Matlab二维灰度图象分析及变换处理要点

合集下载

实验一 Matlab图像处理基础及图像灰度变换

实验一 Matlab图像处理基础及图像灰度变换

实验一Matlab图像处理基础
一、实验目的
熟悉Matlab平台下的图像编程环境;
掌握基本的Matlab运算符应用方法;
掌握基本的主、子函数调用方法;
掌握基本的图像读、写等函数;
掌握Matlab帮助文档使用方法。

二、实验内容
1.观察matlab软件环境;
2.练习+,-,*,/,^,.+,.-,.*,./,.^ 等运算符号的使用方法;
3.编写主函数实现图像的读取、显示及写入;
4.编写子函数实现图像的翻转;
5.主函数调用子函数实现图像的翻转;
6.利用Matlab帮助文档查看相应函数的使用方法。

三、知识要点
1.Matlab支持的图像图形格式
TIFF, JEPG, GIF, BMP, PNG 等。

2.与图像处理相关的最基本函数
读:imread; 写:imwrite; 显示:imshow; 信息查看:imfinfo; 图像选装:imrotate 3.Matlab支持的数据类
double, unit8, int8, uint16, int16, uint32, int32, single, char (2 bytes per element), logical.
4.数据类及图像类型间的基本转换函数
数据类转换:B = data_class_name(A);
作业:
1.简述.*,./,.^的使用方法,与+,-,*,/,^的区别,用实例演示。

2.通过主、子函数实现图像的旋转。

MATLAB二维函数绘图、数据标准化、归一化处理

MATLAB二维函数绘图、数据标准化、归一化处理

网络均值 bp) 。奇异样本数据存在所引起的网络训练时间增加,并可能引起网 络无法收敛,所以对于训练样本存在奇异样本数据的数据集在训练之前,最好 先进形归一化,若不存在奇异样本数据,则不需要事先归一化。 一个小程序: p=[1.3711 1.3802 1.3636 1.3598 1.3502 1.3404 1.3284 1.3160 1.3118 1.3032 1.2989 1.2945 1.2923 1.2923 1.2856 1.2788 1.2742 1.2672 1.2577 1.2279 1.1903 1.0864 0.9956 ]; t=[0 1.38 1.68 1.98 2.08 2.23 2.53 2.83 2.93 3.13 3.23 3.33 3.43 3.53 3.63 3.73 3.83 3.93 4.03 4.13 4.23 4.33 4.43]; u=p; tt=t; p=(p-min(p))/(max(p)-min(p));%g 归一化 t=(t-min(t))/(max(t)-min(t)); net=newff(minmax(p),[23 1],{'tansig' 'purelin'},'traingdx'); net.trainParam.epochs=1000; net.trainParam.goal=0.001; net.trainParam.show=10; net.trainParam.lr=0.05; [net,tr,Y,E]=train(net,p,t); a=sim(net,p); out=a*(max(tt)-min(tt))+min(tt);%反归一化 x=u; y=tt; figure(1) plot(x,y,'k*',x,y,'-k',u,out,'ko') title('70°EPDM 的压缩永久变形') legend('*试验数据 o 预测结果') xlabel('压缩变形保持率') ylabel('时间的对数 log10(t)') grid on

matlab 二值化 阈值

matlab 二值化 阈值

matlab 二值化阈值
二值化是将灰度图像转换为二值图像的过程。

阈值是二值化的关键参数之一,是用来确定将灰度图像中哪些像素点转换为黑色像素,哪些像素点转换为白色像素。

在matlab中,二值化可以通过以下代码实现:
1.使用im2bw函数指定阈值进行二值化:
```。

I = imread('image.jpg');。

threshold = 128; % 设定阈值。

BW = im2bw(I, threshold/256); % 将图像进行二值化。

imshow(BW);。

```。

2.使用graythresh函数自适应确定阈值进行二值化:
```。

I = imread('image.jpg');。

level = graythresh(I); % 自适应确定阈值。

BW = im2bw(I, level); % 将图像进行二值化。

imshow(BW);。

```。

需要注意的是,灰度图像的像素值范围为0~255,在matlab中使用时需要将阈值设定为0~1之间的小数。

MATLAB图像处理工具箱支持四种基本图像类型

MATLAB图像处理工具箱支持四种基本图像类型

MATLAB图像处理工具箱支持四种根本图像类型:索引图像、灰度图像、二进制图像和RGB图像。

MATLAB直接从图像文件中读取的图像为RGB图像。

它存储在三维数组中。

这个三维数组有三个面,依次对应于红(Red)、绿(Green)、蓝(Blue)三种颜色,而面中的数据如此分别是这三种颜色的强度值,面中的元素对应于图像中的像素点。

设所得矩阵为X三维矩阵(256,256,3) ,X(:,:,1)代表红颜色的2维矩阵 X(:,:,2)代表绿颜色的2维矩阵, X(:,:,3)代表兰颜色的2维矩阵。

[X, map]=imread('34.bmp');r=double(X(:,:,1)); %r是256 x 256的红色信息矩阵g=double(X(:,:,2)); %g是256 x 256的绿色信息矩阵b=double(X(:,:,3)); %b是256 x 256的兰色信息矩阵索引图像数据包括图像矩阵X与颜色图数组map,其中颜色图map是按图像中颜色值进展排序后的数组。

对于每个像素,图像矩阵X包含一个值,这个值就是颜色图数组map中的索引。

颜色图map为m×3双精度矩阵,各行分别指定红、绿、蓝(R、G、B)单色值,map=[RGB],R、G、B为值域为[0,1]的实数值,m为索引图像包含的像素个数。

对于一样的数据,采用uint8格式比双精度格式节省内存空间,从而更经济。

在MATLAB中如果索引图像的颜色图小于256行,如此它的图像矩阵以uint8格式存储,否如此以双精度格式存储。

一:imread:从图像文件夹中读取图像。

A =imread(FILENAME,FMT) 读取图像到A,如果文件是包含一灰度图像,A是一二维矩阵,如果文件是包含一真彩色图像〔RGB〕,A是一三维矩阵〔M-by-N-by-3〕。

FILENAME :图像文件名;FMT:图像文件格式;文件必须在当前目录下,或在Matlab的一路径上。

基于MATLAB的彩色图像灰度化处理

基于MATLAB的彩色图像灰度化处理

目录第1章绪论............................................................................................................................ - 0 - 第2章设计原理.................................................................................................................... - 1 - 第3章彩色图像的灰度化处理............................................................................................ - 2 - 3.1加权平均法 .. (2)3.2平均值法 (2)3.3最大值法 (3)3.4举例对比 (4)3.5结果分析 (5)第4章结论.......................................................................................................................... - 7 - 参考文献.................................................................................................................................... - 7 - 附录............................................................................................................................................ - 8 -基于Matlab的彩色图像灰度化处理第1章绪论在计算机领域中,灰度数字图像是每个像素只有一个采样颜色的图像。

利用MATLAB仿真软件进行图像的输入、输出和格式变

利用MATLAB仿真软件进行图像的输入、输出和格式变

课程设计任务书学生姓名:专业班级:通信指导教师:尹勇工作单位:信息工程学院题目: 利用MATLAB仿真软件进行图像的输入、输出和格式变初始条件:①Matlab软件。

②图像处理的基础知识。

要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)①利用Matlab读取、保存和显示不同格式的图像。

②进行图像格式的相互变换如索引图像、灰度图像、RGB图像和二值图像的相互转换。

③熟悉Matlab的用法。

时间安排:1、理论讲解,老师布置课程设计题目,学生根据选题开始查找资料;2、课程设计时间为1周。

(1)确定技术方案、电路,并进行分析计算,时间1天;(2)选择元器件、安装与调试,或仿真设计与分析,时间2天;(3)总结结果,写出课程设计报告,时间2天。

指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (I)Abstract (II)1 不同格式图像的读取、显示和保存 (1)1.1 图像的选取 (1)1.2 图像的读取 (2)1.2.1 编辑M文件 (2)1.2.2 图像的读取 (2)1.2.3 图像的显示 (3)1.2.4 图像的检测 (5)1.2.5 图像的保存及格式转换 (6)2 图像格式之间的相互转换 (7)2.1 图像的几种基本格式 (7)2.2 图像格式转换常用函数 (8)2.3 对图像进行格式转换 (9)2.3.1 将图像转为灰度图像 (9)2.3.2 灰度图像变为索引图像 (11)2.3.3 灰度图像变二值图像 (13)2.3.4 RGB图像变为索引图像 (15)3总结 (17)参考文献 (19)武汉理工大学《Matlab课程设计》报告摘要MATLAB是矩阵实验室之意。

除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能,MATLAB 语言在各国高校与研究单位起着重大的作用。

MATLAB 的应用范围非常广,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。

matlab二值化处理

matlab二值化处理

matlab二值化处理
Matlab二值化处理是一种常用的图像处理技术,它将一幅图像转化为黑白两种颜色,使得图像中的信息更加明显和易于处理。

在Matlab中,二值化处理主要有两种方法:全局阈值法和自适应阈值法。

全局阈值法是将整幅图像分成两个部分:前景和背景,通过设定一个阈值来划分。

而自适应阈值法则是对图像中的不同区域分别设定阈值,以适应光照变化、噪声等因素的影响。

二值化处理在图像处理中广泛应用,如OCR识别、目标检测等领域。

在Matlab中,通过使用im2bw函数可以实现二值化处理,同时还可以通过调整阈值、卷积核大小等参数来达到更好的效果。

- 1 -。

二维离散余弦变换matlab

二维离散余弦变换matlab

一、前言在数字图像处理领域,二维离散余弦变换(2D DCT)是一种常用的技术,它可以将图像转换到频域,进而进行压缩、特征提取等操作。

而在Matlab中,二维离散余弦变换也是比较容易实现的,下面将介绍如何在Matlab中进行2D DCT的实现。

二、二维离散余弦变换(2D DCT)的原理二维离散余弦变换是一种基于余弦函数的变换方法,它可以将一个N×N的二维矩阵转换成另一个N×N的二维矩阵。

在图像处理中,通常将图像看作一个灰度矩阵,然后对这个灰度矩阵进行二维离散余弦变换,得到图像的频域表示。

三、Matlab中的二维离散余弦变换函数在Matlab中,可以使用dct2函数来实现二维离散余弦变换。

其调用形式为:```Y = dct2(X)```其中,X为输入的N×N的二维矩阵,Y为变换后的N×N的二维矩阵。

需要注意的是,dct2函数默认对输入矩阵X进行两次一维离散余弦变换,即先对X的每一行进行一维离散余弦变换,然后再对得到的矩阵的每一列进行一维离散余弦变换,得到最终的结果Y。

四、二维离散余弦变换的实现步骤在Matlab中,可以通过以下步骤来实现二维离散余弦变换:1. 读取图像需要使用imread函数读取待处理的图像,将其转换为灰度图像。

假设读取的图像矩阵为X。

2. 进行二维离散余弦变换接下来,可以直接调用dct2函数对图像矩阵X进行二维离散余弦变换,得到变换后的矩阵Y。

3. 可视化变换后的图像可以使用imshow函数来显示变换后的图像矩阵Y,观察二维离散余弦变换的效果。

五、实例演示下面通过一个具体的实例来演示在Matlab中如何实现二维离散余弦变换。

读取一张灰度图像“lena.jpg”:```I = imread('lena.jpg');I = rgb2gray(I);```对图像矩阵I进行二维离散余弦变换:```J = dct2(I);```可视化变换后的图像:```imshow(log(1 + abs(J)), []);```运行上述代码,就可以得到图像经过二维离散余弦变换后的效果。

matlab灰度处理二值化处理

matlab灰度处理二值化处理

Matlab在图像处理领域有着广泛的应用,其中灰度处理和二值化处理是常见的图像处理方法之一。

本文将详细介绍Matlab中的灰度处理和二值化处理的原理和实现方法。

一、灰度处理1. 灰度图像的概念灰度图像是指图像中每个像素的灰度值介于0-255之间的图像。

在灰度图像中,0代表黑色,255代表白色,中间的灰度值代表了不同程度的灰色。

2. 灰度处理的原理灰度处理是将彩色图像转换为灰度图像的过程。

在Matlab中,可以通过以下公式实现灰度处理:灰度值 = 0.299 * R + 0.587 * G + 0.114 * B其中,R、G、B分别代表彩色图像中的红色、绿色和蓝色分量。

通过对每个像素的RGB分量进行加权求和,可以得到对应的灰度值。

3. 灰度处理的实现在Matlab中,可以使用`rgb2gray`函数实现灰度处理。

具体的代码如下:```matlab读取彩色图像rgbImage = imread('example.jpg');灰度处理grayImage = rgb2gray(rgbImage);显示灰度图像imshow(grayImage);```二、二值化处理1. 二值化图像的概念二值化图像是指将灰度图像中的像素值转换为0或255的图像。

在二值化图像中,像素值为0代表黑色,像素值为255代表白色。

2. 二值化处理的原理二值化处理的目的是将灰度图像中的灰度值转换为0或255。

一般可以通过设置一个阈值,将低于阈值的像素值设为0,将高于阈值的像素值设为255。

3. 二值化处理的实现在Matlab中,可以使用`im2bw`函数实现二值化处理。

具体的代码如下:```matlab读取灰度图像grayImage = imread('example_gray.jpg');设置阈值threshold = 128;二值化处理binaryImage = im2bw(grayImage, threshold/255);显示二值化图像imshow(binaryImage);```三、总结本文详细介绍了Matlab中灰度处理和二值化处理的原理和实现方法。

matlab图像处理教程1

matlab图像处理教程1

基本概念一点通从理论上讲,图像是一种二维的连续函数,然而在计算机上对图像进行数字处理的时候,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。

空间坐标(x,y)的数字化称为图像采样,而幅值数字化称为灰度级量化。

对一幅图像采样时,若每行(横向)采样数为M,每列(纵向)采样数为N,则图像大小为M*N个像素,f(x,y)表示点(x,y) 处的灰度值,则F(x,y)构成一个M*N 实数矩阵****************************经验分享:“像素”的英文为“pixel”,它是“picture”和“element”的合成词,表示图像元素的意思。

我们可以对“像素”进行如下理解:像素是一个面积概念,是构成数字图像的最小单位。

****************************把采样后所得的各像素灰度值从模拟量到离散量的转换称为图像灰度的量化。

量化是对图像幅度坐标的离散化,它决定了图像的幅度分辨率。

量化的方法包括:分层量化、均匀量化和非均匀量化。

分层量化是把每一个离散样本的连续灰度值只分成有限多的层次;均匀量化是把原图像灰度层次从最暗至最亮均匀分为有限个层次,如果采用不均匀分层就称为非均匀量化。

当图像的采样点数一定时,采用不同量化级数的图像质量不一样。

量化级数越多,图像质量越好;量化级数越少,图像质量越差。

量化级数小的极端情况就是二值图像。

****************************经验分享:“灰度”可以认为是图像色彩亮度的深浅。

图像所能够展现的灰度级越多,也就意味着图像可以表现更强的色彩层次。

如果把黑——灰——白连续变化的灰度值量化为256个灰度级,灰度值的范围为0~255,表示亮度从深到浅,对应图像中的颜色为从黑到白。

****************************因此,对数字图像进行处理,也就是对特定的矩阵进行处理。

在C语言中,对M×N数字图像处理的核心代码如下:for (j=1;j<N+1;j++)for(i=1;i<M+1;i++){对I(i,j)的具体运算};在Matlab中,对M×N数字图像处理的核心代码如下:for i=1:Nfor j=1:M对I(i,j)的具体运算endend一幅数字图像可以用一个矩阵来表示,对数字图像进行处理,实质上就是对特定的图像矩阵进行变换的过程,因此,图像变换是数字图像处理技术的基础。

实验一数字图像基本操作及灰度调整

实验一数字图像基本操作及灰度调整

实验一 数字图像基本操作及灰度调整一.实验目的1.掌握读、写图像的基本方法;2.掌握MATLAB 语言中图像数据与信息的读取方法;3.理解图像灰度变换处理在图像增强的作用;4.掌握绘制灰度直方图的方法,理解灰度直方图的灰度变换及均衡化的方法。

二.实验基本原理1. 灰度变换灰度变换是图像增强的一种重要手段,它常用于改变图象的灰度范围及分布,是图象数字化及图象显示的重要工具。

1) 图像反转灰度级范围为[0, L-1]的图像反转可由下式获得r L s --=12) 对数运算:有时原图的动态范围太大,超出某些显示设备的允许动态范围,如直接使用原图,则一部分细节可能丢失。

解决的方法是对原图进行灰度压缩,如对数变换:s = c log(1 + r ),c 为常数,r ≥ 03) 幂次变换:0,0,≥≥=γγc cr s4) 对比拉伸:在实际应用中,为了突出图像中感兴趣的研究对象,常常要求局部扩展拉伸某一范围的灰度值,或对不同范围的灰度值进行不同的拉伸处理,即分段线性拉伸:其对应的数学表达式为:2. 直方图均衡化灰度直方图的横坐标是灰度级,纵坐标是该灰度级出现的频度,它是图像最基本的统计特征。

依据定义,在离散形式下, 用r k 代表离散灰度级,用p r (r k )代表p r (r ),并且有下式成立:nn r P k k r =)( 1,,2,1,010-=≤≤l k r k 式中:n k 为图像中出现r k 级灰度的像素数,n 是图像像素总数,而n k /n 即为频数。

直方图均衡化处理是以累积分布函数变换法为基础的直方图修正法。

假定变换函数为ωωd p r T s r r)()(0⎰==(a) Lena 图像 (b) Lena 图像的直方图图1-1 Lena 图像及直方图当灰度级是离散值时,可用频数近似代替概率值,即1,,1,010)(-=≤≤=l k r n n r p k k k r式中:l 是灰度级的总数目,p r (r k )是取第k 级灰度值的概率,n k 是图像中出现第k 级灰度的次数,n 是图像中像素总数。

Matlab二维灰度图象分析及变换处理.

Matlab二维灰度图象分析及变换处理.

《基础强化训练》设计报告题目:二维灰度图象的统计分析及变换处理专业班级:学生姓名:指导教师:2010 年 7 月 17 日《基础强化训练》设计任务书学生姓名:专业班级:指导教师:工作单位:题目: 二维灰度图象的统计分析及(FFT)变换处理课程设计目的:1 较全面了解常用的数据分析与处理原理及方法;2 能够运用相关软件进行模拟分析;3 掌握基本的文献检索和文献阅读的方法;4 提高正确地撰写论文的基本能力。

课程设计内容和要求1 采集一幅像素大于64*64黑白图像;2 常规的数学统计数据处理:计算图象各象素点灰度值得均值、标准差、方差,并绘出灰度直方图;3 采用[FFT(傅立叶变换)]对图像进行分析初始条件:1 MATLAB软件。

2 数字信号处理与图像处理基础知识。

时间安排:第18周周一:安排任务19~20周:仿真设计(鉴主13楼计算机实验室)第20周周六:完成(答辩,提交报告,演示)指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 1Abstract 21 数据采集 31.1图像的选取 31.2 MATLAB读取方法 41.2.1 编辑M文件 41.2.2 图像的读取 41.2.3查看图像的格式 61.2.4 灰度值的获取 72 数据统计处理 82.1 均值计算 82.1.1 原理及计算公式 82.1.2 计算程序及结果 92.2 各像素点灰度值的标准差 92.3 各像素点灰度值的方差 102.4 灰度直方图 113.傅立叶变化 133.1 原理及计算公式 133.2 变换及逆变换程序及结果 143.3对变换后的图像的说明 164.总结(心得体会) 175.参考文献 18摘要MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。

数字图像处理及MATLAB实现实验四——图像变换

数字图像处理及MATLAB实现实验四——图像变换

数字图像处理及MATLAB实现实验四——图像变换1.图像的傅⾥叶变换⼀(平移性质)傅⾥叶变换的平移性质表明了函数与⼀个指数项相乘等于将变换后的空域中⼼移到新的位置,并且平移不改变频谱的幅值。

I=imread('1.bmp');figure(1)imshow(real(I));I=I(:,:,3);fftI=fft2(I);sfftI=fftshift(fftI); %求离散傅⾥叶频谱%对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置RRfdp1=real(sfftI);IIfdp1=imag(sfftI);a=sqrt(RRfdp1.^2+IIfdp1.^2);a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;figure(2)imshow(real(a));I=imread('2.bmp');figure(1)imshow(real(I));I=I(:,:,3);fftI=fft2(I);sfftI=fftshift(fftI); %求离散傅⾥叶频谱%对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置RRfdp1=real(sfftI);IIfdp1=imag(sfftI);a=sqrt(RRfdp1.^2+IIfdp1.^2);a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;figure(2)imshow(real(a));I=imread('3.bmp');figure(1)imshow(real(I));I=I(:,:,3);fftI=fft2(I);sfftI=fftshift(fftI); %求离散傅⾥叶频谱%对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置RRfdp1=real(sfftI);IIfdp1=imag(sfftI);a=sqrt(RRfdp1.^2+IIfdp1.^2);a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;figure(2)imshow(real(a));实验结果符合傅⾥叶变换平移性质2.图像的傅⾥叶变换⼆(旋转性质)%构造原始图像I=zeros(256,256);I(88:168,124:132)=1; %图像范围是256*256,前⼀值是纵向⽐,后⼀值是横向⽐imshow(I)%求原始图像的傅⾥叶频谱J=fft2(I);F=abs(J);J1=fftshift(F);figureimshow(J1,[550])%对原始图像进⾏旋转J=imrotate(I,90,'bilinear','crop');figureimshow(J)%求旋转后图像的傅⾥叶频谱J=fft2(I);F=abs(J);J2=fftshift(F);figureimshow(J2,[550])3.图像的离散余弦变换⼀%对cameraman.tif⽂件计算⼆维DCT变换RGB=imread('cameraman.tif');figure(1)imshow(RGB)I=rgb2gray(RGB);%真彩⾊图像转换成灰度图像J=dct2(I);%计算⼆维DCT变换figure(2)imshow(log(abs(J)),[])%图像⼤部分能量集中在左上⾓处figure(3);J(abs(J)<10)=0;%把变换矩阵中⼩于10的值置换为0,然后⽤idct2重构图像K=idct2(J)/255;imshow(K)4.图像的离散余弦变换⼆% I=imread('1.bmp');% figure(1)% imshow(real(I));% I=I(:,:,3);% fftI=fft2(I);% sfftI=fftshift(fftI); %求离散傅⾥叶频谱% %对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置% RRfdp1=real(sfftI);% IIfdp1=imag(sfftI);% a=sqrt(RRfdp1.^2+IIfdp1.^2);% a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;% figure(2)% imshow(real(a));% I=imread('2.bmp');% figure(1)% imshow(real(I));% I=I(:,:,3);% fftI=fft2(I);% sfftI=fftshift(fftI); %求离散傅⾥叶频谱% %对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置% RRfdp1=real(sfftI);% IIfdp1=imag(sfftI);% a=sqrt(RRfdp1.^2+IIfdp1.^2);% a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;% figure(2)% imshow(real(a));% I=imread('3.bmp');% figure(1)% imshow(real(I));% I=I(:,:,3);% fftI=fft2(I);% sfftI=fftshift(fftI); %求离散傅⾥叶频谱% %对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置% RRfdp1=real(sfftI);% IIfdp1=imag(sfftI);% a=sqrt(RRfdp1.^2+IIfdp1.^2);% a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;% figure(2)% imshow(real(a));% %构造原始图像% I=zeros(256,256);% I(88:168,124:132)=1; %图像范围是256*256,前⼀值是纵向⽐,后⼀值是横向⽐% imshow(I)% %求原始图像的傅⾥叶频谱% J=fft2(I);% F=abs(J);% J1=fftshift(F);figure% imshow(J1,[550])% %对原始图像进⾏旋转% J=imrotate(I,90,'bilinear','crop');% figure% imshow(J)% %求旋转后图像的傅⾥叶频谱% J=fft2(I);% F=abs(J);% J2=fftshift(F);figure% imshow(J2,[550])% %对cameraman.tif⽂件计算⼆维DCT变换% RGB=imread('cameraman.tif');% figure(1)% imshow(RGB)% I=rgb2gray(RGB);% %真彩⾊图像转换成灰度图像% J=dct2(I);% %计算⼆维DCT变换% figure(2)% imshow(log(abs(J)),[])% %图像⼤部分能量集中在左上⾓处% figure(3);% J(abs(J)<10)=0;% %把变换矩阵中⼩于10的值置换为0,然后⽤idct2重构图像% K=idct2(J)/255;% imshow(K)RGB=imread('cameraman.tif');I=rgb2gray(RGB);I=im2double(I); %转换图像矩阵为双精度型T=dctmtx(8); %产⽣⼆维DCT变换矩阵%矩阵T及其转置T'是DCT函数P1*X*P2的参数B=blkproc(I,[88],'P1*x*P2',T,T');maxk1=[ 1111000011100000110000001000000000000000000000000000000000000000 ]; %⼆值掩模,⽤来压缩DCT系数B2=blkproc(B,[88],'P1.*x',mask1); %只保留DCT变换的10个系数I2=blkproc(B2,[88],'P1*x*P2',T',T); %重构图像figure,imshow(T);figure,imshow(B2);figure,imshow(I2);RGB=imread('cameraman.tif');I=rgb2gray(RGB);I=im2double(I); %转换图像矩阵为双精度型T=dctmtx(8); %产⽣⼆维DCT变换矩阵%矩阵T及其转置T'是DCT函数P1*X*P2的参数B=blkproc(I,[88],'P1*x*P2',T,T');maxk1=[ 1111000011100000100000000000000000000000000000000000000000000000 ]; %⼆值掩模,⽤来压缩DCT系数B2=blkproc(B,[88],'P1.*x',mask1); %只保留DCT变换的10个系数I2=blkproc(B2,[88],'P1*x*P2',T',T); %重构图像figure,imshow(T);figure,imshow(B2);figure,imshow(I2);5.图像的哈达玛变换cr=0.5;I=imread('cameraman.tif');I=im2double(I)/255; %将读⼊的unit8类型的RGB图像I转换为double类型的数据figure(1),imshow(I);%显⽰%求图像⼤⼩[m_I,n_I]=size(I); %提取矩阵I的⾏列数,m_I为I的⾏数,n_I为I的列数sizi=8;snum=64;%分块处理t=hadamard(sizi) %⽣成8*8的哈达码矩阵hdcoe=blkproc(I,[sizi sizi],'P1*x*P2',t,t');%将图⽚分成8*8像素块进⾏哈达码变换%重新排列系数CE=im2col(hdcoe,[sizi,sizi],'distinct');%将矩阵hdcode分为8*8互不重叠的⼦矩阵,再将每个⼦矩阵作为CE的⼀列[Y Ind]=sort(CE); %对CE进⾏升序排序%舍去⽅差较⼩的系数,保留原系数的⼆分之⼀,即32个系数[m,n]=size(CE);%提取矩阵CE的⾏列数,m为CE的⾏数,n为CE的列数snum=snum-snum*cr;for i=1:nCE(Ind(1:snum),i)=0;end%重建图像re_hdcoe=col2im(CE,[sizi,sizi],[m_I,n_I],'distinct');%将矩阵的列重新组织到块中re_I=blkproc(re_hdcoe,[sizi sizi],'P1*x*P2',t',t);%进⾏反哈达码变换,得到压缩后的图像re_I=double(re_I)/64; %转换为double类型的数据figure(2);imshow(re_I);%计算原始图像和压缩后图像的误差error=I.^2-re_I.^2;MSE=sum(error(:))/prod(size(re_I));。

基于 matlab 实现的二维小波分解算法-概述说明以及解释

基于 matlab 实现的二维小波分解算法-概述说明以及解释

基于matlab 实现的二维小波分解算法-概述说明以及解释1.引言1.1 概述概述部分的内容可以包括一些关于小波分解算法的基本介绍,可以简要介绍小波分解算法的原理和应用领域,同时提及该算法在信号处理、图像压缩以及特征提取等方面的重要性。

以下是一个示例:在当今信息时代,信号处理和图像处理一直是计算机科学和工程学中的研究热点。

为了更好地理解和处理信号和图像中的信息,及时去除噪声、压缩图像以及提取出关键特征,人们不断寻求更有效的处理方法。

而小波分解算法作为一种新兴的信号处理方法,在近年来得到了广泛的应用和研究。

小波分解算法是一种将信号或图像分解为时频域或时空域的工具,它可以分解出不同尺度和频率的子信号或子图像,这为信号处理和图像处理提供了一种有效途径。

与传统的傅里叶变换相比,小波分解算法具有更好的局部性质和多尺度分析能力,因此被广泛运用于信号处理、图像压缩、图像恢复、特征提取等领域。

在信号处理中,小波分解算法可以用于去噪、压缩、去除偶尔的干扰等。

在图像处理方面,小波分解算法具备较好的多分辨率特性,可以在不同分辨率上进行图像处理,对于边缘检测、纹理分析、目标识别等具备独特的优势。

此外,小波分解算法对于非平稳信号和非线性系统等具备突出的应用优势。

本文将介绍基于Matlab 的二维小波分解算法的实现,通过对该算法的深入剖析和实验验证,展示它在图像处理方面的应用前景以及算法效果的评估。

通过本文的研究,读者将了解到小波分解算法的实际应用场景和优势,进一步提高信号处理和图像处理的能力。

在文章的后续部分中,我们将重点介绍小波分解算法的原理,并详细阐述如何在Matlab 环境下实现二维小波分解算法。

1.2 文章结构本文将按照以下结构展开对基于Matlab 实现的二维小波分解算法的介绍和分析:1. 引言:首先对文章的主题和目的进行概述,介绍小波分解算法在图像处理领域的重要性,并总结文章结构。

2. 正文:2.1 小波分解算法概述:详细介绍小波分解算法的基本原理和应用领域,包括信号分析,压缩,去噪等方面。

灰度变换,原理 及Matlab程序

灰度变换,原理 及Matlab程序

图像灰度变换内容摘要通常经输入系统获取的图像信息中含有各种各样的的噪声与畸变,例如因室外光照度不够均匀会造成图像灰度过于集中,因此要对图像质量进行改善。

灰度变换是根据某种目标条件按一定变换关系逐点改变原图像中每个像素灰度值的方法。

目标图片的灰度变换处理是是图像增强处理技术中一种非常基础、直接的空间域图像处理方法。

灰度变换有时被称为图片对比度增强或对比度拉伸。

关键词:二值化和阈值处理灰度线性变换分段线性变换灰度直方图AbstractTypically, the image information obtained by the input system, containing a variety of noise and distortion,For example,due to the outdoor illumination is not enough uniformity will result in image gray too concentrated, so we have to improve on image quality.Gray-scale transformation is a way based on the conditions of a certain goal by a certain transformation relations, which point by point to change the original image for each pixel gray value.The gray-scale transformation of the image processing is a very basic,direct spatial domain image processing method. of the image enhancement processing technology. Gray-scale transformation is sometimes called image contrast enhancement or contrast stretching.Key words:Binarization threshold Gray-scale linear transform Piecewise linear transformation Gray histogram Gray level distribution equalization1 引言通常经输入系统获取的图像信息中含有各种各样的噪声与畸变,例如室外光照度不够均匀会造成图像灰度过于集中;由摄像头获得的图像经过A/D转换、线路传送都会产生噪声污染等等,这些不可避免地影响系统图像清晰度,降低了图像质量,轻者表现为图像不干净,难以看清细节;重者表现为图像模糊不清,连概貌都看不出来。

MATLAB图像处理工具箱的使用方法

MATLAB图像处理工具箱的使用方法

MATLAB图像处理工具箱的使用方法导言:MATLAB作为一种常用的数学软件,被广泛应用于科学研究和工程领域。

其中的图像处理工具箱(Image Processing Toolbox)提供了许多功能强大的工具,用于处理和分析图像数据。

本文将介绍一些常用的图像处理工具箱的使用方法,帮助读者更好地掌握这一工具箱的优势。

一、图像的读取和显示要使用MATLAB进行图像处理,首先需要将图像读入MATLAB环境中,并显示出来。

通过imread函数可以方便地读取图像文件,如下所示:img = imread('image.jpg');这将会将名为'image.jpg'的图像读入img变量中。

接下来,使用imshow函数可以将图像显示在MATLAB的图像窗口中:imshow(img);通过这种方式,我们可以直观地了解图像的内容和特征。

二、图像的灰度化和二值化在很多图像处理应用中,我们常常需要将图像转换为灰度图像或二值图像。

在MATLAB中,可以使用rgb2gray函数将彩色图像转换为灰度图像:gray_img = rgb2gray(img);这将把彩色图像img转换为灰度图像gray_img。

接下来,使用im2bw函数可以将灰度图像转换为二值图像:binary_img = im2bw(gray_img);这将把灰度图像gray_img转换为二值图像binary_img。

通过灰度化和二值化的处理,我们可以更方便地进行后续的图像分析和处理。

三、图像的平滑处理图像中常常存在噪声,这会对后续的分析和处理造成一定的干扰。

为减少这种噪声的影响,可以对图像进行平滑处理。

在MATLAB中,有多种方法可以实现图像的平滑处理,其中较常用的是均值滤波和高斯滤波。

通过使用函数imgaussfilt和imfilter,可以分别实现高斯滤波和均值滤波:smooth_img = imgaussfilt(img);或者smooth_img = imfilter(img, fspecial('average', [3 3]));这些函数可以在图像中应用指定的滤波器来平滑图像,从而减少噪声的干扰。

数字图像灰度阈值的图像分割技术matlab要点

数字图像灰度阈值的图像分割技术matlab要点

1.课程设计的目的(1)使学生通过实验体会一些主要的分割算子对图像处理的效果,以及各种因素对分割效果的影响(2)使用Matlab软件进行图像的分割(3)能够进行自行评价各主要算子在无噪声条件下和噪声条件下的分割性能(4)能够掌握分割条件(阈值等)的选择(5)完成规定图像的处理并要求正确评价处理结果,能够从理论上做出合理的解释2.课程设计的要求(1)能对图像文件(bmp,jpg,tiff,gif)进行打开,保存,退出等功能操作(2)包含功能模块:图像的边缘检测(使用不同梯度算子和拉普拉斯算子) (3)封闭轮廓边界(4)区域分割算法:阈值分割,区域生长等3.前言3.1图像阈值分割技术基本原理所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内,表现出一致性或相似性,而在不同区域间表现出明显的不同。

简单的讲,就是在一幅图像中,把目标从背景中分离出来,以便于进一步处理。

图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要的领域之一,它是对图像进行视觉分析和模式识别的基本前提。

同时它也是一个经典难题,到目前为止既不存在一种通用的图像分割方法,也不存在一种判断是否分割成功的客观标准]5[。

在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景),他们一般对应图像中特定的、具有独特性质的区域。

为了辨识和分析目标,需要将他们分离提取出来,在此基础上才有可能对目标进一步利用。

图像分割就是指把图像分成格局特性的区域并提取出感兴趣目标的技术和过程。

这里特性可以是象素的灰度、颜色、纹理等,预先定义的目标可以对应单个区域,也可以对应多个区域。

现有的图像分割算法有:阈值分割、边缘检测和区域提取法。

本文着重研究基于阈值法的图像分割技术。

若图像中目标和背景具有不同的灰度集合:目标灰度集合与背景灰度集合,且两个灰度集合可用一个灰度级阈值T进行分割。

在matlab中实现图像的读取与转换 (恢复)

在matlab中实现图像的读取与转换 (恢复)

在matlab中实现图像的读取与转换:1.读取图像(1)读取索引图像ind[X,map]=imread('f:\ind.bmp');image(X); %显示矩阵x图像的结构colormap(map) %设置色图,用image必须有色阵图或者[X,map]=imread('f:\ind.bmp');imshow(X)或者:im=imread('bottle.png');%i m是任意取得名字,注意把图片放在matlab的工作区,及M文件所放的位置(M 文件也一定放在matlab work区,否则路径不对调用不了)(2)读取灰度图像grayI=imread('f:\gray.bmp');imshow(I)或者I=imread('f:\gray.bmp');imagesc(I,[0 255]); %预处理colormap(gray); %灰度处理,显示灰度图像结构pause %停留imshow(I) %显示灰度图像(3)读取彩色图像RGBRGB=imread('f:\rgb.bmp');image(RGB); %显示RGB图像的结构pause;imshow(RGB); %显示RGB图像(4)读取二值图像BWBW=imread('f:\bw.bmp');imshow(BW)1.图像转换(1)彩色Rgb到灰度gray[X,map]=imread('f:\rgb.jpg');subplot(211),imshow(X);I=rgb2gray(X);subplot(212),imshow(I,map)或者RGB=imread('f:\rgb.jpg');subplot(211),imshow(RGB);I=rgb2gray(RGB);subplot(212),imshow(I)(2)彩色rgb到索引indRGB=imread('f:\rgb.jpg');subplot(211),imshow(RGB);[X,map]=rgb2ind(RGB,8);subplot(212),imshow(X,map)(3)彩色RGB到二值bwRGB=imread('f:\rgb.jpg');subplot(211),imshow(RGB);level=graythresh(RGB);BW=im2bw(RGB,level);subplot(212),imshow(BW)Matlab 最大值滤波中值滤波最小值滤波函数ordfilt2 ordfilt2函数在MATLAB图像处理工具箱中提供了二维统计顺序滤波函数ordfilt2函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《基础强化训练》设计报告题目:二维灰度图象的统计分析及变换处理专业班级:学生姓名:指导教师:2010 年7 月17 日《基础强化训练》设计任务书学生姓名:专业班级:指导教师:工作单位:题目: 二维灰度图象的统计分析及(FFT)变换处理课程设计目的:①较全面了解常用的数据分析与处理原理及方法;②能够运用相关软件进行模拟分析;③掌握基本的文献检索和文献阅读的方法;④提高正确地撰写论文的基本能力。

课程设计内容和要求①采集一幅像素大于64*64黑白图像;②常规的数学统计数据处理:计算图象各象素点灰度值得均值、标准差、方差,并绘出灰度直方图;③采用[FFT(傅立叶变换)]对图像进行分析初始条件:①MATLAB软件。

②数字信号处理与图像处理基础知识。

时间安排:第18周周一:安排任务19~20周:仿真设计(鉴主13楼计算机实验室)第20周周六:完成(答辩,提交报告,演示)指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (1)Abstract (2)1 数据采集 (3)1.1图像的选取 (3)1.2 MATLAB读取方法 (4)1.2.1 编辑M文件 (4)1.2.2 图像的读取 (4)1.2.3查看图像的格式 (6)1.2.4 灰度值的获取 (7)2 数据统计处理 (8)2.1 均值计算 (8)2.1.1 原理及计算公式 (8)2.1.2 计算程序及结果 (9)2.2 各像素点灰度值的标准差 (9)2.3 各像素点灰度值的方差 (10)2.4 灰度直方图 (11)3.傅立叶变化 (13)3.1 原理及计算公式 (13)3.2 变换及逆变换程序及结果 (14)3.3对变换后的图像的说明 (16)4.总结(心得体会) (17)5.参考文献 (18)摘要MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。

MATLAB是集数值计算,符号运算及图形处理等强大功能于一体的科学计算语言。

作为强大的科学计算平台,它几乎能够满足所有的计算需求。

MATLAB 本身就是功能强大的数据可视化工具,可以通过各种形式显示分析数据,例如灰度直方图、等高线、蒙太奇混合、像素分析、图层变换以及材质贴图等。

利用可视化的图形,不仅能够评估图形图像的特性,还能够分析图像中的色彩分布等情况。

本次练习介绍的就是Matlab环境下的一些最基本的图像处理操作,如读图像、写图像、查看图像信息和格式、尺寸和灰度的伸缩等等;通过实验掌握图像直方图的描绘方法,加深直方图形状与图像特征间关系间的理解;加深对直方图均衡算法的理解。

AbstractMATLAB is Matrix lab (Matrix of Laboratory), is the MathWorks company business mathematics software is used to develop, data visualization algorithm, data analysis and numerical calculation of senior technical calculation language and interactive environment, including MATLAB and Simulink two most.MATLAB is a scientific computing language that adds the function of numerical computing and graphics processing, symbols together. As a powerful scientific computing platforms, it can almost satisfy all the calculations that needs. MATLAB itself is a powerful tool of data visualization that can display data through various forms, such as graylevel histogram, contours, montage mixing, pixel analysis, the layer texture and transformation. With visual graphics, it can not only evaluate image characteristics, but also analyze the distribution of color image.The purpose of the practice of introducing Matlab environment is the most basic of some image processing operations, such as read, write, image information and image format, size and gray telescopic; etc. Through the experiment mastery of image histograms depicts method, deepen the histogram image feature and the relationship between the shape of understanding,and to deepen the understanding of histogram equalization algorithm.1 数据采集Matlab软件的图像采集工具箱提供了大量的函数用于采集图像和视频信号,该工具箱支持的硬件设备包括工业标准的PC图像采集卡和相应的设备。

所支持的硬件包括:Matrox和Data Translation公司提供的视频采集设备,同时还支持Windows平台下支持USB或者火线(IEEE-1394)的视频摄像头等设备。

MATLAB可以支持很多很多图片的文件格式,例如﹡cur、﹡bmp、﹡hdf、﹡ico、﹡jpg、﹡tif、﹡gif、﹡pcx等。

用于读写图像数据的函数有imread(从图像格式的文件中读取数据)和imwrite(将数据写入图像格式的文件)。

这里我用到的是imread,主要是用到图像文件的读取。

1.1图像的选取图1.1本次研究的图像如图所示,科比的图像1.2 MATLAB读取方法1.2.1 编辑M文件打开Matlab软件,在File下选择New\M-File。

1.2.2 图像的读取imread函数用于读入各种图象文件,其一般的用法为:[X,MAP]=imread(‘filename’,‘fmt’);亦可直接写为imread(‘’);其中,X,MAP分别为读出的图象数据和颜色表数据,fmt为图象的格式,filename为读取的图象文件(可以加上文件的路径)。

例如本次设计中:i = imread(’科比.jpg’);利用函数imread函数实现图像文件的读取,然后运用imshow函数显示图像。

如果采集图像为彩色图像,可以先将彩色图像转换为灰度图像,再进行计算分析。

操作如下图-1,将存在D:\matlab\work里的图片“科比.jpg”写入MATLAB中。

需要先打开运行MATLAB,然后在File里面新建M-File文件,再将读写图片数据的程序输进去即可。

图1.2.1科比的彩色图像转化成灰度图像检查程序无误之后,就可以直接在command window窗口运行。

如果运行之后在MATLAB主页面里显示有错误的话就需要重新回到M-File的页面里面对程序进行修改然后才可以运行;如果运行之后在MATLAB主页面里面没有错误显示就可以看到图1.2.2。

图1.2.21.2.3查看图像的格式Matlab中可以使用imfinfo函数查看文件信息,图像的查询及读写在Matlab中要查询一个图像文件的信息,只要用imfinfo指令加上文件及其完整路径名即可。

函数调用格式为:Info=imfinfo(filename,fmt)Info=imfinfo(filename)参数fmt对应为所有图像处理工具箱中所有支持的图像文件格式。

info =Filename: '科比.jpg'FileModDate: '04-Jul-2010 12:41:22'FileSize: 32901Format: 'jpg'FormatVersion: ''Width: 299Height: 450BitDepth: 24ColorType: 'truecolor'FormatSignature: ''NumberOfSamples: 3CodingMethod: 'Huffman'CodingProcess: 'Sequential'Comment: {}上面的即是图像的格式处理1.2.4 灰度值的获取从上面的文件信息可以看出来,这个jpg文件的色彩类型为'truecolor'真彩类型,因此要获得这个图像的灰度值,首先需要将这幅真彩图转换成灰度图。

可以使用rgb2gray函数,最后的结果保存在一个八位矩阵中,由于这个矩阵为400*300大小,限于篇幅只截取部分。

每个单元的数值就是原来的图像对应的灰度值。

如图图1.2.42 数据统计处理2.1 均值计算2.1.1 原理及计算公式均值计算的原理较简单,在MATLAB的函数库中表示均值的函数是mean2,其格式是mean2(),括号里面就是待处理分析的信号。

图2.1.1上面的程序同样是在新建的M-File文件里面编写运行的,检查程序没有错误之后,就在command window窗口直接运行。

2.1.2 计算程序及结果图 2.1.22.2 各像素点灰度值的标准差在MATLAB的函数库中表示标准差的函数为std2,其格式是std2(),括号里面就是待处理分析的信号。

由于标准差反映的是偏离灰度均值的程度,如果标准差越大,则说明灰度级越大,则图像包含的信息就越多。

如下图,程序如下:图2.2.1结果显示如下:图2.2.22.3 各像素点灰度值的方差这里对图像的方差进行计算如图2.3.1所示,在求标准差的基础上,方差是标准差的平方。

相关文档
最新文档