(完整版)人教版初中数学总复习资料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学总复习资料
数与代数
⒈数与式
⑴有理数:有限或不限循环性数(无理数:无限不循环小数) ⑵数轴:“三要素” ⑶相反数
⑷绝对值:│a │= a(a≥0) │a │=-a(a<0) ⑸倒数 ⑹指数
① 零指数:0a =1(a ≠0) ②负整指数: (a ≠0,n 是正整数) ⑺完全平方公式:2222)(b ab a b a +±=± ⑻平方差公式:(a+b )(a-b )=22b a - ⑼幂的运算性质:
①m a ·n a =n m a + ②m a ÷n a =n m a - ③n m a )(=mn a ④n ab )(=n a n b ⑤
n n
n b
a b a =)(⑽科学记数法:n a 10⨯(1≤a <10,n 是整数) ⑾算术平方根、平方根、立方根、 ⑿b a n d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质 ⒉方程与不等式 ⑴一元二次方程
①定义及一般形式:)0(02≠=++a c bx ax ②解法:
1.直接开平方法.
2.配方法
3.公式法:)04(24222
,1≥--±-=ac b a
ac b b x
4.因式分解法.
③根的判别式:
ac b 42-=∆>0,有两个解。
ac b 42-=∆<0,无解。
ac b 42-=∆=0,有1个解。
④维达定理:a
c
x x a b x x =⋅-=+2121,
⑤常用等式:212212
2
212)(x x x x x x -+=+ 212212214)()(x x x x x x -+=- ⑥应用题
1.行程问题:相遇问题、追及问题、水中航行:
水速船速顺+=v ;水速船速逆-=v
2.增长率问题:起始数(1+X)=终止数
3.工程问题:工作量=工作效率×工作时间(常把工作量看着单位“1”)。
4.几何问题
⑵分式方程(注意检验) 由增根求参数的值: ①将原方程化为整式方程
②将增根带入化间后的整式方程,求出参数的值。 ⑶不等式的性质 ①a>b → a+c>b+c ②a>b → ac>bc(c>0) ③a>b → ac
⑤a>b,c>d → a+c>b+d. ⒊函数 ⑴一次函数
①定义:y=kx+b(k ≠0)
②图象:直线过点(0,b )—与y 轴的交点和(-b/k,0)—与x 轴的交点。
③性质:
k>0,直线经过一、三象限,y 随x 的增大而增大。 k<0,直线经过二、四象限,y 随x 的增大而减小。 当b>0时,直线必通过一、二象限。 当b=0时,直线通过原点。
当b<0时,直线必通过三、四象限。
④图象的四种情况:
⑵正比例函:
①定义:y=kx(k ≠0)
②图象:直线(过原点) ⑶反比例函数
①定义:1-==kx x
k
y (k ≠0).
②图象:双曲线(两支)
③性质:
k>0时,两支曲线分别位于第一、三象限,y 的值随x 值的增大而减小。 k<0时,两支曲线分别位于第二、四象限,y 的值随x 值的增大而增大。; ④两支曲线无限接近于坐标轴但永远不能到达坐标轴。
⑷二次函数. ①定义:
))(0()(2顶点式≠+-=a k h x a y ))(0(2一般式≠++=a c bx ax y
②图象:抛物线
)0(2≠++=a c bx ax y 顶点: )0()(2≠+-=a k h x a y 顶点:(h,k)
③性质:
⑴当a>0时,开口向上;当a<0时,开口向下。|a|越大,则抛物线的开口越小。 ⑵当a 与b 同号时(ab>0),对称轴在y 轴左边;当a 与b 异号时(ab<0),对称轴在y 轴右边;当b=0时,对称轴在y 轴。(左同右异)
⑶当c>0时,与y 轴交于正半轴;当c<0时,与y 轴交于负半轴;当c=0时,与y 轴交于原点。
④平行移动的规律:
当h>0时,y=ax 向右平行移动h 个单位得到y=a(x-h) 当h<0时,则向左平行移动|h|个单位得到。
当h>0,k>0时,y=ax向右平行移动h个单位,再向上移动k个单位,得到y=a(x-h) +k
当h>0,k<0时,y=ax向右平行移动h个单位,再向下移动|k|个单位,得到y=a(x-h) +k
当h<0,k>0时,y=ax向左平行移动|h|个单位,再向上移动k个单位,得到y=a(x-h) +k
当h<0,k<0时,y=ax向左平行移动|h|个单位,再向下移动|k|个单位,得到y=a(x-h)^2+k
(二)空间与图形
⒈三角形
⑴面积公式:底乘以高除以2
⑵“四心”:
①垂心:三角形三条高的交点。
②内心:三角形三条内角平分线的交点,即内接圆的圆心。
③重心:三角形三条中线的交点。
④外心:三角形三条边的垂直平分线的交点,即外接圆的圆心。
⑶三角形边与边的关系:
两边之和大于第三边。(较短的两条边)
两边之差小于第三边。(最长的边和最小的边)
⑷三角形内角和、外角与内角的关系:
三角形内角和为180度。
三角形的一个外角等于和它不相邻的两个内角和。
三角形的一个外角大于任何一个和它不相邻的内角。
⒉特殊的角:
⑴对顶角
⑵余角
⑶补角