温度和风速测量方法总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章风速测量1.1风速测量

风是空气流动时产生的一种自然现象。空气流动有上下流动和左右流动,上下流动为垂直运动,也叫对流;左右流动为水平运动,也就是风。风是一个矢量,用风向和风速表示。地面风指离地平面10─12米高的风。风向指风吹来的方向,一般用16个方位或360°表示。以360°表示时,由北起按顺时针方向度量。风速指单位时间内空气的水平位移,常以米/秒、公里/小时、海里/小时表示。

1.2 风杯风速计

风杯风速计是最常见的一种风速计。转杯式风速计最早由英国鲁宾孙发明,当时是四杯,后来改用三杯。它由3个互成120°固定在支架上的抛物锥空杯组成感应部分,空杯的凹面都顺向一个方向。整个感应部分安装在一根垂直旋转轴上,在风力的作用下,风杯绕轴以正比于风速的转速旋转。转速可以用电触点、测速发电机或光电计数器等记录。

图1.1 风杯风速计

1.3 叶轮风速仪

风速计的叶轮式探头的工作原理是基于把转动转换成电信号,先经过一个临近感应开头,对叶轮的转动进行“计数” 并产生一个脉冲系列,再经检测仪转换处理,即可得到转速值。

法国KIKO叶轮风速仪工作原理如图1.2所示。叶轮的轴杆启动内含八个电磁极的原型磁铁,置于磁铁旁的双霍尔传感器感测到侧场中电磁极的转变信号。传感器的信号转换为电子频率且和风速成正比,并感测旋转方向。

图1.2 KIMO原理

1.4 热线风速计

一根被电流加热的金属丝,流动的空气使它散热,利用散热速率和风速的平方根成线性关系,再通过电子线路线性化(以便于刻度和读数),即可制成热线风速计。

金属丝通常用铂、铑、钨等熔点高、延展性好的金属制成。常用的丝直径为5μm,长为2 mm;最小的探头直径仅1μm,长为0.2 mm。根据不同的用途,热线探头还做成双丝、三丝、斜丝及V形、X形等。为了增加强度,有时用金属膜代替金属丝,通常在一热绝缘的基体上喷镀一层薄金属膜,称为热膜探头。热线探头在使用前必须进行校准。静态校准是在专门的标准风洞里进行的,测量流速与输出电压之间的关系并画成标准曲线;动态校准是在已知的脉动流场中进行的,或在风速仪加热电路中加上一脉动电信号,校验热线风速仪的频率响应,若频率响应不佳可用相应的补偿线路加以改善。

0至100m/s的流速测量范围可以分为三个区段:低速:0至5m/s;中速:5至40m/s;高速:40至100m/s。热线风速计用于0至5m/s的精确测量,使用温度约为±70℃。

当在湍流中使用热线风速计时,来自各个方向的气流同时冲击热元件,从而会影响到测量结果的准确性。在湍流中测量时,热敏式风速仪流速传感器的示值往往高于转轮式风速计。因此,风速仪测量过程应尽量在通道的直线部分进行。直线部分的起点应至少在测量点前10×D(D=管道直径,单位为CM)外;终点至少在测量点后4×D处。流体截面应不得有遮挡(棱角,重悬,物等)。

图1.3 热线风速计

1.4.1 恒流式热线风速计

通过热线的电流保持不变,温度变化时,热线电阻改变,因而两端电压变化,由此测量流速。利用风速探头进行测量。风速探头为一敏感部件。当有一恒定电流通过其加热线圈时,探头内的温度升高并于静止空气中达到一定值。此时,其内测量元件热电偶产生相应的热电势,并被传送到测量指示系统,此热电势与电路中产生的基准反电势相互抵消,使输出信号为零,风速仪指针也能相应指于零点或显示零值。若风速探头端部的热敏感部件暴露于外部空气流中时,由于进行热交换,此时将引起热电偶热电势变化,并与基准反电势比较后产生微弱差值信号,此信号被测量仪表系统放大并推动电表指针

变化从而指示当前风速或经过单片机处理后通过显示屏显示当前风速数值。

1.4.2 恒温式热线风速计

风速仪热线的温度保持不变,给风速敏感元件电流可调,在不同风速下使处于不同热平衡状态的风速敏感元件的工作温度基本维持不便,即阻值基本恒定,该敏感元件所消耗的功率为风速的函数。

恒温风速仪则是利用反馈电路使风速敏感元件的温度和电阻保持恒定。当风速变化时热敏感元件温度发生变化,电阻也随之变化,从而造成热敏感元件两端电压发生变化,此时反馈电路发挥作用,使流过热敏感元件的电流发生相应的变化,而使系统恢复平衡。

上述过程是瞬时发生的,所以速度的增加就好像是电桥输出电压的增加,而速度的降低也等于是电桥输出电压的降。

1.4.3 注意事项

除保持日常数据的准确性外,日常维护使用中还要注意以下几点:

1.禁止在可燃性气体环境中使用风速计。

2.禁止将风速计探头置于可燃性气体中。否则,可能导致火灾甚至爆炸。

3.请依据使用说明书的要求正确使用风速计。使用不当,可能导致触电、火灾和传感器的损坏。

4.在使用中,如遇风速计散发出异常气味、声音或冒烟,或有液体流入风速计内部,请立即关机取出电池。否则,将有被电击、火灾和损坏风速计的危险。

5.不要将探头和风速计本体暴露在雨中。否则,可能有电击、火灾和伤及人身的危险。

6.不要触摸探头内部传感器部位。

7.风速计长期不使用时,请取出内部的电池。否则,将电池可能漏液,导致风速计损坏。

8.不要将风速计放置在高温、高湿、多尘和阳光直射的地方。否则,将导致内部器件的损坏或风速仪性能变坏。

9.不要用挥发性液体来擦拭风速计。否则,可能导致风速仪壳体变形变色。风速计表面有污渍时,可用柔软的织物和中性洗涤剂来擦拭

10.不要摔落或重压风速计。否则,将导致风速计的故障或损坏。

11.不要在风速计带电的情况下触摸探头的传感器部位。否则,将影响测量结果或导致风速计内部电路的损坏。

1.5 超声波风速仪

超声风速风向仪的工作原理是利用超声波时差法来实现风速的测量。通过正、逆压电效应实现高频声能和电能之间的相互转换,从而实现超声波的发射和接收。由于它很好地克服了机械式风速风向仪固有的缺陷,因而能全天候地、长久地正常工作,越来越广泛地得到使用.它将是机械式风速仪的强有力替代品。

图1.4 超声波风速仪

1.5.1 应用领域

超声波风速计的应用便利、精确,在很多领域都能灵活运用,广泛应用于城市环境监测、风力发电、气象监测、桥梁隧道、航海船舶、航空机场、各类风扇制造业、需要

相关文档
最新文档