高中数学基本不等式知识点归纳及练习题00294

合集下载

高中数学基本不等式知识点归纳及练习题

高中数学基本不等式知识点归纳及练习题

高中数学基本不等式的巧用1.基本不等式:ab≤a+b 2(1)基本不等式成立的条件:a>0,b>0.(2)等号成立的条件:当且仅当a=b时取等号.2.几个重要的不等式(1)a2+b2≥2ab(a,b∈R);(2)ba+ab≥2(a,b同号);(3)ab≤⎝⎛⎭⎪⎫a+b22(a,b∈R);(4)a2+b22≥⎝⎛⎭⎪⎫a+b22(a,b∈R).3.算术平均数与几何平均数设a>0,b>0,则a,b的算术平均数为a+b2,几何平均数为ab,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数.4.利用基本不等式求最值问题已知x>0,y>0,则(1)如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是2p.(简记:积定和最小)(2)如果和x+y是定值p,那么当且仅当x=y时,xy有最大值是p24.(简记:和定积最大)一个技巧运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a2+b2≥2ab逆用就是ab≤a2+b22;a+b2≥ab(a,b>0)逆用就是ab≤⎝⎛⎭⎪⎫a+b22(a,b>0)等.还要注意“添、拆项”技巧和公式等号成立的条件等.两个变形(1)a2+b22≥⎝⎛⎭⎪⎫a+b22≥ab(a,b∈R,当且仅当a=b时取等号);(2) a2+b22≥a+b2≥ab≥21a+1b(a>0,b>0,当且仅当a=b时取等号).这两个不等式链用处很大,注意掌握它们.三个注意(1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解题技巧:技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

高中数学基本不等式知识点归纳及练习题

高中数学基本不等式知识点归纳及练习题

高中数学基本不等式的巧用_ a + b1基本不等式:_ab w—亍(1) 基本不等式成立的条件:a>0, b> 0.(2) 等号成立的条件:当且仅当时取等号.2. 几个重要的不等式b a a + b(1)a2+ b2>2ab(a, b€ R);(2) +->2(a, b 同号);(3)ab< 2(a, b€ R);a b 2a +b a+ b 2⑷》〒2(a, b€ R).3. 算术平均数与几何平均数a +b ,设a>0, b>0,则a, b的算术平均数为「厂,几何平均数为ab,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数.4. 利用基本不等式求最值问题已知x>0, y>0,贝U(1) 如果积xy是定值p,那么当且仅当x^y时,x+ y有最小值是2 . p.(简记:积定和最小)(2) 如果和x+y是定值p,那么当且仅当x^y时,xy有最大值是牙.(简记:和定积最大)一个技巧运用公式解题时,既要掌握公式的正用,也要注意公式的逆用.,例如... a2+ b2>2ab逆用就是a2+ b2 a + b a + bab<…三二芦仝乂莎但,…b>Q逆用就是…ab W.2(a, b> 0)等.还要注意…“添、…拆项” 技巧.和公式等号成立的条件等:……两个变形a2+ b2a+ b(1) 2 b二^ 2之ab(a_,b£一R,.当且仅当…a.= b时取.等号);..⑵> ^^(a > 0, b> Q,当且仅当一 a 三 b 一时取等号..).v............. 二土匸a b这两个不等式链用处很大,注意掌握它们个注意1 9条件求最值1 1log 4y 2,求的最小值•并求x ,y 的值(1) 使用基本不等式求最值,其失误的真正原因是其存在前提 .... “一正、二定、三相等…”的忽视…要利用基本不等式求最值,这三个条件缺一不可………(2) 在运用基本不等式时,要特别注意………“拆”….“拼“凑等技巧,-使其满足基本不等式中… 正”…:定”…“等”的条件.:…(3) 连续使用公式时取等号的条件很严格一,要求同时满足任何一次的字母取值存在且一致,…一…应用一:求最值例1 :求下列函数的值域(i ) y = 3x 2+彩1(2)y = x + xz\.解题技巧: 技巧一:凑项 例1 :已知x5 ,求函数y 4x 2 ---------------- 的最大值。

(完整版)基本不等式及其应用知识梳理及典型练习题(含标准答案)

(完整版)基本不等式及其应用知识梳理及典型练习题(含标准答案)

基本不等式及其应用1.基本不等式若a>0,,b>0,则a +b 2≥ab ,当且仅当时取“=”.这一定理叙述为:两个正数的算术平均数它们的几何平均数.注:运用均值不等式求最值时,必须注意以下三点:(1)各项或各因式均正;(一正)(2)和或积为定值;(二定)(3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等)2.常用不等式(1)a 2+b 2≥ab 2(a ,b ∈R ).2a b +()0,>b a 注:不等式a 2+b 2≥2ab 和2b a +≥ab 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2b a +)2. (3)ab ≤22⎪⎭⎫ ⎝⎛+b a (a ,b ∈R ). (4)b a +a b ≥2(a ,b 同号且不为0). (5)22⎪⎭⎫ ⎝⎛+b a ≤a 2+b 22(a ,b ∈R ). (6)ba ab b a b a 1122222+≥≥+≥+()0,>b a (7)abc ≤。

(),,0a b c >(8)≥;(),,0a b c>3.利用基本不等式求最大、最小值问题(1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a+b≥,a2+b2≥.(2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.设a,b∈R,且a+b=3,则2a+2b的最小值是()A.6B.42C.22D.26解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42,当且仅当a=b=32时取等号,故选B.若a>0,b>0,且a+2b-2=0,则ab的最大值为()A.12B.1 C.2 D.4解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤12.当且仅当a=1,b=12时等号成立.故选A.小王从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则()A.a<v<abB.v=abC.ab<v<a+b2 D.v=a+b2解:设甲、乙两地之间的距离为s.∵a<b,∴v=2ssa+sb=2aba+b<2ab2ab=ab.又v -a =2ab a +b -a =ab -a 2a +b >a 2-a 2a +b=0,∴v >a.故选A. (2014·上海)若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.解:由xy =1得x 2+2y 2=x 2+2x 2≥22,当且仅当x =±42时等号成立.故填22.点(m ,n )在直线x +y =1位于第一象限内的图象上运动,则log 2m +log 2n 的最大值是________.解:由条件知,m >0,n >0,m +n =1,所以mn ≤⎝ ⎛⎭⎪⎫m +n 22=14, 当且仅当m =n =12时取等号,∴log 2m +log 2n =log 2mn ≤log 214=-2,故填-2.类型一 利用基本不等式求最值(1)求函数y =(x >-1)的值域.解:∵x >-1,∴x +1>0,令m =x +1,则m >0,且y ==m ++5≥2+5=9,当且仅当m =2时取等号,故y min =9.又当m →+∞或m →0时,y →+∞,故原函数的值域是[9,+∞).(2)下列不等式一定成立的是( )A.lg>lg x (x >0)B.sin x +≥2(x ≠k π,k ∈Z )C.x 2+1≥2||x (x ∈R )D.1x 2+1>1(x ∈R ) 解:A 中,x 2+14≥x (x >0),当x =12时,x 2+14=x.B 中,sin x +1sin x ≥2(sin x ∈(0,1]);sin x+1sin x≤-2(sin x∈[-1,0)).C中,x2-2|x|+1=(|x|-1)2≥0(x∈R).D中,1x2+1∈(0,1](x∈R).故C一定成立,故选C.点拨:这里(1)是形如f(x)=ax2+bx+cx+d的最值问题,只要分母x+d>0,都可以将f(x)转化为f(x)=a(x+d)+ex+d+h(这里ae>0;若ae<0,可以直接利用单调性等方法求最值),再利用基本不等式求其最值.(2)牢记基本不等式使用条件——一正、二定、三相等,特别注意等号成立条件要存在.(1)已知t>0,则函数f(t)=t2-4t+1t的最小值为.解:∵t>0,∴f(t)=t2-4t+1t=t+1t-4≥-2,当且仅当t=1时,f(t)min=-2,故填-2.(2)已知x>0,y>0,且2x+8y-xy=0,求:(Ⅰ)xy的最小值;(Ⅱ)x+y的最小值.解:(Ⅰ)由2x+8y-xy=0,得+=1,又x>0,y>0,则1=+≥2=,得xy≥64,当且仅当x=4y,即x=16,y=4时等号成立.(Ⅱ)解法一:由2x+8y-xy=0,得x=,∵x>0,∴y>2,则x+y=y+=(y-2)++10≥18,当且仅当y-2=,即y=6,x=12时等号成立.解法二:由2x+8y-xy=0,得+=1,则x+y=·(x+y)=10++≥10+2=18,当且仅当y=6,x=12时等号成立.类型二利用基本不等式求有关参数范围若关于x的不等式(1+k2)x≤k4+4的解集是M,则对任意实常数k,总有()A.2∈M,0∈MB.2∉M,0∉MC.2∈M,0∉MD.2∉M,0∈M解法一:求出不等式的解集:(1+k2)x≤k4+4⇒x≤=(k2+1)+-2⇒x≤=2-2(当且仅当k2=-1时取等号).解法二(代入法):将x=2,x=0分别代入不等式中,判断关于k的不等式解集是否为R.故选A.点拨:一般地,对含参的不等式求范围问题通常采用分离变量转化为恒成立问题,对于“恒成立”的不等式,一般的解题方法是先分离然后求函数的最值.另外,要记住几个常见的有关不等式恒成立的等价命题:(1)a>f(x)恒成立⇔a>f(x)max;(2)a<f(x)恒成立⇔a<f(x)min;(3)a>f(x)有解⇔a>f(x)min;(4)a<f(x)有解⇔a<f(x)max.已知函数f(x)=e x+e-x,其中e是自然对数的底数.若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围.解:由条件知m(e x+e-x-1)≤e-x-1在(0,+∞)上恒成立.令t=e x(x>0),则t>1,且m≤-t-1t2-t+1=-1t-1+1t-1+1对任意t>1成立.∵t-1+1t-1+1≥2(t-1)·1t-1+1=3,∴-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln2时等号成立.故实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-13. 类型三 利用基本不等式解决实际问题围建一个面积为360 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m 的进出口,如图所示,已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,设利用的旧墙的长度为x (单位:元),修建此矩形场地围墙的总费用为y (单位:元).(1)将y 表示为x 的函数;(2)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用. 解:(1)如图,设矩形的另一边长为a m ,则y =45x +180(x -2)+180·2a =225x +360a -360.由已知xa =360,得a =360x ,所以y =225x +3602x -360(x ≥2).(2)∵x ≥0,∴225x +3602x ≥2225×3602=10800,∴y =225x +3602x -360≥10440,当且仅当225x =3602x ,即x =24时等号成立.答:当x =24 m 时,修建围墙的总费用最小,最小总费用是10440元.如图,为处理含有某种杂质的污水,要制造一个底宽2 m 的无盖长方体的沉淀箱,污水从A孔流入,经沉淀后从B孔排出,设箱体的长度为am,高度为b m,已知排出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60 m2,问a,b各为多少m时,经沉淀后排出的水中该杂质的质量分数最小(A,B孔面积忽略不计).解法一:设y为排出的水中杂质的质量分数,根据题意可知:y=kab,其中k是比例系数且k>0.依题意要使y最小,只需ab最大.由题设得:4b+2ab+2a≤60(a>0,b>0),即a+2b≤30-ab(a>0,b>0).∵a+2b≥22ab,∴22·ab+ab≤30,得0<ab≤32.当且仅当a=2b时取“=”号,ab最大值为18,此时得a=6,b=3.故当a=6 m,b=3 m时经沉淀后排出的水中杂质最少.解法二:同解法一得b≤30-aa+2,代入y=kab求解.1.若a>1,则a+的最小值是()A.2B.aC.3D.解:∵a>1,∴a+=a-1++1≥2+1=2+1=3,当a=2时等号成立.故选C.2.设a,b∈R,a≠b,且a+b=2,则下列各式正确的是()A.ab<1<a2+b22 B.ab<1≤a2+b22 C.1<ab<a2+b22 D.ab≤a2+b22≤1解:运用不等式ab ≤⎝ ⎛⎭⎪⎫a +b 22⇒ab ≤1以及(a +b )2≤2(a 2+b 2)⇒2≤a 2+b 2(由于a ≠b ,所以不能取等号)得,ab <1<a 2+b 22,故选A.3.函数f (x )=在(-∞,2)上的最小值是( )A.0B.1C.2D.3解:当x <2时,2-x >0,因此f (x )==+(2-x )≥2·=2,当且仅当=2-x 时上式取等号.而此方程有解x =1∈(-∞,2),因此f (x )在(-∞,2)上的最小值为2,故选C.4.()要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方M20元,侧面造价是每平方M10元,则该容器的最低总造价是( )A.80元B.120元C.160元D.240元解:假设底面的长、宽分别为x m , m ,由条件知该容器的最低总造价为y =80+20x +≥160,当且仅当底面边长x =2时,总造价最低,且为160元.故选C.5.下列不等式中正确的是( )A.若a ,b ∈R ,则b a +a b ≥2b a ·ab =2B.若x ,y 都是正数,则lg x +lg y ≥2lg x ·lg yC.若x <0,则x +4x ≥-2x ·4x =-4D.若x ≤0,则2x +2-x ≥22x ·2-x =2解:对于A ,a 与b 可能异号,A 错;对于B ,lg x 与lg y 可能是负数,B 错;对于C ,应是x +4x =-⎣⎢⎡⎦⎥⎤(-x )+4-x ≤-2(-x )·4-x=-4,C 错;对于D ,若x ≤0,则2x +2-x ≥22x ·2-x =2成立(x =0时取等号).故选D.6.()若log 4(3a +4b )=log 2,则a +b 的最小值是( )A.6+2B.7+2C.6+4D.7+4解:因为log4(3a+4b)=log2,所以log4(3a+4b)=log4(ab),即3a+4b=ab,且即a>0,b>0,所以+=1(a>0,b>0),a+b=(a+b)=7++≥7+2=7+4,当且仅当=时取等号.故选D.7.若对任意x>0,≤a恒成立,则a的取值范围是.解:因为x>0,所以x+≥2(当且仅当x=1时取等号),所以有=≤=,即的最大值为,故填a≥.8.()设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m +3=0交于点P(x,y),则|P A|·|PB|的最大值是________.解:易知定点A(0,0),B(1,3).且无论m取何值,两直线垂直.所以无论P与A,B重合与否,均有|P A|2+|PB|2=|AB|2=10(P在以AB为直径的圆上).所以|P A|·|PB|≤12(|P A|2+|PB|2)=5.当且仅当|P A|=|PB|=5时,等号成立.故填5.9.(1)已知0<x<,求x(4-3x)的最大值;(2)点(x,y)在直线x+2y=3上移动,求2x+4y的最小值.解:(1)已知0<x<,∴0<3x<4.∴x(4-3x)=(3x)(4-3x)≤=,当且仅当3x=4-3x,即x=时“=”成立.∴当x=时,x(4-3x)取最大值为.(2)已知点(x,y)在直线x+2y=3上移动,所以x+2y=3.∴2x+4y≥2=2=2=4.当且仅当即x=,y=时“=”成立.∴当x=,y=时,2x+4y取最小值为4.10.已知a>0,b>0,且2a+b=1,求S=2-4a2-b2的最大值.解:∵a>0,b>0,2a+b=1,∴4a2+b2=(2a+b)2-4ab=1-4ab.且1=2a+b≥2,即≤,ab≤,∴S=2-4a2-b2=2-(1-4ab)=2+4ab-1≤.当且仅当a=,b=时,等号成立.11.如图,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?解:(1)设每间虎笼长为x m,宽为y m,则由条件,知4x+6y=36,即2x+3y=18.设每间虎笼的面积为S,则S=xy.解法一:由于2x+3y≥2=2,∴2≤18,得xy≤,即S≤.当且仅当2x=3y时等号成立.由解得故每间虎笼长为4.5 m,宽为3 m时,可使每间虎笼面积最大.解法二:由2x+3y=18,得x=9-y.∵x>0,∴0<y<6.S=xy=y=(6-y)y.∵0<y<6,∴6-y>0.∴S≤=.当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m时,可使每间虎笼面积最大. (2)由条件知S=xy=24.设钢筋网总长为l,则l=4x+6y.解法一:∵2x+3y≥2=2=24,∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y时,等号成立.由解得故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.解法二:由xy=24,得x=.∴l=4x+6y=+6y=6≥6×2=48,当且仅当=y,即y=4时,等号成立,此时x=6.故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.11/ 11。

完整版)基本不等式知识点和基本题型

完整版)基本不等式知识点和基本题型

完整版)基本不等式知识点和基本题型基本不等式专题辅导一、知识点总结1.基本不等式原始形式若a,b∈R,则a+b≥2ab若a,b∈R,则ab≤(a^2+b^2)/22.均值不等式若a,b∈R,则a+b/2≥√(ab)3.基本不等式的两个重要变形若a,b∈R,则(a+b)/2≥√(ab)若a,b∈R,则ab≤(a+b)^2/4特别说明:以上不等式中,当且仅当a=b时取“=”4.求最值的条件:“一正,二定,三相等”5.常用结论1.x+1/x≥2 (当且仅当x=1时取“=”)2.x+1/x≤-2 (当且仅当x=-1时取“=”)3.若ab>0,则(a/b+b/a)/2≥2 (当且仅当a=b时取“=”)4.若a,b∈R,则ab≤(a^2+b^2)/2≤(a+b)^2/2特别说明:以上不等式中,当且仅当a=b时取“=”6.柯西不等式若a,b∈R,则(a^2+b^2)(1+1)≥(a+b)^2二、题型分析题型一:利用基本不等式证明不等式1.设a,b均为正数,证明不等式:ab≥(a+b)^2/42.已知a,b,c为两两不相等的实数,求证:a^2/(b-c)^2+b^2/(c-a)^2+c^2/(a-b)^2≥23.已知a+b+c=1,求证:a^2+b^2+c^2+3(ab+bc+ca)≥4/34.已知a,b,c∈R,且a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc5.已知a,b,c∈R,且a+b+c=1,求证:|a-b|+|b-c|+|c-a|≥4√2/3题型二:利用不等式求最值1.已知a+b=1,求证:a^3+b^3≥1/42.已知a,b,c>0,且abc=1,求证:a/b+b/c+c/a≥a+b+c3.已知a,b,c>0,且a+b+c=1,求证:a/b+b/c+c/a≥34.已知a,b,c>0,求证:(a^2+b^2)/(a+b)+(b^2+c^2)/(b+c)+(c^2+a^2)/(c+a)≥(3/2)(a+b+c)5.已知a,b,c>0,求证:(a+b+c)(1/a+1/b+1/c)≥9基本不等式专题辅导一、知识点总结1.基本不等式原始形式若a,b∈R,则a+b≥2ab若a,b∈R,则ab≤(a²+b²)/22.均值不等式若a,b∈R,则a+b/2≥√(ab)3.基本不等式的两个重要变形若a,b∈R,则(a+b)/2≥√(ab)若a,b∈R,则ab≤(a+b)²/4特别说明:以上不等式中,当且仅当a=b时取“=”4.求最值的条件:“一正,二定,三相等”5.常用结论1.x+1/x≥2 (当且仅当x=1时取“=”)2.x+1/x≤-2 (当且仅当x=-1时取“=”)3.若ab>0,则(a/b+b/a)/2≥2 (当且仅当a=b时取“=”)4.若a,b∈R,则ab≤(a²+b²)/2≤(a+b)²/2特别说明:以上不等式中,当且仅当a=b时取“=”6.柯西不等式若a,b∈R,则(a²+b²)(1+1)≥(a+b)²二、题型分析题型一:利用基本不等式证明不等式1.设a,b均为正数,证明不等式:ab≥(a+b)²/42.已知a,b,c为两两不相等的实数,求证:a²/(b-c)²+b²/(c-a)²+c²/(a-b)²≥23.已知a+b+c=1,求证:a²+b²+c²+3(ab+bc+ca)≥4/34.已知a,b,c∈R,且a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc5.已知a,b,c∈R,且a+b+c=1,求证:|a-b|+|b-c|+|c-a|≥4√2/3题型二:利用不等式求最值1.已知a+b=1,求证:a³+b³≥1/42.已知a,b,c>0,且abc=1,求证:a/b+b/c+c/a≥a+b+c3.已知a,b,c>0,且a+b+c=1,求证:a/b+b/c+c/a≥34.已知a,b,c>0,求证:(a²+b²)/(a+b)+(b²+c²)/(b+c)+(c²+a²)/(c+a)≥(3/2)(a+b+c)5.已知a,b,c>0,求证:(a+b+c)(1/a+1/b+1/c)≥9选修4-5:不等式选讲1.设a,b,c均为正数,且a+b+c=1,证明:Ⅰ) ab+bc+ca≤1/3;Ⅱ) a^2b+b^2c+c^2a≥1/9.2.已知a≥b>0,求证:2a-b≥2ab-b^2.3.求下列函数的值域:1) y=3x+2;2) y=x(4-x);3) y=x+(x>2);4) y=x+(x<2)。

高中数学基本不等式知识点归纳及练习题

高中数学基本不等式知识点归纳及练习题

高中数学基本不等式的巧用1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R );(2)b a +a b ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); (4)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是22⎛⎭⎪⎫a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形(1)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b这两个不等式链用处很大,注意掌握它们. 三个注意(1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解题技巧:技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

高中不等式知识点+习题

高中不等式知识点+习题

不等式总结一、不等式的主要性质:(举例子验证)(1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>,(3)加法法则:c b c a b a +>+⇒>(同加c ); d b c a d c b a +>+⇒>>,(大+大>小+小) (4)乘法法则(变不变号):bc ac c b a >⇒>>0,; bc ac c b a <⇒<>0,bd ac d c b a >⇒>>>>0,0(5)倒数法则:ba ab b a 110,<⇒>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法0>∆0=∆0<∆ 二次函数c bx ax y ++=2(0>a )的图象))((212x x x x a cbx ax y --=++=))((212x x x x a c bx ax y --=++=c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax{}21x x x x x><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2R的解集)0(02><++a c bx ax{}21x x x x<<∅∅注意:一般常用求根公式法求解一元二次不等式顺口溜:在二次项系数为正的前提下:大于取两边,小于取中间 三、均值不等式1.均值不等式:如果a,b 是正数,那么).""(2号时取当且仅当==≥+b a ab ba 2、使用均值不等式的条件:一正、二定、“三相等(非常重要)” 四、含有绝对值的不等式1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 ,例如 |4||2|-+-x x 的最小值为___________(答案:2) 2、分类讨论思想则不等式:如果,0>aa x a x a x -≤≥<=>≥或||(公式)a x a a x <<-<=><||(公式)如果0≤a ,则不等式:<=>≥a x ||R <=><ax ||Φ3. 当0c >时, ||ax b c ax b c +>⇔+>或ax b c +<-, ||ax b c c ax b c +<⇔-<+<;当0c <时,||ax b c x R +>⇔∈,||ax b c x φ+<⇔∈. 当0=c 时,<=>>+c b ax || <=><+c b ax ||4、解含有绝对值不等式的主要方法:公式法 步1:是否需对a 分类讨论步2:套用公式 || (0)x a a a x a <>⇔-<<,|| (0)x a a x a >>⇔>或x a <-. 练习1:4332+<+x x 832≥+x 练习2:a x <+32 a x ≥-32五、其他常见不等式形式总结:①分式不等式的解法:先移项通分标准化,则()()0()()0()()0;0()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩ ②无理不等式:转化为有理不等式求解(利用x y =的单调性)()0()0()()f x g x f x g x ⎧≥⎫⇒⎪⎬>≥⎨⎭⎪>⎩定义域⎩⎨⎧<≥⎪⎩⎪⎨⎧>≥≥⇔>0)(0)()]([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或⎪⎩⎪⎨⎧<≥≥⇔<2)]([)(0)(0)()()(x g x f x g x f x g x f ③指数不等式:转化为代数不等式(利用x a y =的单调性)()()()()()(1)()();(01)()()(0,0)()lg lg f x g x f x g x f x a a a f x g x a a a f x g x ab a b f x a b>>⇔>><<⇔<>>>⇔⋅>④对数不等式:转化为代数不等式(利用x y a log =的单调性)()0()0log ()log ()(1)()0;log ()log ()(01)()0()()()()a a a a f x f x f x g x a g x f x g x a g x f x g x f x g x >>⎧⎧⎪⎪>>⇔>><<⇔>⎨⎨⎪⎪><⎩⎩六、零点分段法(两个绝对值的情况) 例题:求解不等式:|21||2|4x x ++->.提示:先求出两个根,假设12x x >,分类讨论(三种情况) 解:①当2x x ≥时,。

高中数学基本不等式知识点归纳及练习题

高中数学基本不等式知识点归纳及练习题

高中数学基本不等式知识点归纳及练习题WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】高中数学基本不等式的巧用1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R );(2)b a +a b ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); (4)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆22⎛⎭⎪⎫a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形(1)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号);(2)a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0,当且仅当a =b 时取等号).这两个不等式链用处很大,注意掌握它们. 三个注意(1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x2(2)y =x +1x解题技巧: 技巧一:凑项例1:已知54x <,求函数14245y x x =-+-的最大值。

(完整word版)高中数学基本不等式知识点归纳及练习题

(完整word版)高中数学基本不等式知识点归纳及练习题

高中数学基本不等式的巧用1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R );(2)b a +a b ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); (4)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是22⎛⎭⎪⎫a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形(1)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b这两个不等式链用处很大,注意掌握它们. 三个注意(1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解题技巧:技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

高一数学不等式知识点总结及例题

高一数学不等式知识点总结及例题

高一数学不等式知识点总结及例题一、不等式知识点总结。

(一)不等式的基本性质。

1. 对称性:如果a > b,那么b < a;如果b < a,那么a > b。

2. 传递性:如果a > b,b > c,那么a > c。

3. 加法单调性:如果a > b,那么a + c>b + c。

- 推论1:移项法则,如果a + b>c,那么a>c - b。

- 推论2:同向不等式可加性,如果a > b,c > d,那么a + c>b + d。

4. 乘法单调性:如果a > b,c>0,那么ac > bc;如果a > b,c < 0,那么ac < bc。

- 推论1:同向正数不等式可乘性,如果a > b>0,c > d>0,那么ac > bd。

- 推论2:乘方法则,如果a > b>0,那么a^n>b^n(n∈ N,n≥slant1)。

- 推论3:开方法则,如果a > b>0,那么sqrt[n]{a}>sqrt[n]{b}(n∈N,n≥slant2)。

(二)一元二次不等式及其解法。

1. 一元二次不等式的一般形式。

- ax^2+bx + c>0(a≠0)或ax^2+bx + c < 0(a≠0)。

2. 一元二次函数y = ax^2+bx + c(a≠0)的图象与一元二次不等式的解集关系。

- 当a>0时,Δ=b^2-4ac:- 若Δ>0,方程ax^2+bx + c = 0有两个不同的实根x_1,x_2(x_1,则不等式ax^2+bx + c>0的解集为{xx < x_1或x>x_2},不等式ax^2+bx + c < 0的解集为{xx_1。

- 若Δ = 0,方程ax^2+bx + c = 0有两个相同的实根x_0=-(b)/(2a),则不等式ax^2+bx + c>0的解集为{xx≠-(b)/(2a)},不等式ax^2+bx + c < 0的解集为varnothing。

高中数学基本不等式知识点归纳及练习题

高中数学基本不等式知识点归纳及练习题

高中数学基本不等式知识点归纳及练习题1.基本不等式:ab≤a+b 2(1)基本不等式成立的条件:a>0,b>0.(2)等号成立的条件:当且仅当a=b时取等号.2.几个重要的不等式(1)a2+b2≥2ab(a,b∈R);(2)ba+ab≥2(a,b同号);(3)ab≤⎝⎛⎭⎪⎫a+b22(a,b∈R);(4)a2+b22≥⎝⎛⎭⎪⎫a+b22(a,b∈R).3.算术平均数与几何平均数设a>0,b>0,则a,b的算术平均数为a+b2,几何平均数为ab,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数.4.利用基本不等式求最值问题已知x>0,y>0,则(1)如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是2p.(简记:积定和最小)(2)如果和x+y是定值p,那么当且仅当x=y时,xy有最大值是p24.(简记:和定积最大)一个技巧运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a2+b2≥2ab逆用就是ab≤a2+b22;a+b2≥ab(a,b>0)逆用就是ab≤⎝⎛⎭⎪⎫a+b22(a,b>0)等.还要注意“添、拆项”技巧和公式等号成立的条件等.两个变形(1)a2+b22≥⎝⎛⎭⎪⎫a+b22≥ab(a,b∈R,当且仅当a=b时取等号);(2) a2+b22≥a+b2≥ab≥21a+1b(a>0,b>0,当且仅当a=b时取等号).这两个不等式链用处很大,注意掌握它们.三个注意(1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解题技巧:技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

高中数学基本不等式知识点归纳及练习题

高中数学基本不等式知识点归纳及练习题

高中数学基本不等式的巧用1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R );(2)b a +a b ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); (4)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用22 ⎛⎭⎪⎫a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形(1)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号);(2)a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0,当且仅当a =b 时取等号).这两个不等式链用处很大,注意掌握它们. 三个注意(1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

高中数学基本不等式知识点归纳及练习题

高中数学基本不等式知识点归纳及练习题

高中数学基本不等式的巧用1.基本不等式:ab ≤a +b 2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R );(2)b a +a b ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); (4)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)一个技巧运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是22⎛⎭⎪⎫a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥⎝⎭⎪⎫a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b这两个不等式链用处很大,注意掌握它们. 三个注意(1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解题技巧:技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

高中数学基本不等式知识点归纳及练习题

高中数学基本不等式知识点归纳及练习题

高中数学根本不等式的巧用1.根本不等式:ab ≤a +b2(1)根本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R );(2)b a +a b ≥2(a ,b 同号);(3)ab ≤⎝ ⎛⎭⎪⎪⎫a +b 22(a ,b ∈R );(4)a 2+b 22≥⎝ ⎛⎭⎪⎪⎫a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,根本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用根本不等式求最值问题 已知x >0,y >0,则(1)假如积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定与最小)(2)假如与x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:与定积最大) 一个技巧运用公式解题时,既要驾驭公式的正用,也要留意公式的逆用,例如a 2+22⎭⎪⎫a +b 22(a ,b >0)等.还要留意“添、拆项”技巧与公式等号成立的条件等.两个变形 (1)a 2+b 22≥⎝ ⎛⎭⎪⎪⎫a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号);a +b号).这两个不等式链用途很大,留意驾驭它们. 三个留意(1)运用根本不等式求最值,其失误的真正缘由是其存在前提“一正、二定、三相等”的无视.要利用根本不等式求最值,这三个条件缺一不行. (2)在运用根本不等式时,要特殊留意“拆”“拼”“凑”等技巧,使其满意根本不等式中“正”“定”“等”的条件.(3)连续运用公式时取等号的条件很严格,要求同时满意任何一次的字母取值存在且一样. 应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解题技巧: 技巧一:凑项例1:已知54x <,求函数14245y x x =-+-的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学基本不等式的巧用1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R );(2)b a +a b ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); (4)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是22⎛⎭⎪⎫a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形(1)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b这两个不等式链用处很大,注意掌握它们. 三个注意(1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解题技巧:技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。

技巧三: 分离例3. 求2710(1)1x x y x x ++=>-+的值域。

技巧四:换元技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()af x x x=+的单调性。

例:求函数224y x =+的值域。

练习.求下列函数的最小值,并求取得最小值时,x 的值.(1)231,(0)x x y x x ++=>(2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈ 2.已知01x <<,求函数(1)y x x =-.;3.203x <<,求函数(23)y x x =-. 条件求最值1.若实数满足2=+b a ,则ba33+的最小值是.变式:若44log log 2x y +=,求11x y+的最小值.并求x ,y 的值技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。

2:已知0,0x y >>,且191x y+=,求x y +的最小值。

变式: (1)若+∈R y x ,且12=+y x ,求yx11+的最小值(2)已知+∈R y x b a ,,,且1=+yb x a ,求y x +的最小值技巧七、已知x ,y 为正实数,且x 2+y 22=1,求x 1+y 2的最大值.技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab的最小值.技巧九、取平方5、已知x ,y 为正实数,3x +2y =10,求函数W =3x +2y 的最值. 应用二:利用基本不等式证明不等式1.已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a++>++2221)正数a ,b ,c 满足a +b +c =1,求证:(1-a )(1-b )(1-c )≥8abc 例6:已知a 、b 、c R +∈,且1a b c ++=。

求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭应用三:基本不等式与恒成立问题 例:已知0,0x y >>且191x y+=,求使不等式x y m +≥恒成立的实数m 的取值范围。

应用四:均值定理在比较大小中的应用: 例:若)2lg(),lg (lg 21,lg lg ,1b a R b a Q b a P b a +=+=⋅=>>,则R Q P ,,的大小关系是.解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(-x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+=当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

解析:由知,,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。

注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。

当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值。

解析一:本题看似无法运用基本不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。

当,即时,421)591y x x ≥+⨯+=+((当且仅当x =1时取“=”号) 解析二:本题看似无法运用基本不等式,可先换元,令t =x +1,化简原式在分离求最值。

22(1)7(1+10544=5t t t t y t t t t-+-++==++)当,即t =时,4259y t t≥⨯=(当t =2即x =1时取“=”号)。

评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。

即化为()(0,0)()Ay mg x B A B g x =++>>,g (x )恒正或恒负的形式,然后运用基本不等式来求最值。

24(2)x t t +=≥,则224y x =+2214(2)4x t t t x =+=+≥+因10,1t t t >⋅=,但1t t=解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调性。

因为1y t t =+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,故52y ≥。

所以,所求函数的值域为5,2⎡⎫+∞⎪⎢⎣⎭。

分析:“和”到“积”是一个缩小的过程,而且ba33⋅定值,因此考虑利用均值定理求最小值, 解:b a 33和都是正数,ba 33+≥632332==⋅+b a b a当ba33=时等号成立,由2=+b a 及ba33=得1==b a 即当1==b a 时,ba33+的最小值是6.错解..:0,0x y >>,且191x y +=,∴()1912x y x y x y ⎛⎫+=++≥= ⎪⎝⎭ 故 ()min 12x y += 。

错因:解法中两次连用基本不等式,在x y +≥x y =,在19xy+≥条件是19x y=即9y x =,取等号的条件的不一致,产生错误。

因此,在利用基本不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法。

正解:190,0,1x y x y >>+=,()1991061016y x x y x y x y x y⎛⎫∴+=++=++≥+= ⎪⎝⎭当且仅当9y xx y=时,上式等号成立,又191x y +=,可得4,12x y ==时,()min 16x y += 。

分析:因条件和结论分别是二次和一次,故采用公式ab ≤a 2+b 22。

同时还应化简1+y 2中y 2前面的系数为 12 , x 1+y 2=x2·1+y22= 2 x ·12 +y22下面将x ,12 +y22分别看成两个因式: x ·12 +y22≤x 2+(12 +y 22 )22 =x 2+y 22 +12 2 =34即x 1+y 2= 2 ·x12 +y 22 ≤342 分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。

法一:a =30-2b b +1 , ab =30-2b b +1 ·b =-2 b 2+30bb +1由a >0得,0<b <15令t =b +1,1<t <16,ab =-2t 2+34t -31t =-2(t +16t )+34∵t +16t≥2t ·16t=8∴ab ≤18 ∴y ≥118 当且仅当t =4,即b =3,a =6时,等号成立。

法二:由已知得:30-ab =a +2b ∵a +2b ≥22 ab ∴ 30-ab ≥22 ab令u =ab 则u 2+2 2 u -30≤0, -5 2 ≤u ≤3 2∴ab ≤3 2 ,ab ≤18,∴y ≥118点评:①本题考查不等式ab ba ≥+2)(+∈R b a ,的应用、不等式的解法及运算能力;②如何由已知不等式230ab a b =++)(+∈R b a ,出发求得ab 的范围,关键是寻找到ab b a 与+之间的关系,由此想到不等式ab ba ≥+2)(+∈R b a ,,这样将已知条件转换为含ab 的不等式,进而解得ab 的范围. 变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。

2.若直角三角形周长为1,求它的面积最大值。

解法一:若利用算术平均与平方平均之间的不等关系,a +b2≤a 2+b 22,本题很简单3x +2y ≤ 2 (3x )2+(2y )2= 2 3x +2y =2 5解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢。

相关文档
最新文档