高考数学专题复习函数隐性零点的处理技巧
《函数隐性零点的处理技巧》
函数隐性零点的处理技巧近些年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。
用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。
函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。
根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的, 不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。
本专题通过几个具体的例题来体会隐性零点的处理步骤和思想方法。
一、隐性零点问题示例及简要分析:1.求参数的最值或取值范围例1(2012年全国I 卷)设函数f (x )=e x ﹣ax ﹣2. (1)求f (x )的单调区间;(2)若a=1,k 为整数,且当x >0时,(x ﹣k )f ′(x )+x+1>0,求k 的最大值. 解析:(1)(略解)若a≤0,则f ′(x )>0,f (x )在R 上单调递增; 若a >0,则f (x )的单调减区间是(﹣∞,lna ),增区间是(lna ,+∞). (2)由于a=1,所以(x ﹣k )f′(x )+x+1=(x ﹣k )(e x ﹣1)+x+1. 故当x >0时,(x ﹣k )f ′(x )+x+1>0等价于k <11-+xe x +x (x >0)(*), 令g (x )=11-+x e x +x ,则g′(x )=2)1()2(---x x x e x e e , 而函数f (x )=e x ﹣x ﹣2在(0,+∞)上单调递增,①f (1)<0,f (2)>0, 所以f (x )在(0,+∞)存在唯一的零点.故g ′(x )在(0,+∞)存在唯一的零点. 设此零点为a ,则a ∈(1,2).当x ∈(0,a )时,g ′(x )<0;当x ∈(a ,+∞)时,g ′(x )>0.所以g (x )在(0,+∞)的最小值为g (a ).③所以g (a )=a+1∈(2,3).由于(*)式等价于k <g (a ),故整数k 的最大值为2. 点评:从第2问解答过程可以看出,处理函数隐性零点三个步骤: ①确定零点的存在范围(本题是由零点的存在性定理及单调性确定); ②根据零点的意义进行代数式的替换;③结合前两步,确定目标式的范围。
高考培优微专题《隐零点问题》解析版
高考数学培优微专题《隐零点问题》【考点辨析】隐零点主要指在研究导数问题中遇到的对于导函数f ′(x )=0时,不能够直接运算出来或是不能够估算出来,导致自己知道方程有根存在,但是又不能够找到具体的根是多少,通常都是设x =x 0,使得f ′(x )=0成立,这样的x 0就称为“隐零点”.【知识储备】针对隐零点问题的解决步骤:(1)求导判定是不是隐零点问题;(2)设x =x 0,使得f ′(x 0)=0成立;(3)得到单调性,并找到最值,将x 0代入f (x ),得到f (x 0);(4)再将x 0的等式代换,再求解(注意:x 0的取值范围).【例题讲解】类型一:确定函数的隐零点问题1.已知函数f (x )=axe x -x -ln x(2)当a =1时,求f (x )的最小值.【解析】【答案】(1)当a =0时,g (x )=-x -ln x x ,定义域为0,+∞ ,则g ′(x )=-1+ln x x 2,由g ′(x )>0⇒x >e ;g ′(x )<0⇒0<x <e ,故函数g (x )的增区间为e ,+∞ ,减区间为0,e .(2)当a =1时,f (x )=xe x -x -ln x ,定义域为0,+∞ ,则f ′(x )=x +1 e x -1-1x =x +1 e x -1+x x =x +1 e x -1x 令h (x )=e x -1x (x >0),则h ′(x )=e x +1x2>0,所以h (x )在0,+∞ 单调递增,又h (1)=e -1>0,h 12 =e -2<0,∴h (x )存在唯一零点x 0,x 0∈12,1 ,即e x 0=1x 0,且x 0为也是f ′(x )的唯一零点,则0,x 0 x 0,+∞f ′(x )-+f (x )单调递减单调递增∴f (x )≥f (x 0)=x 0e x 0-x 0-ln x 0,由e x 0=1x 0,有x 0=-ln x 0,则f (x 0)=x 0⋅1x 0+ln x 0-ln x 0=1,从而f (x )≥f (x 0)=1,即证2.已知函数f x =ae x +b ln x ,且曲线y =f x 在点(1,f (1))处的切线方程为y =e -1 x +1.⑴求f x 的解析式;⑵证明:f x >136.【解析】【答案】解:(1)f ′(x )=ae x +b x,k =f ′(1)=ae +b =e -1,又f (1)=ae =e ,解得:a =1,b =-1,∴f (x )=e x -ln x ,(2)由(1)知f ′(x )=e x -1x ,∴f (x )=e x +1x 2>0在(0,+∞)上恒成立,∴f ′(x )在(0,+∞)上为增函数,又f ′12 =e 12-2<0,f ′23 =e 23-32>0,故存在x 0∈12,23 使f ′(x 0)=e x 0-1x 0,当x 0∈(0,x 0),f ′(x 0)<0,当x 0∈(x 0,+∞),f ′(x 0)>0,f (x )min =f (x 0)=e x 0-ln x 0=x 0+1x 0,又函数g (x )=x +1x 在12,23 上单调递减,故x 0+1x 0>23+32=136,即f (x )>136.3.已知函数f (x )=ax +x ln x (a ∈R )(2)当a =1且k ∈Z 时,不等式k (x -1)<f (x )在x ∈(1,+∞)上恒成立,求k 的最大值.【解析】【解答】解:(2)a =1时,f (x )=x +ln x ,k ∈Z 时,不等式k (x -1)<f (x )在x ∈(1,+∞)上恒成立,∴k <(x +xlnx x -1)min,令g (x )=x +xlnx x -1,则g ′(x )=x -lnx -2(x -1)2,令h (x )=x -ln x -2(x >1).则h ′(x )=1-1x =x -1x>0,∴h (x )在(1,+∞)上单增,∵h (3)=1-ln3<0,h (4)=2-2ln2>0,存在x 0∈(3,4),使h (x 0)=0.即当1<x <x 0时h (x )<0即g ′(x )<0x >x 0时h (x )>0即g ′(x )>0g (x )在(1,x 0)上单减,在(x 0+∞)上单增.令h (x 0)=x 0-ln x 0-2=0,即ln x 0=x 0-2,g (x )min =g (x 0)=x 0(1+lnx 0)x 0-1=x 0(1+x 0-2)x 0-1=x 0∈(3,4).k <g (x )min =x 0∈(3,4),且k ∈Z ,∴k max =3.类型二:含参函数的隐零点4.已知函数f (x )=e x +(a -e )x -ax 2.(2)若函数f (x )在区间(0,1)内存在零点,求实数a 的取值范围.【解析】【解析】(2)由题意得f ′(x )=e x -2ax +a -e ,设g (x )=e x -2ax +a -e ,则g ′(x )=e x -2a .若a =0,则f (x )的最大值f (1)=0,故由(1)得f (x )在区间(0,1)内没有零点.若a <0,则g ′(x )=e x -2a >0,故函数g (x )在区间(0,1)内单调递增.又g (0)=1+a -e <0,g (1)=-a >0,所以存在x 0∈(0,1),使g (x 0)=0.故当x ∈(0,x 0)时,f ′(x )<0,f (x )单调递减;当x ∈(x 0,1)时,f ′(x )>0,f (x )单调递增.因为f (0)=1,f (1)=0,所以当a <0时,f (x )在区间(0,1)内存在零点.若a >0,由(1)得当x ∈(0,1)时,e x >ex .则f (x )=e x +(a -e )x -ax 2>ex +(a -e )x -ax 2=a (x -x 2)>0,此时函数f (x )在区间(0,1)内没有零点.综上,实数a 的取值范围为(-∞,0).5.已知函数f (x )=e x -a -ln (x +a )(a >0).(2)若函数f (x )在区间(0,+∞)上的最小值为1,求实数a 的值.【解析】(1)证明:因为f (x )=e x -a -ln (x +a )(a >0),所以f ′(x )=e x -a -1x +a .因为y =e x -a 在区间(0,+∞)上单调递增,y =1x +a在区间(0,+∞)上单调递减,所以函数f ′(x )在(0,+∞)上单调递增.又f ′(0)=e -a -1a =a -e a aea ,令g (a )=a -e a (a >0),g ′(a )=1-e a <0,则g (a )在(0,+∞)上单调递减,g (a )<g (0)=-1,故f ′(0)<0.令m =a +1,则f ′(m )=f ′(a +1)=e -12a +1>0,所以函数f ′(x )在(0,+∞)上存在唯一的零点.(2)解:由(1)可知存在唯一的x 0∈(0,+∞),使得f ′(x 0)=e x 0-a -1x 0+a =0,即e x 0-a =1x 0+a.(*)函数f ′(x )=e x -a -1x +a在(0,+∞)上单调递增,所以当x ∈(0,x 0)时,f ′(x )<0,f (x )单调递减;当x ∈(x 0,+∞)时,f ′(x )>0,f (x )单调递增.所以f (x )min =f (x 0)=e x 0-a-ln (x 0+a ),由(*)式得f (x )min =f (x 0)=1x 0+a-ln (x 0+a ).所以1x 0+a-ln (x 0+a )=1,显然x 0+a =1是方程的解.又因为y =1x -ln x 在定义域上单调递减,方程1x 0+a-ln (x 0+a )=1有且仅有唯一的解x 0+a =1,把x 0=1-a 代入(*)式,得e 1-2a =1,所以a =12,即所求实数a 的值为12.6.已知函数f (x )=a ln x -1x ,a ∈R .(1)讨论f (x )的单调性;(2)若关于x 的不等式f (x )≤x -2e 在(0,+∞)上恒成立,求a 的取值范围.【解析】解 (1)因为f (x )=a ln x -1x 的定义域为(0,+∞),且f ′(x )=a x +1x 2=ax +1x 2.①若a ≥0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.②若a <0,令f ′(x )=0,得x =-1a .当x ∈0,-1a 时,f ′(x )>0;当x ∈-1a ,+∞ 时,f ′(x )<0.所以f (x )在0,-1a 上单调递增,在-1a ,+∞ 上单调递减.(2)不等式f (x )≤x -2e 在(0,+∞)上恒成立等价于a ln x -x -1x +2e ≤0在(0,+∞)上恒成立,令g (x )=a ln x -x -1x +2e,则g ′(x )=a x -1+1x 2=-x 2-ax -1x 2.对于函数y =x 2-ax -1,Δ=a 2+4>0,所以其必有两个零点.又两个零点之积为-1,所以两个零点一正一负,设其中一个零点x 0∈(0,+∞),则x 20-ax 0-1=0,即a =x 0-1x 0.此时g (x )在(0,x 0)上单调递增,在(x 0,+∞)上单调递减,故g (x 0)≤0,即x 0-1x 0 ln x 0-x 0-1x 0+2e≤0.设函数h (x )=x -1x ln x -x -1x +2e,则h ′(x )=1+1x 2 ln x +1-1x 2-1+1x 2=1+1x2 ln x .当x ∈(0,1)时,h ′(x )<0;当x ∈(1,+∞)时,h ′(x )>0.所以h (x )在(0,1)上单调递减,在(1,+∞)上单调递增.又h 1e =h (e )=0,所以x 0∈1e ,e .由a =x 0-1x 0在1e ,e 上单调递增,得a ∈1e -e ,e -1e.【解题策略】____________________________________________________________________________________________________________________________________________________________________________________________________________【教考衔接】1.函数f(x)=xe x-ax+b的图象在x=0处的切线方程为:y=-x+1.(1)求a和b的值;(2)若f(x)满足:当x>0时,f(x)≥ln x-x+m,求实数m的取值范围.【解析】【解答】解:(1)∵f(x)=xe x-ax+b,∴f′(x)=(x+1)e x-a,由函数f(x)的图象在x=0处的切线方程为:y=-x+1,知:f(0)=b=1f'(0)=1-a=-1,解得a=2,b=1.(2)∵f(x)满足:当x>0时,f(x)≥ln x-x+m,∴m≤xe x-x-ln x+1,令g(x)=xe x-x-ln x+1,x>0,则g'(x)=(x+1)e x-1-1x=(x+1)(xe x-1)x,设g′(x0)=0,x0>0,则e x0=1x0,从而ln x0=-x0,g′(12)=3(e2-1)<0,g′(1)=2(e-1)>0,由g′(12)-g′(1)<0,知:x0∈(12,1),当x∈(0,x0)时,g′(x)<0;当x∈(x0,+∞)时,g′(x)>0,∴函数g(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增.∴g(x)min=g(x0)=x0e x0-x0-ln x0=x0e x0-x0-ln x0=x0•1x-x0+x0=1.m≤xe x-x-ln x+1恒成立⇔m≤g(x)min,∴实数m的取值范围是:(-∞,1].2.已知函数f(x)=e x-(k+1)ln x+2sinα.(1)若函数f(x)在(0,+∞)上单调递增,求实数k的取值范围;(2)当k=0时,证明:函数f(x)无零点.【解析】(1)解 f′(x)=e x-k+1x,x>0,∵函数f(x)在(0,+∞)上单调递增,∴e x-k+1x≥0在(0,+∞)上恒成立,即k+1≤xe x在(0,+∞)上恒成立,设h(x)=xe x,则h′(x)=(x+1)e x>0在(0,+∞)上恒成立.∴函数h(x)=xe x在(0,+∞)上单调递增,则h(x)>h(0)=0,∴k+1≤0,即k≤-1,故实数k的取值范围是(-∞,-1].(2)证明 当k=0时,f′(x)=e x-1x,x>0,令g(x)=e x-1x,x>0,则g′(x)=e x+1x2>0,∴f′(x)在(0,+∞)上单调递增,且f′12 =e-2<0,f′(1)=e-1>0,∴存在m∈12,1,使得f′(m)=0,得e m=1m,故m=-ln m,当x∈(0,m)时,f′(x)<0,f(x)单调递减,当x∈(m,+∞)时,f′(x)>0,f(x)单调递增,∴f(x)min=f(m)=e m-ln m+2sinα=1m+m+2sinα>2+2sinα≥0,∴函数f(x)无零点.3.设函数f(x)=e x-ax-2.(1)讨论f(x)的单调性;(2)a=1,k为整数,且当x>0时,(x-k)f′(x)+x+1>0,求k的最大值.【解析】解:(1)f(x)的定义域为(-∞,+∞),f′(x)=e x-a.若a≤0,则f′(x)>0,所以f(x)在(-∞,+∞)上单调递增.若a>0,则当x∈(-∞,ln a)时,f′(x)<0;当x∈(ln a,+∞)时,f′(x)>0,所以f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增.(2)由于a=1,所以(x-k)f′(x)+x+1=(x-k)(e x-1)+x+1.故当x>0时,(x-k)f′(x)+x+1>0等价于k<x+1e x-1+x(x>0).①令g(x)=x+1e x-1+x,则g′(x)=e x(e x-x-2)(e x-1)2.由(1)知,函数h(x)=e x-x-2在(0,+∞)上单调递增.而h(1)<0,h(2)>0,所以h(x)在(0, +∞)上存在唯一的零点.故g′(x)在(0,+∞)上存在唯一的零点.设此零点为α,则α∈(1,2).当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0.所以g(x)在(0,+∞)上的最小值为g(α).又由g′(α)=0,可得eα=α+2,所以g(α)=α+1∈(2,3).由于①式等价于k<g(α),故整数k的最大值为2.4.已知函数f(x)=e x+1-2x+1,g(x)=ln x x+2.(1)求函数g(x)的极值;(2)当x>0时,证明:f(x)≥g(x).【解析】(1)解 g(x)=ln xx+2定义域为(0,+∞),g′(x)=1-ln xx2,则当x∈(0,e)时,g′(x)>0,g(x)在(0,e)上单调递增,当x∈(e,+∞)时,g′(x)<0,g(x)在(e,+∞)上单调递减,故函数g(x)的极大值为g(e)=1e+2,无极小值.(2)证明 f(x)≥g(x)等价于证明xe x+1-2≥ln x+x(x>0),即xe x+1-ln x-x-2≥0.令h (x )=xe x +1-ln x -x -2(x >0),h ′(x )=(x +1)e x +1-1+x x =(x +1)e x +1-1x ,令φ(x )=e x +1-1x,则φ(x )在(0,+∞)上单调递增,而φ110 =e 1110-10<e 2-10<0,φ(1)=e 2-1>0,故φ(x )在(0,+∞)上存在唯一零点x 0,且x 0∈110,1,当x ∈(0,x 0)时,φ(x )<0,h ′(x )<0,h (x )在(0,x 0)上单调递减;当x ∈(x 0,+∞)时,φ(x )>0,h ′(x )>0,h (x )在(x 0,+∞)上单调递增,故h (x )min =h (x 0)=x 0e x 0+1-ln x 0-x 0-2,又因为φ(x 0)=0,即e x 0+1=1x 0,所以h (x 0)=-ln x 0-x 0-1=(x 0+1)-x 0-1=0,从而h (x )≥h (x 0)=0,即f (x )≥g (x ).5.已知函数f (x )=a cos x +be x (a ,b ∈R ),曲线y =f (x )在点(0,f (0))处的切线方程为y =-x .(1)求实数a ,b 的值;(2)当x ∈-π2,+∞ 时,f (x )≤c (c ∈Z )恒成立,求c 的最小值.【解析】解 (1)因为f ′(x )=-a sin x +be x ,所以f ′(0)=b =-1,f (0)=a +b =0,解得a =1,b =-1.(2)由(1)知f (x )=cos x -e x ,x ∈-π2,+∞ ,所以f ′(x )=-sin x -e x ,设g (x )=-sin x -e xg ′(x )=-cos x -e x =-(cos x +e x ).当x ∈-π2,0 时,cos x ≥0,e x >0,所以g ′(x )<0;当x ∈0,+∞ 时,-1≤cos x ≤1,e x >1,所以g ′(x )<0.所以当x ∈-π2,+∞ 时,g ′(x )<0,g (x )单调递减,即f ′(x )单调递减.因为f ′(0)=-1<0,f ′-π4 =22-e -π4=12 12-1e π2 12,因为e π2>e >2,所以1e π2 12<12 12,所以f ′-π4>0,所以∃x 0∈-π4,0,使得f ′(x 0)=-sin x 0-e x 0=0,即e x 0=-sin x 0.所以当x ∈-π2,x 0 时,f ′(x )>0,f (x )单调递增;当x ∈(x 0,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )max =f (x 0)=cos x 0-e x 0=cos x 0+sin x 0=2sin x 0+π4 .因为x 0∈-π4,0 ,所以x 0+π4∈0,π4 ,所以sin x 0+π4 ∈0,22 ,所以f (x 0)∈(0,1).由题意知,c ≥f (x 0),所以整数c 的最小值为1.。
导数隐零点问题处理的8大技巧(附30道经典题目)
导数隐零点问题处理的8大技巧(附30道经典题目)导数隐零点问题处理的8大技巧如下:1.分类讨论:对于含参数的零点问题,常常需要根据参数的不同取值范围进行分类讨论。
2.构造函数:利用导数研究函数的单调性,进而研究不等式恒成立问题。
3.分离参数:通过分离参数将参数与变量分开,转化为求最值问题。
4.数形结合:利用数形结合思想,将函数图像与x轴的交点问题转化为求函数的最值问题。
5.转化与化归:将复杂问题转化为简单问题,将陌生问题转化为熟悉问题。
6.构造法:通过构造新的函数或方程,将问题转化为已知的问题进行求解。
7.放缩法:通过对不等式进行放缩,将问题转化为易于处理的形式。
8.判别式法:通过引入判别式,将方程问题转化为二次方程的判别式问题。
以下是30道经典题目,以供练习:1.已知函数f(x)=x3−3x2+5,则f(x)的单调递增区间为( )A.(−∞,1)和(2,+∞)B.(−∞,−1)和(1,+∞)C.(−∞,−1)和(2,+∞)D.(−∞,2)和(1,+∞)2.已知函数f(x)=x3−3x2+5,则f(x)在区间[−2,3]上的最大值是____.3.已知函数f(x)=x3+ax2+bx+c在x=1和x=−21时取极值.(1)求a,b的值;(2)求函数极值.4. 已知函数f(x)=x3−3ax2+4,若x∈[0,2]时,f(x)的最大值为417,求实数a的取值范围.5. 已知函数f(x)=ln x−mx+m有唯一的零点,则实数m的取值范围是____.6. 已知函数 f(x) = x^3 - 3ax^2 + 3x + 1,若 x ∈ [0,1] 时,f(x) ≤ f(0) 恒成立,则 m 的取值范围是 _______.7. 已知函数 f(x) = ax^3 + bx^2 - 3x (a、b ∈ Z) 在 x = ±1 和x = ±2 时取极值.(1) 求 f(x) 的解析式;(2) 求 f(x) 的单调区间和极值;8. 已知函数 f(x) = x^3 + ax^2 + bx + c 在 x = ±1 和 x = ±3时取极值.(1) 求 a,b 的值;(2) 求 f(x) 的单调区间和极值.1.已知函数 f(x) = x^3 - 3x^2 + 4 在 [0,3] 上的最大值和最小值分别为 M, N,则 M + N = _______.2.设f(x)=x3−3x2+4,则f(−x)+f(x)的值等于____3.已知函数f(x)=x3−3x2+4,则f(x)在(−3,2)上的最大值是____.4.已知函数f(x)=x3−3x2+4,则f(x)在区间[−1,3]上的最大值是____.5.已知函数f(x)=x3−3ax2+bx+c在x=±1时取极值,且函数y=f(x)图象过原点.(1) 求函数y=f(x)的表达式;(2) 求函数的单调区间和极值;14. 已知函数 f(x) = x^3 - 3ax^2 + bx 在 x = -1 和 x = 3 时取极值.(1) 求 a,b 的值;(2) 求 f(x) 在区间 [-2,4] 上的最大值和最小值.15. 已知函数 f(x) = ax^3 + bx^2 + c 在 x = ±1 和 x = ±2 时取极值.(1) 求 a,b 的值;(2) 若 f(x) 的最大值为 8,求 c 的值.16. 已知函数 f(x) = ax^3 + bx^2 + c 在 x = ±1 和 x = ±√2 时取极值,且 f(-2) = -4.(1) 求 a,b,c 的值;(2) 求 f(x) 在区间 [-3,3] 上的最大值和最小值.17. 已知函数 f(x) = x^3 - 3ax^2 + b (a > 0),若 f(x) 在区间[-1,0] 上是减函数,则 a 的取值范围是 _______.18. 若关于 x 的方程 x^3 - 3ax + a^3 = 0 有实根,则实数 a 的取值范围是 _______.19. 若关于 x 的方程 x^3 - ax^2 + b = 0 有三个不同的实根,则 a,b 应满足的条件是 _______.20. 若关于 x 的方程 x^3 - ax^2 + b = 0 有三个不同的实根,则 b应满足的条件是 _______.1.函数 f(x) = x^3 - 3x^2 + 4 在区间 [-1,3] 上的最大值和最小值分别为 _______.2.已知函数 f(x) = x^3 - 3x^2 + 4,若实数 x,y 满足 f(x) +3x^2 ≤ f(y) + 3y^2,则 x + y 的取值范围是 _______.3.已知函数 f(x) = x^3 - 3x^2 + 4,若实数 x,y 满足 f(x) ≤f(y) + 3,则 x + y 的取值范围是 _______.4.若关于 x 的方程 x^3 - ax^2 + b = 0 有三个不同的实根,则a,b 应满足的条件是 _______.5.已知函数 f(x) = x^3 - 3ax^2 + b 在 x = -1 和 x = 3 时取极值.(1) 求 a,b 的值;(2) 求 f(x) 在区间 [-3,3] 上的最大值和最小值.26. 若关于 x 的方程 x^3 - ax^2 + b = 0 有三个不同的实根,则 b 应满足的条件是 _______.27. 若关于 x 的方程 x^3 - ax^2 + b = 0 有两个不同的实根,则 a,b 应满足的条件是 _______.28. 若关于 x 的方程 x^3 - ax^2 + b = 0 有两个不同的实根,则 a,b 应满足的条件是 _______.29. 若关于 x 的方程 x^3 - ax^2 + b = 0 有两个相等的实根,则 a,b 应满足的条件是 _______.30. 若关于 x 的方程 x^3 - ax^2 + b = 0 有三个相等的实根,则 a,b 应满足的条件是 _______.。
高考数学之隐零点问题
高考数学之隐零点问题在高考数学中,隐零点问题是一类重要的问题,它涉及到函数的性质、不等式、方程等多个方面,是考查学生数学综合能力和计算能力的典型题型。
本文将从隐零点的定义、解题思路和常见问题三个方面来探讨隐零点问题。
一、隐零点的定义隐零点是指函数在某区间内存在零点,但无法直接通过零点定理或判别式等方法得出。
这类问题需要学生通过观察函数的性质、分析函数的值域、判断函数的单调性等方式来寻找隐零点。
二、解题思路解决隐零点问题的核心思路是“化归思想”,即将复杂问题转化为简单问题,将抽象问题转化为具体问题。
具体来说,解决隐零点问题的步骤如下:1、观察函数的性质,确定函数的可能零点区间;2、分析函数的值域,确定函数在可能零点区间的端点值的符号;3、判断函数的单调性,确定函数在可能零点区间的单调性;4、根据函数的性质、值域和单调性,得出函数在可能零点区间的端点值的符号,从而得出隐零点的存在性和位置。
三、常见问题解决隐零点问题时,学生常常会出现以下问题:1、对函数的性质、值域和单调性等概念理解不准确,导致解题思路错误;2、无法将复杂问题转化为简单问题,无法将抽象问题转化为具体问题,导致解题过程繁琐;3、无法灵活运用数学知识进行推理和计算,导致解题结果错误。
因此,学生在解决隐零点问题时,需要加强对函数性质、值域和单调性等概念的理解,提高对复杂问题和抽象问题的转化能力,同时加强数学知识和计算能力的训练,以提高解题的准确性和效率。
总之,解决隐零点问题需要学生具备扎实的数学基础、灵活的思维方式和熟练的计算技巧。
只有通过不断的训练和思考,才能真正掌握解决隐零点问题的技巧和方法。
高考导数综合应用中的“隐零点”在数学的学习中,我们常常遇到许多复杂的问题需要解决。
而在这些难题中,导数往往扮演着关键的角色。
特别是在高考数学中,导数的综合应用是一个重点也是一个难点。
其中,“隐零点”是一个特别需要的概念。
“隐零点”,顾名思义,这是一种不易被直接观察或找到的零点。
函数隐零点问题的破解策略
函数隐零点问题的破解策略
函数隐零点问题是指某些函数在计算机中难以精确计算其零点的一类问题,这种问题在许多数学领域中都有应用,如数值计算、微积分、微分方程等。
以下是几种解决这一问题的常见策略:
迭代方法
迭代法是一种常见的数值计算方法,它的基本思路是从一个初始值开始不断进行某种操作,直到得到满足要求的精度或者达到一定的迭代次数。
在解决函数隐零点问题中,我们可以运用迭代法来逐步逼近函数的零点,直到满足我们的要求。
常见的迭代方法有牛顿迭代法、二分法等。
泰勒展开
泰勒展开是一种数学工具,它能够将某个函数表示成若干个幂函数的和。
在解决函数隐零点问题中,泰勒展开可以用来逼近函数的零点,将函数在某个点进行泰勒展开后,我们可以用展开后的多项式来逼近函数的零点,从而达到我们的目的。
二分法
二分法是一种常见的求零点方法,在解决函数隐零点问题中也是常用的策略。
它的基本思路是,如果函数在某一区间的两端点的函数值符号相反,那么这个函数在该区间内有且仅有一个零点。
我们每次取该区间的中间点作为新的端点进行判断,根据函数值的符号来确定新的区间,直到满足我们的要求。
优化方法
如果我们需要求解的零点等价于最优化问题的极值点,那么我们可以使用优化方法来解决函数隐零点问题。
例如,可以通过求解函数的导数的零点或使用优化算法(如梯度下降算法)来逼近函数的零点。
以上是解决函数隐零点问题的常见策略,当然,具体采用哪种方法,需要根据具体问题而定。
同时,在使用这些方法时,需要注意算法的收敛性、稳定性、计算精度等因素,从而保证计算结果的可靠性和准确性。
函数隐性零点的处理技巧
.函数隐性零点的处理技巧大招总结导数用来处理函数综合性问题,最终都会归于函数单调性的判断,而函数的单调性与其导函数的零点有着紧密的联系,可以说导函数零点的判断、数值上的精确求解或估计是导数综合应用中最核心的问题。
导函数的零点,根据其数值计算上的差异可以分为两类:一类是数值上能精确求解的,称为“显零点”;另一类是能够判断其存在但无法直接表示的,称为“隐零点”。
此讲通过几个具体的例题来体会隐性零点的处理步骤和思想方法:隐零点的虚设和代换。
一般步骤如下:①确定零点的存在范围。
确定隐性零点范围的方式是多种多样的,可以由零点的存在性定理确定,也可以由函数的图像特征得到,甚至可以由题设直接得到,等等;至于隐性零点的范围精确到多少,由所求解问题确定,因此必要时尽可能缩小其范围。
②根据零点的意义进行代数式的替换,尽可能将目标式变形为整式或分式,那么就需要尽可能将指数、对数函数式用有理式替换,这是能否继续深入的关键。
③结合前两步,确定目标式的范围。
隐性零点代换实际上是一种明修栈道,暗度陈仓的策略,也是数学中“设而不求”思想的体现。
典型例题的最大值。
求时,>为整数,且当)若(的单调区间;)求(:设函数例k x x f k x x k a x f ax e x f x ,01)()-(0,12)(12--)(1≥++′==.2)(),3,2(1)(,2,0)().()∞,0()(0)(),(0)(),0().2,1(,)∞,0()()∞,0(2--)(0)2(0)1()∞,0(2--)(11,)1-()2--()(,1-1)()0(1-101)1-)(-(0,1)1-)(-(1)()-(,12)∞,(ln )ln ∞-()(0-)()∞,(ln ∈0-)()ln ∞-(∈02--)(0-)(,0≤,-)(2--)(1000000000020的最大值为,故整数<由于①式等价于所以可得又由上的最小值为在所以;>时,;当<时,当则有此零点为上存在唯一的零点,设在故上存在唯一的零点,在所以,>,<而上单调递增,在时,函数)知,当由(则令①,><等价于>时,>故当所以,)由于(上单调递增。
六类技巧终结导数隐零点问题
例1. 已知函数=()ln f xx x ,(1)证明:≥-()1f x e⑵ 已知函数()2=-+-g x x x k ,若对区间e[1,1]上任意x 均有≤f x g x ()()恒成立,求k 的最大值。
解:⑴ 略 ⑵由题设条件知:ln 2≤-+-x x x x k 在e[1,1]上恒成立ln 2⇔≤--+k x x x x 在e[1,1]上恒成立⇔≤--+k x x x x (ln )2m in令()ln 2=--+h x x x x x ,∈x e [1,1]则'=--()2ln h x x xh x x e x ''=--<<<()210(11),即'h x ()为减函数,又h e e '=-+>(1)110 h '=-<(1)20∴'h x ()在e[1,1]上有唯一的零点x 0,且=-x x ln 200当∈x e x 0(1,)时'>h x h x ()0,()单调递增,当∈x x 0(,1)时'<h x h x ()0,()单调递减。
∴h x h e h min ()min (1),(1)=⎧⎨⎩⎫⎬⎭ 又 h e e e =->2(1)210 h =(1)0∴h x =min ()0 ∴k ≤0 故k =max 0技巧一虚设零点-----媒介过渡;技巧一:虚设零点-----媒介过渡技巧二:敏锐洞察——观察零点技巧三:反带消参—构造单变量函数,研究参数值及范围技巧四:降次或减元留参,达到证明或求值的目的技巧五:巧设零点---超越式划代数式技巧六:巧妙转化(含放缩,讨论等)24581410六类技巧终结导数隐零点问题例2(19课标1)已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数. 证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.解:(1)由题意知:()f x 定义域为:()1,-+∞且()1cos 1f x x x '=-+ 令()1cos 1g x x x =-+,1,2x π⎛⎫∈- ⎪⎝⎭ ()()21sin 1g x x x '∴=-++,1,2x π⎛⎫∈- ⎪⎝⎭ ()211x +在1,2π⎛⎫- ⎪⎝⎭上单调递减,在1,2π⎛⎫- ⎪⎝⎭上单调递减;()g x '∴在1,2π⎛⎫- ⎪⎝⎭上单调递减,又()0sin 0110g '=-+=>,()()2244sin 102222g ππππ⎛⎫'=-+=-< ⎪⎝⎭++ 00,2x π⎛⎫∴∃∈ ⎪⎝⎭,使得()00g x '= ∴当()01,x x ∈-时,()0g x '>;0,2x x π⎛⎫∈ ⎪⎝⎭时,()0g x '<即()g x 在()01,x -上递增;在0,2x π⎛⎫⎪⎝⎭上递减,则0x x =为()g x 唯一极大值点;即:()f x '在区间1,2π⎛⎫- ⎪⎝⎭上存在唯一的极大值点0x .(2)由(1)知:()1cos 1f x x x '=-+,()1,x ∈-+∞ ①当(]1,0x ∈-时,由(1)可知()f x '在(]1,0-上单调递增()()00f x f ''∴≤= ()f x ∴在(]1,0-上单调递减又()00f =0x ∴=为()f x 在(]1,0-上的唯一零点②当0,2x π⎛⎤∈ ⎥⎝⎦时,()f x '在00,x 上单调递增,在0,2x π⎛⎫⎪⎝⎭上单调递减又()00f '= ()00f x '∴>()f x ∴在00,x 上单调递增,此时()()00f x f >=,不存在零点,又22cos 02222f ππππ⎛⎫'=-=-< ⎪++⎝⎭10,2x x π⎛⎫∴∃∈ ⎪⎝⎭,使得()10f x '=()f x ∴在()01,x x 上递增,在1,2x π⎛⎫⎪⎝⎭上递减又()()000f x f >=,2sin ln 1ln ln102222e f ππππ⎛⎫⎛⎫=-+=>=⎪ ⎪+⎝⎭⎝⎭()0f x ∴>在0,2x π⎛⎫⎪⎝⎭上恒成立,此时不存在零点③当,2x ππ⎡⎤∈⎢⎥⎣⎦时,sin x 单调递减,()ln 1x -+单调递减()f x ∴在,2ππ⎡⎤⎢⎥⎣⎦上递减,又02f π⎛⎫> ⎪⎝⎭()()()sin ln 1ln 10f ππππ=-+=-+< 即()02f f ππ⎛⎫⋅< ⎪⎝⎭,又()f x 在,2ππ⎡⎤⎢⎥⎣⎦上递减 ∴()f x 在,2ππ⎡⎤⎢⎥⎣⎦上存在唯一零点 ④当(),x π∈+∞时,[]sin 1,1x ∈-,()()ln 1ln 1ln 1x e π+>+>=()sin ln 10x x ∴-+<即()f x 在(),π+∞上不存在零点综上所述:()f x 有且仅有2个零点 技巧二 敏锐洞察-----观察零点 例3 (13北京)设L 为曲线C:ln xy x=在点(1,0)处的切线. (I)求L 的切线方程;(II)证明:除切点(1,0)之外,曲线C 在直线L 的下方. 解: (I) L : 1y x =-.(II)令()1()g x x f x =--,则除切点之外,曲线C 在直线l 的下方()0g x ⇔>(0,1)x x ∀>≠,()g x 满足(1)0g =, 221ln ()1()x xg x f x x -+''=-=. 当01x <<时,210x -<,ln 0x <,所以()0g x '<,故()g x 单调递减; 当1x >时,210x ->,ln 0x >,所以()0g x '>,故()g x 单调递增.所以()(1)0g x g >=(0,1x x >≠),即除切点之外,曲线C 在直线L 的下方.例4. (11浙江)设函数()f x =2()ln x a x -,a ∈R (Ⅰ)若x =e 为()y f x =的极值点,求实数a ;(Ⅱ)求实数a 的取值范围,使得对任意的x ∈(0,3e ],恒有()f x ≤42e 成立.注:e 为自然对数的底数。
例析隐零点问题的三类处理技巧
例析隐零点问题的三类处理技巧
函数与导数主要是考查学生逻辑推理、直观想象和数学运算等核心素养的主要载体,其一直是高考考查的重点之一在处理函数与导数的压轴题时,对零点的处理往往是一个关键环节,有些函数的零点确实存在,但无法精确求解,此谓之“隐零点”;有些导数的零点虽然可求,但因含参而需要讨论.对于这类问题,常见的处理方式主要有虚设零点、化隐为显和变换主元三大类。
评注本题如果直接对/(x)进行求导,会出现隐零点问题以致给解题带来不便,故这里采用了重新构造关于变量“的对数超越函数的处理方式除了重构对数超越函数,变换主元往往还会重构指数超越函数(如2016年全国亚卷文)、重构双勾型函数( 如 2017 年全国I卷文) 和重构二次函数( 如2019 年浙江卷)。
通过上述几个高考真题我们知道,通过结合已知条件和结论虚设零点、化隐为显和变换主元是解决隐零点问题的主要处理策略.在导数压轴题的教学过程中,像这样以专题的形式介绍隐零点问题的处理策略,尽量一次性彻底地解决与其有关的问题,对学生解题水平的提升、逻辑思维的训练和核心素养的培养,想来都是极好的。
隐零点问题 解析版--2024年高考数学重难点攻略
隐零点问题导函数的零点在很多时候是无法直接求解出来的,我们称之为“隐零点”,既能确定其存在,但又无法用显性的代数进行表达.这类问题的解题思路是对函数的零点设而不求,通过整体代换和过渡,再结合题目条件解决问题.【知识导图】考点一:不含参函数的隐零点问题考点二:含参函数的隐零点问题【考点分析】考点一:不含参函数的隐零点问题规律方法 已知不含参函数f (x ),导函数方程f ′(x )=0的根存在,却无法求出,利用零点存在定理,判断零点存在,设方程f ′(x )=0的根为x 0,则①有关系式f ′(x 0)=0成立,②注意确定x 0的合适范围.1(2023春·新疆乌鲁木齐·高三校考阶段练习)已知函数f x =x cos x -sin x ,x ∈0,π2.(1)求证:f x ≤0;(2)若a <sin x x <b 对x ∈0,π2恒成立,求a 的最大值与b 的最小值.【答案】(1)证明见解析;(2)a 的最大值为2π,b 的最小值为1.【详解】(1)由f x =x cos x -sin x ,求导得f x =cos x -x sin x -cos x =-x sin x ,因为在区间0,π2上f x =-x sin x <0,则f x 在区间0,π2 上单调递减,所以f x ≤f 0 =0.(2)当x >0时,“sin x x >a ”等价于“sin x -ax >0”,“sin xx<b ”等价于“sin x -bx <0”,令g x =sin x -cx ,x ∈0,π2,则g x =cos x -c ,当c ≤0时,g x >0对任意x ∈0,π2恒成立,当c ≥1时,因为对任意x ∈0,π2 ,gx =cos x -c <0,于是g x 在区间0,π2 上单调递减,则g x <g 0 =0对任意x ∈0,π2恒成立,当0<c <1时,存在唯一的x 0∈0,π2使得g x 0 =cos x 0-c =0,当x ∈(0,x 0)时,g (x )>0,函数g (x )单调递增,当x ∈x 0,π2时,g(x )<0,函数g (x )单调递减,显然g (x 0)>g (0)=0,g π2=1-π2c ,则当g π2 ≥0,即0<c ≤2π时,g (x )>0对x ∈0,π2恒成立,因此当且仅当c ≤2π时,g (x )>0对任意x ∈0,π2恒成立,当且仅当c ≥1时,g (x )<0对任意x ∈0,π2恒成立,所以a <sin x x <b 对任意x ∈0,π2 恒成立时,a 的最大值为2π,b 的最小值为1.2(2023秋·江苏镇江·高三统考开学考试)已知函数f x =ln x -xe -x +1x (e 为自然对数的底数).(1)求函数f x 在x =1处的切线方程;(2)若f x +x -1x -1>ae -x +ln x 恒成立,求证:实数a <-1.【答案】(1)y =1-1e (2)证明见解析【详解】(1)由f x =ln x -xe -x +1x,定义域为0,+∞ ,则f x =x -1e x +1x -1x 2=x -1 1e x +1x 2.所以f x 在x =1处的切线l 的斜率为k =f 1 =0,又f 1 =1-1e ,则l 的方程为y =1-1e.(2)f x +x -1x -1>ae -x+ln x ⇔f x -ln x +x 2-x -1x >a e x ⇔-x e x +x -1>a e x ⇔a <x -1 e x -x恒成立,令h x =x -1 e x -x ,则h x =xe x -1,令u x =xe x -1,x >0,则u x =x +1 e x >0所以u x 在0,+∞ 上单调递增,又u 0 =-1<0,且u 1 =e -1>0,则u x 在0,1 上存在零点x 0且u x 0 =x 0e x 0-1=0,即e x 0=1x 0.所以h x 在0,x 0 上单调递减,在x 0,+∞ 上单调递增,所以h x min =h x 0 =x 0-1 e x 0-x 0=1-x 0+1x 0,即a <h x 0 .h x 0 =1-x 0+1x 0,则h x 0 =1x 20-1=1+x 0 1-x 0 x 20又x 0∈0,1 ,所以h x 0 >0,则h x 0 =1-x 0+1x 0在0,1 上单调递增,因此h x 0 <h 1 =-1所以a <-1.3(2024·河北邢台·高三统考期末)已知函数f (x )=sin x +x 2.证明:f (x )>-516.【答案】证明见解析【解析】f (x )=cos x +2x令函数u (x )=f (x ),则u (x )=-sin x +2>0,所以u (x )=f (x )是增函数.因为f (0)=1,f -1 2=cos12-1<0,所以存在x0∈-1 2 ,0,使得f (x0)=cos x0+2x0=0,即x20=14cos2x0.所以当x∈-∞,x0时,f (x)<0,当x∈x0,+∞时,f (x)>0,所以f(x)在-∞,x0上单调递减,在x0,+∞上单调递增.f(x)≥f x 0=sin x0+x20=sin x0+14cos2x0=-14sin2x0+sin x0+14.因为x0∈-1 2 ,0,所以sin x0>sin-12>sin-π6=-12,所以-14sin2x0+sin x0+14>-14×-122-12+14=-516.故f(x)>-5 16.4已知函数f x =e x-a-ln x+x,当a≤0时,证明:f x >x+2.【解析】当a≤0时,令F(x)=f(x)-x-2=e x-a-ln x-2,x>0,求导得F (x)=e x-a-1x=xe x-a-1x,显然函数F (x)在(0,+∞)上单调递增,令g(x)=xe x-a-1,x≥0,g (x)=(x+1)e x-a>0,即函数g(x)在(0, +∞)上单调递增,而g(0)=-1<0,g(1)=e1-a-1≥e-1>0,则存在唯一x0∈(0,1),使得g(x0)=0,即e x0-a =1x0,因此存在唯一x0∈(0,1),使得F (x0)=0,当0<x<x0时,F (x0)<0,当x>x0时,F (x0)>0,因此函数F(x)在(0,x0)上递减,在(x0,+∞)上递增,当e x0-a=1x0时,x0-a=-ln x0,则F(x)≥F(x0)=e x0-a-ln x0-2=1x0+x0-a-2>21x⋅x0-a-2=-a≥0,(当且仅当1x0=x0即x0=1时,取等号,故式子取不到等号)所以当a≤0时,f x >x+2.考点二:含参函数的隐零点问题规律方法 已知含参函数f(x,a),其中a为参数,导函数方程f′(x,a)=0的根存在,却无法求出,设方程f′(x)=0的根为x0,则①有关系式f′(x0)=0成立,该关系式给出了x0,a的关系;②注意确定x0的合适范围,往往和a的范围有关.1(2022上·河南洛阳·高三新安县第一高级中学校考开学考试)(1)证明不等式:e x-2>ln x(第一问必须用隐零点解决,否则不给分);(2)已知函数f(x)=(x-2)e x+a(x-1)2有两个零点.求a的取值范围.(第二问必须用分段讨论解决,否则不给分)【答案】(1)证明见解析;(2)(0,+∞).【分析】(1)根据给定条件,构造函数g(x)=e x-2-ln x,借助导数探讨函数最小值为正即可推理作答.(2)求出函数f(x)的导数,利用导数分类讨论函数f(x)的单调性、零点情况作答.【详解】(1)令函数g x =e x-2-ln x,x>0,求导得:g x =e x-2-1x,显然函数g(x)在(0,+∞)上单调递增,而g (1)=e-1-1<0,g (2)=12>0,则存在x0∈(1,2),使得g (x0)=0,即e x0-2=1x0,有x0-2=-ln x0,当0<x<x0时,g (x)<0,当x>x0时,g (x)>0,函数g(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,g(x)min=g(x0)=e x0-2-ln x0=1x0+x0-2>21x⋅x0-2=0,所以e x-2>ln x.(2)函数f(x)=(x-2)e x+a(x-1)2定义域R,求导得f (x)=(x-1)e x+2a(x-1)=(x-1)(e x+2a),当a>0时,由f (x)<0得,x<1,由f (x)>0得,x>1,即函数f(x)在(-∞,1)上递减,在(1,+∞)上递增,f(x)min=f(1)=-e<0,而f(2)=a>0,即存在x1∈(1,2),使得f(x1)=0,则函数f(x)在(1,+∞)上有唯一零点,取b<0且b<ln a2,则f(b)=(b-2)eb+a(b-1)2>a2(b-2)+a(b-1)2=a b2-32b>0,即存在x2∈(b,1),使得f(x2)=0,则函数f(x)在(-∞,1)上有唯一零点,因此当a>0时,函数f(x)有两个零点,当a=0时,函数f(x)=(x-2)e x只有一个零点2,当a<0时,若-e2<a<0,当x<ln(-2a)或x>1时,f (x)>0,当ln(-2a)<x<1时,f (x)<0,即有f(x)在(-∞,ln(-2a)),(1,+∞)上单调递增,在(ln(-2a),1)上单调递减,又∀x<1,f(x)<0,因此函数f(x)在(-∞,1)上没有零点,在(1,+∞)上最多一个零点,即函数f(x)最多一个零点,若a=-e2,恒有f(x)≥0,即函数f(x)在R上单调递增,函数f(x)最多一个零点,若a<-e2,当x<1或x>ln(-2a)时,f(x)>0,当1<x<ln(-2a)时,f (x)<0,即有f(x)在(-∞,1),(ln(-2a),+∞)上单调递增,在(1,ln(-2a))上单调递减,又∀x<1,f(x)<0,当x∈1,ln-2a时,f x <0,因此函数f(x)在(-∞,ln(-2a))上没有零点,在(ln(-2a),+∞)上最多一个零点,即函数f(x)最多一个零点,综上得,当a>0时,函数f(x)有两个零点,当a≤0时,函数f(x)最多一个零点,所以a的取值范围是(0,+∞).2(2023秋·北京·高三统考开学考试)已知函数f(x)=ax-x+be x,曲线y=f(x)在(0,f(0))的切线为y=-x+1.(1)求a,b的值;(2)求证:函数在区间(1,+∞)上单调递增;(3)求函数f(x)的零点个数,并说明理由.【答案】(1)a=1,b=-1.(2)证明见解析(3)零点个数为0,证明见解析.【详解】(1)f (x)=a-1-x+be x,则有f0 =-b=1,解得b=-1,f 0 =a-1-b=a-2=-1,则a=1,b=-1.(2)由(1)知f(x)=x-x-1e x ,f (x)=1-2-xe x=e x+x-2e x,设h x =e x+x-2,因为h x 在1,+∞上单调递增,则h x >h1 =e-1>0,所以f (x)>0在1,+∞上恒成立,所以函数f x 在区间(1,+∞)上单调递增.(3)因为f (x)=1-2-xe x =e x+x-2e x,令f (x)=0,令f (x)=0,得e x+x-2=0,设h x =e x+x-2,由(2)知h x 在R上单调递增,且h0 =-1,h1 =e-1>0,故存在唯一零点x0∈0,1使得h x =0,即存在唯一零点x0∈0,1满足f (x0)=0,即得e x0+x0-2=0,则e x0=2-x0,且当x∈-∞,x0时,f (x)<0,此时f x 单调递减,当x∈x0,+∞时,f (x)>0,此时f x 单调递增,所以f x min=f x0=x0-x0-1e x0=x0e x0-x0+1e x0=x02-x0-x0+12-x0=-x20+x0+12-x0=-x0-122+542-x0,当x0∈0,1时,2-x0>0,-x0-1 22+54>-0-122+54=1,则f x min>0,则函数f(x)的零点个数为0.3(2023秋·河北张家口·高三统考开学考试)已知f x =ae x,g x =ln x+1 a.(1)当a=1时,证明:f x ≥g x +1;(2)若∀x∈-1,+∞,f x ≥g x +1恒成立,求a的取值范围.【答案】(1)证明见解析(2)a≥1【详解】(1)当a=1时,设h x =f x -g x -1=e x-ln x+1-1x>-1,h x =e x-1x+1,当x>0时,h x >0,-1<x<0时,h x <0,所以h x 在-1,0单调递减,0,+∞单调递增,所以h x ≥h0 ,而h0 =0,∴h x ≥0,即f x ≥g x +1.(2)法一:若∀x∈-1,+∞,f x ≥g x +1恒成立,即ae x≥ln x+1a+1⇒ae x+ln a≥ln x+1+1,即ae x +ln ae x ≥x +1+ln x +1 ,构造函数m t =t +ln t ,易知m t 在0,+∞ 递增,则不等式为m ae x ≥m x +1 ,∴ae x ≥x +1⇒a ≥x +1e x ,设ϕx =x +1e x x >-1 ,ϕ x =-xex x >-1 ,则φx 在-1,0 递增,0,+∞ 递减,ϕx max =ϕ0 =1,∴a ≥1.法二:∀x ∈-1,+∞ ,f x ≥g x +1恒成立,即ae x +ln a -ln x +1 -1≥0.令F x =ae x -ln x +1 +ln a -1,F x =ae x -1x +1a >0 ,ae x =1x +1有唯一实数根,设为x 0x 0>-1 ,即ae x 0=1x 0+1,ln a +x 0=-ln x 0+1 ,则F x 在-1,x 0 递减,在x 0,+∞ 递增,∴F x min =F x 0 =ae x 0-ln x 0+1 +ln a -1≥0,即1x 0+1-x 0-2ln x 0+1 -1≥0,设h x =1x +1-x -2ln x +1 -1,显然h x 在-1,+∞ 单调递减,而h 0 =0,∴h x 0 ≥0,则-1<x 0≤0,ln a =-ln x 0+1 -x 0,x 0∈-1,0 ,∴ln a ≥0,a ≥1.4(拔尖强基联盟2024届高三下学期二月联合考试)已知函数f x =x +1 ln -mx ,g x =mx cos -1,其中m ∈R .(1)若m =1,h x =f x +g x +1,求证:h x 在定义域内有两个不同的零点;(2)若f x +g x ≤0恒成立,求m 的值.【答案】(1)证明过程见详解;(2)m =1【解析】(1)m =1时,h x =cos x +ln x +1 -x ,h x =-sin x +1x +1-1①x ∈-1,0 时,h x 在-1,0 上单调递减,所以h x ≥h 0 =0,所以h x 在-1,0 上单调递增,又h 0 =1>0,h 1e 2-1=cos 1e 2-1-2-1e2+1<0,所以∃x 1∈1e 2-1,0,使得h x 1 =0,即h x 在-1,0 上有且仅有1个零点x 1;②x ∈π,+∞ 时,由(1)知f x =ln x +1 -x 在π,+∞ 上单调递减,即f x ≤f π =ln π+1 -π,所以h x =cos x +f x ≤1+ln π+1 -π<1+ln e 2-π=3-π<0,所以h x 在π,+∞ 上没有零点;③x ∈0,π 时,-sin x <01x +1-1<0 ,所以h x =-sin x +1x +1-1<0,即h x 在0,π 上单调递减,又h 0 =1>0,h π =ln π+1 -π-1<0,所以h x 在0,π 上有且仅有1个零点x 2;综上所述,h x 在-1,+∞ 内有两个不同的零点x 1,x 2.(2)令φx =f x +g x =ln x +1 +cos mx -mx -1,由于φx ≤0恒成立,且φ0 =0,同时φx 在-1,+∞ 上连续,所以x =0是φx 的一个极大值点.因为φ x =1x +1-m sin mx -m ,所以φ 0 =1-m =0即m =1,下面证明m =1时,φx ≤0在-1,+∞ 上恒成立,由(1)知,m =1时,f x 在-1,0 上单调递增,在0,+∞ 上单调递减;所以f x ≤f 0 =0,又g x =cos x -1≤0,故φx =f x +g x ≤0恒成立.5(2024·吉林长春·东北师大附中校联考模拟预测)已知f x =ae 2x -2xe x (其中e =2.71828⋯为自然对数的底数),∀x ∈R ,f x +1a≤0,求实数a 的取值范围.【答案】1-2 e 2,0【解析】由f x =ae 2x -2xe x ,可得f x =2ae 2x -2x +1 e x =2e x ae x -x -1 ,由∀x ∈R ,f x +1a ≤0,因为f 0 +1a =a +1a =a 2+1a ≤0,可得a <0,令g x =ae x -x -1,则g x 在R 上递减,当x <0时,可得e x ∈(0,1),则ae x ∈(a ,0),所以g x =ae x -x -1>a -x -1,则g a -1 >a -a -1 -1=0,又因为g -1 =ae -1<0,∃x 0∈a -1,-1 使得g x 0 =0,即g x 0 =ae x 0-x 0-1=0且当x ∈-∞,x 0 时,g x >0,即f x >0;当x 0∈x 0,+∞ 时,g x <0,即f x <0,所以f x 在-∞,x 0 递增,在x 0,+∞ 递减,所以f (x )max =f x 0 =ae 2x 0-2x 0e x 0,由g x 0 =ae x 0-x 0-1=0,可得a =x 0+1ex,由f (x )max +1a ≤0,可得x 0+1 e x 0-2x 0e x 0+exx 0+1≤0,即1-x 0 1+x 0 +1x 0+1≤0,由x 0+1<0,可得x 20-1≤1,所以-2≤x 0<-1,因为a =x 0+1ex 0,设h x =x +1e x(-2≤x <-1),则h x =-x e x >0,可知h x 在-2,1 上递增,h x ≥h -2 =1-2e-2=1-2 e 2且h x <h -1 =0,所以实数a 的取值范围是1-2 e 2,0 .【强化训练】1已知函数f x =e x -ax 2-x .当a >12时,求证f x 在0,+∞ 上存在极值点x 0,且f x 0 <3-x 02.【答案】证明见解析【解析】f x =e x -ax 2-x ,则f x =e x -2ax -1,令g (x )=f (x ),g (x )=e x -2a ,由a >12可知,x >ln2a 时,g (x )>0,g (x )递增,x <ln2a 时,g (x )<0,g (x )递减,g (x )在x =ln2a 处取得最小值,而g (ln2a )=2a -2a ln2a -1=2a 1-ln2a -12a ,又记h (x )=1-ln x -1x (x >1),h(x )=-1x +1x2=1-xx2<0,故h (x )在1,+∞ 上单调递减,故h (x )<h (1)=0,于是h (2a )<0,即g (ln2a )=2a ⋅h (2a )<0;g (2a )=e 2a -4a 2-1,令p (x )=e x -x 2-1(x >1),p (x )=e x -2x ,记q (x )=p (x )(x >1),则q (x )=e x -2>e 1-2>0,则q x =p x 在1,+∞ 单增,q x >q 1 =e -2,故p (x )在1,+∞ 上递增,p (x )>p (1)=e -2>0,取x =2a ,则g (2a )=p (2a )>0;记y =ln x -x +1,y =1-xx,于是x >1时,y <0,y 递减,0<x <1时,y >0,y 递增,故y 在x =1处取得最大值,故y =ln x -x +1≤ln1-1+1=0,x =1取得等号,于是ln2a <2a -1<2a . 于是,由g (2a )⋅g (ln2a )<0和零点存在定理可知,∃x 0∈(ln2a ,2a ),使得g (x 0)=f (x 0)=0,且ln2a <x <x 0,f (x )<0,x 0<x <2a ,f (x )>0,所以x 0是极小值点;由f (x 0)=0可得,e x 0-2ax 0-1=0,令j (x )=e x -ax 2-x -3-x 2=e x -ax 2-3+x 2,代入a =e x -12x ,整理j (x )=1-x 2 e x -32,j (x )=(1-x )e x 2,于是x >1时,j (x )<0,j (x )递减,x <1时,j (x )>0,j (x )递增,故j (x )在x =1处取得最大值,故j (x )≤j (1)=e -32<0,取x =x 0,故j (x 0)<0,原命题得证.2(广东省2024届高三上学期元月期末统一调研测试数学试卷)若函数f x 在a ,b 上有定义,且对于任意不同的x 1,x 2∈a ,b ,都有f x 1 -f x 2 <k x 1-x 2 ,则称f x 为a ,b 上的“k 类函数”.若f x =a x -1 e x -x 22-x ln x 为1,e 上的“2类函数”,求实数a 的取值范围;【答案】1e 2<a <4+ee e +1【解析】因为f x =axe x -x -ln x -1,由题意知,对于任意不同的x 1,x 2∈1,e ,都有f x 1 -f x 2 <2x 1-x 2 ,可转化为对于任意x ∈1,e ,都有-2<f x <2,由f x <2可转化为a <x +ln x +3xe x ,令g x =x +ln x +3xe x,只需a <g x ming x =1+x -2-ln x -xx 2e x ,令u x =-2-ln x -x ,u x 在1,e 单调递减,所以u x ≤u 1 =-3<0,g x <0,故g x 在1,e 单调递减,g x min =g e =4+ee e +1,由f x >-2可转化为a >x +ln x -1xe x ,令h x =x +ln x -1xe x,只需a >h x maxh x =1+x 2-ln x -xx 2ex,令m x =2-ln x -x ,m x 在1,e 单调递减,且m 1 =1>0,m e =1-e <0,所以∃x 0∈1,e 使m x 0 =0,即2-ln x 0-x 0=0,即ln x 0=2-x 0,x 0=e2-x 0,当x ∈1,x 0 时,m x >0,h x >0,故h x 在1,x 0 单调递增,当x ∈x 0,e 时,m x <0,h x <0,故h x 在x 0,e 单调递减,h x max =h x 0 =x 0+ln x 0-1x 0e e +1=1e2,故1e 2<a <4+ee e +1.3已知函数f (x )=a x -e log a x -e ,其中a >1.讨论f (x )的极值点的个数.【答案】有且仅有一个极值点.【解析】由题意知,函数f (x )的定义域为(0,+∞),fx =a xln a -e x ln a =xa x ln 2a -ex ln a,设g x =xa x ln 2a -e ,a >1,显然函数g (x )在(0,+∞)上单调递增,g (x )与f (x )同号,①当a >e 时,g 0 =-e <0,g 1 =a ln 2a -e >0,所以函数g (x )在0,1 内有一个零点x 0,且x ∈0,x 0 ,g x <0,x ∈x 0,+∞ ,g x >0,故f x 在0,x 0 单调递减,在x 0,+∞ 单调递增;所以函数f (x )在(0,+∞)上有且仅有一个极值点;②当a =e 时,由(1)知,函数f (x )在(0,+∞)上有且仅有一个极值点;③当1<a <e 时,1ln 2a >1,g 1ln 2a=a 1ln 2a -e ,因为ln a1ln 2a=ln a ln 2a =1ln a >1,所以a 1ln 2a >e ,g 1ln 2a>0,又g 1 =a ln 2a -e <0,所以函数g (x )在1,1ln 2a内有一个零点x 1,且x ∈0,x 1 ,g x <0,x ∈x 1,+∞ ,g x >0,故f x 在0,x 1 单调递减,在x 1,+∞ 单调递增;所以函数f (x )在(0,+∞)上有且仅有一个极值点;综上所述,函数f (x )在(0,+∞)上有且仅有一个极值点.4(2024·陕西安康·安康中学校联考模拟预测)已知函数f x =x ln x -mx m ∈R .当x >1时,不等式f x +ln x +3>0恒成立,求整数m 的最大值.【答案】2【解析】由题意,知x ln x -mx +ln x +3>0对任意x >1恒成立,可知m <ln x +ln x +3x对任意x >1恒成立.设函数g x =ln x +ln x +3x x >1 ,只需m <g x min .对函数g x 求导,得g x =1x +1-ln x +3 x 2=x -ln x -2x2.设函数h x =x-ln x-2x>1,对函数h x 求导,得h x =1-1x=x-1x>0,所以函数h x 在1,+∞上单调递增.又h3 =1-ln3<0,h72=32-ln72>0,所以存在x0∈3,7 2,使h x0 =0,即x0-ln x0-2=0,所以当x∈1,x0时,h x <0,g x <0,函数g x 单调递减;当x∈x0,+∞时,h x >0,g x >0,函数g x 单调递增,所以g x min=g x0=ln x0+ln x0+3x0=x0-2+x0-2+3x0=x0+1x0-1,所以m<x0+1x0-1.又x0∈3,72,所以x0+1x-1∈213,21114,所以整数m的最大值为2.5(2023·湖北黄冈·黄冈中学校考三模)已知函数f x =x sin x+cos x+ax2,g x =x ln x π.(1)当a=0时,求函数f x 在-π,π上的极值;(2)用max m,n表示m,n中的最大值,记函数h x =max f x ,g x(x>0),讨论函数h x 在0,+∞上的零点个数.【答案】答案见解析【解析】由h x =max f x ,g x,知h x ≥g x .(ⅰ)当x∈π,+∞时,g x >0,∴h x >0,故h x 在π,+∞上无零点.(ⅱ)当x=π时,gπ =0,fπ =-1+π2a.故当fπ ≤0时,即a≤1π2时,hπ =0,x=π是h x 的零点;当fπ >0时,即a>1π2时,hπ =fπ >0,x=π不是h x 的零点.(ⅲ)当x∈0,π时,g x <0.故h x 在0,π的零点就是f x 在0,π的零点,f x =x2a+cos x,f0 =1.①当a≤-12时,2a+cos x≤0,故x∈0,π时,f x ≤0,f x 在0,π是减函数,结合f0 =1,fπ =-1+π2a<0可知,f x 在0,π有一个零点,故h x 在0,π上有1个零点.②当a≥12时,2a+cos x≥0,故x∈0,π时,f x ≥0,f x 在0,π是增函数,结合f0 =1可知,f x 在0,π无零点,故h x 在0,π上无零点.③当a∈-12 ,12时,∃x0∈0,π ,使得x∈0,x0时,f x >0,f x 在0,x0是增函数;x∈x0,π时,f x <0,f x 在x0,π是减函数;由f0 =1知,f x0>0.当f π =-1+π2a ≥0,即1π2≤a <12时,f x 在0,π 上无零点,故h x 在0,π 上无零点.当f π =-1+π2a <0,即-12<a <1π2时,f x 在0,π 上有1个零点,故h x 在0,π 上有1个零点.综上所述,a <1π2时,h x 有2个零点;a =1π2时,h x 有1个零点;a >1π2时,h x 无零点6(2023秋·浙江·高三浙江省春晖中学校联考阶段练习)已知函数f x =ae x -e (x -1)2有两个极值点x 1,x 2x 1<x 2 .其中a ∈R ,e 为自然对数的底数.(1)求实数a 的取值范围;(2)若ex 1+e -2 x 2+21-e ≥λx 1-1 x 2-1 恒成立,求λ的取值范围.【答案】(1)0,2e(2)-∞,(e -1)2【详解】(1)由于f x =ae x -2e x -1 ,由题知f x =0有两个不同实数根,即a =2e x -1e x有两个不同实数根.令g x =2e x -1 e x ,则gx=2e 2-x e x≥0,解得x ≤2,故g x 在-∞,2 上单调递增,在2,+∞ 上单调递减,且x →-∞时,g (x )→-∞,x →+∞时,g (x )→0,g 2 =2e,故g x 的图象如图所示,当a ∈0,2e时,f x 有两个零点x 1,x 2且x 1<x 2.则f x ≥0⇔0<x ≤x 1或x ≥x 2,故f x 在0,x 1 上单调递增,在x 1,x 2 上单调递减,在x 2,+∞ 上单调递增,f x 的极大值点为x 1,极小值点为x 2.故f x =ae x -e (x -1)2有两个极值点时,实数a 的取值范围为0,2e.(2)由于ex 1+e -2 x 2+21-e ≥λx 1-1 x 2-1 ⇔e x 1-1 +e -2 x 2-1 ≥λx 1-1 x 2-1 若设t 1=x 1-1,t 2=x 2-10<t 1<t 2 ,则上式即为et 1+e -2 t 2≥λt 1⋅t 2由(1)可得ae t 1=2t 1>0ae t 2=2t 2>0 ,两式相除得e t 2-t 1=t 2t 1,即t 2-t 1=ln t 2t 1>0,由et 1+e -2 t 2≥λt 1⋅t 2得t 2-t 1 et 1+e -2 t 2 ≥λt 1t 2lnt 2t1所以λ≤2+e -2 t 2t 1-e ⋅t1t 2ln t2t 1,令t =t 2t 1>1,h t =2+e -2 t -e tln t(t >1),则λ≤h t 在1,+∞ 恒成立,由于ht =e -2 t2+e ln t -2t -e -2 t 2+et 2ln 2t,令φt =e -2 t 2+e ln t -2t -e -2 t 2+e ,则φ t =2e -2 t ln t -2-e -2 t +e t,φt =2e -2 ln t +2e -2 -et2-e +2,显然φ t 在1,+∞ 递增,又有φ 1 =-2<0,φ e =3e -6-1e>0,所以存在t 0∈1,e 使得φ t 0 =0,且易得φ t 在1,t 0 递减,t 0,+∞ 递增,又有φ 1 =0,φ e =e 2-2e -1>0,所以存在t 1∈1,e 使得φt 1 =0,且易得φt 在1,t 1 递减,t 1,+∞ 递增,又φ1 =φe =0,则1<x <e 时,φt <0,h t <0,x >e 时,φt >0,h t >0,所以易得h t 在1,e 上递减,在e ,+∞ 上递增,则h (t )min =h e =(e -1)2,所以λ的取值范围为-∞,(e -1)2 .7(2023秋·湖南永州·高三校联考开学考试)已知函数f x =x 2-mx ln x +1,m ∈R 且m ≠0.(1)当m =1时,求曲线y =f x 在点1,f 1 处的切线方程;(2)若关于x 的不等式f x ≥2ex 恒成立,其中e 是自然对数的底数,求实数m 的取值范围.【答案】(1)x -y +1=0(2)1e -e ,0∪0,e -1e【详解】(1)由题,当m =1时,f x =x 2-x ln x +1,f x =2x -ln x -1,f 1 =1,f 1 =2,所以切线方程为y -2=x -1,化简得x -y +1=0,即曲线f x 在点1,f 1 处的切线方程为x -y +1=0.(2)f x ≥2e x ,即x 2-mx ln x +1≥2e x ,即x +1x -m ln x -2e≥0在0,+∞ 上恒成立,令g x =x +1x -m ln x -2e ,则g x =1-1x 2-m x =x 2-mx -1x2. 对于y =x 2-mx -1,Δ=m 2+4>0,故其必有两个零点,且两个零点的积为-1,则两个零点一正一负,设其正零点为x 0∈0,+∞ ,则x 20-mx 0-1=0,即m =x 0-1x 0,且在0,x 0 上时y =x 2-mx -1<0,则g x <0,此时g x 单调递减,在x 0,+∞ 上,y =x 2-mx -1>0,g x >0,此时g x 单调递增,因此当x =x 0时,g x 取最小值,故g x 0 ≥0,即x 0+1x 0-x 0-1x 0ln x 0-2e≥0.令h x =x +1x -x -1x ln x -2e ,则h x =1-1x 2-1+1x 2 ln x -1-1x 2 =-1+1x2ln x ,当x ∈0,1 时,h x >0,当x ∈1,+∞ 时,h x <0,则h x 在0,1 上单调递增,在1,+∞ 上单调递减,又h 1e=h e =0,故x 0∈1e ,e,显然函数m =x 0-1x 0在1e ,e 上是关于x 0的单调递增函数,则m ∈1e -e ,e -1e,所以实数m 的取值范围为1e -e ,0∪0,e -1e8(2023秋·辽宁沈阳·高三沈阳市第一二〇中学校考阶段练习)已知函数f (x )=2x 3+3(1+m )x 2+6mx (x ∈R ).(1)讨论函数f x 的单调性;(2)若f -1 =1,函数g (x )=a ln x +1 -f (x )x2≤0在1,+∞ 上恒成立,求整数a 的最大值.【答案】(1)答案见解析(2)4【详解】(1)根据题意可得f (x )=6x 2+6(1+m )x +6m =6x +1 x +m ,若m =1,f (x )=6x +1 2≥0在x ∈R 上恒成立,此时函数f x 在R 上单调递增;若m >1,此时-m <-1,当x ∈-∞,-m ∪-1,+∞ 时,满足f (x )>0,此时函数f x 在-∞,-m ,-1,+∞ 上单调递增;当x ∈-m ,-1 时,满足f (x )<0,此时函数f x 在-m ,-1 单调递减;若m <1,此时-m >-1,当x ∈-∞,-1 ∪-m ,+∞ 时,满足f (x )>0,此时函数f x 在-∞,-1 ,-m ,+∞ 上单调递增,当x ∈-1,-m 时,满足f (x )<0,此时函数f x 在-1,-m 单调递减;综上可知,m =1时,f x 在R 上单调递增;m >1时,f x 在-∞,-m 和-1,+∞ 上单调递增,在-m ,-1 单调递减;m <1时,f x 在-∞,-1 和-m ,+∞ 上单调递增,在-1,-m 单调递减;(2)由f -1 =1可得-2+3(1+m )-6m =1,解得m =0;所以f (x )=2x 3+3x 2,则g (x )=a ln x +1 -2x -3,易知x ∈1,+∞ 时,ln x +1>0,若函数g (x )=a ln x +1 -f (x )x2≤0在1,+∞ 上恒成立,等价成a ≤2x +3ln x +1在x ∈1,+∞ 上恒成立;令h x =2x +3ln x +1,x >1 ,则h x =2ln x +1 -2x +3 ⋅1xln x +12=2ln x -3xln x +12;令φx =2ln x -3x x >1 ,则φ x =2x +3x2>0在x ∈1,+∞ 上恒成立,即函数φx 在x ∈1,+∞ 上单调递增,易知φ2 =2ln2-32=ln16-ln e 32,由于e 3>2.73=19.683,所以φ2 <0,而φ52 =2ln 52-65=25ln 52-ln e 35,且525>25=32>27=33>e 3,所以φ52>0;因此h x 在x∈1,+∞有且仅有一个零点x0,满足2ln x0=3x0,且x0∈2,52;所以当x∈1,x0时,h x <0,当x∈x0,+∞时,h x >0;因此函数h x =2x+3ln x+1,x>1在1,x0上单调递减,在x0,+∞上单调递增;所以h x 的最小值为h x0=2x0+3ln x0+1=2x0+332x0+1=2x0,显然2x0∈4,5,因此a≤2x0∈4,5,又a是整数,所以a的最大值为4.9(2023秋·陕西西安·高三校联考开学考试)已知函数f x =ln x-x+x-2e x-m,m∈Z.(1)当m=1时,求曲线y=f x 在点1,f1处的切线方程;(2)若关于x的不等式f x <0在0,1上恒成立,求m的最小值.【答案】(1)y=-e-2(2)-3【详解】(1)由题当m=1时,f x =ln x-x+x-2e x-1,f x =1x +x-1e x-1,f 1 =0,f1 =-e-2,所以切线方程为y+e+2=0x-1,化简得y=-e-2,即曲线f x 在点1,f1处的切线方程为y=-e-2.(2)由f x <0可得m>ln x-x+x-2e x,令g x =ln x-x+x-2e x,x∈0,1,则g x =x-1e x-1 x,当0<x≤1时,x-1≤0,设h x =e x-1x,易知h x 在0,1上单调递增,又h1 =e-1>0,h12=e-2<0,则存在x0∈12,1,使得h x0 =0,即e x0=1x,取对数得ln x0=-x0,当x∈0,x0时,h x <0,g x >0,g x 单调递增,当x∈x0,1时,h x >0,g x ≤0,g x 单调递减,∴g(x)max=x0-2⋅e x0+ln x0-x0=x0-2⋅1x0-2x0=1-2x0+2x0,∵y=1-2x +2x在12,1上单调递增,则g x0 ∈-4,-3,又m>g x 对任意x∈0,1恒成立,m∈Z,所以m≥g x0,即m的最小值为-3.10(2023春·江西萍乡·高二萍乡市安源中学校考期末)已知函数f x =ln x-mx2+1-2mx+1.(1)若m=1,求f x 的极值;(2)若对任意x>0,f x ≤0恒成立,求整数m的最小值.【答案】(1)极大值为f12=14-ln2,无极小值(2)1【详解】(1)当m=1时,f x =ln x-x2-x+1x>0,f x =1x -2x-1=-x+12x-1x.当0<x<12时,fx >0,则f x 在0,12上单调递增;当x>12时.fx <0,则f x 在12,+∞上单调递减.所以f x 在x=12时取得极大值且极大值为f12=14-ln2,无极小值;(2)因为对任意x>0,f x ≤0恒成立,所以ln x+x+1≤m x2+2x在0,+∞上恒成立,即m≥ln x+x+1x2+2x在0,+∞上恒成立,设F x =ln x+x+1x2+2x,则F x =-x+1x+2ln xx2+2x2.设φx =-x+2ln x,显然φx 在0,+∞上单调递减,因为φ1 =-1<0,φ12=-12+2ln12=2ln2-12>0,所以∃x0∈12,1,使得φx0 =0,即x0+2ln x0=0,当x∈0,x0时,φx >0,F x >0;当x∈x0,+∞时,φx <0,F x <0,所以F x 在0,x0上单调递增,在x0,+∞上单调递减,所以F x max=F x0=ln x0+x0+1x20+2x0=12x0,因为x0∈12,1,所以12x∈12,1,故整数m的最小值为1.11(2023·云南昭通·校联考模拟预测)设函数f x =e x-ln x+a,a∈R.(1)当a=1时,求f x 的单调区间;(2)若f x ≥a,求实数a的取值范围.【答案】(1)单调递增区间是(0,+∞),单调递减区间是(-1,0).(2)(-∞,1]【详解】(1)a=1时,函数f(x)=e x-ln(x+1)的定义域为(-1,+∞),因为f (x)=e x-1x+1,所以,当x>0时,f(x)>0,当-1<x<0时,f (x)<0,所以f(x)的单调递增区间是(0,+∞),单调递减区间是(-1,0).(2)函数f(x)=e x-ln(x+a)的定义域为(-a,+∞),f(x)≥a,等价于e x-ln(x+a)-a≥0,设g(x)=e x-ln(x+a)-a,则g (x)=e x-1x+a,设h(x)=g (x),则h (x)=e x+1(x+a)2>0恒成立,所以h(x)在(-a,+∞)上单调递增,即g (x)在(-a,+∞)上单调递增,当x→-a,g (x)→-∞,当x→+∞,g (x)→+∞,所以∃x0∈(-a,+∞),使得g x0=0,即e x0=1x0+a,所以a=1e x0-x0,当x∈-a,x0时,g (x)<0,所以g(x)单调递减,当x∈x0,+∞时,g (x)>0,所以g(x)单调递增,所以g min(x)=g x0=e x0-ln x0+a-a=e x0-1e x0+2x0≥0,设p(x)=e x-1e x+2x,则p(0)=0,而p (x)=e x+1e x+2>0恒成立,所以p(x)=e x-1e x+2x为增函数,由p x0≥0=p(0),所以x0≥0.因为y=1e x,y=-x均为减函数,所以a=1e x0-x0在0,+∞上为减函数,所以,当x0≥0时,a≤1,所以实数a的取值范围为(-∞,1]12(浙江省温州市温州中学2024届高三第一次模拟考试数学试题)已知f(x)=3ln x-k(x-1).(1)若过点(2,2)作曲线y=f(x)的切线,切线的斜率为2,求k的值;(2)当x∈[1,3]时,讨论函数g(x)=f(x)-2πcosπ2x的零点个数.【答案】(1)1(2)答案见解析【解析】(1)由题意可得:f (x)=3x-k,设切点坐标为x0,3ln x0-k x0-1,则切线斜率为k=f (x0)=3x0-k=2,即k=3x0-2,可得切线方程为y-3ln x0-k x0-1=2x-x0,将(2,2),k=3x0-2代入可得2-3ln x0-3x0-2x0-1=22-x0,整理得ln x0-1x0+1=0,因为y=ln x,y=-1x在0,+∞内单调递增,则y=ln x-1x+1在定义域0,+∞内单调递增,且当x=1时,y=0,可知关于x0的方程ln x0-1x0+1=0的根为1,即x0=1,所以k=3x0-2=1.(2)因为g(x)=f(x)-2πcosπ2x=3ln x-k(x-1)-2πcosπ2x,则g (x)=3x-k+sinπ2x,可知y=3x在[1,3]内单调递减,且x∈[1,3],则π2x∈π2,3π2,且y=sin x在π2,3π2内单调递减,可知y=sin π2x在[1,3]内单调递减,所以g (x)在[1,3]内单调递减,且g (1)=4-k,g (3)=-k,(i)若-k≥0,即k≤0时,则g (x)≥g 3 ≥0在[1,3]内恒成立,可知g x 在[1,3]内单调递增,则g x ≥g1 =0,当且仅当x=1时,等号成立,所以g x 在[1,3]内有且仅有1个零点;(ⅱ)若4-k≤0,即k≥4时,则g (x)≤g 1 ≤0在[1,3]内恒成立,可知g x 在[1,3]内单调递减,则g x ≤g1 =0,当且仅当x=1时,等号成立,所以g x 在[1,3]内有且仅有1个零点;(ⅲ)若4-k>0-k<0,即0<k<4时,则g (x)在1,3内存在唯一零点m∈1,3,可知当1≤x<m时,g (x)>0;当m<x≤3时,g (x)<0;则g x 在1,m内单调递增,在m,3内单调递减,且g1 =0,可知g m>g1 =0,可知g x 在1,m内有且仅有1个零点,且g3 =3ln3-2k,①当g3 =3ln3-2k≤0,即32ln3≤k<4时,则g x 在m,3内有且仅有1个零点;②当g3 =3ln3-2k>0,即0<k<32ln3时,则g x 在m,3内没有零点;综上所述:若k∈-∞,32ln3∪4,+∞时,g x 在[1,3]内有且仅有1个零点;若k∈32ln3,4时,g x 在[1,3]内有且仅有2个零点.13已知函数f x =12ax2+a+1x+ln x,a∈R(1)若1是f x 的极值点,求a的值;(2)求f x 的单调区间:(3)已知f x =12ax2+x有两个解x1,x2x1<x2,(i)直接写出a的取值范围;(无需过程)(ii)λ为正实数,若对于符合题意的任意x1,x2,当s=λx1+x2时都有f s <0,求λ的取值范围.【答案】(1)a =-1;(2)答案见解析;(3)(i )-1e,0 ;(ii )12,+∞ .【解析】(1)因为f x =12ax 2+a +1 x +ln x x >0 ,所以fx =ax +a +1 +1x =ax 2+a +1 x +1x=ax +1 x +1x,因为1是f x 的极值点,所以f 1 =0,故a +a +1 +1=0,故a =-1.此时f (x )=1-x x +1x,则x ∈(0,1)时f (x )>0,x ∈(1,+∞)时f (x )<0,所以x ∈(0,1)上f x 递增,x ∈(1,+∞)上f x 递减,则1是f x 的极值点,满足题设.综上,a =-1.(2)由(1)知,当a ≥0时,f x =ax +1 x +1x>0,故f x 在0,+∞ 上单调递增;当a <0时,令f x >0得0<x <-1a ;令f x <0得x >-1a;所以f x 在0,-1a上单调递增,在-1a ,+∞ 上单调递减,综上:当a ≥0时,f x 在0,+∞ 上单调递增;当a <0时,f x 0,-1a上单调递增,在-1a ,+∞ 上单调递减,(3)(i )由f x =12ax 2+x 得ax +ln x =0,即ax +ln x =0有两个解x 1,x 2x 1<x 2 ,令g x =ax +ln x x >0 ,则g x =a +1x =ax +1x,且g x 在0,+∞ 上两个零点,当a ≥0时,g x =ax +1x >0,故g x 在0,+∞ 上单调递增,则g x 在0,+∞ 上没有两个零点,不满足题意;当a <0时,令g x >0,得0<x <-1a ;令g x <0,得x >-1a;所以g x 在0,-1a 上单调递增,在-1a ,+∞ 上单调递减,即g x 的极大值为g -1a,为使g x 在0,+∞ 上有两个零点,则g -1a >0,即a -1a +ln -1a >0,解得-1e<a <0,当0<x <-1a 时,易知-1a >e ,因为g 1 =a +ln1=a <0,故g 1 g -1a <0,又g x 在0,-1a 上单调递增,所以g x 在0,-1a有唯一零点;当x >-1a时,令φx =e x -x 2x >1 ,则φ x =e x -2x ,再令u x =e x -2x x >1 ,则u x =e x -2>e 1-2>0,故u x 在1,+∞ 上单调递增,所以u x >u 1 =e -2>0,即φ x >0,故φx 在1,+∞ 上单调递增,所以φx >φ1 =e-1>0,因为-1a>e>1,所以φ-1 a>0,即e-1a--1a2>0,即e-1a>1a2,即a2e-1a>1,故a2e-1a-1>0,所以g e-1 a=ae-1a+ln e-1a=ae-1a-1a =a2e-1a-1a<0,故g-1ag e-1a <0,又g x 在-1a,+∞上单调递减,所以g x 在-1a,+∞有唯一零点;综上:当-1e<a<0时,g x 在0,+∞上两个零点,即f x =12ax2+x有两个解x1,x2x1<x2时,-1e<a<0,即a∈-1e ,0;(ii)由(i)得,0<x1<-1a <x2,ax1+ln x1=0ax2+ln x2=0,故a=-ln x2-ln x1x2-x1,又f s <0,所以as+1s+1s<0,即s>-1a,即λx1+x2>x2-x1ln x2-ln x1,故λ>x2-x1ln x2-ln x1x1+x2=x2x1-1ln x2x11+x2x1,令t=x2x1t>1,则λ>t-11+tln t,故λln t>t-1t+1,设s t =λln t-t-1t+1,则st =λt-2t+12=1tλ-2tt+12,当t>1时,2t t+12=2t+1t+2≤12,故当λ≥12时,st >0恒成立,故s t 在1,+∞上为增函数,故s t >s1 =0即λln t>t-1t+1在1,+∞上恒成立.当0<λ<12时,s1 =λ-12<0,而s t =λt2+2λ-2t+λt t+12当t>1-λ+1-2λλ>1时s t >0,故存在t0>1,使得∀t∈1,t0,使得s t <0,故s t 在1,t0为减函数,故s t <s1 =0,矛盾,舍;综上:λ≥12,即λ∈12,+∞.14(2023·咸阳模拟)已知f(x)=(x-1)2e x-a3x3+ax(x>0)(a∈R).(1)讨论函数f(x)的单调性;(2)当a=0时,判定函数g(x)=f(x)+ln x-12x2零点的个数,并说明理由.【解析】解 (1)由题知,f′(x)=(x2-1)e x-a(x2-1)=(x-1)(x+1)(e x-a).若a≤1,当0<x<1时,f′(x)<0;当x>1时,f′(x)>0,∴f(x)在区间(0,1)上单调递减,在区间(1,+∞)上单调递增;若1<a<e,即0<ln a<1,当0<x<ln a或x>1时,f′(x)>0;当ln a<x<1时,f′(x)<0;∴f(x)在区间(0,ln a)上单调递增,在区间(ln a,1)上单调递减,在区间(1,+∞)上单调递增;若a=e,f′(x)≥0,∴f(x)在定义域上是增函数;若a>e,即ln a>1,当0<x<1或x>ln a时,f′(x)>0;当1<x<ln a时,f′(x)<0;∴f(x)在区间(0,1)上单调递增,在区间(1,ln a)上单调递减,在区间(ln a,+∞)上单调递增.(2)当a=0时,g(x)=ln x-12x2+(x-1)2e x,定义域为(0,+∞),∴g′(x)=1x-x+(x2-1)e x=(x+1)(x-1)e x-1x,设h(x)=e x-1x(x>0),∴h′(x)=e x+1x2>0,∴h(x)在定义域上是增函数,∵h12=e-2<0,h(1)=e-1>0,∴存在唯一x0∈12,1,使h(x0)=0,即e x0-1x0=0,e x0=1x0,-x0=ln x0,当0<x<x0时,h(x)<0,即g′(x)>0;当x0<x<1时,h(x)>0,即g′(x)<0;当x>1时,h(x)>0,即g′(x)>0,∴g(x)在区间(0,x0)上单调递增,在区间(x0,1)上单调递减,在区间(1,+∞)上单调递增,∴当x=x0时,g(x)取极大值g(x0)=ln x0-12x20+(x0-1)2e x0=-12x20+1x0-2,设F(x)=-12x2+1x-212<x<1,易知F(x)在区间12,1上单调递减.∴g(x0)<g12=-18<0,∴g(x)在(0,1)内无零点,∵g(1)=-12<0,g(2)=e2-2+ln2>0,∴g(x)在(1,+∞)内有且只有一个零点,综上所述,g(x)有且只有一个零点.15(2023·天津模拟)已知函数f(x)=ln x-ax+1,g(x)=x(e x-x).(1)若直线y=2x与函数f(x)的图象相切,求实数a的值;(2)当a=-1时,求证:f(x)≤g(x)+x2.【解析】(1)解 设切点坐标为(x0,f(x0)),由f′(x)=1x-a,得f′(x0)=1x0-a,所以切线方程为y-(ln x0-ax0+1)=1x0-a(x-x0),即y=1x-ax+ln x0.因为直线y=2x与函数f(x)的图象相切,所以1x0-a=2,ln x0=0,解得a=-1.(2)证明 当a=-1时,f(x)=ln x+x+1,令F(x)=g(x)-f(x)+x2=xe x-ln x-x-1(x>0),则F′(x)=(x+1)e x-1x-1=x+1xxe x-1,令G(x)=xe x-1(x>0),则G′(x)=(x+1)e x>0,所以函数G(x)在区间(0,+∞)上单调递增,又G(0)=-1<0,G(1)=e-1>0,所以函数G(x)存在唯一的零点x0∈(0,1),且当x∈(0,x0)时,G(x)<0,F′(x)<0;当x∈(x0,+∞)时,G(x)>0,F′(x)>0.所以函数F(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,故F(x)min=F(x0)=x0e x0-ln x0-x0-1,由G(x0)=0得x0e x0-1=0,两边取对数得ln x0+x0=0,故F(x0)=0,所以g(x)-f(x)+x2≥0,即f(x)≤g(x)+x2.16(2023·包头模拟)已知函数f(x)=ae x-ln(x+1)-1.(1)当a=e时,求曲线y=f(x)在点(0,f(0))处的切线与两坐标轴所围成的三角形的面积;(2)证明:当a>1时,f(x)没有零点.【解析】(1)解 当a=e时,f(x)=e x+1-ln(x+1)-1,f(0)=e-1.f′(x)=e x+1-1x+1,f′(0)=e-1,故曲线y=f(x)在点(0,f(0))处的切线方程为y-(e-1)=(e-1)x,即y=(e-1)x+e-1.。
高考数学复习 《导数中的隐零点问题》
衢州三中微专题系列之《导数中的隐零点问题》衢州三中 李娜 知识要点求解导数题时,经常会碰到导函数存在零点但求解比较繁杂甚至无法求解的情形,我们将这类问题称为“隐零点”问题。
这类问题我们一般采用设而不求,通过整体代换和过渡,再结合其他条件,从而使问题得到解决。
解隐零点问题的一般策略:第一步:用零点存在性定理(或用二分法进一步缩小零点的范围)判断导函数零点的存在性。
列出零点方f ′(x 0)=0,并结合f(x)的单调性得到零点的范围。
第二步:将零点方程f ′(x 0)=0适当变形,整体代入最值式子中进行化简证明、求最值、解不等式等。
典例分析【类型一】不含参函数的隐零点问题(构造关于隐零点的单一函数进行求解)已知不含参函数,导函数方程的根存在,却无法求出,设方程的根为,则①有关系式成立,②注意确定的合适范围.例1 已知函数f (x )=(ae x﹣a ﹣x )e x(a ≥0,e=2.718…,e 为自然对数的底数),若f (x )≥0对于x ∈R 恒成立. (1)求实数a 的值;(2)证明:f (x )存在唯一极大值点x 0,且.【解答】(1)a=1,证明略;(2)证明:由(1)f (x )=e x(e x﹣x ﹣1),故f'(x )=e x(2e x﹣x ﹣2),令h (x )=2e x﹣x ﹣2,h'(x )=2e x﹣1, 所以h (x )在(﹣∞,ln)单调递减,在(ln,+∞)单调递增,h (0)=0,h (ln )=2eln ﹣ln ﹣2=ln2﹣1<0,h (﹣2)=2e ﹣2﹣(﹣2)﹣2=>0,∵h (﹣2)h (ln)<0由零点存在定理及h (x )的单调性知,方程h (x )=0在(﹣2,ln)有唯一根,)(x f 0)('=x f 0)('=x f 0x 0)('0=x f 0x设为x0且2e x0﹣x0﹣2=0,从而h(x)有两个零点x0和0,所以f(x)在(﹣∞,x0)单调递增,在(x0,0)单调递减,在(0,+∞)单调递增,从而f(x)存在唯一的极大值点x0即证,由2e x0﹣x0﹣2=0得e x0=,x0≠﹣1,∴f(x0)=e x0(e x0﹣x0﹣1)=(﹣x0﹣1)=(﹣x0)(2+x0)≤()2=,取等不成立,所以f(x0)<得证,又∵﹣2<x0<ln,f(x)在(﹣∞,x0)单调递增所以f(x0)>f(﹣2)=e﹣2[e﹣2﹣(﹣2)﹣1]=e﹣4+e﹣2>e﹣2>0得证,从而0<f(x0)<成立.例2 已知函数.(1)讨论的最值;(2)若,求证:..【解析】(1)依题意,得.①当时,,所以在上单调递减,故不存在最大值和最小值;②当时,由得,.当变化时,与的变化情况如下表(2)当,,设,则,设,由,可知在上单调递增.因为,,所以存在唯一的,使得.当变化时,与的变化情况如下表:由上表可知,在上单调递减,在上单调递增,故当时,取得极小值,也是最小值,即.由可得,所以.又,所以,所以,即,所以不等式成立.[来源:]【类型二】含参函数的隐零点问题对于含参数的隐零点问题,在整体代换时,需要利用零点方程得出参数与零点的关系,将参数用零点表示,再结合具体问题进行求解、已知含参函数,其中为参数,导函数方程的根存在,却无法求出,设方程的根为,则①有关系式成立,该关系式给出了的关系,②注意确定的合适范围,往往和的范围有关. 例3已知函数+3()ex mf x x =-,()()ln 12g x x =++.(Ⅰ)若曲线()y f x =在点()()00f ,处的切线斜率为1,求实数m 的值; (Ⅱ)当1m ≥时,证明:()3()f x g x x >-.),(a x f a 0),('=a x f 0)('=x f 0x 0)('0=x f a x ,00x a解:(Ⅰ)因为+3()ex mf x x =-,所以+2()e 3x m f x x '=-.………………………1分因为曲线()y f x =在点()()00f ,处的切线斜率为1,所以()0e 1mf '==,解得0m =.…………………………………………………2分(Ⅱ) 设()()+eln 12x mh x x =-+-,则()+1e 1x m h x x '=-+. 设()+1e 1x m p x x =-+,则()()+21e 01x m p x x '=+>+. 所以函数()p x =()+1e 1x m h x x '=-+在()+∞-1,上单调递增.………………6分 因为1m ≥,所以()()1e+1e 1e e e e e 10mmmmm m h ----+-+'-+=-=-<,()0e 10m h '=->.所以函数()+1e 1x m h x x '=-+在()+∞-1,上有唯一零点0x ,且()01e ,0m x -∈-+. …8分因为()00h x '=,所以0+01e1x mx =+,即()00ln 1x x m +=--.………………9分 当()00,x x ∈时,()0h x '<;当()0,x x ∈+∞时,()0h x '>.所以当0x x =时,()h x 取得最小值()0h x .……………………………………10分 所以()()()0+00e ln 12x mh x h x x ≥=-+-00121x m x =++-+ ()0011301x m x =+++->+. 综上可知,当1m ≥时,()3()f x g x x >-.……………………………………12分例4 已知函数f (x )=e x+a﹣lnx (其中e=2.71828…,是自然对数的底数). (Ⅰ)当a=0时,求函数a=0的图象在(1,f (1))处的切线方程; (Ⅱ)求证:当时,f (x )>e+1.【解答】(Ⅰ)解:∵a=0时,∴,∴f(1)=e,f′(1)=e﹣1,∴函数f(x)的图象在(1,f(1))处的切线方程:y﹣e=(e﹣1)(x﹣1),即(e﹣1)x﹣y+1=0;(Ⅱ)证明:∵,设g(x)=f′(x),则,∴g(x)是增函数,∵e x+a>e a,∴由,∴当x>e﹣a时,f′(x)>0;若0<x<1⇒e x+a<e a+1,由,∴当0<x<min{1,e﹣a﹣1}时,f′(x)<0,故f′(x)=0仅有一解,记为x0,则当0<x<x0时,f′(x)<0,f(x)递减;当x>x0时,f′(x)>0,f(x)递增;∴,而,记h(x)=lnx+x,则,⇔﹣a<⇔h(x0)<h(),而h(x)显然是增函数,∴,∴.综上,当时,f(x)>e+1.巩固练习1.已知函数.(1)求的极值点;(2)证明:.2.已知函数f(x)=x2﹣(a﹣2)x﹣alnx(a∈R).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)当a=1时,证明:对任意的x>0,f(x)+e x>x2+x+2.3.已知函数的导函数为,且.(1)求函数的极值.(2)若,且对任意的都成立,求的最大值.4.已知函数.(Ⅰ)当a=2时,(i)求曲线y=f(x)在点(1,f(1))处的切线方程;(ii)求函数f(x)的单调区间;(Ⅱ)若1<a<2,求证:f(x)<﹣1.参考答案1.(2)设,则,设,则方程在区间内恰有一个实根.设方程在区间内的实根为,即.所以,当时,,此时单调递减;当时,,此时单调递增.所以由在上是减函数知,,故.综上.`2. 【解答】(Ⅰ)函数f(x)的定义域是(0,+∞),f′(x)=2x﹣(a﹣2)﹣=…(2分)当a≤0时,f′(x)>0对任意x∈(0,+∞)恒成立,所以,函数f(x)在区间(0,+∞)单调递增;…(4分)当a>0时,由f′(x)>0得x>,由f′(x)<0,得0<x<,所以,函数在区间(,+∞)上单调递增,在区间(0,)上单调递减;(Ⅱ)当a=1时,f(x)=x2+x﹣lnx,要证明f(x)+e x>x2+x+2,只需证明e x﹣lnx﹣2>0,设g(x)=e x﹣lnx﹣2,则问题转化为证明对任意的x>0,g(x)>0,令g′(x)=e x﹣=0,得e x=,容易知道该方程有唯一解,不妨设为x0,则x0满足e x0=,当x变化时,g′(x)和g(x)变化情况如下表x (0,x0)x0(x0,∞)g′(x)﹣0 +g(x)递减递增g(x)min=g(x0)=e x0﹣lnx0﹣2=+x0﹣2,因为x0>0,且x0≠1,所以g(x)min>2﹣2=0,因此不等式得证.3.(2)由(1)及题意知,对任意的都成立.令,则.令,则,所以函数在上为增函数,因为,,所以方程存在唯一实根,且,.故当时,,即;当时,,即.所以函数在上单调递减,在上单调递增,所以,所以,,又,故的最大值为.4.【解答】(Ⅰ)当a=2时,,定义域为(0,+∞),,f′(1)=﹣1﹣2=﹣3,f'(1)=2﹣2=0;所以切点坐标为(1,﹣3),切线斜率为0所以切线方程为y=﹣3;(ii)令g(x)=2﹣lnx﹣2x2,所以g(x)在(0,+∞)上单调递减,且g(1)=0所以当x∈(0,1)时,g(x)>0即f'(x)>0所以当x∈(1,+∞)时,g(x)<0即f'(x)<0综上所述,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞).(Ⅱ)证明:f(x)<﹣1,即设,,设φ(x)=﹣ax2﹣lnx+2所以φ'(x)在(0,+∞)小于零恒成立即h'(x)在(0,+∞)上单调递减因为1<a<2,所以h'(1)=2﹣a>0,h'(e2)=﹣a<0,所以在(1,e2)上必存在一个x0使得,即,所以当x∈(0,x0)时,h'(x)>0,h(x)单调递增,当x∈(x0,+∞)时,h'(x)<0,h(x)单调递减,所以,因为,所以,令h(x0)=0得,因为1<a<2,所以,,因为,所以h(x0)<0恒成立,即h(x)<0恒成立,综上所述,当1<a<2时,f(x)<﹣1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学专题复习函数隐性零点的处理技巧
近些年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。
用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。
函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。
根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的, 不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。
本专题通过几个具体的例题来体会隐性零点的处理步骤和思想方法。
一、隐性零点问题示例及简要分析:
1.求参数的最值或取值范围
例1(2012年全国I 卷)设函数f (x )=e x ﹣ax ﹣2. (1)求f (x )的单调区间;
(2)若a=1,k 为整数,且当x >0时,(x ﹣k )f ′(x )+x+1>0,求k 的最大值.
解析:(1)(略解)若a≤0,则f ′(x )>0,f (x )在R 上单调递增;
若a >0,则f (x )的单调减区间是(﹣∞,lna ),增区间是(lna ,+∞). (2)由于a=1,所以(x ﹣k )f′(x )+x+1=(x ﹣k )(e x ﹣1)+x+1. 故当x >0时,(x ﹣k )f ′(x )+x+1>0等价于k <
1
1
-+x
e x +x (x >0)(*), 令g (x )=1
1
-+x e x +x ,则g′(x )=2)1()2(---x x x e x e e ,
而函数f (x )=e x ﹣x ﹣2在(0,+∞)上单调递增,①f (1)<0,f (2)>0, 所以f (x )在(0,+∞)存在唯一的零点.故g ′(x )在(0,+∞)存在唯一的零点.
设此零点为a ,则a ∈(1,2).当x ∈(0,a )时,g ′(x )<0;当x ∈(a ,+∞)时,g ′(x )>0.所以g (x )在(0,+∞)的最小值为g (a ).
③所以g (a )=a+1∈(2,3).由于(*)式等价于k <g (a ),故整数k 的最大值为2.
点评:从第2问解答过程可以看出,处理函数隐性零点三个步骤: ①确定零点的存在范围(本题是由零点的存在性定理及单调性确定); ②根据零点的意义进行代数式的替换; ③结合前两步,确定目标式的范围。
2.不等式的证明
例2.(湖南部分重点高中联考试题)已知函数f (x )=2
)
(ln a x x
+,其中a 为常数.
(1)若a=0,求函数f (x )的极值;
(2)若函数f (x )在(0,﹣a )上单调递增,求实数a 的取值范围; (3)若a=﹣1,设函数f (x )在(0,1)上的极值点为x 0,求证:f (x 0)<﹣2.
解析(1)略解f (x )极大值=f (e )=
e
21
,无极小值; (2)可得a≤﹣
e
2
;
(3)证明:a=﹣1,则f (x )=
2
)1(ln -x x
导数为f′(x )=
3
)
1(1
ln 21---x x x ,
①设函数f (x )在(0,1)上的极值点为x 0,②可得01
ln 210
0=-
-x x ,
即有0
01
1ln 2x x -
=,要证f (x 0)<﹣2,即
2
00)1(ln -x x +2<0,由于
2
00
)1(21
1--
x x +2=)1(21
00-x x +2=)
1(2)21(002
0--x x x ,由于x 0∈(0,1),且x 0=21,2lnx 0=1﹣01x 不
成立, ③则
02)
1(ln 2
00<+-x x ,故f (x 0)<﹣2成立.
点评:处理函数隐性零点的三个步骤清晰可见。
3.对极值的估算
例3.(2017年全国课标1)已知函数f (x )=ax 2﹣ax ﹣xlnx ,且f (x )≥0. (1)求a ;
(2)证明:f (x )存在唯一的极大值点x 0,且e ﹣2<f (x 0)<2﹣2. 解析(1)因为f (x )=ax 2﹣ax ﹣xlnx=x (ax ﹣a ﹣lnx )(x >0),则f (x )≥0等价于
h (x )=ax ﹣a ﹣lnx≥0,求导可知h ′(x )=a ﹣
x
1
.则当a≤0时h ′(x )<0,即y=h (x )在(0,+∞)上单调递减,所以当x 0>1时,h (x 0)<h (1)=0,矛盾,故a >0. 因为 当0<x <
a 1时h ′(x )<0,当x >a 1时h ′(x )>0,所以h (x )min =h (a
1),又因为h (1)=a ﹣a ﹣ln1=0,所以
a
1
=1,解得a=1; (另解:因为f (1)=0,所以f (x )≥0等价于f (x )在x >0时的最小值为f (1),
所以等价于f (x )在x=1处是极小值,所以解得a=1;)
(2)证明:由(1)可知f (x )=x 2﹣x ﹣xlnx ,f′(x )=2x ﹣2﹣lnx , 令f′(x )=0,可得2x ﹣2﹣lnx=0,记t (x )=2x ﹣2﹣lnx ,则t′(x )=2﹣
x
1
, 令t′(x )=0,解得:x=21,所以t (x )在区间(0,21)上单调递减,在(21
,+∞)
上单调递增,所以t (x )min =t (2
1
)=ln2﹣1<0,从而t (x )=0有解,即f ′(x )。