刚体定轴转动的角动量定理和角动量守恒定律

合集下载

定轴转动的角动量定理 角动量守恒定律

定轴转动的角动量定理 角动量守恒定律

Iz
( 1 ml 2 12
mr 2 )
代入得 mgr cos 2mr dr
dt
v
dr dt
g cos 2
g
2
cos
t
7 lg 24v 0
cos(12v 7l
0t
)
L 0 J 常量
即:合外力为对转轴的力矩为零时,刚体的角动量守恒
讨论:
a.对于绕固定转轴转动的刚体,因J保持不变, 当合外力矩为零时,其角速度恒定。
当M z 0时, J =恒量 =恒量
b.若系统由若干个刚体构成,当合外力矩为零时,系
统的角动量依然守恒。J 大→ 小, J 小→ 大。
当M z 0时, Lz J11 J22 恒量
。这样,棒与物体相撞时,它们组成的系统所受的对
转轴O的外力矩为零,所以,这个系统的对O轴的角
动量守恒。我们用v表示物体碰撞后的速度,则
1
ml 2
mvl
1
ml 2
3
3
(2)
式中’为棒在碰撞后的角速度,它可正可负。
’取正值,表示碰后棒向左摆;反之,表示向右
摆。
第三阶段是物体在碰撞后的滑行过程。物体作匀减 速直线运动,加速度由牛顿第二定律求得为
例12、如图所示,长为L,质量为m1的均匀细棒 能绕一端在铅直平面内转动。开始时,细棒静止于
垂直位置。现有一质量为m2的子弹,以水平速度v0
射入细棒下断而不复出。求细棒和子弹开始一起运 动时的角速度?
题意分析:由于子弹射入细棒的时间极为短促,我们 可以近似地认为:在这一过程中,细棒仍然静止于垂 直位置。因此,对于子弹和细棒所组成的系统(也就 是研究对象)在子弹射入细棒的过程中,系统所受的 合外力(重力和轴支持力相等)对转轴O的力矩都为 零。根据角动量守恒定律,系统对于O轴的角动量守 恒。

物理-定轴转动刚体的角动量定理和角动量守恒定律

物理-定轴转动刚体的角动量定理和角动量守恒定律

或 Lz = I = 恒量
当刚体相对惯性系中某给定转轴的合外力矩为 零时,该刚体对同一转轴的角动量保持不变。
——对转轴的角动量守恒定律
二、定轴转动中的角动量守恒
说明 1、 关于该守恒定律的条件:
Mz Miz 0
特别地,若每一个力的力矩均为零,即 则
二、定轴转动中的角动量守恒
M iz ri Fi sini 0 的几种情况
10
f
20
O1 R1 A
R2 O2 fB
随堂练习
当两圆柱接触处无相对滑动时,两者转速相反
10
20
O1 R1 A
R2 O2 B
且两者接触点的线速率相等!
二、定轴转动中的角动量守恒
由定轴转动的角动量定理
Mz
dLz dt
若刚体所受对转轴的合外力矩 M z 0,则有
dLz d ( I ) 0
dt
dt
二、定轴转动中的角动量守恒
(3) 对共轴非刚体系(其中各质元到转轴的距离可 变则)系:统的转动惯量可变,此时系统对转轴的角动量守恒,
即:I =恒量
• 特别地,若各质元的 保持一致,
Lz =I =恒量
当 I 增大时, 就减小; 当 I 减小时, 就增大 。
二、定轴转动中的角动量守恒
例如:花样滑冰运动员在冰面上旋转时 运动了角动量守恒定律
(1)
(2)
(3)
二、定轴转动中的角动量守恒
2、对转轴的角动量守恒定律的适用范围: • 不仅适用于刚体, • 也适用于绕同一转轴转动的任意质点系。
二、定轴转动中的角动量守恒
3、对转轴的角动量守恒的几种典型表现 (1) 对定轴刚体:I 不变, 大小和方向均不变;

刚体定轴转动的角动量定理和角动量守恒定律

刚体定轴转动的角动量定理和角动量守恒定律
P
第3章 刚体力学基础
第4节
大学物理学(力学与电磁学) 11
二 刚体对轴的角动量 刚体定轴转动的角动量定理
1.刚体对轴的角动量 刚体对转轴z 轴的角动
量就是刚体上各质元的角动
量之和. Li miri2
z
Lz
r
mv
mv
L Li (miri2 ) ( miri2 ) J
i
i
i
的劲度系数为k,设有一质量为m的子弹以初速 v0 垂
直于OA射向M并嵌在木块内.弹簧原长 l0 ,子弹击中
木块后,木块M运动到B点时刻,弹簧长度变为l,此
时OB垂直于OA,求在B点时,木块的运动速度 v2 .
解 击中瞬间,在水平
面内,子弹与木块组成
的系统沿 v0方向动量守 恒,即有
mv0 (m M )v1
置时, 有一只小虫以速率 v0 垂直落在距点 O 为 l/4 处,
并背离点O 向细杆的端点 A 爬行. 设小虫与细杆的质量
均为m. 问: 欲使细杆以恒定的角速度转动, 小虫应以多
大速率向细杆端点爬行?
解: 碰撞前后系统角动量 守恒
mv0
l 4
1 12
ml
2
m(
l 4
)
2
12v0 7l
第3章 刚体力学基础
第3章 刚体力学基础
第4节
大学物理学(力学与电磁学) 6
在由A→B的过程中,子弹、木块系统机械能守恒
1 2
(m
M)v21
1 2
(m
M)v22
1 2
k (l
l0 )2
在由A→B的过程中木块在水平面内只受指向O点的
弹性有心力,故木块对O点的角动量守恒,设 v2

教学设计:定轴转动刚体的角动量守恒定律及其应用

教学设计:定轴转动刚体的角动量守恒定律及其应用

问题1:单旋翼直升机为什么要有尾翼装置?双旋翼直升机为什
么设计两个机翼?两个机翼的旋转方向有什么关系?
、播放一段花样滑冰和跳水的视频,提醒学生注意观察运动员的肢体动作。

d J t d t =
(类比:d d P F t
=外)
21
d t 为M 冲量矩。

说明: (1)冲量矩是矢量
角动量定理:合外力矩对刚体的冲量矩等于刚体角动量的增量。

定轴转动刚体的角动量守恒定律=
角动量守恒定律:当合外力矩等于零,刚体的角动量保持不变。

,与内力矩无关;ω均变,但对定轴的角动量守恒定律的应用
多个刚体组成的系统: M =外i i L J ω=∑=恒量
双旋翼直升机:装置反向转动的双旋翼产生反向角 动量
0 , L Jω==
外=恒量0 , P mv
===恒量
课后思考题:
(1)为什么猫从高处落下时总能四脚着地?(视频)
(2)航天器在对接时是如何实现姿态控制的?(图片)。

3-3刚体定轴转动的角动量定理和角动量守恒定律

3-3刚体定轴转动的角动量定理和角动量守恒定律

为零,角动量守恒
v0

v0
mv0l mv0l 0 mvl mvl J
v l
6 v0 7l
1 2 J ml 3
代入上式
L J const.
即转动过程中角动量(大小、方向)保持不变 角动量守恒定律比转动定律适用范围更广泛, 这里可以有
J 00 J11
但是
J 0 J1
讨论
1)角动量守恒条件
M 0
2)若 J 不变, 不变;若 J 变, 也变, 但
L J 不变.
3) 内力矩不改变系统的角动量. 4)在冲击等问题中 内力矩>>外力矩,角动量保持不变。 5)角动量守恒定律是自然界的一个基本定律.
力矩。合外力矩为 0 ,小球角动
量守恒 。 有:
N
mg
L = mvr = 恒量
即: m v1 r1 =m v2 r2
例2 光滑桌面上有一长2l,质量为m的细棒, 起初静止。两个质量m,速率v0的小球,如图 与细棒完全非弹性碰撞,碰撞后与细棒一起绕 中心轴转动,求系统碰撞后的角速度 解:系统的合外力矩
d( ) d( J ) dL M J J dt dt dt
刚体所受的(对轴的)外力矩等于刚体(对轴的) 角动量的时间变化率。 或写作
Mdt dL
t2 t1
对于一段时间过程有

t2
t1
Mdt dL L末 L初
三、定轴转动刚体的角动量守恒定律 如合外力矩等于零
6)转动系统由多个物体(刚体或质点)组成, 角动量守恒定律的形式为

i
J ii J i 0i 0
i
m
m
系统内各物体的角 动量必须是对同一 固定轴而言的。

角动量定理、角动量守恒定律

角动量定理、角动量守恒定律

在 M d L 中 ,若 M 0 dt
即:J J
1
2
M 0 的原因可能有:
则 L常量
(1) F 0 (不受外力)
(2)外力作用于转轴上
(3)外力作用线通过转轴
(4)外力作用线与转轴平行
以上几种情况对定轴转动均没有作用,则刚
体对此轴的角动量守恒。
角动量守恒定律也适用于定轴转动系统。
例1:一个人站在有光滑固定转轴的转动平台上,双臂伸 直水平地举起两哑铃,在该人把此二哑铃水平收缩 到胸前的过程中,人、哑铃与转动平台组成的系统 的:
(A)机械能守恒,角动量守恒 (B)机械能守恒,角动量不守恒 (C)机械能不守恒,角动量守恒 (D)机械能不守恒,角动量不守恒
选C
像其他所有行星一样,太阳是由大量的灰尘雾和早 先充满宇宙空间的气体所组成。在几十亿年的时间内, 这些物质在引力的吸引下,慢慢缩聚起来,刚开始的时 候,这些气体团旋转的很慢,后来随着它们体积的缩小, 旋转速度不断提高,这个道理就和滑冰运动员把自己的 双臂逐渐收拢起来的时候,她的旋转速度就会不断加快 的道理一样。缩聚和旋转速度的加快,使组成太阳的物 质变成一个碟子般的东西。
2、刚体的角动量定理 在定轴转动中
MJaJddJ
dt dt
积分形式:
0 tM d tL L 1 2d L L 2 L 1 J2 J1
左边为对某个固定转轴的外力矩的作用在某段时间内 的积累效果,称为冲量矩。 右边为刚体对同一转动轴的角动量的增量。
3、角动量守恒定律
盘状星系——角动量守恒的结果
例2:有一个半径为R的水平圆转台,可绕通过其中心的竖 直固定光滑轴转动,转动惯量为J,开始时转台以匀 角速度 0 转动,此时有一质量为m的人站在转台中 心。随后人沿半径向外跑去,当人到达转台边缘时 转台的角速度为:

大学物理 习题课(刚体)

大学物理 习题课(刚体)

J1r1r2 10 2 2 2 J1r2 J 2 r1
11、质量为m,长为 l的均匀棒,如图, 若用水平力打击在离轴下 y 处,作用时 Ry 间为t 求:轴反力
解:轴反力设为 Rx Ry d 由转动定律: yF J y dt yF t t 为作用时间 F 得到: J 由质心运动定理: l d l 2 切向: F Rx m 法向: R y mg m 2 dt 2 2 2 2 3y 9 F y (t ) R 于是得到: x (1 ) F R y m g 2l 2l 3 m
10
r1
r2
解: 受力分析: 无竖直方向上的运动
10
o1
N1
f
r1
N2
r2
N1 f m1 g N 2 f m2 g
以O1点为参考点, 计算系统的外力矩:
o2
f
m1 g
m2 g
M ( N2 m2 g )(r1 r2 )
f (r1 r2 ) 0
作用在系统上的外力矩不为0,故系统的角动量不守恒。 只能用转动定律做此题。
r
at r
在R处:
R
at R
(2)用一根绳连接两个或多个刚体
B
C
M 2 o2 R 2
o1R1 M1
D
A
m2
m1
• 同一根绳上各点的切向加速度相同;线速度也相同;
a t A a t B a t C a t D
A B C D
• 跨过有质量的圆盘两边的绳子中的张力不相等;
TA TB TD
但 TB TC
B
C
M 2 o2 R 2
o1R1 M1

3-2 刚体定轴转动的角动量 角动量定理 角动量守恒定律

3-2 刚体定轴转动的角动量 角动量定理 角动量守恒定律
第三章 刚体与流体
t2 t1
M
dt
J
J11
3 – 2 刚体定轴转动的角动量 角动量定理 角动量守恒定律
二、刚体定轴转动的角动量守恒定律
t2 t1
M
dt
J2
J1
若M 0 , 则J 常量
如果刚体所受合外力矩等于零,或者不受外力矩的 作用,则刚体的角动量守恒.此即角动量守恒定律.
茹科夫斯基转椅
第三章 刚体与流体
3 – 2 刚体定轴转动的角动量 角动量定理 角动量守恒定律
第三章 刚体与流体
3 – 2 刚体定轴转动的角动量 角动量定理 角动量守恒定律
例4 一根长度为L=0.60m的均匀棒,绕其端点O转
动时的转动惯量为J=0.12kgm2.当棒摆到竖直位置
时,其角速度为0=2.4rad/s.此时棒的下端和一质量
第三章 刚体与流体
3 – 2 刚体定轴转动的角动量 角动量定理 角动量守恒定律
M d L d(J) t2 M d t 2d(J)
dt
dt
t1
1
t2 t1
M
dt
J2
J1
——角动量定理
合外力矩的冲量矩(角冲量)
刚体所受合外力矩的冲量矩等于在这段时间内刚体 角动量的增量.
t1 t2时间内,J1 J2
3 – 2 刚体定轴转动的角动量 角动量定理 角动量守恒定律
3-2 刚体定轴转动的角动量 角动量定理 角动量守恒定律 一、刚体定轴转动的角动量 角动量定理
转动定律 M J J d d(J)
dt dt
令 L J,称为绕定轴转动刚体的角动量,则
M dL dt
刚体绕定轴转动时,作用于刚体的合外力矩 M 等于 刚体绕此轴的角动量 L 随时间的变化率.

大学物理-刚体绕定轴转动的角动量

大学物理-刚体绕定轴转动的角动量

M J
p mivi
角动量
L J
角动量定理 M d(J)
dt
质点的运动规律与刚体的定轴转动规律的比较(续)
质点的运动
动量守恒 力的功 动能
Fi 0时
mivi 恒量
Aab
b
F
dr
a
Ek
1 2
mv
2
动能定理
A
1 2
mv
2 2
1 2
mv12
重力势能
Ep mgh
机械能守恒
A外 A非保内 0时
进动特性的技术应用
翻转
外力
C
外力
进动
C
炮弹飞行姿态的控制:炮弹在飞行时,空气阻力对炮弹质心 的力矩会使炮弹在空中翻转;若在炮筒内壁上刻出了螺旋线 (称之为来复线),当炮弹由于发射药的爆炸所产生的强大 推力推出炮筒时,炮弹还同时绕自己的对称轴高速旋转。由 于这种自转作用,它在飞行过程中受到的空气阻力将不能使 它翻转,而只能使它绕着质心前进的方向进动。
pA pB
pA A
Bp B
s
s
O
x
结论:静止流体中任意两等高点的压强相等,即压强差为零。 若整个流体沿水平方向加速运动? 加速运动为a,压强差为?
2. 高度相差为 h 的两点的压强差(不可压缩的流体)
选取研究对象,受力分析:(侧面?)
沿 y 方向:
p C
Y C s
pB s pC s mg may
已知:p0=1.013×105 Pa , 0 1.29kg / m3
解 由等温气压公式
p
p e(0g / p0 ) y 0
0g 1.25104 m1
p0
p1 1.0 105 e1.251043.6103 0.64 105 Pa

4-3角动量 角动量守恒定律

4-3角动量  角动量守恒定律
in
M L 常量
ex
角动量守恒定律是自然界的一个基本定律.
自然界中存在多种守恒定律
动量守恒定律 能量守恒定律 角动量守恒定律 电荷守恒定律 质量守恒定律 宇称守恒定律等
许多现象都可 以用角动量守恒来 说明. 花样滑冰 跳水运动员跳水
跳水运动员
茹可夫斯基凳
例3 质量很小长度为l 的均匀细杆,可 绕过其中心 O并与纸面垂直的轴在竖直平面 内转动.当细杆静止于水平位置时,有一只 小虫以速率 v 0 垂直落在距点O为 l/4 处,并背 离点O 向细杆的端点A 爬行.设小虫与细杆 的质量均为m.问:欲使细杆以恒定的角速 度转动,小虫应以多大速率向细杆端点爬行?
解 设飞船在点 A 的速度 v 0 , 月球质 量 mM ,由万有引力和 牛顿定律
vB
R
B
vA
v0
v
O h A
u
v mM m G m 2 ( R h) Rh mM g G 2 2 R R g
2 0
v0 (
Rh
)
12
1 612 m s
1
质量 m' 在 A 点和 B 点只受有心力作用 , 角动量守恒
d r mv r F dt
所以
dL M= dt
dL M dt

t2
t1
M dt L2 L1
冲量矩
t1
t2
M dt
对同一参考点O,质点所受的冲量矩 等于质点角动量的增量.——质点的角动 量定理
3、质点的角动量守恒定律
若质点所受的合外力矩为零,即 M=0,
4-3 角动量 角动量守恒定律
力对时间累积效应: 冲量、动量、动量定理. 力矩对时间累积效应: 冲量矩、角动量、角动量定理.

《大学物理》34刚体定轴转动的角动量定理角动量守恒定律.

《大学物理》34刚体定轴转动的角动量定理角动量守恒定律.
矩为零故角动量守恒。
设子弹射入后杆起摆的角速度为ω,则有:
1 m v 0 a ( ML2 ma 2 ) 3
子弹射入后一起摆动的过程只有重力做功,故系统机 械能守恒。
1 1 L 2 2 2 ( ML ma ) mga (1 cos60 ) Mg (1 cos60 ) 2 3 2
1
2.刚体的角动量定理及守恒定律
刚体所受合外力矩与角加速度关系为
d M J J dt
利用角动量表示
dJ dL M dt dt
刚体绕定轴转动时,作用于刚体的合外力矩等于刚 体绕此轴的角动量对时间的变化率。这是刚体角动 量定理的一种形式。
当合外力矩为零时
d J dL M dt dt
如果质点所受合外力矩为零,则质点的角动量保持不变, 这就是质点的角动量守恒定律。
1. 质点角动量定理及守恒定律
例:我国第一颗人造地球卫星沿椭圆轨道绕地球运动,地心为该椭圆 的一个焦点。已知地球半径 R ,卫星的近地点到地面距离 l ,卫星的远 地点到地面距离 l 。若卫星在近地点速率为 v1 ,求它在远地点速率 v2 。
3.4刚体定轴转动的角动量定理 角动量守恒定律
一、冲量矩 角动量 1.冲量矩
定义:力矩与力矩作用时间的乘积称为冲量矩。
数学表达:
M dt
0
t
2.角动量
整个刚体的角动量就是刚体上每一个质元的角动 量——即每个质元的动量对转轴之矩的和。
2.1质点的角动量
o
r
v
o
L
m

L
r
m
J 恒量
如果物体所受合外力矩为零,或不受外力矩的作用, 物体的角动量保持不变,这就是角动量守恒定律。

刚体定轴转动的角动量定理和角动量守恒定律课件

刚体定轴转动的角动量定理和角动量守恒定律课件
转动惯量的特性
只与刚体的质量和各质点到转动轴 的距离有关,与转动角速度的大小 无关。
02
角动量定理
角动量的定义与性质
角动量的定义
角动量是描述刚体转动状态的物理量 ,等于刚体的转动惯量乘以角速度。
角动量的性质
角动量是矢量,具有方向和大小;对 于定轴转动,角动量位于转轴上;角 动量是相对量,与参考系的选择有关 。
理解角动量守恒定律的证明方法是深入理解该定律的重要途径。
详细描述
证明角动量守恒定律的方法主要有两种,一种是基于牛顿第二定律和转动定理推导,另一种是通过分析系统的能 量变化来证明。通过这些证明方法,可以更深入地理解角动量守恒定律的物理意义和适用条件。
04
刚体定轴转动的实例 分析
刚体定轴转动的实例介绍
角动量守恒定律的内容及应用
总结词
掌握角动量守恒定律的内容及应用是解决实际问题的关键。
详细描述
角动量守恒定律表明,对于不受外力矩或所受外力矩的矢量和为零的系统,其总角动量保持不变。这 一原理在日常生活、工程技术和科学研究中有广泛的应用,如行星运动、陀螺仪、火箭飞行等。
角动量守恒定律的证明方法
总结词
陀螺仪
风扇
陀螺仪是一个典型的刚体定轴转动实 例,其工作原理就是角动量守恒定律 。
当风扇的扇叶旋转时,可以将其视为 刚体定轴转动,这个过程涉及到角动 量定理的应用。
自行车轮
自行车轮在转动时,也是一个刚体定 轴转动的例子,其转动惯量对于理解 角动量定理和角动量守恒定律非常有 帮助。
刚体定轴转动的角动量定理应用实例
舞蹈演员在进行旋转动作时,可以通过改变身体的姿势来改变转动惯量,从而控制旋转的 速度。
刚体定轴转动的角动量守恒定律应用实例

17定轴转动刚体的角动量守恒定律

17定轴转动刚体的角动量守恒定律
啮合过程机械能损失J:1 J 2
E
E0 E
(1 2
J112
1 2
J
2
22
)
1 2
(
J1
J2
)
2
J1J2 (1 2 )2
2(J1 J2 )103由于刚体的角动量等于刚体的转动惯量和角速度 的乘积。定轴转动刚体角动量的情况有两种:
a)对于定轴转动的刚体,其转动惯量I为常数,其角
速度 也为常数, =0。
0 0 , 0 0 C , C
即刚体在受合外力矩为0时,原来静止则永远保持静止, 原来转动的将永远转动下去。证明了牛顿第一定律。
端A相碰撞,并被棒反向弹回,碰撞时间极短。已知 小滑块与细棒碰撞前后的速率分别为v和u,则碰撞后
棒绕轴转动的角速度 为多大?
解: 对于整个系统不考虑轴间摩擦阻力矩,则系统不受外力
矩作用, 碰撞前后角动量守恒.
m2vl I m2ul
细棒绕O转动的转动惯量为
I
1 3
m1l 2
m2 v
uA
O
m1
代入上式求得 3(v u)m2
定轴转动刚体的 角动量守恒定律
1
一、定轴转动刚体的角动量定理
刚体定轴转动定律: M I I d d(I) dL
dt dt dt
M dL dt
定轴转动刚体角动量 定理微分形式
定轴转动刚体所受的合外力矩等于刚体的角动量
对时间的变化率。
将 M dL 两边同时乘以dt并积分,得:
dt
t
L
Mdt t0
I2 I0 2ml22 60 2 5 0.22 60.4kg m 2
2
I11
I2
3 70 60 .4

定轴转动的角动量定理 角动量守恒定律

定轴转动的角动量定理 角动量守恒定律
O
C
零点, 表示棒这时的角速度, 零点,用ω表示棒这时的角速度,则
l 1 11 2 2 2 mg = J ω = ml ω 2 2 23
( 1)
第二阶段是碰撞过程 。 因碰撞时间极短, 第二阶段是 碰撞过程。 因碰撞时间极短 , 自由的 碰撞过程 冲力极大,物体虽然受到地面的摩擦力, 冲力极大,物体虽然受到地面的摩擦力,但可以忽略 这样,棒与物体相撞时, 。这样,棒与物体相撞时,它们组成的系统所受的对 的外力矩为零,所以, 转轴O的外力矩为零,所以,这个系统的对O轴的角 动量守恒。 表示物体碰撞后的速度, 动量守恒。我们用v表示物体碰撞后的速度,则
讨论: 讨论:
a.对于绕固定转轴转动的刚体,因J保持不变, 对于绕固定转轴转动的刚体, 保持不变 保持不变, 对于绕固定转轴转动的刚体 当合外力矩为零时,其角速度恒定。 当合外力矩为零时,其角速度恒定。
当 M z = 0时, J =恒量
ω
=恒量
b.若系统由若干个刚体构成,当合外力矩为零时,系 若系统由若干个刚体构成,当合外力矩为零时, 若系统由若干个刚体构成 统的角动量依然守恒。 统的角动量依然守恒。J 大→ ω , J 小→ 大。 小 ω
(6)
l h = + 3 µ s − 6 µ sl 2
的匀质细杆, 例13:一长为 l 的匀质细杆,可绕通过中心的固定 13: 水平轴在铅垂面内自由转动, 水平轴在铅垂面内自由转动,开始时杆静止于水平位 置。一质量与杆相同的昆虫以速度 v0 垂直落到距点 O点 l/4 处的杆上,昆虫落下后立即向杆的端点爬行 处的杆上, ,如图所示。若要使杆以匀角速度转动 如图所示。 求: 昆虫沿杆爬行的速度。 昆虫沿杆爬行的速度。
r r vi ∆m i L r ri

刚体力学第2讲——定轴转动中的功能关系刚体的角动量定理和角动量守恒定律

刚体力学第2讲——定轴转动中的功能关系刚体的角动量定理和角动量守恒定律
圆盘质量的1/10.开始时盘载人对地以角速度w0匀速转 动,现在此人垂直圆盘半径相对于盘以速率v沿与盘转
动相反方向作圆周运动(如图) 求:1) 圆盘对地的角速度.
2)欲使圆盘对地静止,人应沿着圆周对圆盘的速 度的大小及方向?
R

R/2 v
解:取人和盘为系统,
M 外 0 系统的角动量守恒.
R /2
Ro
v
(1)开始系统的角动量为

m
12 R
2

0
1 2
M
R 20
后来:
m
1 4
R 2 mE
1 2
M
R 2 ME
mE ME mM 21 M R 20 / 40
R /2
Ro
v
MR 40
2


ME

2v R


M
R 2 ME
/2

亦即l>6s;当‘’取负值,则棒向右摆,其条件为
3gl 3 2gs 0 亦即l<6s
棒的质心C上升的最大高度,与第一阶段情况相似,也可由 机械能守恒定律求得:
mgh 1 1 ml 2 2
23
把式(5)代入上式,所求结果为
h l 3s 6sl
解 这个问题可分为三个
阶段进行分析。第一阶段 是棒自由摆落的过程。这
O
时除重力外,其余内力与
外力都不作功,所以机械
能守恒。我们把棒在竖直
C
位置时质心所在处取为势
能零点,用表示棒这时
的角速度,则
mg l 1 J 2=1 1 ml 2 2
22
23
(1)

刚体定轴转动的角动量定理 角动量守恒定律.

刚体定轴转动的角动量定理 角动量守恒定律.

l 1 l 2 2 mv0 m l m( ) 4 12 4
12 v 0 7 l
12 v 0 7 l
由角动量定理
dL d ( I ) dI M dt dt dt

d 1 dr 2 2 mgr cos ( ml mr ) 2mr dt 12 dt
※ 刚体定轴转动的角动量定理和角动量守恒定律
刚体定轴转动对轴上一点的角动量(自学) :
结 论:
一般情况下,刚体定轴转动对轴上一点的角动 量并不一定沿角速度(即转轴)的方向,而是与其 成一定夹角;但对于质量分布与几何形状有共同对 称轴的刚体,当绕该对称轴转动时,刚体对轴上任 一点的角动量与角速度的方向相同.
4 m 2m M
[讨论] ① M>>m ② M<<m
作 业:
7.4.3. 思 考: 7.4.1.
例:
已知均匀直杆(l ,M),一端挂在光滑水平轴上,开始时静止 在竖直位置,有一子弹(m.vo)水平射入而不复出。求杆与子弹 一起运动时的角速度.
解:
子弹进入到一起运动,瞬间完成.
I
i i
i
const.
但角动量可在内部传递。
3 刚体定轴转动的角动量守恒定律 若 M 0 ,则 讨论
守 恒条件:
L I 常量
M 0
若 I 不变, 不变;若 I 变, 也变,但 L I 不变. 内力矩不改变系统的角动量. 在冲击等问题中


M in M ex L 常量
现在讨论力矩对时间的积累效应。
※ 现在讨论力矩对时间的积累效应。 质点系: dL 对点: M 外
dt

大学物理——第3章-角动量定理和刚体的转动

大学物理——第3章-角动量定理和刚体的转动

M
α
I
有何联系?
13
实验指出,定轴转动的刚体的角加速度 α与刚体所受的合外 力矩 M 成正比,与刚体的转动惯量 I 成反比.
v dω v M = Iα = I dt
v
定轴转动定理
v v F = ma
定轴转动定律在转动问题中的地 位相当于平动时的牛顿第二定律
应用转动定理解题步骤与牛顿第二定律时完全相同.
1 1 2 2 2 Eki = miυi = mi ri ω 2 2
质点质量 整个刚体的动能:
N
圆周运动的速率和半径
1 N 2 2 Ek = ∑Eki = (∑mi ri )ω 2 i=1 i=1
刚体对转轴的转动惯量:I
7
刚体定轴转动动能公式
物体的平动动能(质点动能)
1 2 Ek = Iω 2
角速度 ω 转动惯量 I 物体绕轴的转动惯性
λ :质量线密度 σ :质量面密度 ρ :质量体密度
10
I = ∫ r 2dm
单位: kg m2
转动惯量的大小取决于刚体的质量,质量分布及转轴的位置.
O
O l/2 O′
1 I= ml2 12
O
O O′
1 2 I = ml 3
r
O′
1 I = mr2 4
O′
1 I = mr2 2
11
平行轴
垂直轴
平行轴定理 质量为 m 的刚体,如果对其质心轴的转动惯量为 IC,则对任 一与该轴平行,相距为 d 的转轴的转动惯量:
2 θ 3Rω0 n= = 2π 16π g
26
讨论
用定轴转动的动能定理较之用转动定律求解, 省去了求角加速度,而直接求得,更为简捷.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

刚体定轴转动的角动量定理和角动量守恒定律
1、刚体定轴转动的角动量
刚体绕定轴转动的角动量等于刚体对该轴的转动惯量与角速度的乘积;方向与角速度的方向相同。

2、刚体定轴转动的角动量定理
(1)微分形式:刚体绕某定轴转动时,作用于刚体的合外力矩,等于刚体绕该定轴的角动量随时间的变化率。

(2)积分形式:当物体绕某定轴转动时,作用在物体上的冲量矩等于角动量的增量。

3、刚体定轴转动的角动量守恒定律
如果物体所受的合外力矩等于零,或者不受外力矩作用,物体的角动量保持不变。

练习:1角动量守恒的条件是 。

0=M 11222
1ωωJ J Mdt t t -=⎰刚体 ) 21J J ==ωJ 恒量
ωJ L =()ωJ dt d dt dL M ==。

相关文档
最新文档