代异丁酸质量标准摘要:一、2-溴代异丁酸的基本信息二、2-溴代异丁酸的质量标准三、2-溴代异丁酸的检测方法四、2-溴代异丁酸的应用领域五、提高2-溴代异丁酸质量的策略正文:一、2-溴代异丁酸的基本信息2-溴代异丁酸(2-Bromo-2-methylpropionic acid)是一种有机化合物,分子式为C4H7BrO2。
它是一种白色结晶性固体,分子量为187.97,熔点为98-102℃。
2-溴代异丁酸在化工、医药和农药等领域具有广泛的应用。
二、2-溴代异丁酸的质量标准2-溴代异丁酸的质量标准主要包括以下几个方面:1.外观:白色结晶性固体。
2.熔点:98-102℃。
3.含量:≥99.0%。
4.水分:≤0.5%。
5.灰分:≤0.1%。
6.氯化物:≤0.05%。
三、2-溴代异丁酸的检测方法常用的2-溴代异丁酸检测方法有:1.气相色谱法(GC):这是一种常用的检测方法,通过对2-溴代异丁酸的衍生物进行检测,从而确定2-溴代异丁酸的含量。
2.高效液相色谱法(HPLC):适用于2-溴代异丁酸的高纯度检测,通过分析样品中2-溴代异丁酸的含量,确保产品质量。
四、2-溴代异丁酸的应用领域1.化工领域:2-溴代异丁酸是制造多种化工产品的重要原料,如香料、调味品、涂料等。
2.医药领域:2-溴代异丁酸可用于合成抗病毒药物、抗癌药物等。
3.农药领域:2-溴代异丁酸可用于合成农药,提高农作物的产量和品质。
五、提高2-溴代异丁酸质量的策略1.优化生产工艺:通过改进生产工艺,提高2-溴代异丁酸的产率和纯度。
2.严格产品质量检测:建立完善的检测体系,对2-溴代异丁酸进行定期的质量检测,确保产品符合质量标准。
3.加强原料控制:选用优质的原料,降低杂质含量,提高产品质量。
4.培训专业人员:加强员工的技能培训,提高生产过程中的操作水平。
2,3-二氯-1,4-萘醌 化学品安全技术说明书

GHS07:感叹号; GHS09:环境危害-CAS No. 117-80-6EC-编号204-210-54急救措施4.1必要的急救措施描述一般的建议请教医生。
出示此安全技术说明书给到现场的医生看。
如果吸入如果吸入,请将患者移到新鲜空气处。
如果停止了呼吸,给于人工呼吸。
请教医生。
在皮肤接触的情况下用肥皂和大量的水冲洗。
立即将患者送往医院。
请教医生。
在眼睛接触的情况下用大量水彻底冲洗至少15分钟并请教医生。
如果误服切勿给失去知觉者从嘴里喂食任何东西。
用水漱口。
请教医生。
4.2最重要的症状和影响,急性的和滞后的无数据资料4.3及时的医疗处理和所需的特殊处理的说明和指示无数据资料5消防措施5.1灭火介质火灾特征无数据资料灭火方法及灭火剂用水雾,耐醇泡沫,干粉或二氧化碳灭火。
5.2源于此物质或混合物的特别的危害无数据资料5.3救火人员的预防如必要的话,戴自给式呼吸器去救火。
5.4进一步的信息无数据资料6泄露应急处理6.1人员的预防,防护设备和紧急处理程序戴呼吸罩。
防止粉尘的生成。
防止吸入蒸汽、气雾或气体。
保证充分的通风。
将人员撤离到安全区域。
避免吸入粉尘。
6.2环境预防措施在确保安全的条件下,采取措施防止进一步的泄漏或溢出。
不要让产物进入下水道。
防止排放到周围环境中。
6.3抑制和清除溢出物的方法和材料收集、处理泄漏物,不要产生灰尘。
扫掉和铲掉。
存放在合适的封闭的处理容器内。
6.4参考其他部分丢弃处理请参阅第13节。
7安全操作与储存7.1安全操作的注意事项避免接触皮肤和眼睛。
防止粉尘和气溶胶生成。
在有粉尘生成的地方,提供合适的排风设备。
7.2安全储存的条件,包括任何不兼容性贮存在阴凉处。
容器保持紧闭,储存在干燥通风处。
7.3特定用途无数据资料8接触控制/个体防护8.1控制参数最高容许浓度成分 CAS No. 值控制参数基准2,3-二氯-1,4-萘醌2,3-Dichloro-1,4-naphthoquinone 117-80-6PC-TWA无数据资料 《工作场所有害因素职业接触限值》国家标准中的工作场所时间加权平均容许浓度无数据资料无数据资料 无数据资料8.2暴露控制适当的技术控制避免与皮肤、眼睛和衣服接触。
溴代萘

结构式:
:邻溴甲苯;1-溴-2-甲基苯;2-溴甲苯;o-Bromotoluene;o-Tolylbromide;1-Bromo-2-methyl-benzene;Benzene,1-bromo-2-methyl-
分子式:C7H7Br
分子量:171.04
CAS号:95-46-5
性质:无色液体。熔点-27.8℃,沸点181.7℃,59℃(1.33kPa),相对密度1.4232(20/4℃),折射率1.5565,闪点78℃。经氧化可生成邻溴苯甲酸。能与醇、苯、四氯化碳混溶,不溶于水。
制备方法:由邻甲苯胺经重氮化、置换而得。将邻甲苯胺和40%氢溴酸配成的溶液冷却至0-5℃,滴加亚硝酸钠溶液,控制滴加速度,避免大量棕色气体溢出。加完后,搅拌15min,用碘化钾淀粉液测试终点(应立即呈蓝色)。重氮化完成后,加入铜粉,小心加热,升温至25-30℃停止加热,控制自然升温不超过50℃,反应逸出氮气。在50℃保温1h,然后反应液水蒸汽蒸馏,得油状物,用30%液碱、浓硫酸、水依次洗涤,用无水氯化钙干燥,即得精制邻溴甲苯。
名称:a-溴萘;1-溴萘;1-溴代萘;1-Bromonaphthalene;α-Bromonaphthalene;Naphthalene, 1-bromo-
分子式:C10H7Br
分子量:207.07
CAS号:90-11-9
性质:无色或微黄色液体,蒸馏后能保持无色,但久置后变黑色。熔点-1℃,沸点281℃,146-149℃(2.13kPa),相对密度1.489(20/4℃),折射率1.6576,闪点110℃。能与醇、醚、四氯化碳相混溶,不溶于水。能随水蒸汽挥发。
制备方法:由萘与溴反应而得。在反应锅中加入四氯化碳和萘,搅拌加热,在45℃慢慢加入溴素。加完后于70-80℃保温反应3-4h。蒸馏回收四氯化碳,将反应物洗涤、减压蒸馏、再洗涤、过滤、干燥而得成品。
164 1-溴代萘msds

第一部分:化学品名称1.1 中文名称:1-溴代萘1.2 英文名称:1-Bromonaphthalene1.3 中文别名:1-溴萘;α-溴萘1.4 英文别名:α-Naphthyl bromide1.5 推荐用途:实验室用化验、试验及科学实验。
1.6 限制用途:不可作为药品、食品、家庭或其它用途。
第二部分:危险性概述2.1 紧急情况概述:吞咽有害。
造成严重眼刺激过量接触需采取特殊急救措施和进行医疗随访。
火灾时:使用二氧化碳、沙粒、灭火粉末灭火。
如必要的话,戴自给式呼吸器去救火。
2.2 GHS危险性分类:急性毒性(经口)(类别4);眼损伤/眼刺激(类别2A)。
2.3 物理化学危险性信息:不适用。
2.4 健康危害:吞咽有害。
造成严重眼刺激。
2.4 环境危害:不适用。
2.6 其他危害物:无资料第三部分:成分/组成信息3.1 主要成分:1-溴代萘3.2 含量:≤100%3.3 CAS No.:90-11-9第四部分:急救措施4.1 必要的急救措施描述:吸入:如果吸入,请将患者移到新鲜空气处。
如呼吸停止,进行人工呼吸。
请教医生。
皮肤接触:用肥皂和大量的水冲洗。
请教医生。
眼睛接触:用大量水彻底冲洗并请教医生。
食入:切勿给失去知觉者从嘴里喂食任何东西。
用水漱口。
请教医生。
4.2 主要症状和影响,急性和迟发效应:无资料。
4.3 及时的医疗处理和特殊治疗的说明和提示:无资料。
第五部分:消防措施5.1 特别危险性描述:无资料。
5.2 灭火方法或灭火剂:火灾时:使用二氧化碳、沙粒、灭火粉末灭火。
5.3 灭火注意事项及措施:如必要的话,戴自给式呼吸器去救火。
第六部分:泄漏应急处理6.1 作业人员的防护措施、防护设备和应急处置程序:使用个人防护用品。
避免粉尘生成。
避免吸入蒸气、烟雾或气体。
保证充分的通风。
人员疏散到安全区域。
避免吸入粉尘。
6.2 环境保护措施:如能确保安全,可采取措施防止进-步的泄漏或溢出。
不要让产品进入下水道,一定要避免排放到周围环境中。
阿贝折光仪折射率测量

经查表,溴代萘的折射率
误差计算:W=
经查表,水的折射率
误差计算:W=
阿贝折光仪测量折射率数据处理
姓名:吴孟杰 学号:0120914430215
班级:光信科0902班 实验日期:2011.5.23
经查表,玻璃的折射率
误差计算:W=
四.思考题
自然光,如果光线暗,则可以使用日光灯;所测的折射率是D谱线(λ=5893 A)的折射率
相同点:在测量前都要清洗棱镜表面
测固体时,在棱镜面上涂抹一层溴代萘,然后将固体与棱镜贴在一起,此时不旋转锁紧手轮。
不同点:测液体时,将其均匀的涂在棱镜磨沙面上,然后需要旋转锁紧手轮;
3.为什么加一层溴代萘不影响固体折射率的测量?
1阿贝折光仪使用什么光源?测的是哪条谱线的折射率?
2.阿贝折光仪测固体与液体的异同点?
因为光线是平行出射后,在经过溴代萘时,只是位移发生了变化,而夹角和方向均未发生改变,仍然平行的射入到玻璃中,折射角也未变化,所测的折射率自然不会发生变化。
n_0=1.510
(1.512−1.510)/1.510×100%
n_0=1.657
(1.655−1.657)/1.657×100%=
n
(1.327−1.333)/1.333×100%
0% 0%= 0%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.1 毒理学影响的信息
急性毒性 无数据资料 亚 急性毒性 无数据资料 刺激性(总述) 无数据资料 皮肤腐蚀/刺激 无数据资料 严重眼损伤 / 眼刺激 无数据资料 呼吸道或皮肤过敏 无数据资料 生殖细胞诱变 无数据资料 致癌性 无数据资料 生殖毒性 无数据资料 特异性靶器官系统毒性(一次接触) 无数据资料 特异性靶器官系统毒性(反复接触) 无数据资料 潜在的健康影响
14 运输信息
14.1 UN编号
欧洲陆运危规 : 无数据资料 国际海运危规 : 无数据资料 国际空运危规 : 无数据资料
14.2 联合国(UN)规定的名称
欧洲陆运危规:无数据资料 国际海运危规:无数据资料 国际空运危规:无数据资料
14.3 运输危险类别
欧洲陆运危规 : 无数据资料 国际海运危规 : 无数据资料 国际空运危规 : 无数据资料
14.4 包裹组
欧洲陆运危规 : 无数据资料 国际海运危规 : 无数据资料 国际空运危规 : 无数据资料
14.5 环境危害
国际海运危规 海运污染物 :无数据 欧洲陆运危规 :无数据资料
15 法规信息
国际空运危规 : 无数据资料
15.1 专门对此物质或混合物的安全,健康和环境的规章 / 法规
2 危险性概述
2.1 GHS分类
健康危害 严重损伤/刺激眼睛:EyeIrrit.2 皮肤腐蚀/刺激:SkinIrrit.2
2.2 GHS 标记要素,包括预防性的陈述
危害类型
GHS07:感叹号;
信号词
【警告】
危险申明
H315
引起皮肤过敏。
H319
造成了严重的眼睛发炎。
H335
可能引起呼吸道发炎。
警告申明
4.2 最重要的症状和影响,急性的和滞后的
无数据资料
https:// 1/5
化学品安全技术说明书
4.3 及时的医疗处理和所需的特殊处理的说明和指示
救援者需要穿戴个人防护用品,比如橡胶手套和气密性护目镜。
5 消防措施
5.1 灭火介质
火灾特征 无数据资料 灭火方法及灭火剂 从上风处灭火,根据周围环境选择合适的灭火方法。非相关人员应该撤离至安全地方。周围一旦着火:如 果安全,移去可移动容器。干粉,泡沫,雾状水,二氧化碳
P261
避免吸入粉尘/烟/气体/烟雾/蒸汽/喷雾。
P280
戴防护手套/防护服/护眼/防护面具。
P305+P351+P338
如进入眼睛:用水小心清洗几分钟。如果可以做到,摘掉隐形眼
镜,继续冲洗。
P304+P340
如果吸入:将受害人移到空气新鲜处,在呼吸舒适的地方休息。
P405
存放处须加锁。
P501
根据…来处理容量/容器。
h) 蒸发速率
无数据资料
i) 可燃性(固体,气体) 无数据资料
j) 高的/低的燃烧性或爆炸性限度 无数据资料
k) 蒸气压
无数据资料
l) 相对蒸气密度
无数据资料
m) 相对密度
无数据资料
n) 溶解性 / 水溶性 溶于甲醇. 甲苯
不可溶的
o) 辛醇/水分配系数的对数值 无数据资料
p) 自燃温度(°C / °F) 无数据资料
9 理化特性
9.1 基本的理化特性的信息
a) 外观与性状
形状 : 结晶性粉末
颜色 : 淡橙褐色
https:// 2/5
化学品安全技术说明书
b) 气味
无数据资料
c) 气味临界值
无数据资料
d) pH值
无数据资料
e) 熔点/凝固点
82°C
f) 起始沸点和沸程
无数据资料
g) 闪点
无数据资料
5.2 源于此物质或混合物的特别的危害
小心,燃烧或高温下可能分解产生毒烟。
5.3 救火人员的预防
灭火时,一定要穿戴个人防护用品。
5.4 进一步的信息
无数据资料
6 泄露应急处理
6.1 人员的预防,防护设备和紧急处理程序
使用个人防护用品。远离溢出物/泄露处并处在上风处。泄露区应该用安全带等圈起来,控制非相关人员 进入。
q) 分解温度
无数据资料
r) 粘度
无数据资料
10 稳定性和反应活性
10.1 反应性
无数据资料
10.2 化学稳定性
一般情况下稳定
10.3 敏感性(危险反应的可能性)
未报道特殊反应性。
10.4 避免接触的条件
无数据资料
10.5 不兼容的材料
氧化剂
10.6 危险的分解产物
一氧化碳,二氧化碳,溴化氢
11 毒理学资料
无数据资料
12.4 土壤中的迁移
无数据资料
12.5 PBT 和 vPvB的结果评价
无数据资料
12.6 其它不利的影响
无数据资料
13 废弃处置
13.1 废物处理方法
产品 如果可能,回收处理。请咨询当地管理部门。建议在可燃溶剂中溶解混合,在装有后燃和洗涤装置的化学 焚烧炉中焚烧。废弃处置时请遵守国家、地区和当地的所有法规。 污染了的包装物 无数据资料 进一步的说明: 无数据资料
5/5
RS
Hazard symbol(s)
无数据资料
R-phrase(s)
无数据资料
S-phrase(s)
无数据资料
2.3 其它危害物
-无
3 成分/组成信息
3.1 物质
分子式 - C10H6Br2 分子量 - 285.96
4 急救措施
4.1 必要的急救措施描述
一般的建议 无数据资料 如果吸入 将受害者移到新鲜空气处,保持呼吸通畅,休息。若感不适请求医/就诊。 在皮肤接触的情况下 立即去除/脱掉所有被污染的衣物。用大量肥皂和水轻轻洗。若皮肤刺激或发生皮疹:求医/就诊。 在眼睛接触的情况下 用水小心清洗几分钟。如果方便,易操作,摘除隐形眼镜。继续清洗。如果眼睛刺激:求医/就诊。 如果误服 若感不适,求医/就诊。漱口。
法规信息 请注意废物处理也应该满足当地法规的要求。
https:// 4/5
化学品安全技术说明书
若适用,该化学品满足《危险化学品安全管理条例》(2013年12月4号国务院通过)的要求。
https://
Powered by TCPDF ()
化学品安全技术说明书
1 化学品及企业标识
1.1 产品标识符
化学品俗名或商品名: 1,4-二溴代萘 CAS No.: 83-53-4 别名: 1.4-二溴萘;1,4-二溴萘;
1.2 鉴别的其他方法
无数据资料
1.3 有关的确定了的物质或混合物的用途和建议不适合的用途
仅供科研用途,不作为药物、家庭备用药或其它用途。
7.2 安全储存的条件,包括任何不兼容性
保持容器密闭。存放于凉爽、阴暗处。远离不相容的材料比如氧化剂存放。
7.3 特定用途
无数据资料
8 接触控制/个体防护
8.1 暴露控制
适当的技术控制 尽可能安装封闭体系或局部排风系统,操作人员切勿直接接触。同时安装淋浴器和洗眼器。 人身保护设备 眼/面保护 安全防护镜。如果情况需要,佩戴面具。 皮肤保护 防护手套。 身体保护 防护服。如果情况需要,穿戴防护靴。 呼吸系统防护 防尘面具。依据当地和政府法规。
吸入 无数据资料 吞咽 无数据资料 皮肤 无数据资料 眼睛 无数据资料
https:// 3/5
化学品安全技术说明书
接触后的征兆和症状 无数据资料 附加说明 无数据资料
12 生态学资料
12.1 毒性
无数据资料
12.2 持久存留性和降解性
无数据资料
12.3 生物积累的潜在可能性
6.2 环境预防措施
防止进入下水道。
6.3 抑制和清除溢出物的方法和材料
清扫收集粉尘,封入密闭容器。注意切勿分散。附着物或收集物应该立即根据合适的法律法规处置。
7 安全操作与储存
7.1 安全操作的注意事项
在通风良好处进行处理。穿戴合适的防护用具。防止粉尘扩散。处理后彻底清洗双手和脸。如果粉尘或浮 质产生,使用局部排气。