高中数学选修2-3知识点总结
高中数学复习选修2-3 第一章章末总结 阶段复习课(一)
3. 的定义解释
是从Cmnn个 不Cnn同m元素中取出m个元素拼成一组,在从n个不同
元素中取出m个元素的同时,n个元素中剩余的n-m个元素就自
然C形mn 成了一组,所以 与 是相对应的,所以两数相等.
Cmn
Cnm n
【辨析】
1.组合与组合数的区别
组合与组合数是两个不同的概念,一个组合是由不同元素合成的一组数,组合
【辨析】
1.排列的概念 排列问题是针对不同元素的排列,若问题中允许元素重复,则不是排列问题. 2.排列与排列数的区别 排列与排列数是两个不同的概念,一个排列是按一定顺序排列的一列数,排列 数是所有不同排列的个数,是一个数.
三、组合 1.组合与组合数
概念
组合,组合数
一般地,从n个不同元素中取出m个元素合成一组, 叫做从n个不同元素中取出m个元素的一个组合, 所有不同组合的个数,叫做从n个不同元素中取 出m个元素的组合数.
各类方案之间是互斥的、 各步之间是关联的、相
并列的、独立的
互依存的
二、排列 1.排列与排列数
排列,排列数
排列 概念
一般地,从n个不同元素中取出m(m≤n)个元素, 按照一定的顺序排成一列,叫做从n个不同元素 中取出m个元素的一个排列 从n个不同元素中取出m(m≤n)个元素的所有不
排列数 同排列的个数,叫做从n个不同元素中取出m个
③④字a与C母knbaa的n,b次k是b数k一之种和“是符n号. ”,它可以是数、式及其他值.
⑤通项公式是对(a+b)n这个标准形式而言的,如(a-b)n的展 开式的通项公式是
Tk1 1 k Cnkankbk .
Ckn (n N*,k 0,1,2,,n)
(2)二项式定理的特征 ①二项展开式有n+1项,比二项式的次数大1. ②二项式系数与二项展开式系数是两个不同的概念. ③要注意逆用二项式定理来分析问题、解决问题.
高二数学(选修2-3人教B版)-计数原理全章总结
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和. 解:(2)由通项可知,展开式的第三项是
T3 C52 13 (2x)2 40x2
所以,第三项的系数为40.
例6、求 (1 2x)5的展开式的:
表示?
(a b)n (a b)(a b) (a b)
n个a b
Tr1 Cnr anr br
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
解:首先将A、B、C、D排成一排,共有 A44 种排法,每一种
排法都会产生五个“空”,在这五个“空”中任选一个,将E
放入,共有 C51 种方法;其次,E中的两个元素可以交换,有 A22
种方法.
所以,共有 A44 C51 A22 240 种不同的排法.
问题4 (a b)n 的展开式中的系数为什么可以用组合数的形式
(
Cm n1
ቤተ መጻሕፍቲ ባይዱ
Cmn
Cm1 n
)?
作业: 1.一个集合由8个元素组成,这个集合含有3个元素的子集有多 少个? 2.将6名应届大学毕业生分配到两个用人单位,每个单位至少 两人,一共有多少种不同的分配方案? 3.求 (9x 1 )18 展开式的常数项,并说明它是展开式的第几项.
3x
入,共有 A43 种排法. 所以,一共有A33 A43 144 种不同的排法.
例5、有6位同学站成一排,符合下列各题要求的不同排法有多 少种? (2)甲、乙相邻. 解:(2) 设除甲、乙之外的另外四个同学为A、B、C、D. 因为甲、乙要相邻,所以可以把甲、乙“绑”在一起看作一个 元素(记为E).
高中排列组合知识点 高二数学选修2-3排列组合易错知识点总结
《高中排列组合知识点高二数学选修2-3排列组合易错知识点总结》摘要:()()()(+)!()!(规定0!),()()!!(()!!);()();,()(+);!()!(!是阶乘);(两分别上标和下标)!;0!;(下标上标)排列组合是高二数学选修3教学重要容了助高二学生掌握排列组合容下面编给带高二数学选修3排列组合易错知识希望对你有助高二数学排列组合错知识排列组合问题依据是分类相加分步相乘有序排列无序组合排列组合问题规律是相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排排法;至多至少问题接法二项式系数与展开式某项系数易混r+项二项式系数二项式系数项与展开式系数项易混二项式系数项项或两项;展开式系数项法要用不等式组确定r3你掌握了三种常见概率公式吗?(①等可能事件概率公式;②斥事件有发生概率公式;③相独立事件发生概率公式)分布列答题你能把步骤写全吗?5如何对总体分布进行估计?(用样估计总体是研究统计问题基思想方法般地样容量越这种估计就越精确要能画出频率分布表和频率分布直方图;理频率分布直方图矩形面积几何义)6你还记得般正态总体如何化标准正态总体吗?(对任正态总体说取值x概率其表示标准正态总体取值概率)高二数学选修3知识排列及计算公式从不元素任取()元素按照定顺序排成列叫做从不元素取出元素排列;从不元素取出()元素所有排列数叫做从不元素取出元素排列数用()表示()()()(+)!()!(规定0!)组合及计算公式从不元素任取()元素并成组叫做从不元素取出元素组合;从不元素取出()元素所有组合数叫做从不元素取出元素组合数用()表示()()!!(()!!);()();3其他排列与组合公式从元素取出r元素循环排列数(r)r!r(r)!元素被分成k类每类数分别是k这元素全排列数!(!!k!)k类元素每类数无限从取出元素组合数(+k)排列((下标上标))()(+);!()!(!是阶乘);(两分别上标和下标)!;0!;(下标上标)组合((下标上标));!!()!;(两分别上标和下标);(下标上标);公式是指排列从元素取R进行排列公式是指组合从元素取R不进行排列元素总数R参与选择元素数!阶乘如9!987653从倒数r表达式应该()()(r+);因从到(r+)数(r+)r高二数学学习方法()记数学笔记特别是对概念理不侧面和数学规律教师课堂拓展课外知识记录下你觉得有价值思想方法或例题以及你还存问题以便今将其补上()建立数学纠错把平容易出现错误知识或推理记下以防再犯争取做到错、析错、改错、防错达到能从反面入手深入理正确东西;能由朔因把错误原因弄水落石出、以便对症下药;答问题完整、推理严密(3)熟记些数学规律和数学结论使己平运算技能达到了动化或半动化熟练程()常对知识结构进行梳理形成板块结构实行整体集装如表格化使知识结构目了然;常对习题进行类化由例到类由类到多类由多类到统;使几类问题归纳知识方法(5)数学课外籍与报刊参加数学学科课外活动与讲座多做数学课外题加学力拓展己知识面(6)及复习强化对基概念知识体系理与记忆进行适当反复巩固消灭前学忘(7)学会从多角、多层次地进行总结归类如①从数学思想分类②从题方法归类③从知识应用上分类等使所学知识系统化、条理化、专题化、络化(8)常做题进行定反思思考下题所用基础知识数学思想方法是什么什么要这样想是否还有别想法和法题分析方法与法其它问题是否也用到(9)无论是作业还是测验都应把准确性放位通法放位而不是味地追速或技巧这是学数学重要问题猜你感兴趣高二数学排列与组合知识总结高二数学选修知识总结3高二上学期数学复习知识归纳高二数学排列组合题技巧5高二上数学知识总结607高二数学排列组合公式知识总结。
人教版高中数学选修2-3知识点汇总
人教版高中数学必修2-3知识点第一章计数原理1.1分类加法计数与分步乘法计数分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。
分类要做到“不重不漏”。
分步乘法计数原理:完成一件事需要两个步骤。
做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。
分步要做到“步骤完整”。
n元集合A={a1,a2⋯,a n}的不同子集有2n个。
1.2排列与组合1.2.1排列一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列(arrangement)。
从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号表示。
排列数公式:n个元素的全排列数规定:0!=11.2.2组合一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合(combination)。
从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号或表示。
组合数公式:∴规定:组合数的性质:(“构建组合意义”——“殊途同归”)1.3二项式定理1.3.1二项式定理(binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。
1.3.2“杨辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律!(1)对称性(2)当n 是偶数时,共有奇数项,中间的一项取得最大值;当n 是奇数时,共有偶数项,中间的两项,同时取得最大值。
(3)各二项式系数的和为(4)二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和:(5)一般地,第二章随机变量及其分布2.1离散型随机变量及其分布(n ∈N *)其中各项的系数(k ∈{0,1,2,⋯,n})叫做二项式系数(binomial coefficient);2.1.1离散型随机变量随着试验结果变化而变化的变量称为随机变量(random variable)。
高中数学选修2-2,2-3知识点、考点、典型例题
高中数学选修2-2,2-3知识点、考点、典型例题高中数学选修2-2,2-3知识点、考点、典型例题一、2-2数列的概念、数列的通项公式及递推公式1. 数列的概念数列是按照一定规律排列的一系列数,一般用字母 an 表示第n 个数。
2. 数列的通项公式数列的通项公式是指通过数列的位置 n,直接求出该位置上的数 an 的公式。
通项公式可以是一个数学式子,也可以是一个算法。
3. 数列的递推公式数列的递推公式是指通过数列前一项或前几项的值,推导出数列下一项的公式。
递推公式是数列中相邻两项之间的关系式。
4. 常见数列的通项公式和递推公式- 等差数列:an = a1 + (n-1)d (通项公式),an = an-1 + d (递推公式)- 等比数列:an = a1 * q^(n-1) (通项公式),an = an-1 * q (递推公式)- 斐波那契数列:an = an-1 + an-2 (递推公式)二、2-3数列的求和、数列的性质及应用1. 数列的求和- 等差数列的前 n 项和:Sn = (a1 + an) * n / 2- 等比数列的前 n 项和(q ≠ 1):Sn = a1 * (1 - q^n) / (1 - q) - 斐波那契数列的前 n 项和:Sn = Fn+2 - 12. 数列的性质- 常数列:数列中的每一项都是一个常数。
- 奇数列:数列中的每一项都是奇数。
- 偶数列:数列中的每一项都是偶数。
- 单调递增数列:数列中的每一项都比前一项大。
- 单调递减数列:数列中的每一项都比前一项小。
- 正项数列:数列中的每一项都是正数。
- 负项数列:数列中的每一项都是负数。
3. 数列的应用- 利用数列的递推关系,求解实际问题中的特定数值。
- 利用数列的性质,进行数学推理和证明。
- 利用数列的规律,设计算法解决问题。
典型例题:1. 已知等差数列的前三项分别为 1,5,9,求数列的通项公式和第 n 项的值。
解:设数列的首项为 a,公差为 d,则有以下等差数列的递推公式:a2 = a1 + d = 1 + da3 = a2 + d = (1 + d) + d = 1 + 2d将 a1,a2,a3 分别代入等差数列的通项公式,可得:a1 = a = 1a2 = a + d = 1 + d = 5 --> d = 4a3 = a1 + 2d = 1 + 2(4) = 9所以该等差数列的通项公式为 an = a + (n-1)d = 1 + 4(n-1) = 4n - 3第 n 项的值为:an = 4n - 32. 求等差数列 3,6,9,...,101 的前 n 项和。
高中数学选修2-3题型总结
高中数学选修2-3题型总结(重点)本书重点:排列组合、概率第一章 计数原理 第二章 概率 一、基础知识1.加法原理:做一件事有n 类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,……,在第n 类办法中有mn 种不同的方法,那么完成这件事一共有N=m1+m2+…+mn 种不同的方法。
2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m1种不同的方法,第2步有m2种不同的方法,……,第n 步有mn 种不同的方法,那么完成这件事共有N=m1×m2×…×mn 种不同的方法。
3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m nA =n(n-1)…(n-m+1)=)!(!m n n -,其中m,n ∈N,m≤n, 注:一般地nA =1,0!=1,nn A =n!。
4.N 个不同元素的圆周排列数为n A nn =(n-1)!。
5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。
从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用mnC 表示:.)!(!!!)1()1(m n m n m m n n n C m n -=+--=6.【了解】组合数的基本性质:(1)m n n mnCC -=;(2)11--+=n n m nm n CC C;(3)kn k n C C k n =--11;(4)n nk kn n nnnC C C C 2010==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)kn mn m k k n C C C --=。
高中数学选修2-3知识点
高中数学选修2-3知识点高中数学选修2-3知识点第一章:计数原理1.分类加法计数原理:完成一件事情,有N类方法,第一类方法有M1种不同的方法,第二类方法有M2种不同的方法,以此类推,第N类方法有MN种不同的方法。
那么完成这件事情共有M1+M2+。
+MN种不同的方法。
2.分步乘法计数原理:完成一件事情需要分成N个步骤,第一步有m1种不同的方法,第二步有M2种不同的方法,以此类推,第N步有MN种不同的方法。
那么完成这件事情共有XXX种不同的方法。
3.排列:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
4.排列数:从n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不同元素中取出m个元素的m个排列。
从n个不同元素中取出m个元素的一个排列数,用符号An表示。
An=m!/(n-m)!(m≤n,n,m∈N)。
5.公式:A(n+m)=An+Am*m!(m≤n,n,m∈N);An=m*(m-1)*。
*(n-m+1)=n!/(n-m)。
6.组合:从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。
7.公式:C(m,n)=C(n,n-m)=m!/[(n-m)!*m!];C(m,n)=C(n-1,m-1)+C(n-1,m);C(n,m)=C(n-1,m-1)*(n-m+1)/m。
8.二项式定理:(a+b)^n=C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+。
+C(n,n)*a^0*b^n。
9.二项式通项公式展开式的通项公式:T=C(n,r)*a^(n-r)*b^r (r=0,1.n),其中C(n,r)为二项式系数。
10.二项式系数Cn:C(n,r)=C(n,n-r)=n!/(r!(n-r)!),其中r为从n个元素中取出的元素个数。
11.杨辉三角:杨辉三角是一种数学图形,由二项式系数构成,XXX的数为C(n,0),C(n,1)。
人教A版高中数学选修2-3三角函数的基本性质总结。
人教A版高中数学选修2-3三角函数的基
本性质总结。
人教A版高中数学选修2-3三角函数的基本性质总结
三角函数是高中数学中的重要内容,选修2-3课程主要讲授了三角函数的基本性质。
以下是对这些基本性质进行的总结:
正弦函数的基本性质:
- 定义域为全体实数;
- 值域为闭区间[-1, 1];
- 周期为2π,即sin(x + 2π) = sin(x);
- 奇函数,即sin(-x) = -sin(x);
- 单调递增函数。
余弦函数的基本性质:
- 定义域为全体实数;
- 值域为闭区间[-1, 1];
- 周期为2π,即cos(x + 2π) = cos(x);
- 偶函数,即cos(-x) = cos(x);
- 单调递减函数。
正切函数的基本性质:
- 定义域为实数集去除所有cot(x) = 0的点;
- 值域为全体实数;
- 周期为π,即tan(x + π) = tan(x);
- 奇函数,即tan(-x) = -tan(x);
- 周期性比较复杂,在特定区间上单调增加或减少。
余切函数的基本性质:
- 定义域为实数集去除所有tan(x) = 0的点;
- 值域为全体实数;
- 周期为π,即cot(x + π) = cot(x);
- 奇函数,即cot(-x) = -cot(x);
- 周期性比较复杂,在特定区间上单调增加或减少。
以上是人教A版高中数学选修2-3三角函数的基本性质的总结。
掌握这些性质可以帮助我们更好地理解和应用三角函数在数学中的
各种问题和计算中。
高中数学选修2-3知识点总结
高二数学选修 2-3 知识点第一章 计数原理 知识点:1、分类加法计数原理 :做一件事情,完成它有 N 类办法,在第一类办法中有M 1 种不同的方法,在第二类办法中有 M 2 种不同的方法, ⋯⋯ ,在第 N 类办法中有 M N 种不同的方 法,那么完成这件事情共有M 1+M 2+⋯⋯ +M N 种不同的方法。
2、分步乘法计数原理 :做一件事,完成它需要分成 N 个步骤,做第一 步有 m1 种不同的方法,做第二步有M 2不同的方法, ⋯⋯ ,做第 N 步有 M N 不同的方法 .那么完成这件事共有 N=M 1M 2 ...M N 种不同的方法。
3、排列 :从 n 个不同的元素中任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从 n 个......不同元素中取出 m 个元素的一个排列4、排列数 : Amn(n 1) ( n m 1)(nn! (m n, n, m N )m)!5、组合 :从 n 个不同的元素中任取m ( m ≤n ) 个元素并成一组, 叫做从 n 个不同元素中取出m 个元素的一个组合。
m A m n mn( n 1)1) (n m m 1) 1) mn! n!6、组合数:C n mA nn( n(n C n mCn A m mmm!C nm! (nm)!A mm!m! (n m)!C m n Cn mn ;C m 1mmnC nCn 1n0 n1 n 12 n 2 2⋯r n r r⋯n n7、二项式定理:( a b)C n aC n abC n ab C n a bC n b展开8、式二的项式通通项项公式 : T r1C n r an rb r(r 0, 1⋯⋯ n)第二章 随机变量及其分布 知识点:1、随机变量 :如果随机试验可能出现的结果可以用一个变量 X 来表示,并且 X 是随着试 验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ 、 η 等表示。
【强烈推荐】高中数学知识点总结-选修2-3
第一章 计数原理1.1 分类加法计数与分步乘法计数分类加法计数原理: 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法,那么完成这件事共有 N=m+n 种不同的方法。
分类要做到“不重不漏”。
分步乘法计数原理:完成一件事需要两个步骤。
做第1步有m 种不同的方法,做第2步有n 种不同的方法,那么完成这件事共有N=m ×n 种不同的方法。
分步要做到“步骤完整”。
n 元集合A={a 1,a 2⋯,a n }的不同子集有2n 个。
1.2 排列与组合 1.2.1 排列一般地,从n 个不同元素中取出m(m ≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列(arrangement)。
从n 个不同元素中取出m(m ≤n)个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数,用符号A n m 表示。
排列数公式:n 个元素的全排列数规定:0!=11.2.2 组合一般地,从n 个不同元素中取出m(m ≤n)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合(combination)。
从n 个不同元素中取出m(m ≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号C n m 或(n m )表示。
组合数公式:∵ A n m =C n m ∙A m m∴规定:C n 0组合数的性质:1.3 二项式定理1.3.1 二项式定理(binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。
1.3.2 “杨辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律! (1) 对称性(2) 当n 是偶数时,共有奇数项,中间的一项C n n 2+1取得最大值;当n 是奇数时,共有偶数项,中间的两项C n n−12,C n n+12同时取得最大值。
高中数学选修2-3知识点总结
高中数学选修2-3知识点总结Mathematics Elective 2-3 Chapter 1 Counting Principles Must-Know1.What is the principle of n n counting?Answer: To do something。
there are n ways to complete it。
In the first way。
there are m1 different methods。
in the second way。
there are m2 different methods。
in the nth way。
there are mn different methods。
Then there are N=m1+m2+。
+mn different ways to XXX.2.What is the principle of step-by-step n counting?Answer: To do something。
it requires n steps。
There are m1 different methods for the first step。
m2 different methods for the second step。
and mn different methods for the nth step。
Then there are N=m1×m2×。
×mn different ways to XXX.3.What is the n of n?Answer: Generally。
taking m (m≤n) different elements from n different elements。
XXX order。
is called a n of taking m elements from n different XXX.4.What is the n of n?Answer: Generally。
高中数学选修2-3(人教B版)第二章随机变量及其分布2.2知识点总结含..
描述:例题:高中数学选修2-3(人教B版)知识点总结含同步练习题及答案第二章 随机变量及其分布 2.2 条件概率与事件的独立性一、学习任务1. 了解条件概率的定义及计算公式,并会利用条件概率解决一些简单的实际问题.2. 能通过实例理解相互独立事件的定义及概率乘法公式,并能综合利用互斥事件的概率加法公式及独立事件的概率乘法公式.3. 理解独立重复试验的概率及意义,理解事件在 次独立重复试验中恰好发生 次的概率公式,并能利用 次独立重复试验的模型模拟 次独立重复试验.二、知识清单事件的独立性与条件概率独立重复试验与二项分布三、知识讲解1.事件的独立性与条件概率条件概率的概念一般地,设 ,为两个事件,且 ,称为在事件 发生的条件下,事件 发生的条件概率(conditional probability).读作 发生的条件下 发生的概率.条件概率的性质①条件概率具有概率的性质,任何事件的条件概率都在 和 之间,即.②如果 和 是两个互斥事件,则相互独立事件的概念设 ,为两个事件,若 ,则称事件 与事件 相互独立(mutually independent).相互独立事件同时发生的概率:如果事件 ,,, 相互独立,那么这 个事件同时发生的概率等于每个事件发生概率的积,即n k n n A B P (A )>0P (B |A )=P (AB )P (A )A B P (B |A )A B 0 1 0≤P (B|A)≤1 B CP (B ∪C |A )=P (B |A )+P (C |A ).A B P (AB )=P (A )P (B )A B A 1A 2⋯A n n P (⋯)=P ()P ()⋯P ().A 1A 2A n A 1A 2A n 甲、乙两地都位于长江下游,根据一百多年气象记录,知道甲、乙两地一年中雨天占的比例分别20%18%12%为 和 ,两地同时下雨的比例为 ,问:(1)乙地为雨天时甲地也为雨天的概率是多少?(2)甲地为雨天时乙地也为雨天的概率是多少?解:设“甲地为雨天”, “ 乙地为雨天”,则根据题意有(1)乙地为雨天时甲地也为雨天的概率(2)甲地为雨天时乙地也为雨天的概率是20%18%12%A =B =P (A )=0.20,P (B )=0.18,P (AB )=0.12.P (A |B )==≈0.67.P (AB )P (B )0.120.18P (B |A )===0.60.P (AB )P (A )0.120.20如图,四边形 是以 为圆心,半径 的圆内接正方形,将一颗豆子随机地扔到该圆内,用 表示事件“豆子落在正方形 内”, 表示事件“豆子落在扇形 (阴影部分)内”,则(1)______;(2)______.解:;圆 的面积是,正方形 的面积是 ,扇形 的面积是 ,由几何概型概率公式得 ,由条件概率公式得EFGH O 1A EFGH B OHE P (A )=P (B |A )=2π14O πEF GH 2OHE π4P (A )=2πP (B |A)===.P (AB )P (A)12π2π14掷一枚正方体骰子一次,设事件 :“出现偶数点”,事件 :“出现 点或 点”,则事件 , 的关系是( )A.互斥但不相互独立 B.相互独立但不互斥 C.互斥且相互独立 D.既不相互独立也不互斥解:B事件 ,事件 ,事件 ,基本事件空间 .所以,,,即 ,因此,事件 与 相互独立.当“出现 点”,事件 , 同时发生,所以 , 不是互斥事件.A B 36A B A ={2,4,6}B ={3,6}AB ={6}Ω={1,2,3,4,5,6}P (A )==3612P (B )==2613P (AB )==×161213P (AB )=P (A )P (B )A B 6A B A B 甲、乙两人在罚球线投球命中的概率分别为与 .(1)甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;(2)甲、乙两人在罚球线各投球二次,求这四次投球均不命中的概率.解:记“甲投一次命中”为事件 ,“乙投一次命中”为事件 ,则 ,1225A B P (A )=12213,,.(1)恰好命中一次的概率为(2)设事件“甲、乙两人在罚球线各投球二次均不命中”的概率为 ,则2P (B )=25P ()=A ¯¯¯12P ()=B ¯¯¯35P =P (A ⋅)+P (⋅B )B ¯¯¯A ¯¯¯=P (A )⋅P ()+P ()⋅P (B )B ¯¯¯A ¯¯¯=×+×12351225=.12P 1P 1=P (∩∩∩)A ¯¯¯A ¯¯¯B ¯¯¯B ¯¯¯=P ()⋅P ()⋅P ()⋅P ()A ¯¯¯A ¯¯¯B ¯¯¯B ¯¯¯=(1−(1−12)225)2=9100在一个选拔项目中,每个选手都需要进行 轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为,,,,且各轮问题能否正确回答互不影响.(1)求该选手进入第三轮才被淘汰的概率;(2)求该选手至多进入第三轮考核的概率;解:设事件 ( ,,, )表示“该选手能正确回答第 轮问题”,由已知得,,,.(1)设事件 表示“该选手进入第三轮才被淘汰”,则(2)设事件 表示“该选手至多进入第三轮考核”,则456453413A i i =1234i P ()=A 156P ()=A 245P ()=A 334P ()=A 413B P (B )=P ()A 1A 2A ¯¯¯3=P ()P ()P ()A 1A 2A ¯¯¯3=××(1−)564534=.16C P (C )=P (++)A ¯¯¯1A 1A ¯¯¯2A 1A 2A ¯¯¯3=P ()+P ()+P ()A ¯¯¯1A 1A ¯¯¯2A 1A 2A ¯¯¯3=+×+××(1−)165615564534=.12描述:例题:2.独立重复试验与二项分布独立重复试验一般地,在相同条件下重复做的 次试验,称为次独立重复试验(independent andrepeated trials).二项分布一般地,在 次独立重复试验中,用表示事件发生的次数,设每次试验中事件发生的概率为,则此时称随机变量服从二项分布(binnomial distribution),记作 ),并称为成功概率.n n n X A A p P (X =k )=(1−p ,k=0,1,2,⋯,n .C kn pk )n −k X X ∼B (n ,p ) p 下列随机变量 的分布列不属于二项分布的是( )A.投掷一枚均匀的骰子 次, 表示点数 出现的次数B.某射手射中目标的概率为 ,设每次射击是相互独立的, 为从开始射击到击中目标所需要的射击次数C.实力相等的甲、乙两选手举行了 局乒乓球比赛, 表示甲获胜的次数D.某星期内,每次下载某网站数据后被病毒感染的概率为 , 表示下载 次数据后电脑被病毒感染的次数解:B选项 A,试验出现的结果只有两个:点数为 和点数不为 ,且点数为 的概率在每一次试验都为 ,每一次试验都是独立的,故随机变量 服从二项分布;选项 B,,故随机变量 不服从二项分布;选项 C,甲、乙的获胜率都相等,举行 次比赛,相当于进行了 次独立重复试验,故 服从二项分布;选项 D,由二项分布的定义可知,被感染次数 .X 5X 6p X 5X 0.3X n 66616X P (X =1)=p ,P (X =2)=(1−p )p ,P (X =k )=(1−p p )(k −1)X 55X X ∼B (n ,0.3)口袋中有 个白色乒乓球, 个黄色乒乓球,从中选取 次,每次取 个后又放回,则 次中恰有 次取到白球的概率是( )A. B. C. D . 解:D任意取球 次,取得白球 次的概率是5551531235C 35C 510⋅C 350.5553P (X =3)=(1−0.5=⋅C 350.53)5−3C 350.55甲、乙两名同学进行三分球投篮比赛,甲每次投中的概率为 ,乙每次投中的概率为 ,每人分别进行三次投篮.(1)设甲投中的次数为 ,求 的分布列;(2)求乙至多投中 次的概率;(3)求乙恰好比甲多投中 次的概率.1312ξξ221四、课后作业 (查看更多本章节同步练习题,请到快乐学)解:(1), 的可能取值为 ,,,. 的分布列为:(2)设“乙至多投中 次”为事件 ,则(3)设“乙比甲多投中 次”为事件 ,“乙恰投中 次且甲恰投中 次”为事件,“乙恰投中 次且甲恰投中 次”为事件 ,则 ,, 为互斥事件,则所以乙恰好比甲多投中 次的概率为.ξ∼B (3,)13ξ0123P(ξ=0)=(=,C 0323)3827P (ξ=1)=()(=,C 131323)249P (ξ=2)=(()=,C 2313)22329P (ξ=3)=(=.C 3313)3127ξξP082714922931272A P (A )=1−(=.C 3312)3782A 120B 131B 2=∪A 1B 1B 2B 1B 2P (A )=P ()+P ()=×+×=.B 1B 282738491816216答案:解析:1. 某一批花生种子,如果每 粒发芽的概率为 ,那么播下 粒种子恰有 粒发芽的概率是 A .B .C .D .B 概率为 .14542()1662596625192625256625=C 24()452(1−)45296625答案:2. 某地区空气质量监测资料表明,一天的空气质量为优良的概率是 ,连续两天为优良的概率是,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 A .B .C .D .A0.750.6()0.80.750.60.453. 某厂生产电子元件,其产品的次品率为 ,现从一批产品中任意地连续取出 件,其中次品数 的5%2ξ高考不提分,赔付1万元,关注快乐学了解详情。
高中数学选修2-1、2-2、2-3知识总结
mn1C
m n
C
m n1
8、二项式定理: ( a b ) n C 0 n a n C 1 n a n 1 b C 2 n a n 2 b 2 … C n r a n r b r … C n n b n
二 项 9展 、开 二式 项的 式通 通项 项公 公式 式: T r 1 C n r a n r b r ( r 0 , 1 … … n )
② 解不等式 f '(x) 0或f '(x) 0 ;
③ 确定并指出函数的单调区间(区间形式,不要写范围形式),区间之间用“,”★隔开,不能 用“ ”连结。
8. 极值与最值
对于可导函数 f (x) ,在 x a 处取得极值,则 f '(a) 0 .
最值定理:连续函数在闭区间上一定有最大最小值.
若 f (x) 在开区间 (a, b) 有唯一的极值点,则是最值点。
求极值步骤:
① 确定函数 y f (x) 的定义域(不可或缺,否则易致错);
② 解不等式 f '(x)=0 ;
③ 检验 f '(x)=0 的根的两侧的 f '(x) 符号(一般通过列表)
求最值时,步骤在求极值的基础上,将各极值与端点处的函数值进行比较大小,切忌直接说某某 就是最大或者最小。
4、排列数:从 n 个不同元素中取出 m(m≤n)个元素排成一列,称为从 n 个不同元素中取出 m 个元素的
一个排列. 从 n 个不同元素中取出 m 个元素的一个排列数,用符号 Anm 表示。
Am n(n 1)(n m 1) n! (m n, n, m N) (n m)!
5、公式 Anm nAnm11
(答:(1)a=-3,b=4;(2) c (, 1) (9, ) )
高中数学选修2-3基础知识归纳(排列组合、概率问题)
一.基本原理1.加法原理:做一件事有n类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数记为。
四.处理排列组合应用题1.①明确要完成的是一件什么事(审题)②有序还是无序③分步还是分类。
2.解排列、组合题的基本策略(1)两种思路:①直接法:②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
这是解决排列组合应用题时一种常用的解题方法。
分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。
注意:分类不重复不遗漏。
即:每两类的交集为空集,所有各类的并集为全集。
(3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。
在处理排列组合问题时,常常既要分类,又要分步。
其原则是先分类,后分步。
(4)两种途径:①元素分析法;②位置分析法。
3.排列应用题:(1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来;(2) 特殊元素优先考虑、特殊位置优先考虑;例1. 电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有种不同的播放方式(结果用数值表示).解:分二步:首尾必须播放公益广告的有种;中间4个为不同的商业广告有种,从而应当填=48. 从而应填48.例2. 6人排成一行,甲不排在最左端,乙不排在最右端,共有多少种排法?解一:间接法:即解二:(1)分类求解:按甲排与不排在最右端分类.(3)相邻问题:捆邦法:对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。
高中数学选修2-3(人教A版)第一章计数原理1.2知识点总结含同步练习及答案
1 6 7 12 C0 12 < C12 < ⋯ < C12 > C12 > ⋯ > C12 ,所以 2x − 3 ⩾ 5 且 2x ⩽ 12 解得 4 ⩽ x ⩽ 6.
高考不提分,赔付1万元,关注快乐学了解详情。
− A5 9
= =
8 × 7 × 6 × 5 × (8 + 7) 8 × 7 × 6 × 5 × (24 − 9) = 1.
2×8×7×6×5×4+7×8×7×6×5 8×7×6×5×4×3×2×1−9×8×7×6×5
(3)根据原方程,可得
3x(x − 1)(x − 2) = 2(x + 1)x + 6x(x − 1).
0 10 (1)计算:C5 10 ⋅ C10 − C10 ; m−1 (2)证明:mCm n = nCn−1 .
解:(1)原式= (2)证明:因为
10 × 9 × 8 × 7 × 6 × 1 − 1 = 252 − 1 = 251 ; 5×4×3×2×1
Cm n =
n! , m!(n − m)! (n − 1)! n(n − 1)! n m−1 n n! ⋅ = = . Cn−1 = m m (m − 1)!(n − m)! m ⋅ (m − 1)!(n − m)! m!(n − m)!
正整数 1 到 n 的连乘积,叫做 n 的阶乘,用 n! 表示.另外,我们规定 0! = 1 .所以排列数公 式还可以写成
Am n =
(n − m)!
n!
.
组合的定义 一般地,从 n 个不同元素中取出 m (m ⩽ n )个元素合成一组,叫做从 n 个不同元素中取出 m 个元素的一个组合(combination). 组合数及组合数的公式 从 n 个不同元素中取出 m (m ⩽ n )个元素的所有不同组合的个数,叫做从 n 个不同元素中取 出 m 个元素的组合数,用符号 Cm n 表示.
高中数学全套讲义 选修2-3 正态分布 基础学生版
目录第九讲:正态分布.......................................................................................................... 错误!未定义书签。
考点一:正态分布 (2)题型一、正态分布综合题型 (3)课后综合巩固练习 (5)考点一:正态分布(1)概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为X 的概率密度曲线.曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. (2)正态分布定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布.服从正态分布的随机变量叫做正态随机变量,简称正态变量.正态变量概率密度曲线的函数表达式为22()2()x f x μσ--=,x ∈R ,其中μ,σ是参数,且0σ>,μ-∞<<+∞.式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作2(,)N μσ.正态变量的概率密度函数的图象叫做正态曲线.标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. 重要结论:①正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是68.3%,95.4%,99.7%.②正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则.若2~()N ξμσ,,()f x 为其概率密度函数,则称()()()xF x P x f t dt ξ-∞==⎰≤为概率分布函数,特别的,2~(01)N ξμσ-,,称22()t x x dt φ-=⎰为标准正态分布函数. ()()x P x μξφσ-<=.标准正态分布的值可以通过标准正态分布表查得.分布函数新课标不作要求,适当了解以加深对密度曲线的理解即可.(1)q p =-.题型一、正态分布综合题型1.(2016•绵阳模拟)设随机变量(,1)N ξμ-,若不等式20x -对任意实数x 都成立,且1()2P a ξ>=,则μ的值为( ) A .0B .1C .2D .32.(2016•抚州模拟)设随机变量2~(,)N ξμσ,对非负数常数k ,则(||)P k ξμσ-的值是( ) A .只与k 有关B .只与μ有关C .只与σ有关D .只与μ和σ有关3.(2019春•邢台期末)现对某次大型联考的1.2万份成绩进行分析,该成绩ξ服从正态分布2(520,)N σ,已知(470570)0.8P ξ=,则成绩高于570的学生人数约为( ) A .1200B .2400C .3000D .15004.(2019春•河南期末)某军工企业为某种型号的新式步枪生产了一批枪管,其口径误差(单位:微米)服从正态分布(1N ,23),从已经生产出的枪管中随机取出一只,则其口径误差在区间(4,7)内的概率为(附:若随机变量ξ服从正态分布2(,)μσ,则()68.27%P μσξμσ-<<+=,(22)95.45%)(P μσξμσ-<<+= )A .31.74%B .27.18%C .13.59%D .4.56%5.(2019春•顺德区期末)某玻璃工厂生产一种玻璃保护膜,为了调查一批产品的质量情况,随机抽取了10件样品检测质量指标(单位:分)如下:38,43,48,49,50,53,57,60,69,70.经计算得101153.710i i x x ===∑,9.9s == 生产合同中规定:质量指标在62分以上的产品为优质品,一批产品中优质品率不得低于15%.(Ⅰ)以这10件样品中优质品的频率估计这批产品的优质品率,从这批产品中任意抽取3件,求有2件为优质品的概率;(Ⅱ)根据生产经验,可以认为这种产品的质量指标服从正态分布2(,)N μσ,其中μ近似为样本平均数,2σ近似为样本方差,利用该正态分布,是否有足够的理由判断这批产品中优质品率满足生产合同的要求?附:若2~(,)X N μσ,(0.6827)P X μσμσ-<+≈,(22)0.9544P X μσμσ-<+≈课后综合巩固练习1.(2019春•上高县校级月考)已知两个正态分布密度函数22()2()(2i i x i ix e x R μσϕπσ--=∈,1i =,2)的图象如图所示,则( )A .12μμ<,12σσ<B .12μμ>,12σσ>C .12μμ<,12σσ>D .12μμ>,12σσ>2.(2019春•南昌期末)某中学组织了“自主招生数学选拔赛”,已知此次选拔赛的数学成绩X 服从正态分布(75,121)N ,考生共有1000人,估计数学成绩在75分到86分之间的人数约为( )人.(参考数据()0.6826P X μσμσ-<<+=,(22)0.9544)P X μσμσ-<<+= A .261B .341C .477D .6833.(2019春•许昌期末)某次高二数学联考测试中,学生的成绩X 服从正态分布(100,2)(0)σσ>,若X 在(85,115)内的概率为0.75,任意选取一名学生,则该生数学成绩高于115的概率为 .4.(2019春•五华区校级月考)某工厂抽取了一台设备A 在一段时间内生产的一批产品,测量一项质量指标值,绘制了如图所示的频率分布直方图.(1)计算该样本的平均值x ,方差2s ;(同一组中的数据用该组区间的中点值作代表) (2)根据长期生产经验,可以认为这台设备在正常状态下生产的产品的质量指标值服从正态分布2(,)N μσ,其中μ近似为样本平均值,2σ近似为样本方差2s .任取一个产品,记其质量指标值为X .若||X μσ-,则认为该产品为一等品;||2X σμσ<-,则认为该产品为二等品;若||2X μσ->,则认为该产品为不合格品.已知设备A 正常状态下每天生产这种产品1000个.()i 用样本估计总体,问该工厂一天生产的产品中不合格品是否超过3%?()ii 某公司向该工厂推出以旧换新活动,补足50万元即可用设备A 换得生产相同产品的改进设备B .经测试,设备B 正常状态下每天生产产品1200个,生产的产品为一等品的概率是70%,二等品的概率是26%,不合格品的概率是4%.若工厂生产一个一等品可获得利润50元,生产一个二等品可获得利润30元,生产一个不合格品亏损40元,试为工厂做出决策,是否需要换购设备B ?参考数据:①()0.6826P X μσμσ-<+=;②(22)0.9544P X μσμσ-<+=;③(33)0.9974P X μσμσ-<+=12.2≈.5.(2019春•龙岩期末)《福建省高考改革试点方案》规定:从2018年秋季高中入学的新生开始,不分文理科;2021年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成,将每门选考科目的考生原始成绩从高到低划分为A 、B +、B 、C +、C 、D +、D 、E 共8个等级,参照正态分布原则,确定各等级人数所占比例分别为3%、7%、18%、22%、22%、18%、7%、3%,选考科目成绩计人考生总成绩时,将A 至E 等级内的考生原始成绩,依照等比例转换法则,分别转换到[91,100]、[81,90]、[71.80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八个分数区间,得到考生的等级成绩某校高一年级共2000人,为给高一学生合理选科提供依据,对六门选考科目进行测试,其中化学考试原始成绩ξ基本服从正态分布(70,169)N . (1)求化学原始成绩在区间(57,96)的人数;(2)以各等级人数所占比例作为各分数区间发生的概率,按高考改革方案,若从全省考生中随机抽取3人,记X 表示这3人中等级成绩在区间[71,90]的人数,求事件2X ”的概率(附:若随机变量2~(,)N ξμσ,则()0.682P μσξμσ-<<+=,(22)0.954P μσξμσ-<<+=、(33)0997)P μσξμσ-<<+=。
高中数学选修2-3(人教B版)第一章计数原理1.4知识点总结含同步练习题及答案
描述:例题:高中数学选修2-3(人教B版)知识点总结含同步练习题及答案第一章 计数原理 1.3计数模型(补充)一、学习任务掌握计数的几种模型,并能处理一些简单的实际问题.二、知识清单数字组成模型 条件排列模型 分组分配模型染色模型计数杂题三、知识讲解1.数字组成模型与顺序相关的数字问题,通常是计算满足某些特征的数字的个数.常见特征比如各个数位的数字不同、四位数、奇数、比某数大的数、某个数位满足某种条件的数等等,其中各个数位数字可以相同的问题通常借助乘法原理分步解决,各个数位数字不相同通常是与排列相关的问题.由 、、、、 这五个数字可组成多少个无重复数字的五位数?解:首位不能是 ,有 种,后四位数有 种排列,所以这五个数可以组成 个无重复的五位数.012340C 14A 44=96C 14A 44用数字 、 组成四位数,且数字 、 至少都出现一次,这样的四位数共有______个(用数字作答).解:因为四位数的每个数位上都有两种可能性,其中四个数字全是 或 的情况不合题意,所以符合题意的四位数有 个.23231423−2=1424从 , 中选一个数字,从 、、 中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A. B. C. D.解:B当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,剩余 个数字排在首位,共有 种方法;当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,其余 个数字全排列,共有 种方法.依分类加法计数原理知共有 个奇数.02135241812601352C 2321C 121=6C 23C 1221352C 2321C 122=12C 23C 12A 226+12=18用 , ,, , , 这 个数字,可以组成______个大于 且小于 的012345630005421描述:例题:2.条件排列模型计算满足某些限制条件的排列的个数,常见的如相邻问题、不相邻问题、某位置不能排某人、某人只能或不能排在某些位置的问题等等.不重复的四位数.解:分四类:①千位数字为 , 之一时,百十个位数只要不重复即可,有 (个);②千位数字为 ,百位数字为 ,,, 之一时,共有 (个);③千位数字是 ,百位数字是 ,十位数字是 , 之一时,共有 (个);④最后还有 也满足条件.所以,所求四位数共有 (个).175342=120A 3550123=48A 14A 245401=6A 12A 135420120+48+6+1=175 名男生, 名女生,按照不同的要求排队,求不同的排队方案的方法种数.(1)全体站成一排,其中甲只能在中间或两端;(2)全体站成一排,男生必须排在一起;(3)全体站成一排,甲、乙不能相邻.解:(1)先考虑甲的位置,有 种方法,再考虑其余 人的位置,有 种方法.故有种方法;(2)(捆绑法)男生必须站在一起,即把 名男生进行全排列,有 种排法,与 名女生组成 个元素全排列,故有 种不同的排法;(3)(插空法)甲、乙不能相邻,先把剩余的 名同学全排列,有 种排法,然后将甲、乙分别插到 个空中,有 种排法,故有 种不同的排法.34A 136A 66=2160A 13A 663A 3345=720A 33A 555A 556A 26=3600A 55A 26有甲、乙、丙在内的 个人排成一排照相,其中甲和乙必须相邻,丙不排在两头,则这样的排法共有______种.解:甲和乙必须相邻,可将甲、乙捆绑,看成一个元素,与丙除外的另三个元素构成四个元素,自由排列,有 种方法;丙不排在两头,可对丙插空,插四个元素生成的中间的三个空中的任何一个,有 种方法;最后甲、乙两人的排法有 种方法.综上,总共有 种排法.6144A 44A 13A 22=144A 44A 13A 22 把椅子摆成一排, 人随机就座,任何两人不相邻的坐法种数为( )A. B. C. D.解:D“不相邻”应该用“插空法”,三个空椅子,形成 个空,三个坐人的椅子插入空中,因为人不同,所以需排序,所以有 种不同坐法.6314412072244=24A 34某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同课程的排法?解:法一: 门课程总的排法是 种,其中不符合要求的可分为:体育排在第一节有 种排法,数学排在最后一节有 种排法,但这两种方法,都包括体育在第一节,数学排在最后一节,这种情况有 种排法,因此符合条件的排法应是: 种.法二:① 体育、数学即不排在第一节也不排在最后一节,这种情况有 种排法;② 数学6A 66A 55A 55A 44−2+=504A 66A 55A 44⋅A 24A 44⋅144种颜色可供选择,则不同的着色方法共有______种.(以数字作答)72种花,且相邻的96高考不提分,赔付1万元,关注快乐学了解详情。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学选修2-3知识点总结
第一章 计数原理
1、分类加法计数原理:做一件事情,完成它有
N 类办法,在第一类办法中有M 1种不同的
方法,在第二类办法中有M 2种不同的方
法,……,在第N 类办法中有M N 种不同的
方法,那么完成这件事情共有
M 1+M 2+……+M N 种不同的方法。
2、分步乘法计数原理:做一件事,完成它需要
分成N 个步骤,做第一 步有m1种不同的
方法,做第二步有M 2不同的方法,……,
做第N 步有M N 不同的方法.那么完成这件
事共有 N=M 1M 2...M N 种不同的方法。
3、排列:从n 个不同的元素中任取m(m ≤n )个元
素,按照一定顺序......
排成一列,叫做从n 个不同元素中取出m 个元素的一个排列
4、排列数: ),,()!
(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=Λ 5、组合:从n 个不同的元素中任取m (m ≤n )个
元素并成一组,叫做从n 个不同元素中取出
m 个元素的一个组合。
6、组合数:)!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==Λ
)!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==Λ ;m n n m n C C -= m n m n m n C C C 1
1+-=+
7、二项式定理
:()a b C a C a b C a b C a b C b n n n n n n n n r n r r n
n n +=++++++---011222…… 8、二项式通项公式展开式的通项公式:,……T C a b r n r n
r n r r
+-==101() 9.二项式系数的性质:
()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变
量的函数()f r ,定义域是{0,1,2,,}n L ,
(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵m n m n n
C C -=). (2)增减性与最大值:当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项1
2n n C -,1
2n n C +取得最大值.
(3)各二项式系数和:∵1(1)1n r r n n
n x C x C x x +=+++++L L , 令1x =,则0122n r n n n n n n C C C C C =++++++L L
第二章 随机变量及其分布
知识点:
(3)随机变量:如果随机试验可能出现的结果
可以用一个变量X 来表示,并且X 是随着
试验的结果的不同而变化,那么这样的变量
叫做随机变量. 随机变量常用大写字母X 、
Y 等或希腊字母 ξ、η等表示。
(4)离散型随机变量:在上面的射击、产品检
验等例子中,对于随机变量X 可能取的值,
我们可以按一定次序一一列出,这样的随机
变量叫做离散型随机变量.
3、离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x1,x2,..... ,x i ,......,x n
X取每一个值x i(i=1,2,......)的概率P(ξ=x i)=
P i,则称表为离散型随机变量X 的概率分布,简
称分布列
4、分布列性质①p i≥0, i =1,2,…;②p1 + p2 +…+p n= 1.
5、二点分布:如果随机变量X的分布列为:
其中0<p<1,q=1-p,则称离散型随机
变量X服从参数p的二点分布
6、超几何分布:一般地, 设总数为N件的两类
物品,其中一类有M件,从所有物品中任取n(n
≤N)件,这n 件中所含这类物品件数X 是一个离散型随机变量,
则它取值为k 时的概率为()(0,1,2,,)k n k M N M n N
C C P X k k m C --===L , 其中{}min ,m M n =,且*,,,,n N M N n M N N ∈≤≤
7、条件概率:对任意事件A 和事件B ,在已知
事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率
8、公式:
.0)(,)()()|(>=A P A P AB P A B P
9、相互独立事件:事件A(或B)是否发生对事件
B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
)()()(B P A P B A P ⋅=⋅
10、n 次独立重复事件:在同等条件下进行的,
各次之间相互独立的一种试验
11、二项分布: 设在n 次独立重复试验中某个
事件A 发生的次数,A 发生次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p ,事件A 不发生的概率为q=1-p ,那么在n 次独立重复试验中 )(k P =ξk n k k n q p C -=(其
中k=0,1, ……,n,q=1-p )
于是可得随机变量ξ的概率分布如下:
这样的随机变量ξ服从二项分布,记作ξ~B(n,p) ,其中n,p为参数
12、数学期望:一般地,若离散型随机变量ξ的
概率分布为
则称Eξ=x1p1+x2p2+…+xnpn+…为ξ的数学期望或平均数、均值,数学期望又简
称为期望.是离散型随机变量。
13、方差:D(ξ)=(x1-Eξ)2·P1+(x2-Eξ)2·P2
+......+(x n-Eξ)2·P n 叫随机变量ξ的均方
差,简称方差。
14、集中分布的期望与方差一览:
期望方差
两点分布Eξ=p Dξ=pq,q=1-p
15、正态分布:
若概率密度曲线就是或近似地是函数
)
,(,
21)(222)(+∞-∞∈=--x e x f x σμσπ
的图像,其中解析式中的实数0)μσ
σ>、(是参数,分别表示总体的平均数与标准差.
则其分布叫正态分布(,)N μσ记作:,f( x )的图象称为
正态曲线。
16、基本性质:
①曲线在x 轴的上方,与x 轴不相交. ②曲线关于直线x=μ对称,且在x=μ时位于最高
点.
③当时μ<x ,曲线上升;当时μ>x ,曲线下降.并
且当曲线向左、右两边无限延伸时,以x
二项分布,ξ ~ B (n,p ) Eξ=np
Dξ=qEξ=npq ,(q=1-p )
轴为渐近线,向它无限靠近.
④当μ一定时,曲线的形状由σ确定.σ越大,曲
线越“矮胖”,表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.
⑤当σ相同时,正态分布曲线的位置由期望值μ
来决定.
⑥正态曲线下的总面积等于1.
17、 3σ原则:
从上表看到,正态总体在
)2,2(σμσμ+- 以外取值的概率 只有4.6%,在 )3,3(σμσμ+-以外取值的概率只有0.3% 由于这些概率很小,通常称这些情况发生为小概率事件.也就是说,通常认为这些情况在一次试验中几乎是不可能发生的.。