人教版八年级下册数学勾股定理的整理、拓展、归纳辅导

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十七章、勾股定理

一、知识精读

(一)、 勾股定理

内容:直角三角形两直角边的平方和等于斜边的平方;

表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=

勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方

(二). 勾股定理的应用.

勾股定理是直角三角形的一个重要的性质,它是把三角形由一个直角的“形”的特征转化为三边“数”的关系,因此它是数形结合的一个典范. 勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证

明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.

(三). 勾股定理的证法.

勾股定理的证明方法很多,常见的是拼图的方法

用拼图的方法验证勾股定理的思路是

①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变

②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理

常见方法如下:

方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.

c b

a H

G F

E

D

C B A b a c b a c c a b c a b a b c c b a E

D C B A

方法二:

四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为22

1422S ab c ab c =⨯+=+

大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=

方法三:1()()2S a b a b =+⋅+梯形,,化简得证

(四).勾股定理的应用

①已知直角三角形的任意两边长,求第三边

在ABC ∆中,90C ∠=︒

,则c

,b

,a =

②知道直角三角形一边,可得另外两边之间的数量关系

③可运用勾股定理解决一些实际问题

(五).勾股数

①能够构成直角三角形的三边长的三正整数称为勾股数,即222a b c +=中,a ,

b ,

c 为正整数时,称a ,b ,c 为一组勾股数

②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等

③用含字母的代数式表示组勾股数:

22

n n n

-+(2,

1,2,1

n≥n为正整数);

22

n n n n n

++++(n为正整数)

21,22,221

2222

m n mn m n

-+(m,n为正整数)

,2,

(六)勾股定理的历史背景.

我国是最早了解勾股定理的国家之一,商朝数学家商高提出了“勾三、股四、弦五”,被记载于《周髀算经》中.在欧洲,通常把勾股定理称为毕达哥拉斯定理.

(七). 与直角三角形有关的问题.

(1)直角三角形的定义.

(2)直角三角形的性质:直角三角形中两个锐角互余;如果一个锐角等于30°,则它所对的直角边等于斜边的一半;直角三角形斜边的中线等于斜边的一半等.

(八)、中考视点

勾股定理是几何中的一条重要定理,它揭示了直角三角形三边之间的关系,中考对于这部分的考查主要是勾股定理的运用:

(1)运用勾股定理解直角三角形:已知三角形的两边求第三边.

(2)利用勾股定理证明一些具有平方的关系式.

(3)运用勾股定理在数轴上找到一些和无理数对应的点.

勾股定理的逆定理

●知识概要

勾股定理是将直角三角形的形的特征转化为数的特征,而勾股定理的逆定理是判定直角三角形的重要依据,是由数定形.

(1. )勾股定理的逆定理:如果一个三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.

(2.)如果两个命题的题设结论正好相反,我们把这样的两个命题叫作互逆命题.如果把其中的一个叫做原命题,那么另一个叫作它的逆命题.(3.)如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,称这两个定理互为逆定理.

二、中考考点分析

勾股定理的逆定理是证明一个三角形是直角三角形的重要定理,中考中经常利用它来求角,证明线段的垂直关系以及确定三角形的形状.

教材解读

一、勾股定理的内容

勾股定理的内容是:如果直角三角形两直角边分别是a、b,斜边是c,那么

a2+b2=c2.

因此,在运用勾股定理计算三角形的边长时,一要注意勾股定理的适用条件是在直角三角形中;二要注意表达式的灵活变形,即两条直角边的平方和等于斜边的平方.在直角三角形中,已知任意两条边长,可求出第三条边的长.

二、正确判定一个三角形是否是直角三角形

如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形就是直角三角形.

这一识别方法与勾股定理的条件和结论正好相反,即为勾股定理的逆定理.有了直角三角形的这一判别方法可以通过计算判断一个三角形是否为直角三角形. 要判断一个三角形是不是直角三角形,一是确定最大边,即斜边c;二是验证c2与 a2+b2是否相等.若c2=a2+b2,则△ABC是直角三角形,且∠C=90°;若c2≠a2+b2,则△ABC不是直角三角形.

三、熟练掌握勾股定理在实际生活中的应用

勾股定理有着广泛的应用.如求线段的长、求角度的大小、说明线段的平方关系问题、求作长为的线段等等.以求作长为的线段为例,利用勾股定理作出长为…的线段,如下左图所示.

用同样的方法我们可以在数轴上画出表示…的点,如下右图所示.

四、勾股定理逆定理的推导

勾股定理告诉我们,如果直角三角形的两直角边分别为a、b,斜边为c,那么a 2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方.反之如果我们已知一个三角形的三条边长分别为a、b、c,边长之间满足关系a2+b2=c2,

相关文档
最新文档