EMI整改不同频段干扰原因及抑制办法
开关电源EMI整改方案
开关电源的EMI处理方法一、开关电源EMI整改中,关于不同频段干扰原因及抑制办法。
1MHZ以内,以差模干扰为主。
①增大X电容量;②添加差模电感;③小功率电源可采用 PI 型滤波器处理(建议靠近变压器的电解电容可选用较大些)。
1MHZ-5MHZ,差模共模混合,采用输入端并联一系列 X 电容来滤除差摸干扰并分析出是哪种干扰超标并以解决,①对于差模干扰超标可调整 X 电容量,添加差模电感器,调差模电感量;②对于共模干扰超标可添加共模电感,选用合理的电感量来抑制;③也可改变整流二极管特性来处理一对快速二极管如 FR107 一对普通整流二极管1N4007。
5M以上,以共摸干扰为主,采用抑制共摸的方法。
对于外壳接地的,在地线上用一个磁环串绕 2-3 圈会对 10MHZ 以上干扰有较大的衰减作用; 可选择紧贴变压器的铁芯粘铜箔, 铜箔闭环. 处理后端输出整流管的吸收电路和初级大电路并联电容的大小。
20-30MHZ,①对于一类产品可以采用调整对地Y2 电容量或改变Y2 电容位置;②调整一二次侧间的Y1 电容位置及参数值;③在变压器外面包铜箔;变压器最里层加屏蔽层;调整变压器的各绕组的排布。
④改变PCB LAYOUT;⑤输出线前面接一个双线并绕的小共模电感;⑥在输出整流管两端并联RC滤波器且调整合理的参数;⑦在变压器与MOSFET之间加BEAD CORE;⑧在变压器的输入电压脚加一个小电容。
⑨可以用增大MOS驱动电阻.30-50MHZ,普遍是MOS管高速开通关断引起。
①可以用增大MOS驱动电阻;②RCD缓冲电路采用1N4007 慢管;③VCC供电电压用1N4007 慢管来解决;④或者输出线前端串接一个双线并绕的小共模电感;⑤在MOSFET的D-S脚并联一个小吸收电路;⑥在变压器与MOSFET之间加BEAD CORE;⑦在变压器的输入电压脚加一个小电容;⑧PCB心LAYOUT 时大电解电容,变压器,MOS构成的电路环尽可能的小;⑨变压器,输出二极管,输出平波电解电容构成的电路环尽可能的小。
电源EMI传导辐射实际整改经验总结(绝对值得)
电源EMI传导辐射实际整改经验总结(绝对值得)第一篇:电源EMI传导辐射实际整改经验总结(绝对值得)1、在反激式电源中,Y电容接初级地与次级地之间在20MHZ时,会比Y电容接在高压与次级地之间高5dB左右。
当然也要视情况而定。
2、MOS管驱动电阻最好能大于或等于47R。
降低驱动速度有利于改善MOS管与变压器的辐射。
一般采用慢速驱动和快速判断的办法。
3、若辐射在40MHZ-80MHZ之间有些余量不够,可适当地增加MOS管DS之间的电容值,以达到降低辐射量的效果。
4、若在输入AC线上套上磁环并绕2圈,有降低40-60MHZ之间辐射值的趋势,那么在输入EMI滤波部分中串入磁珠则会达到同样的效果。
如在NTC电阻上分别套上两个磁珠。
5、在变压器与MOS管D极之间最好能串入一个磁珠,以降低MOS管电流的变化速度,又能降低输出噪音。
6、电源输入AC滤波部分,X电容放在共模电厂的那个位置并不重要,注意布线时要将铜皮都集中于X电容的引脚处,以达到更好的滤波效果,但X电容最好不要与Y电容连接在同一焊点。
7、在300W左右的中功率电源中,其又是由几个不同的电源部分组成,一般采用三极共模电感。
第一级使用100UH-3MH左右的双线并绕锰锌磁环电感,其后再接Y电容,第二级与第三级可使用相同的共模电感,需要使用的电感量并不要求很大,一般10MH左右就能达到要求。
若把Y电容放在第二级与第三级之间,效果就会差一些。
如果采用两级共模滤波,秕一级电感量适当取大些,1.5-2.5MH左右。
8、如果采用三级,第一级电感量适当取小些,在200UH-1MH 之间。
测试辐射时,最好能在初次级之间的Y电容套上磁珠。
如果用三芯AC输入线,在黄绿地线上也串磁环,并绕上两到三圈。
9、在二极管上套磁珠,一般要求把磁珠套在其电压变化最剧烈的地方,在正端整流二极管中,其A端电压变化最剧烈。
10、实例分析:一台19W的二合一电源,在18MH左右处有超过QP值7dB,前级采用两级共模滤波方法和一个X电容,无论怎样更改滤波部分,此处的QP值总是难以压下来。
EMI传导与辐射超标整改方案
传导与辐射超标整改方案开关电源电磁干扰的产生机理及其传播途径功率开关器件的高额开关动作是导致开关电源产生电磁干扰(emi)的主要原因。
开关频率的提高一方面减小了电源的体积和重量,另一方面也导致了更为严重的emi问题。
开关电源工作时,其内部的电压和电流波形都是在非常短的时间内上升和下降的,因此,开关电源本身是一个噪声发生源。
开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。
使电源产生的干扰不至于对电子系统和电网造成危害的根本办法是削弱噪声发生源,或者切断电源噪声和电子系统、电网之间的耦合途径。
现在按噪声干扰源来分别说明:1、二极管的反向恢复时间引起的干扰交流输入电压经功率二极管整流桥变为正弦脉动电压,经电容平滑后变为直流,但电容电流的波形不是正弦波而是脉冲波。
由电流波形可知,电流中含有高次谐波。
大量电流谐波分量流入电网,造成对电网的谐波污染。
另外,由于电流是脉冲波,使电源输入功率因数降低。
高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于pn结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。
2、开关管工作时产生的谐波干扰功率开关管在导通时流过较大的脉冲电流。
例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。
当采用零电流、零电压开关时,这种谐波干扰将会很小。
另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。
3、交流输入回路产生的干扰无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。
开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。
EMC电磁兼容注意事项
开关电源EMI整改频段干扰原因及抑制办法开关电源EMI整改中,关于不同频段干扰原因及抑制办法:1MHZ以内----以差模干扰为主1.增大X电容量;2.添加差模电感;3.小功率电源可采用PI型滤波器处理1MHZ---5MHZ---差模共模混合采用输入端并联一系列X电容来滤除差摸干扰并分析出是哪种干扰超标并以解决,1.对于差模干扰超标可调整X电容量,添加差模电感器,调差模电感量;2.对于共模干扰超标可添加共模电感,选用合理的电感量来抑制;3.也可改变整流二极管特性来处理,换一对慢恢复的5M---以上以共摸干扰为主,采用抑制共摸的方法。
1.对于外壳接地的,在地线上用一个磁环串绕2-3圈会对10MHZ以上干扰有较大的衰减作用;2.变压器用铜箔屏蔽并闭环3. 输入并电容量加大,输出整流管吸收电路参数调整。
对于20--30MHZ,1.对于一类产品可以采用调整对地Y电容量或改变Y电容位置;2.调整原副边隔离电容;3.调整变压器的各绕组的排布。
4.改变PCB LAYOUT;5.输出电感并绕消磁6.输出整流管两端RC滤波器调整合理的参数;7.在变压器的输入电压脚加一个小电容。
8. 可以用增大MOS驱动电阻.30---50MHZ 普遍是MOS管高速开通关断引起1.可以增大驱动电阻;2.缓冲电路采用慢管;3.或者输出线前端串接一个双线并绕的小共模电感;4.在MOSFET上加一个小吸收电路;5.在母线正对地加Y电容;6.PCB心LAYOUT时大电解电容,变压器,MOS构成的电路环尽可能的小,尤其是电流采样环路;7.变压器,输出二极管,输出电容构成的电路环尽可能的小。
8. 将MOS管接到变压器的输入脚50---100MHZ 普遍是输出整流管反向恢复电流引起1.可以在整流管漏极上串磁珠;2.调整输出整流管的吸收电路参数;3.可改变一二次侧跨接Y电容支路的阻抗,如PIN脚处加BEAD CORE或串接适当的电阻;4.也可改变MOSFET,输出整流二极管的本体向空间的辐射(如铁夹卡MOSFET; 铁夹卡DIODE,改变散热器的接地点)。
解决EMI之传导干扰地八大绝招
电磁干扰EMI中电子设备产生的干扰信号是通过导线或公共电源线进行传输,互相产生干扰称为传导干扰。
传导干扰给不少电子工程师带来困惑,如何解决传导干扰?找对方法,你会发现,传导干扰其实很容易解决,只要增加电源输入电路中EMC滤波器的节数,并适当调整每节滤波器的参数,基本上都能满足要求,第七届电路保护与电磁兼容研讨会主办方总结八大对策,以解决对付传导干扰难题。
对策一:尽量减少每个回路的有效面积图1传导干扰分差模干扰DI和共模干扰CI两种。
先来看看传导干扰是怎么产生的。
如图1所示,回路电流产生传导干扰。
这里面有好几个回路电流,我们可以把每个回路都看成是一个感应线圈,或变压器线圈的初、次级,当某个回路中有电流流过时,另外一个回路中就会产生感应电动势,从而产生干扰。
减少干扰的最有效方法就是尽量减少每个回路的有效面积。
对策二:屏蔽、减小各电流回路面积及带电导体的面积和长度如图2 所示,e1、e2、e3、e4为磁场对回路感应产生的差模干扰信号;e5、e6、e7、e8为磁场对地回路感应产生的共模干扰信号。
共模信号的一端是整个线路板,另一端是大地。
线路板中的公共端不能算为接地,不要把公共端与外壳相接,除非机壳接大地,否则,公共端与外壳相接,会增大辐射天线的有效面积,共模辐射干扰更严重。
降低辐射干扰的方法,一个是屏蔽,另一个是减小各个电流回路的面积(磁场干扰),和带电导体的面积及长度(电场干扰)。
对策三:对变压器进行磁屏蔽、尽量减少每个电流回路的有效面积如图3所示,在所有电磁感应干扰之中,变压器漏感产生的干扰是最严重的。
如果把变压器的漏感看成是变压器感应线圈的初级,则其它回路都可以看成是变压器的次级,因此,在变压器周围的回路中,都会被感应产生干扰信号。
减少干扰的方法,一方面是对变压器进行磁屏蔽,另一方面是尽量减少每个电流回路的有效面积。
对策四:用铜箔对变压器进行屏蔽如图4所示,对变压器屏蔽,主要是减小变压器漏感磁通对周围电路产生电磁感应干扰,以及对外产生电磁辐射干扰。
开关电源EMI整改经验总结
开关电源EMI整改中,关于不同频段干扰原因及抑制办法:一、1MHZ以内----以差模干扰为主(整改建议)1. 增大X电容量;2. 添加差模电感;3. 小功率电源可采用PI型滤波器处理(建议靠近变压器的电解电容可选用较大些)。
二、1MHZ---5MHZ---差模共模混合采用输入端并联一系列X电容来滤除差摸干扰并分析出是哪种干扰超标并以解决,(整改建议)1. 对于差模干扰超标可调整X电容量,添加差模电感器,调差模电感量;2. 对于共模干扰超标可添加共模电感,选用合理的电感量来抑制;3. 也可改变整流二极管特性来处理一对快速二极管如FR107一对普通整流二极管1N4007。
三、5M---以上以共摸干扰为主,采用抑制共摸的方法。
(整改建议)对于外壳接地的,在地线上用一个磁环串绕2-3圈会对10MHZ以上干扰有较大的衰减作用;可选择紧贴变压器的铁芯粘铜箔,铜箔闭环。
处理后端输出整流管的吸收电路和初级大电路并联电容的大小。
四、对于20--30MHZ,(整改建议)1. 对于一类产品可以采用调整对地Y2电容量或改变Y2电容位置;2. 调整一二次侧间的Y1电容位置及参数值;3. 在变压器外面包铜箔;变压器最里层加屏蔽层;调整变压器的各绕组的排布。
4. 改变PCB LAYOUT;5. 输出线前面接一个双线并绕的小共模电感;6. 在输出整流管两端并联RC滤波器且调整合理的参数;7. 在变压器与MOSFET之间加BEAD CORE;8. 在变压器的输入电压脚加一个小电容。
9. 可以用增大MOS驱动电阻。
五、30---50MHZ 普遍是MOS管高速开通关断引起(整改建议)1. 可以用增大MOS驱动电阻;2. RCD缓冲电路采用1N4007慢管;3. VCC供电电压用1N4007慢管来解决;4. 或者输出线前端串接一个双线并绕的小共模电感;5. 在MOSFET的D-S脚并联一个小吸收电路;6. 在变压器与MOSFET之间加BEAD CORE;7. 在变压器的输入电压脚加一个小电容;8. PCB心LAYOUT时大电解电容,变压器,MOS构成的电路环尽可能的小;9. 变压器,输出二极管,输出平波电解电容构成的电路环尽可能的小。
轻松了解EMI及其抑制方法
EMI翻译成中文就是电磁干扰。
其实所有的电器设备,都会有电磁干扰。
只不过严重程度各有不同。
电磁干扰会影响各种电器设备的正常工作,会干扰通信数据的正常传递,虽然对人体的伤害尚无定论,但是普遍认为对人体不利。
所以很多国家和地区对电器的电磁干扰程度有严格的规定。
当然电源也不例外的,所以我们有理由好好了解EMI以及其抑制方法。
下面结合一些专家的文献来描述EMI.首先EMI 有三个基本面就是噪音源:发射干扰的源头。
如同传染病的传染源耦合途径:传播干扰的载体。
如同传染病传播的载体,食物,水,空气.......接收器:被干扰的对象。
被传染的人。
缺少一样,电磁干扰就不成立了。
所以,降低电磁干扰的危害,也有三种办法:1. 从源头抑制干扰。
2.切断传播途径3.增强抵抗力,这个就是所谓的EMC(电磁兼容)先解释几个名词:传导干扰:也就是噪音通过导线传递的方式。
辐射干扰:也就是噪音通过空间辐射的方式传递。
差模干扰:由于电路中的自身电势差,电流所产成的干扰,比如火线和零线,正极和负极。
共模干扰:由于电路和大地之间的电势差,电流所产生的干扰。
通常我们去实验室测试的项目:传导发射:测试你的电源通过传导发射出去的干扰是否合格。
辐射发射:测试你的电源通过辐射发射出去的干扰是否合格。
传导抗扰:在具有传导干扰的环境中,你的电源能否正常工作。
辐射抗扰:在具有辐射干扰的环境中,你的电源能否正常工作。
首先来看,噪音的源头:任何周期性的电压和电流都能通过傅立叶分解的方法,分解为各种频率的正弦波。
所以在测试干扰的时候,需要测试各种频率下的噪音强度。
那么在开关电源中,这些噪音的来源是什么呢?开关电源中,由于开关器件在周期性的开合,所以,电路中的电流和电压也是周期性的在变化。
那么那些变化的电流和电压,就是噪音的真正源头。
那么有人可能会问,我的开关频率是100KHz的,但是为什么测试出来的噪音,从几百K到几百M都有呢?我们把同等有效值,同等频率的各种波形做快速傅立叶分析:蓝色:正弦波绿色:三角波红色:方波可以看到,正弦波只有基波分量,但是三角波和方波含有高次谐波,谐波最大的是方波。
电子设备的EMI与EMC问题解决方法
电子设备的EMI与EMC问题解决方法随着科技的快速发展,电子设备在我们的日常生活中扮演着越来越重要的角色。
然而,随之而来的问题就是电磁干扰(Electromagnetic Interference,简称EMI)与电磁兼容性(Electromagnetic Compatibility,简称EMC)。
这些问题会导致设备性能下降,甚至可能造成严重的故障。
下面将详细介绍电子设备EMI与EMC问题的解决方法。
一、了解EMI与EMC的原因和影响1. EMI的原因:电子设备中的各种信号电路会产生互相干扰的电磁场,从而产生电磁波辐射,导致EMI问题。
2. EMC的影响:EMI问题可能会导致信号传输的错误、数据丢失、仪器测量不准确等影响设备性能的问题。
二、采取措施减少EMI问题1. 采用屏蔽技术:在电子设备的关键部件或线路周围设置屏蔽罩,以减少电磁波的辐射和接受。
这可以通过使用屏蔽材料和接地技术来实现。
2. 优化线路布局:合理排布电路,避免信号线与电源线之间的互相干扰,减少EMI问题的发生。
同时,使用分离地面平面和分层布局也可以有效降低EMI问题。
3. 控制信号的频率和功率:降低电子设备内部信号线路的频率和功率,可减少电磁波辐射。
这可以通过电路设计和合理选择相关元件来实现。
三、提高设备的EMC性能1. 通过滤波器控制电磁波干扰:在设备中添加滤波器,可有效降低电磁波的干扰。
常见的滤波器包括电源滤波器、信号滤波器等。
2. 使用合适的接地设计:良好的接地系统设计可以有效地减少EMI问题。
通过使用大地板、接地导线等,可将设备的电磁辐射能量导入地面。
3. 注意设备的散热设计:过高的温度可能会导致电子设备内部电路的不稳定工作,进而影响EMC性能。
因此,设备的散热设计应得到重视。
四、进行EMC测试和认证1. 进行EMI测试:通过使用专业的EMI测试仪器,对电子设备进行辐射和传导测量。
这可以帮助确定问题所在,并采取相应的措施进行修正。
emi整改方法
emi整改方法
EMI整改方法主要包括以下步骤:
1. 确定干扰源:首先需要确定哪些元件或电路产生EMI干扰。
这可以通过
使用频谱分析仪等工具来检测和定位。
2. 评估干扰程度:根据测量的EMI值,评估干扰程度是否符合相关标准和
规定。
如果不符合,需要进行整改。
3. 制定整改方案:根据干扰源和程度,制定相应的整改方案。
这可能包括改变电路设计、增加滤波器、改进屏蔽措施、优化布局和布线等。
4. 实施整改措施:根据整改方案,实施相应的措施来降低EMI干扰。
这可
能涉及到硬件的修改、元件的替换、电路的优化等。
5. 测试整改效果:在实施整改措施后,使用频谱分析仪等工具测试整改效果,确认是否达到标准和规定的要求。
6. 优化和完善:如果整改效果不理想,需要进一步优化和完善整改方案,并重复实施和测试过程,直到达到要求为止。
需要注意的是,EMI整改需要综合考虑多个因素,如电路设计、元件选择、布局和布线等。
因此,在进行整改时,需要综合考虑各种因素,采取综合性的措施来降低EMI干扰。
emi整改小结 -回复
emi整改小结-回复[EMI整改小结]EMI(Electromagnetic Interference)是指电磁干扰,广泛存在于各种电子设备和系统中。
当电子设备未能通过相关电磁兼容测试或实际应用中出现EMI问题时,需要进行整改措施,以减少或消除电磁干扰。
本文将从整改的目标、步骤、方法和效果等方面展开介绍。
一、整改目标EMI整改的目标是确保电子设备或系统在工作过程中不产生或不接收到对其正常工作产生不良影响的电磁干扰。
具体而言,需要达到以下目标:1. 减少电磁辐射:通过采用合适的设计措施或材料,减少电子设备或系统所产生的电磁辐射,以避免对周围设备或人体造成干扰或伤害。
2. 提高抗干扰能力:通过提升电子设备或系统的抗干扰能力,使其能够接受外界电磁干扰的能力,以保证设备在复杂电磁环境中正常工作。
二、整改步骤EMI整改一般分为以下步骤:1. 问题分析:首先需要明确电子设备或系统存在的EMI问题,并对具体的干扰源和受影响器件进行分析和识别,确定整改的重点和方向。
2. 措施制定:基于问题分析的结果,制定相应的整改措施,并根据实际情况制定合理的实施计划。
整改措施包括电磁屏蔽、滤波、地线优化、设备布局等。
3. 设计优化:通过对电子设备或系统的电路、线路布局、接地方式等进行优化设计,以减少电磁辐射和提高抗干扰能力。
4. 实施验证:对整改后的电子设备或系统进行全面测试和验证,确保其满足相关的电磁兼容性要求。
5. 整改总结:根据实施验证的结果,对整改过程进行总结,包括整改所采用的措施的有效性和可行性等方面的评估。
三、整改方法EMI整改的方法主要包括以下几个方面:1. 电磁屏蔽:通过采用合适的屏蔽材料或屏蔽措施,减少电子设备或系统的电磁辐射和对外界电磁干扰的敏感度。
2. 滤波:在电子设备的电源线、通信线路等关键位置部署滤波器,以减少由电源和通信线路带入的干扰信号。
3. 设备布局:合理规划电子设备或系统的布局,尽量减少不同模块之间的相互干扰,并减少对外界设备的干扰。
EMI各频段抑制措施
这两天搜索了大量关于EMI方面的主题,整理一下大致的关于不同频段干扰原因及抑制办法:
1MHZ以内----以差模干扰为主,增大X电容就可解决
1MHZ---5MHZ---差模共模混合,采用输入端并一系列X电容来滤除差摸干扰并分析出是哪种干扰超标并解决;
5M---以上以共摸干扰为主,采用抑制共摸的方法。
对于外壳接地的,在地线上用一个磁环绕2圈会对10MHZ以上干扰有较大的衰减(diudiu2006);对于25--30MHZ不过可以采用加大对地Y电容、在变压器外面包铜皮、改变PCB LAYOUT、输出线前面接一个双线并绕的小磁环,最少绕10圈、在输出整流管两端并RC滤波器。
30---50MHZ 普遍是MOS管高速开通关断引起,可以用增大MOS驱动电阻,RCD缓冲电路采用1N4007慢管,VCC供电电压用1N4007慢管来解决。
100---200MHZ 普遍是输出整流管反向恢复电流引起,可以在整流管上串磁珠
对于NO-Y电路来说,以上方式可能不管用。
boost电路emi超标整改措施
boost电路emi超标整改措施我们需要了解EMI超标的原因。
EMI超标可能由于以下几个方面造成:1.电路设计中未考虑到电磁兼容性(Electromagnetic Compatibility,EMC)因素;2.电源线或信号线布线不合理,导致电磁辐射或传导;3.电源线或信号线接地不良,导致电磁波无法正确地通过接地回流;4.电子元器件的选择不当,导致电磁辐射或传导;5.电路板布局不合理,导致电磁波无法正确地传输或屏蔽。
针对以上原因,我们可以采取以下整改措施:1.EMC设计要求:在设计电路时,考虑到EMC要求,选择合适的电子元器件,避免使用电磁辐射较大的元件,如尽量选择低辐射的开关元件;2.电源线和信号线布线:合理布置电源线和信号线,尽量减少线路长度,避免线路过长导致电磁辐射或传导增强。
同时,可以采用屏蔽线或使用屏蔽套管,增加线路的抗干扰能力;3.接地设计:良好的接地设计是减少EMI的重要手段之一。
确保电源线和信号线的接地良好,采用合适的接地方式,如单点接地或星形接地等。
同时,还可以使用接地屏蔽板和接地隔离器等措施,增强接地效果;4.电路板布局:合理的电路板布局可以降低EMI水平。
将高频电路和低频电路分开布局,避免相互干扰。
同时,在布局时考虑到信号线和电源线的走向,避免平行走线,尽量减少电磁耦合;5.滤波器的应用:在电路中加入合适的滤波器,可以有效地抑制电磁辐射和传导。
选择合适的滤波器类型和参数,根据不同频段的干扰选择不同的滤波器;6.屏蔽措施:采用屏蔽罩、屏蔽板、屏蔽套管等屏蔽措施,可以有效地减少电磁辐射和传导。
在设计时考虑到屏蔽措施的安装和连接,确保屏蔽效果;7.合理地选择地线:地线的选择对于EMI的控制非常重要。
应选择低阻抗的地线,减少地线回流路径的电阻和电感,提高地线的导电性能;8.EMI测试和验证:在整改措施实施后,进行EMI测试和验证,确保电路的EMI水平符合要求。
根据测试结果,对需要改进的地方进行调整和优化。
开关电源电磁干扰(EMI)整改汇总要点
开关电源电磁干扰(EMI整改汇总开关电源类产品的频率大概分四段:150K-400K-4M-20M-30M,这样分的好处是找问题迅速,一般前一段的主要问题在于滤波元器件上。
小功率开关电源用一个合适的X电容和一个共模电感可消除,从增加的元件对测试结果来看,一般电感对AV值有效,电容对QP值有效。
当然,这只是一般规律。
电容越大,滤除的频率越低。
电感越大(适可而止),滤除的频率越高。
400K-4M这一段主要是开关管,变压器等的干扰。
可以在管与散热片之间加屏蔽层(云母片),或者在引脚上套磁珠。
吸收电路上套磁珠有时也很有效。
变压器初次级之间的Y电容也是不容忽视的。
次级对初级高压端合适还是低压端有时候对这段频率影响很大。
除此之外,调整滤波器也可以抑制其骚扰。
4M-20M这段主要是变压器等高频干扰,在没有找到根源前,大概通过调整滤波,接地,加磁珠等手段解除,有时也可能是输出端的问题。
20M以后主要针对齐纳二级管,输出端电源输入端整改。
一般是用到磁珠,接地等。
值得注意的是,滤波器件因该远离变压器,散热器,否则容易耦合。
镇流器整改原理和开关电源类似,但是前部分超标并非调整滤波器件就都可以解除,最有效的办法是Y电容金属外壳,外壳再连接地线。
磁珠对高频抑制效果不错。
根据IEC 60384-14,电容器分为X电容及Y电容,1. X电容是指跨于L-N之间的电容器,2. Y电容是指跨于L-G/N-G之间的电容器。
(L="Line", N="Neutral", G="Ground"X电容底下又分为X1, X2, X3,主要差別在于:1. X1耐高压大于2.5 kV, 小于等于4 kV,2. X2耐高压小于等于2.5 kV,3. X3耐高压小于等于1.2 kVY电容底下又分为Y1, Y2, Y3,Y4, 主要差別在于:1. Y1耐高压大于8 kV,2. Y2耐高压大于5 kV,3. Y3耐高压 n/a4. Y4耐高压大于2.5 kVX,Y电容都是安规电容,火线零线间的是X电容,火线与地间的是Y电容.它们用在电源滤波器里,起到电源滤波作用,分别对共模,差模工扰起滤波作用.作为工作于开关状态的能量转换装置,开关电源的电压、电流变化率很高,产生的干扰强度较大;干扰源主要集中在功率开关期间以及与之相连的散热器和高平变压器,相对于数字电路干扰源的位置较为清楚;开关频率不高(从几十千赫和数兆赫兹),主要的干扰形式是传导干扰和近场干扰;而印刷线路板 (PCB走线通常采用手工布线,具有更大的随意性,这增加了PCB分布参数的提取和近场干扰估计的难度。
6个常见的EMI干扰来源和抑制措施
6个常见的EMI干扰来源和抑制措施干扰源、耦合途径和敏感设备并称电磁干扰三要素,对于电源模块来说,噪声的产生在于电流或电压的急剧变化,即di/dt或dv/dt很大,因此高功率和高频率运作的器件都是EMI噪声的来源。
解决方法就是要将干扰三要素中的一个去除,如屏蔽干扰源、隔离敏感设备或切断耦合途径。
因为无法让电磁干扰不产生,只能用一定的方法去减少其对系统的干扰,下面分析下常见的6个干扰来源和抑制措施。
1、外界干扰的耦合输入端是电源的入口处,内部的噪声可由此处传播到外部,对外界造成干扰。
常用抑制措施是在输入加X电容和Y电容,及差模和共模电感对噪声和干扰进行过滤。
输出端如果是有长引线的情况,电源模块跟系统搭配后,内部一些噪声干扰可能会由输出线而耦合到外界,干扰到其它用电设备。
一般是加共模和差模滤波,还可以在输出线串套磁珠环、采用双绞线或屏蔽线,实现抑制EMI干扰。
2、开关管电源模块由于开关管结电容的存在,在工作时,开关管在快速开关后会产生毛刺和尖峰,开关管的结电容和变压器的绕组漏感也有可能产生谐振而发出干扰。
抑制方法有:1、开关管D和G极串加磁珠环,减小开关管的电流变化率,从而实现减小尖峰。
2、在开关管处加缓冲电路或采用软开关技术,减小开关管在快速工作时的尖峰,使其电压或电流能缓慢上升。
3、减小开关管与周边组件的压差,开关管结电容可充电的程度会得到一定的降低。
4、增大开关管的G极驱动电阻。
3、变压器变压器是电源模块的转换储能组件,在能量的充放过程中,会产生噪声干扰。
漏感可以与电路中的分布电容组成振荡回路,使电路产生高频振荡并向外辐射电磁能量,从而造成电磁干扰。
一次绕组与二次绕组之间的电位差也会产生高频变化,通过寄生电容的耦合,从而产生了在一次侧与二次侧之间流动的共模传导EMI 电流干扰。
抑制方法有:1、变压器加屏蔽,电屏蔽是指将初级来的干扰信号与次级隔离开来。
可在初、次级之间包一层铜箔(内屏蔽),但头尾不能短路,铜箔要接地,共模传导干涉信号通过电容-铜箔-接地形成回路,不能进入次级绕组从而起到电屏蔽的作用。
《EMI传导与辐射超标整改方案》
《EMI传导与辐射超标整改方案》第一篇:emi传导与辐射超标整改方案传导与辐射超标整改方案开关电源电磁干扰的产生机理及其传播途径功率开关器件的高额开关动作是导致开关电源产生电磁干扰(emi)的主要原因。
开关频率的提高一方面减小了电源的体积和重量,另一方面也导致了更为严重的emi问题。
开关电源工作时,其内部的电压和电流波形都是在非常短的时间内上升和下降的,因此,开关电源本身是一个噪声发生源。
开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。
使电源产生的干扰不至于对电子系统和电网造成危害的根本办法是削弱噪声发生源,或者切断电源噪声和电子系统、电网之间的耦合途径。
现在按噪声干扰源来分别说明:1、二极管的反向恢复时间引起的干扰交流输入电压经功率二极管整流桥变为正弦脉动电压,经电容平滑后变为直流,但电容电流的波形不是正弦波而是脉冲波。
由电流波形可知,电流中含有高次谐波。
大量电流谐波分量流入电网,造成对电网的谐波污染。
另外,由于电流是脉冲波,使电源输入功率因数降低。
高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于pn结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。
2、开关管工作时产生的谐波干扰功率开关管在导通时流过较大的脉冲电流。
例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。
当采用零电流、零电压开关时,这种谐波干扰将会很小。
另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。
3、交流输入回路产生的干扰无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。
开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。
EMI及其抑制方法
EMI及其抑制方法下面结合一些专家的文献来描述EMI.首先EMI 有三个基本面就是噪音源:发射干扰的源头。
如同传染病的传染源耦合途径:传播干扰的载体。
如同传染病传播的载体,食物,水,空气.......接收器:被干扰的对象。
被传染的人。
缺少一样,电磁干扰就不成立了。
所以,降低电磁干扰的危害,也有三种办法:1. 从源头抑制干扰。
2.切断传播途径3.增强抵抗力,这个就是所谓的EMC(电磁兼容)先解释几个名词:传导干扰:也就是噪音通过导线传递的方式。
辐射干扰:也就是噪音通过空间辐射的方式传递。
差模干扰:由于电路中的自身电势差,电流所产成的干扰,比如火线和零线,正极和负极。
共模干扰:由于电路和大地之间的电势差,电流所产生的干扰。
通常我们去实验室测试的项目:传导发射:测试你的电源通过传导发射出去的干扰是否合格。
辐射发射:测试你的电源通过辐射发射出去的干扰是否合格。
传导抗扰:在具有传导干扰的环境中,你的电源能否正常工作。
辐射抗扰:在具有辐射干扰的环境中,你的电源能否正常工作。
首先来看,噪音的源头:任何周期性的电压和电流都能通过傅立叶分解的方法,分解为各种频率的正弦波。
所以在测试干扰的时候,需要测试各种频率下的噪音强度。
那么在开关电源中,这些噪音的来源是什么呢?开关电源中,由于开关器件在周期性的开合,所以,电路中的电流和电压也是周期性的在变化。
那么那些变化的电流和电压,就是噪音的真正源头。
那么有人可能会问,我的开关频率是100KHz的,但是为什么测试出来的噪音,从几百K到几百M都有呢?我们把同等有效值,同等频率的各种波形做快速傅立叶分析:蓝色:正弦波绿色:三角波红色:方波可以看到,正弦波只有基波分量,但是三角波和方波含有高次谐波,谐波最大的是方波。
也就是说如果电流或者电压波形,是非正弦波的信号,都能分解出高次谐波。
那么如果同样的方波,但是上升下降时间不同,会怎样呢。
同样是100KHz的方波红色:上升下降时间都为100ns绿色:上升下降时间都为500ns可以看到红色的高次谐波明显大于绿色。
电子自动化控制中的干扰因素及改善
电子自动化控制中的干扰因素及改善随着科技的不断发展,电子自动化控制在各个领域中的应用也日益广泛。
而干扰因素在电子自动化控制过程中的出现,往往会给系统的稳定性和可靠性威胁,因此需要采取一系列的措施来改善。
一、电磁干扰电磁干扰(EMI)是指电磁波通过空气或者导体媒介,从一处传输到另一处时,使电路产生电磁感应,从而引起电路性能变化的现象。
电子自动化控制系统中,EMI是最常见的干扰因素之一。
其产生原因可能来自于设备本身也可能来自于周边环境。
改善方法:1. 尽量提高电子自动化控制系统的屏蔽性能。
用户应采用金属屏蔽材料,降低电磁辐射的影响,同时也能更好地防止电子自动化控制系统产生EMI干扰。
2. 采用合适的线缆和连接件,选用优质金属屏蔽材料等。
这些在设计过程中就应该考虑到,以防止电磁波在传输过程中发生干扰,从而影响系统稳定性。
3. 加强电源系统的稳定性,提高电源供电的品质。
这样能够降低电磁波的辐射度,从而减少EMI干扰的发生。
4. 采用防电磁干扰措施,例如增设隔离变压器、滤波器,使电流、电压波形变得更为平稳,提升系统的抗干扰能力。
二、电力电源噪音电力电源是电子自动化控制系统的基础,噪音的产生可能源于电力电源的交流变压器或直流变换器等部分。
1.电源接地。
电子自动化控制系统能够有效地消除地线噪音的方法是将所有不同电源之间的接线都通过同一接地点连接在一起。
这个接地点应被所有电子设备共享,这样可以消除差异。
2. 消除EMI干扰。
使用金属屏蔽材料、线缆、连接件和优质变压器和滤波器等等。
3.减少电源波动。
使用稳压器,避免电源产生过大的波动信号。
三、环境因素环境因素是指各种外界的自然因素,在电子自动化控制系统中可能会发生干扰。
例如,温度的变化、湿度、尘土、震动等都可能产生干扰。
1. 控制温度。
电子自动化控制系统一般都需要在固定的温度范围内运行,因此在选择更好的散热方案是非常关键的。
智能温控特别有用,可实现按需调控机房温度。
电磁干扰(EMI)问题诊断整改及10步骤
前言电磁干扰的观念与防制﹐在国内已逐渐受到重视。
虽然目前国内并无严格管制电子产品的电磁干扰(EMI)﹐但由于欧美各国多已实施电磁干扰的要求﹐加上数字产品的普遍使用﹐对电磁干扰的要求已是刻不容缓的事情。
笔者由于啊作的关系﹐经常遇到许多产品已完成成品设计﹐因无法通过EMI测试﹐而使设计工程师花费许多时间和精力投入EMI的修改﹐由于属于事后的补救﹐往往投入许多时间与金钱﹐甚而影响了产品上市的时机2.正确的诊断要解决产品上的EMI问题﹐若能在产品设计之初便加以考虑﹐则可以节省事后再投入许多时间与金钱。
由于目前EMI Design-in的观念并不是十分普遍﹐而且由于事先的规划并不能保证其成品可以完全符合电磁干扰的测试在﹐所以如何正确的诊断EMI问题﹐对于设计工程师及EMI工程师是非常重要的。
事实上﹐我们如果把EMI当做一种疾病﹐当然平时的预防保养是很重要的﹐而一旦有疾病则正确的诊断﹐才能得到快速的痊愈﹐没有正确的诊断﹐找不到病症的源头﹐往往事倍功半而拖延费时。
故在EMI的问题上﹐常常看到一个EMI有问题的产品﹐由于未能找到造成EMI问题的关键﹐花了许多时间﹐下了许多对策﹐却始终无法解决﹐其中亦不乏专业的EMI工程师。
以往谈到EMI往往强调对策方法﹐甚而视许多对策秘决或绝招﹐然而没有正确的诊断﹐而在产品上加了一大堆EMI抑制组件﹐其结果往往只会使EMI情况更糟。
笔者起初接触产品EMI对策修改时﹐会听到资深EMI工程师说把所有EMI对策拿掉﹐就可以通过测试。
初听以为是句玩笑话﹐如今回想这是很宝贵的经验谈。
而后亦听到许多EMI 工程师谈到类似的经验。
本文中将举出实际的例子﹐让读者更加了解EMI的对策观念。
一般提到如何解决EMI问题﹐大多说是case by case,当然从对策上而言﹐每一个产品的特性及电路板布线(layout)情况不同﹐故无法用几套方法而解决所有EMI的问题﹐但是长久以来﹐我们一直想要把处理EMI问题并做适当的对策﹐另外也提供专业的EMI工程师一种参考方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EMI整改不同频段干扰原因及抑制办法
开关电源EMI整改中,关于不同频段干扰原因及抑制办法:
1MHZ以内----以差模干扰为主
1.增大X电容量;
2.添加差模电感;
3.小功率电源可采用PI型滤波器处理(建议靠近变压器的电解电容可选用较大些)。
1MHZ---5MHZ---差模共模混合
采用输入端并联一系列X电容来滤除差摸干扰并分析出是哪种干扰超标并以解决,
1.对于差模干扰超标可调整X电容量,添加差模电感器,调差模电感量;
2.对于共模干扰超标可添加共模电感,选用合理的电感量来抑制;
3.也可改变整流二极管特性来处理一对快速二极管如FR107一对普通整流二极管1N4007。
5M---以上以共摸干扰为主,采用抑制共摸的方法。
对于外壳接地的,在地线上用一个磁环串绕2-3圈会对10MHZ以上干扰有较大的衰减作用;
可选择紧贴变压器的铁芯粘铜箔, 铜箔闭环.
处理后端输出整流管的吸收电路和初级大电路并联电容的大小。
对于20--30MHZ,
1.对于一类产品可以采用调整对地Y2电容量或改变Y2电容位置;
2.调整一二次侧间的Y1电容位置及参数值;
3.在变压器外面包铜箔;变压器最里层加屏蔽层;调整变压器的各绕组的排布。
4.改变PCB LAYOUT;
5.输出线前面接一个双线并绕的小共模电感;
6.在输出整流管两端并联RC滤波器且调整合理的参数;
7.在变压器与MOSFET之间加BEAD CORE;
8.在变压器的输入电压脚加一个小电容。
9. 可以用增大MOS驱动电阻.
30---50MHZ 普遍是MOS管高速开通关断引起
1.可以用增大MOS驱动电阻;
2.RCD缓冲电路采用1N4007慢管;
3.VCC供电电压用1N4007慢管来解决;
4.或者输出线前端串接一个双线并绕的小共模电感;
5.在MOSFET的D-S脚并联一个小吸收电路;
6.在变压器与MOSFET之间加BEAD CORE;
7.在变压器的输入电压脚加一个小电容;
8.PCB心LAYOUT时大电解电容,变压器,MOS构成的电路环尽可能的小;
9.变压器,输出二极管,输出平波电解电容构成的电路环尽可能的小。
50---100MHZ 普遍是输出整流管反向恢复电流引起
1.可以在整流管上串磁珠;
2.调整输出整流管的吸收电路参数;
3.可改变一二次侧跨接Y电容支路的阻抗,如PIN脚处加BEAD CORE或串接适当的电阻;
4.也可改变MOSFET,输出整流二极管的本体向空间的辐射(如铁夹卡MOSFET; 铁夹卡DIODE,改变散热器的接地点)。
5.增加屏蔽铜箔抑制向空间辐射.
200MHZ以上开关电源已基本辐射量很小,一般可过EMI标准
补充说明:
开关电源高频变压器初次间一般是屏蔽层的,以上未加缀述.
开关电源是高频产品,PCB的元器件布局对EMI.,请密切注意此点.
开关电源若有机械外壳,外壳的结构对辐射有很大的影响.请密切注意此点.
主开关管,主二极管不同的生产厂家参数有一定的差异,对EMC有一定的影响.请密切注意此点.。