厌氧处理工艺的选择及介绍
厌氧工艺流程范文
厌氧工艺流程范文厌氧工艺是一种将有机物在缺氧条件下分解为沼气和沉积物的处理方法。
这种处理方法广泛应用于有机废弃物的处理和能源的生产。
本文将详细介绍厌氧工艺的流程和应用。
厌氧工艺的流程包括前处理、厌氧反应池、沼气收集和利用等步骤。
首先是前处理阶段,主要是将原料进行处理,去除杂质和催化分解有机物。
常见的前处理方法包括粉碎、筛选和加热等。
粉碎可以增加有机物的表面积,有利于后续的厌氧反应。
筛选可以去除较大的杂质,避免堵塞反应池。
加热可以提高反应速率和产气量。
接下来是厌氧反应池,在这一步骤中,有机物经过微生物分解成沼气和沉积物。
厌氧反应池通常由密闭的容器构成,保持池内缺氧环境。
微生物分解有机物生成沼气的反应可分为四个阶段:水解、酸化、产气和稳定。
水解是将有机物分解为可溶性有机物的过程,由产酸菌和好氧菌完成;酸化是将可溶性有机物分解为短链有机酸的过程,由厌氧酸化菌完成;产气是将短链有机酸转化为沼气的过程,由产甲烷菌完成;稳定是将产生的沼气汇集并排出系统的过程。
在反应过程中,厌氧反应池需要控制温度、pH和水解产物浓度等因素,以保证反应的高效进行。
沼气收集是厌氧工艺的重要环节。
沼气是厌氧反应产生的主要产物,其中主要成分为甲烷(CH4)和二氧化碳(CO2)。
沼气可以利用作为能源供应,如发电、燃料等。
在沼气收集系统中,首先要将产生的沼气导入沼气收集罐,然后通过管道将沼气传输到利用设备中。
沼气收集系统需要具备密封性和排气功能,以防止二氧化碳和其他有害气体泄漏。
最后是沼渣处理。
沼渣是厌氧反应过程中产生的残留物,由剩余有机物和不可降解的废弃物组成。
沼渣需要进行后处理,常见的方法包括压榨、堆肥和焚烧等。
压榨可以将沼渣中的水分去除,减少体积。
堆肥可以将沼渣与其他有机废弃物混合,使其成为肥料。
焚烧是将沼渣进行高温燃烧,将其转化为灰渣和热能。
厌氧工艺可以应用于各种有机废弃物的处理,如污水、农业废弃物和城市垃圾等。
通过厌氧工艺,这些有机废弃物可以高效地转化为沼气和肥料,实现资源的循环利用。
解析污水处理中的厌氧工艺
解析污水处理中的厌氧工艺小众环保2018-01-03 10:39:35厌氧生物处理是在厌氧条件下,形成了厌氧微生物所需要的营养条件和环境条件,利用这类微生物分解废水中的有机物并产生甲烷和二氧化碳的过程。
高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。
(1)水解阶段水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。
(2)发酵(或酸化)阶段发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。
(3)产乙酸阶段在产氢产乙酸菌的作用下,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。
(4)甲烷阶段这一阶段,乙酸、氢气、碳酸、甲酸和甲醇被转化为甲烷、二氧化碳和新的细胞物质。
酸化池中的反应是厌氧反应中的一段。
厌氧池是指没有溶解氧,也没有硝酸盐的反应池。
缺氧池是指没有溶解氧但有硝酸盐的反应池。
酸化池---水解、酸化、产乙酸,限制甲烷化,有pH值降低现象。
工艺简单,易控制操作,可去除部分COD。
目的提高可生化性;厌氧池---水解、酸化、产乙酸、甲烷化同步进行。
需要调节pH,不易操作控制,去除大部分COD。
目的是去除COD。
缺氧池---有水解反应,在脱氮工艺中,其pH值升高。
在脱氮工艺中,主要起反硝化去除硝态氮的作用,同时去除部分BOD。
也有水解反应提高可生化性的作用。
水解酸化池内部可以不设曝气装置,控制停留时间再水解、酸化阶段,不出现厌氧产气阶段,前两个阶段的COD去除率不是很高,因为他的目的只是将大分子的变成小分子有机物,一般去除率在20%左右,产气阶段的COD去除率一般在40%左右,但这是产生的硫化氢气体要进行除臭处理,且达到产气阶段的停留时间要较前两阶段长,也就是要出现厌氧状态。
缺缺氧池内要设置曝气装置,控制溶解氧在0.3-0.8mg/l,利用兼氧微生物及生物膜来降解废水中的有机物,接触氧化池内的曝气器要慎重选择,既要保证供氧量,又要确保有利于生物膜的脱落、更新。
厌氧处理工艺
pH值
• pH值是厌氧处理工艺的关键参数 之一。厌氧微生物对pH值的变化 非常敏感,适宜的pH值范围为 6.5-7.5。在酸性条件下,厌氧微 生物的活性受到抑制,导致有机 物降解速率降低。在碱性条件下 ,虽然某些厌氧微生物能够适应 较高的pH值,但过高的pH值会 导致沼气产量减少。因此,需要 控制好厌氧反应器的pH值,使其 保持在一个适宜的范围内。
产甲烷菌
产甲烷菌是厌氧处理工艺中的另一类重 要微生物,主要负责将简单有机物转化 为甲烷气体。
产甲烷菌通过一系列生物反应将VFAs等简单 有机物转化为甲烷,同时释放能量。
产甲烷菌的生长和代谢受到多种因 素的影响,如温度、pH值、氧化还 原电位等,因此在实际应用中需要 精细控制这些参数以确保产甲烷菌 的正常活动。
06
厌氧处理工艺的发展趋势和未来展望
提高能源回收效率
厌氧反应器的优化设计
通过改进反应器的结构和操作方式,提高甲烷产率,降低能耗,提高能源回收 效率。
高效分离技术
采用高效的气体分离技术,将沼气中的甲烷进行提纯,提高甲烷的品质和回收 率。
高效器,如升流式厌氧污泥床(UASB) 、膨胀颗粒污泥床(EGSB)等,以提高反应器的处理效 率和容积负荷。
厌氧处理工艺是一种生物处理技术, 利用厌氧微生物的代谢作用,将废水 中的有机物转化为甲烷和二氧化碳等 气体,实现废水的减量化和稳定化。
厌氧处理工艺的原理
厌氧微生物
厌氧处理工艺的核心是厌氧微生物, 它们在无氧或低氧环境中生存,通过 发酵和产酸等代谢过程将有机物转化 为甲烷和二氧化碳等气体。
发酵过程
产甲烷过程
厌氧-膜分离联合处理
将厌氧处理工艺与膜分离技术相结合,通过膜分离技术对厌氧反应后的出水进行深度处 理,提高出水水质。
厌氧好氧工艺原理
厌氧好氧工艺原理厌氧好氧工艺是一种常用的污水处理工艺,通过厌氧和好氧两个阶段的处理,可以有效地去除污水中的有机物和氮、磷等污染物。
这种工艺原理简单而有效,下面将对其原理进行详细介绍。
首先,厌氧阶段是指在缺氧或无氧的情况下进行生物降解,这种环境条件下,有机物质会被分解成小分子有机物和气体。
在厌氧条件下,一些厌氧菌和厌氧细菌会利用有机物质进行呼吸作用,产生甲烷、硫化氢等气体,同时也会产生一些有机酸和醇类物质。
这些产物会成为后续好氧阶段微生物的碳源,为后续的有机物降解提供了条件。
接下来是好氧阶段,好氧条件下是细菌和其他微生物进行生物降解的主要阶段。
在好氧条件下,细菌和其他微生物会利用厌氧阶段产生的有机物质,通过呼吸作用将其分解成水和二氧化碳。
同时,在好氧条件下,一些氮、磷等无机物质也会被氧化还原,从而去除污水中的氮、磷等污染物。
好氧菌和其他微生物在这一阶段发挥着重要作用,它们通过生物降解作用,将有机物质和无机物质转化为无害的物质,从而达到净化污水的目的。
总的来说,厌氧好氧工艺原理是通过两个阶段的生物降解作用,将污水中的有机物质、氮、磷等污染物去除。
在厌氧阶段,有机物质被分解成小分子有机物和气体,为后续好氧阶段提供了碳源;在好氧阶段,细菌和其他微生物利用这些有机物质和无机物质,通过生物降解作用将其转化为无害的物质。
这种工艺原理简单而有效,被广泛应用于城市污水处理厂和工业废水处理系统中。
除了上述的原理外,厌氧好氧工艺还有一些特点和优势。
首先,这种工艺可以有效地去除污水中的有机物质、氮、磷等污染物,处理效果好;其次,工艺流程简单,操作方便,运行成本低;再次,对于一些特殊的废水,如高浓度有机物质、高浓度氮、磷废水等,也有较好的适用性。
因此,厌氧好氧工艺在实际应用中得到了广泛的推广和应用。
总的来说,厌氧好氧工艺原理简单而有效,通过厌氧和好氧两个阶段的生物降解作用,可以有效地去除污水中的有机物质、氮、磷等污染物。
厌氧发酵工艺流程
厌氧发酵工艺流程厌氧发酵是一种无氧环境下进行的生物化学反应,通过微生物的代谢作用将有机废弃物转化为沼气。
以下是一个典型的厌氧发酵工艺流程的简要介绍。
1. 原料处理:首先,将有机废弃物进行处理,如粉碎、细碎等,以便于微生物可以更好地附着和分解。
2. 缓冲调节:为了保持反应液的酸碱平衡,需要添加缓冲剂来调节pH值。
一般常用的缓冲剂包括纯碱或石灰。
3. 接种菌种:将适宜的厌氧菌株注入反应器中,以启动发酵反应。
厌氧菌株通常可以从厌氧环境中分离得到,也可以通过预培养方法培养得到。
4. 发酵反应:在厌氧条件下,由菌株催化下的发酵反应开始进行。
菌株通过代谢有机废弃物产生沼气,主要成分是甲烷和二氧化碳。
5. 混合搅拌:为了保持反应液的均匀性,需要进行定期的混合搅拌。
搅拌的频率和强度应适当,以避免过度破坏菌体和降低反应效率。
6. 沼气收集:沼气通过收集系统收集并存储起来,用于能源利用或其他用途。
收集系统通常包括沼气罐、气体管道和沼气处理设备。
7. 沉淀物处理:发酵反应的副产物是沉淀物,主要是菌纤维和废弃物的残渣。
这些沉淀物需要经过处理,如沉淀、固液分离等,以便于进一步的处理和利用。
8. 控制和监测:在发酵过程中,需要及时监测和控制关键参数,如温度、pH、气体产量等,以确保反应的顺利进行和良好的产能。
9. 清洗和维护:定期清洗反应器和管道,以防止厌氧菌株的污染和堵塞。
同时,需要进行定期的设备维护和保养,以确保工艺的稳定性和可靠性。
总之,厌氧发酵工艺流程是一个复杂而重要的生物化学过程,可以将有机废弃物转化为沼气,以回收能源和减少环境污染。
在工程实践中,还需根据废弃物的性质和所需产物的要求,进行工艺流程的调整和优化。
厌氧生物处理原理及工艺
当有机负荷率适中时,产酸细菌代谢产物中的有机酸 基本上能被甲烷细菌及时地吸收利用,并转化为沼 气,溶液中残存的有机酸量一般为每升数百毫克。 此时消化液中pH值维持在7~7.5之间,溶液呈弱碱性。 这种在弱碱性条件下进行的厌氧消化过程称之为弱 碱性发酵状态,它是一种高效而又稳定的发酵状态, 最佳负荷率应达此状态。
超高
三相分离区
反应区
布水区
UASB布置结果示意图
厌氧生物处理——主要构筑物及工艺
六、厌氧流化床反应器 厌氧流化床反应器的内部充填着粒径很小 (d=0.5mm左右)的挂膜介质,当其表面长满微生 物时,称为生物颗粒。 在上升水流速度很小时,生物颗粒相互接触,形成 固定床。借助循环管增大(即图9-6中回流用水泵及 流量计控制)反应器内的上升流速,可使生物颗粒 开始脱离接触,并呈悬浮状态。当继续增大流速至 污泥床的膨胀率达10~20%时,生物颗粒便呈流化态。
完全的厌氧生物处理工艺因兼有降解有机物和生产 气体燃料的双重功能,因而得到了广泛的发展和应 用。
原理
一、厌氧消化的生化阶段 复杂有机物的厌氧消化过程要经历数个阶段,由不同 的细菌群接替完成。根据复杂有机物在此过程中的 物态及物性变化,可分三个阶段(表9-1)。
厌氧生物处理——原理
表9-1 有机物厌氧消化过程
d1
D
d2
圆筒形厌氧消化池
h4
h3
h2 h1
蛋形厌氧消化池
厌氧生物处理——主要构筑物及工艺
三、厌氧接触系统 普通消化池用于处理高浓度有机废水时,为了强化有机物与 池内厌氧污泥的充分接触,必须连续搅拌; 同时为了提高处理效率,必须改间断进水排水为连续进水排 水。但这样一来,会造成厌氧污泥的大量流失。 为了克服这一缺点,可在消化池后串联一个沉淀池,将沉淀 下的污泥又送回消化池,因此组成了厌氧接触系统(图9-4)。 污泥回流量约为进水流量的2~3倍。消化池内的MLVSS为 6~10g/L。
厌氧发酵工艺流程
厌氧发酵工艺流程厌氧发酵是一种在缺氧条件下进行的生物反应过程,通常用于生物质、有机废物和废水的处理,以及生物氢气和甲烷的产生。
在这篇文章中,我们将详细介绍厌氧发酵工艺流程,包括工艺原理、操作步骤和应用范围。
1. 工艺原理厌氧发酵是一种微生物代谢过程,通过这种过程,有机物质在缺氧条件下被微生物分解产生气体和有机酸。
这种过程一般分为四个阶段:水解、酸化、醇化和甲烷发酵。
在水解阶段,有机物质被水解成小分子有机物;在酸化阶段,这些小分子有机物被酸化成醋酸、丙酸等有机酸;在醇化阶段,有机酸被进一步分解成醇和二氧化碳;最后,在甲烷发酵阶段,醇和二氧化碳被甲烷菌发酵产生甲烷。
2. 操作步骤厌氧发酵工艺通常包括反应器、搅拌系统、温控系统、气体收集系统等设备。
操作步骤如下:(1)原料处理:将有机废物经过粉碎、均质等处理,使其适合于微生物的生长和代谢。
(2)投料:将处理好的有机废物投入反应器中,注意保持一定的固液比和适宜的pH值。
(3)密封:密封反应器,排除其中的氧气,创造缺氧条件。
(4)发酵:在适宜的温度和pH条件下,微生物开始对有机废物进行厌氧发酵,产生甲烷等气体。
(5)气体收集:收集产生的甲烷等气体,用于能源生产或其他用途。
(6)产物处理:处理反应器中的固体产物,如沉淀物或渣滓,可以进行堆肥、焚烧等处理。
3. 应用范围厌氧发酵工艺在生物质能源生产、有机废物处理和废水处理等领域有着广泛的应用。
在生物质能源生产中,厌氧发酵可以用于生产生物氢气和甲烷,这些气体可以作为清洁能源使用。
在有机废物处理和废水处理中,厌氧发酵可以将有机废物和废水中的有机物质转化为甲烷等气体,减少污染物的排放。
总之,厌氧发酵工艺是一种重要的生物技术,具有广阔的应用前景。
通过对厌氧发酵工艺流程的研究和优化,可以更好地实现有机废物的资源化利用和环境保护。
希望本文能够对厌氧发酵工艺有所了解,并为相关领域的研究和应用提供一定的参考价值。
厌氧工艺流程
厌氧工艺流程
《厌氧工艺流程》
厌氧工艺流程是一种生物处理废水的方法,其特点是在缺氧状态下进行反应。
厌氧工艺流程通常用于处理高浓度有机废水,如污水处理厂、食品加工厂等场所。
厌氧工艺流程包括四个主要阶段:前处理、厌氧反应、后处理和气体处理。
在前处理阶段,废水经过预处理,去除大颗粒物和杂质。
接下来是厌氧反应阶段,废水被引入厌氧反应器,利用厌氧微生物将有机废物转化为甲烷气和二氧化碳。
在后处理阶段,产生的废渣通过沉降或过滤等工艺进行处理。
最后是气体处理阶段,对产生的甲烷气和二氧化碳进行处理,以达到环保要求。
厌氧工艺流程与传统的好氧工艺相比,具有更高的有机废物去除率和产生的废泥量更少的优点。
此外,由于厌氧微生物活动产生的甲烷气具有较高的能量价值,可以用作发电或加热,具有经济效益。
总的来说,厌氧工艺流程是一种高效、低能耗、低排放的废水处理方法,对于处理高浓度有机废水有着独特的优势。
随着环保意识的提升和能源利用的重视,厌氧工艺流程在废水处理领域有着广阔的应用前景。
污水处理工艺之AO(厌氧好氧)简介
2。
1 AO工艺(厌氧好氧)2。
1。
1 工艺原理AO工艺法也叫厌氧好氧工艺法,A(Anaerobic)是厌氧段,用于脱氮除磷;O (Oxic)是好氧段。
工艺流程如下:厌氧工艺段,废水处于厌氧条件下,废水中的有机物经大量微生物的共同作用,被最终转化为甲烷、二氧化碳、水、硫化氢和氨等.在此过程中,不同微生物的代谢过程相互影响,相互制约,形成了复杂的生态系统.对高分子有机物的厌氧过程的叙述,有助于我们了解这一过程的基本内容。
高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。
水解阶段:水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。
高分子有机物因相对分子量巨大,不能透过细胞膜,因此不可能为细菌直接利用.它们在第一阶段被细菌胞外酶分解为小分子。
这些小分子的水解产物能够溶解于水并透过细胞膜为细菌所利用。
发酵(或酸化)阶段:发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。
产乙酸阶段:在产氢产乙酸菌的作用下,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质.甲烷阶段:这一阶段,乙酸、氢气、碳酸、甲酸和甲醇被转化为甲烷、二氧化碳和新的细胞物质。
甲烷细菌将乙酸、乙酸盐、二氧化碳和氢气等转化为甲烷的过程有两种生理上不同的产甲烷菌完成,一组把氢和二氧化碳转化成甲烷,另一组从乙酸或乙酸盐脱羧产生甲烷,前者约占总量的1/3,后者约占2/3。
好氧工艺段,利用好氧微生物(包括兼性微生物)在有氧气存在的条件下进行生物代谢以降解有机物,使其稳定、无害化的处理方法。
微生物利用水中存在的有机污染物为底物进行好氧代谢,经过一系列的生化反应,逐级释放能量,最终以低能位的无机物稳定下来,达到无害化的要求,以便返回自然环境或进一步处理。
好氧生物处理过程的生化反应方程式:分解反应(又称氧化反应、异化代谢、分解代谢)CHONS + O 2 CO 2 + H 2O + NH 3 + SO 42— +⋯+能量(有机物的组成元素)合成反应(也称合成代谢、同化作用)C 、H 、O 、N 、S + 能量 C 5H 7NO 2内源呼吸(也称细胞物质的自身氧化)C 5H 7NO 2 + O 2 CO 2 + H 2O + NH 3 + SO 42— +⋯+能量 2.1.2 工艺特点1、AO 生物除磷工艺是由前段厌氧池和后段好氧池串联组成,工艺流程简单,构筑物较少;2、厌氧池设在好氧池之前,可起到生物选择器的作用,有利于抑制丝状菌的膨胀,改善活性污泥的沉降性能,并能减轻后续好氧池的负荷;3、反应池水力停留时间较短。
厌氧发酵的工艺及原理
厌氧发酵的工艺及原理
厌氧发酵是一种在缺氧条件下进行的生物化学反应过程,其主要目的是产生能量和产物。
这种发酵过程中,微生物通过无氧呼吸来分解有机废料、废水或有机物质,产生有机酸、气体和其他有用的产品。
厌氧发酵的工艺可以概括为以下几个步骤:
1. 原料准备:将有机废料、废水或有机物质进行预处理,包括切碎、分解和调节酸碱度等。
2. 厌氧反应器:将处理后的原料转移到厌氧反应器中,通常为密封的容器。
反应器内部缺氧,提供了微生物进行无氧呼吸的环境。
3. 微生物代谢:在厌氧条件下,微生物开始进行代谢作用。
微生物通过分解有机物质产生能量,并将其转化为有机酸、气体和其他产物。
4. 产品收集与处理:根据需要,收集和处理产生的有机酸、气体和其他有用的产品。
这些产品可以进一步被用于能源生产、肥料制备等。
厌氧发酵的原理主要涉及到微生物的代谢过程。
在缺氧环境中,微生物无法通过氧气进行有氧呼吸,因此它们采用一系列的无氧代谢途径来产生能量。
最常见的无氧代谢方式是乳酸发酵、酒精发酵和甲烷发酵。
乳酸发酵是一种产生乳酸的过程,微生物将有机物质转化为乳酸以产生能量。
酒精发酵则是将有机物质转化为酒精和二氧化碳。
甲烷发酵是将有机物质转化为甲烷和二氧化碳。
在厌氧发酵过程中,微生物通过与有机物质发生代谢反应来获取所需的能量源。
这些代谢反应产生的有机酸和气体也可以被收集和利用。
总的来说,厌氧发酵工艺和原理的关键在于提供无氧环境,利用微生物的无氧代谢途径将有机物质转化为有用产品,并最大限度地利用能量资源。
污水处理厂污泥厌氧消化工艺选择与设计要点
污水处理厂污泥厌氧消化工艺选择与设计要点1.工艺选择要考虑的因素:-厌氧消化工艺的适用性:不同类型的污泥适用不同的厌氧消化工艺,如原理、操作条件等需要综合考虑。
-处理效果:选择高效的厌氧消化工艺可以提高处理效果,减少残留污泥的量。
-经济性:选择成本低、能源回收高的厌氧消化工艺可以提高经济效益。
-系统可靠性:选择经久耐用、操作简单、维护方便的厌氧消化工艺可以提高系统的可靠性。
-环保要求:选择符合环保要求的厌氧消化工艺可以降低对环境的影响。
2.设计要点:-污泥进料和出料系统设计:确保污泥的稳定进料和处理后的可靠出料,避免污泥堵塞和破坏系统的情况发生。
-反应器的选择和设计:根据污泥的性质、产气量和处理量等因素选择合适的反应器类型(如完全混合式反应器、序贯反应器等)和尺寸,确保反应器的处理效果和稳定性。
-温度和pH控制:适宜的温度和pH可以提高厌氧消化反应的速率和稳定性,需要根据具体工艺选取合适的控制策略。
-搅拌和通气系统设计:搅拌和通气系统的设计对于提高厌氧消化效果和保持系统的稳定性至关重要,需要考虑均匀搅拌和适量通气,避免死区和过度通气。
-污泥气体处理:由于厌氧消化过程中会产生大量气体,特别是甲烷等温室气体,需要合理设计气体的收集、处理和利用系统,降低气体的排放风险和环境影响。
-污泥产物的处理和利用:厌氧消化后产生的污泥产物可以进一步处理和利用,如压缩、干化、焚烧等,从而实现资源化利用和减少对环境的污染。
总之,选择合适的污泥厌氧消化工艺和设计合理的工艺系统是保障污水处理厂污泥处理效果和运行稳定性的关键。
在设计过程中需要综合考虑不同因素并遵循环保要求,以达到经济高效和环保可持续的目标。
两相厌氧生物处理工艺
两相厌氧生物处理工艺
两相厌氧生物处理工艺是一种将厌氧消化和酸化结合在一起的处理工艺,适用于处理有机废水和有机固体废物。
该工艺主要包括两个阶段:酸化阶段和厌氧消化阶段。
在酸化阶段,废水或废物首先进入一个酸化反应器,通过调节温度和pH值,以及添加酸化剂和微生物种群,将有机废物转
化为有机酸、醇和氨等化合物。
这个阶段的主要目的是降低废物的pH值,并提供适宜的条件为后续的厌氧消化阶段做准备。
在厌氧消化阶段,酸化产物被输送到厌氧消化器,与厌氧菌共同代谢。
在厌氧消化过程中,有机物被微生物分解为甲烷、二氧化碳和水等产物。
厌氧消化的最终目的是将有机物质转化为可利用的生物气体。
相比于其他处理工艺,两相厌氧生物处理工艺具有以下优点:1. 适用于处理高浓度有机废物,具有较高的处理效率和负荷能力。
2. 生产的甲烷气体可以用于能源回收或发电。
3. 在厌氧消化过程中,产生的污泥量较小,节约处理成本。
4. 可以适应不同的废物和废水类型,具有较强的适应性。
然而,两相厌氧生物处理工艺也存在一些局限性,例如较长的停留时间、对温度和pH值的敏感性,以及对微生物的要求较
高等。
总之,两相厌氧生物处理工艺是一种有效的废水和废物处理工艺,可以实现有机物的高效转化和能源回收。
废水厌氧生物处理原理及工艺
废水厌氧生物处理原理及工艺废水厌氧生物处理是指利用厌氧菌在缺氧状态下对有机废水进行处理过程。
废水厌氧生物处理的原理是通过在无氧环境下,厌氧菌利用废水中的有机物质进行生物降解,将有机物质转化为低分子有机物、沼气和微生物生长等产物,从而实现废水的污染物去除。
废水厌氧处理的工艺主要包括以下几个步骤:1.厌氧池:将废水引入厌氧池,厌氧池是一种无氧环境的容器,池内有效维护低氧条件,为厌氧菌的生长提供合适的环境。
2.厌氧菌的附着生长:在厌氧池中,废水中的有机物质作为厌氧菌的营养物质,菌群会附着在填料、颗粒状介质等表面,形成生物膜。
生物膜可以提供良好的微生物附着环境,增加厌氧菌的数量和降解能力。
3.产甲烷反应:在厌氧池中,厌氧菌通过发酵分解有机废水中的有机物质,产生甲烷气体。
甲烷气体可以在池内积聚,然后被收集利用或者排放。
4.污泥处理:污泥是产生在厌氧处理过程中的附着生物膜,污泥中含有大量的厌氧菌。
为了保持厌氧池内菌群的恒定和活性,需要对污泥进行定期处理,如提取部分活性污泥,根据需要增加或减少菌群数量。
1.适应性强:厌氧菌对环境条件的要求较低,适应性强,可以处理含有高浓度有机物质的废水。
2.产甲烷气体:厌氧处理过程中产生的甲烷气体可以作为一种可再生能源,可以被回收利用。
3.污泥产生少:相比于好氧处理过程,厌氧处理过程中产生的污泥量较少。
4.不需供氧:厌氧处理过程中不需要供氧设备,降低了能耗和运行成本。
虽然废水厌氧生物处理有着很多优点,但是也存在着一些问题和挑战。
例如,厌氧处理过程中产生的沼气中可能含有硫化氢等有害物质,需要进行处理和处理;污泥的处理和处置也是一个难题,需要采取适当的方式进行处理。
此外,厌氧处理过程对环境条件的要求相对较高,需要合理的工艺控制和操作管理。
综上所述,废水厌氧生物处理是一种有效的废水处理技术,通过厌氧菌对有机废水进行降解,实现对废水污染物的去除。
深入研究废水厌氧生物处理原理与工艺将有助于改进处理技术,提高废水处理效果,同时也有助于开发可再生能源和实现资源化利用。
厌氧工艺流程
厌氧工艺流程厌氧工艺是一种利用微生物在缺氧条件下进行生物转化的工艺流程。
在这种工艺中,微生物在缺氧条件下进行生物降解,产生有机物和气体。
厌氧工艺被广泛应用于废水处理、有机废弃物处理和生物能源生产等领域。
本文将介绍厌氧工艺的基本原理、工艺流程和应用。
1. 厌氧工艺的基本原理厌氧工艺利用厌氧微生物在缺氧条件下进行生物降解有机物的特性。
在缺氧条件下,微生物通过厌氧呼吸代谢有机物,产生甲烷、二氧化碳和水等产物。
厌氧微生物的代表包括甲烷菌和硫酸盐还原菌等。
这些微生物在缺氧条件下能够有效降解有机物,并产生有用的产物。
2. 厌氧工艺的工艺流程厌氧工艺包括预处理、厌氧消化和气体利用等步骤。
首先是预处理阶段,将有机废物进行粉碎和混合,以便于微生物的降解。
然后是厌氧消化阶段,将预处理后的有机废物投入到厌氧反应器中,通过控制温度、pH和搅拌等条件,促进微生物的生长和有机物的降解。
在厌氧消化过程中,微生物将有机物转化为甲烷和二氧化碳等气体。
最后是气体利用阶段,将产生的甲烷气体用于发电或供热,实现能源的回收利用。
3. 厌氧工艺的应用厌氧工艺在废水处理、有机废弃物处理和生物能源生产等领域有着广泛的应用。
在废水处理方面,厌氧消化可以有效降解有机物,减少废水中的污染物含量。
在有机废弃物处理方面,厌氧消化可以将有机废物转化为甲烷气体,实现能源的回收利用。
在生物能源生产方面,厌氧消化可以产生大量的甲烷气体,可以用于发电、供热和燃料等方面。
总之,厌氧工艺是一种重要的生物转化工艺,具有广泛的应用前景。
通过对厌氧工艺的研究和应用,可以实现废物资源化利用和生物能源的可持续生产,对于推动循环经济和减少环境污染具有重要意义。
希望未来能够进一步加强对厌氧工艺的研究和推广,为环境保护和可持续发展做出更大的贡献。
厌氧处理工艺汇总分析比较
厌氧处理工艺汇总分析比较厌氧处理工艺是一种处理工业废水、城市污水和有机废弃物的生物处理方法。
与传统的好氧处理工艺相比,厌氧处理工艺具有许多优点,如对氧的需求低、产生可再生能源等。
本文将对几种常见的厌氧处理工艺进行汇总分析比较,并评估其适用性和效果。
一、厌氧处理工艺分类二、厌氧处理工艺汇总分析1.厌氧池:厌氧池是一种简单的处理工艺,适用于低浓度有机物质的处理。
它采用厌氧菌对有机废水进行降解,产生沼气。
优点是运行成本低,易于操作,但处理效果不太理想。
2.厌氧颗粒污泥床:厌氧颗粒污泥床是利用厌氧菌形成的颗粒污泥对废水进行处理。
颗粒污泥有较好的沉降性,处理效果好。
但是,该工艺对废水负荷波动较敏感,需要频繁的维护。
3.厌氧反应器:厌氧反应器是一种较为复杂的处理工艺,有多个反应阶段。
它可以有效地降解有机废水,产生沼气。
该工艺适用于处理高浓度有机废水,具有较好的效果。
4.厌氧滤池:厌氧滤池是利用厌氧菌附着在过滤介质上进行废水处理的一种工艺。
该工艺处理效果较好,能够适应废水负荷波动,但维护成本较高。
5.UASB反应器:UASB反应器是一种既具有良好的有机物去除效果,又具有较高沼气产率的厌氧处理工艺。
该工艺适用于中低浓度有机废水的处理,运行稳定,能耗低。
三、厌氧处理工艺比较根据对以上厌氧处理工艺的汇总分析,可以得出以下结论:1.对于低浓度有机废水的处理,厌氧池是一种简单有效的选择;对于中低浓度有机废水的处理,UASB反应器是一种较好的选择。
2.厌氧颗粒污泥床适用于处理高浓度有机废水,但对废水负荷波动较敏感,需要频繁的维护。
3.厌氧滤池处理效果较好,但维护成本较高,适用于废水负荷波动较大的情况。
4.厌氧反应器在多个反应阶段的配合下,可以有效地降解高浓度有机废水,产生沼气。
综上所述,选择适合的厌氧处理工艺需要综合考虑废水的浓度、负荷波动情况、经济性等因素。
不同的工艺有其适用的场景,需根据具体情况进行选择。
未来,厌氧处理工艺还有进一步的发展空间,可以结合其他技术手段,提高处理效率和资源回收率。
厌氧生物处理原理及工艺
厌氧生物处理原理及工艺厌氧生物处理是一种利用厌氧菌降解有机废物的技术,其原理是在缺氧条件下,厌氧菌通过一系列的代谢过程将有机废物转化为沼气和有机肥料。
厌氧生物处理工艺是一种成熟的废物处理技术,已广泛应用于废水处理、有机废物处理、能源生产等领域。
在厌氧生物处理的过程中,产生成沼气是一个重要的步骤。
这是因为厌氧菌能够进行产气发酵,将有机废物中的可分解物质转化为沼气。
沼气主要由甲烷和二氧化碳组成,其中甲烷是一种高效能源。
产生的沼气可以被用作热能或发电,从而实现能源的回收和利用。
此外,厌氧生物处理中的转化过程也是至关重要的。
转化过程主要是指厌氧菌对有机废物进行不同形式的转化,将其转化为可稳定存储和利用的有机肥料。
有机废物中的有机质经过厌氧菌的代谢,通过转化过程转化为有机肥料,可以用于农业生产和土壤改良。
厌氧生物处理工艺可以分为传统厌氧生物处理和高效厌氧生物处理两种。
传统厌氧生物处理工艺一般采用连续搅拌式反应器,其特点是进料均匀、处理效果稳定。
高效厌氧生物处理工艺采用了新型反应器和进料系统,能够提高处理效率和产气质量,同时减少了对废物的处理时间和能耗。
厌氧生物处理工艺的优点包括低能耗、低污染和高效率。
相对于厌氧处理工艺,厌氧生物处理不需要外部供氧,因此能够节约能源。
此外,厌氧生物处理过程中产生的废物也相对较少,能够减少对环境的污染。
在实际应用中,厌氧生物处理工艺已被广泛应用于废水处理、饮食垃圾处理和生物质能源生产等领域。
然而,厌氧生物处理工艺也存在一些问题。
首先,厌氧生物处理过程中需要维持适宜的温度和pH值,否则可能影响厌氧菌的生长和代谢。
此外,由于厌氧生物处理过程需要一定的反应器空间和时间,因此工艺规模较大的应用可能面临投资较高的问题。
总的来说,厌氧生物处理是一种成熟的废物处理技术,其通过厌氧菌的降解作用将有机废物转化为沼气和有机肥料。
具有低能耗、低污染和高效率等优点,已广泛应用于废水处理、有机废物处理和能源生产等领域。
厌氧生物处理原理及工艺
厌氧生物处理的方法和基本功能有二:
(1)酸发酵的目的是为进一步进行生物处理提供易生 物降解的基质;
(2)甲烷发酵的目的是进一步降解有机物和生产气体 燃料。
完全的厌氧生物处理工艺因兼有降解有机物和生产 气体燃料的双重功能,因而得到了广泛的发展和应 用。
原理
一、厌氧消化的生化阶段 复杂有机物的厌氧消化过程要经历数个阶段,由不同 的细菌群接替完成。根据复杂有机物在此过程中的 物态及物性变化,可分三个阶段(表9-1)。
发酵工艺
甲烷发酵 酸发酵
——
厌氧生物处理——原理
二、发酵的控制条件 (以下重点讨论甲烷发酵的控制条件。) (一)营养与环境条件
废水、污泥及废料中的有机物种类繁多,只要未达 到抑制浓度,都可连续进行厌氧生物处理。对生物 可降解性有机物的浓度并无严格限制,但若浓度太 低,比耗热量高,经济上不合算;水力停留时间短, 生物污泥易流失,难以实现稳定的运行。一般要求 COD大于1000mg/L。 COD∶N∶P=200∶5∶1
(4)pH值的控制 如果料液会导致反应器内液体的pH 值低于6.5或高于8.0时,则应对料液预先中和。当有 机酸的积累而使反应液的pH值低于6.8~7时,应适当 减小有机物负荷或毒物负荷,使pH值恢复到7.0以上 (最好为7.2~7.4)。若pH低于6.5,应停止加料,并 及时投加石灰中和。
厌氧生物处理——主要构筑物及工艺
生污泥从池顶进入,通过搅拌与池内污泥混合,进行 厌氧消化。分解后的污泥从池底排出。产生的生物 气从池顶收集。普通消化池需要加热,以维持高的 生化速率。
这种处理构筑物通常是每天加排料各1~2次,与此同时 进行数小时的搅拌混合。
d1
D d2
圆筒形厌氧消化池
厌氧消化工艺的分类
厌氧消化工艺的分类厌氧消化工艺是一种将有机废物转化为有价值的产物和能源的过程。
根据不同的处理方式和反应条件,厌氧消化工艺可以分为传统厌氧消化、高固形物厌氧消化、厌氧共消化和高级厌氧消化等几大分类。
1. 传统厌氧消化:传统厌氧消化是指将有机废物在常温下进行厌氧发酵处理的过程。
常见的传统厌氧消化工艺包括连续搅拌反应器(CSTR)和完全混合反应器(SEEDED CSTR)。
这种工艺主要适用于废水处理厂和有机废物处理厂,能够将有机废物转化为甲烷气和有机肥料,同时减少废物产生的肥料和能源成本。
2. 高固形物厌氧消化:高固形物厌氧消化是指处理含有较高固形物浓度的有机废物的厌氧消化过程。
常见的高固形物厌氧消化工艺包括干发酵和批式厌氧消化。
干发酵是将有机废物进行脱水处理后,通过降解厌氧消化产生甲烷气,主要适用于城市垃圾处理等高固形物废物的处理。
批式厌氧消化是将固体有机废物放入密封的容器中进行发酵处理,适用于餐饮废物和农业废物等含有较高固形物浓度的有机废物。
3. 厌氧共消化:厌氧共消化是指将不同种类的有机废物一起进行厌氧消化处理的过程。
常见的厌氧共消化工艺包括混合式厌氧消化(HAD)和串联式厌氧消化(TAD)。
混合式厌氧消化是将不同种类的有机废物混合在一起进行处理,能够提高有机废物的降解效率和产气量。
串联式厌氧消化是将从第一个反应器中产生的乙酸等中间产物输入到第二个反应器中进行进一步降解,能够提高废物的处理效率和产气量。
4. 高级厌氧消化:高级厌氧消化是指在传统厌氧消化基础上引入新的技术和反应条件,以提高废物降解效率和产气量的厌氧消化工艺。
常见的高级厌氧消化工艺包括温度相应厌氧消化(TAD)和高压厌氧消化(HPAD)。
温度相应厌氧消化是指通过调节反应器温度以及微生物组成,提高厌氧消化的降解效率和产气量。
高压厌氧消化是通过增加反应器压力,提高有机废物的降解效率和产气量。
这些高级厌氧消化工艺在提高能源回收和废物处理效率方面具有潜在的优势。
污水处理中的厌氧/好氧工艺
感谢您的观看
THANKS
VS
好氧处理阶段
在好氧条件下,微生物通过吸附和降解作 用,进一步去除有机物、氮、磷等污染物 。好氧工艺可以采用活性污泥法、生物膜 法等多种形式。
工业废水处理
厌氧处理阶段
针对工业废水中难降解的有机物,厌氧工艺能够将其转化为易降解的有机物,同时释放 出甲烷气体。这一阶段有助于降低后续好氧处理的难度。
好氧处理阶段
新技术的研发和应用
随着科技的不断进步,厌氧/好氧工艺也在不断发展,新的技术和方法不断涌现。例如,高效厌氧反 应器的研发和应用,可以提高厌氧反应的效率,降低能耗和投资成本。
好氧生物膜反应器、序批式反应器等新型好氧工艺的应用,可以进一步提高好氧处理的效率,减少曝 气量,降低运行成本。同时,新型的生物脱氮除磷技术也在不断发展,为污水处理厂的提标改造提供 了更多的选择。
污水处理中的厌氧好氧工艺
汇报人:可编辑 2024-01-05
目录
• 厌氧工艺介绍 • 好氧工艺介绍 • 厌氧/好氧工艺的比较 • 厌氧/好氧工艺的应用场景 • 厌氧/好氧工艺的发展趋势
01
厌氧工艺介绍
厌氧工艺的定义
01
厌氧工艺是指在无氧条件下,通 过厌氧微生物将有机物转化为甲 烷和二氧化碳的过程。
提高处理效率与降低成本
厌氧/好氧工艺的发展趋势是提高处理效率、降低能耗和投资成本。通过改进反应器结构、优化运行参数、选择高效微生物等 方法,可以提高厌氧/好氧工艺的处理效率,减少处理时间和能耗。
同时,新型的厌氧/好氧工艺不断涌现,如厌氧氨氧化、同步硝化反硝化等,这些新工艺具有更高的处理效率和更低的运行成 本,为污水处理厂的可持续发展提供了有力支持。
05
厌氧/好氧工艺的发展趋 势
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.6 环流式好氧反应器
环流式好氧反应器是利用反应器的结构,使气体在反应器中循环流动,增加反应器中水流和气泡的停留时间,提高气体的传递效率,以增加液体中氧含量的系统。 供气方式含有两大类。
?(1)传统膜式曝气:即用鼓风机向曝气器供给空气。
例4:高效颗粒化菌种,适应COD浓度范围:2000~50000mg/L废水
例5:垃圾渗滤液废水,环流式好氧反应器,COD浓度:5000mg/L,去除率80%。
例6:化工高浓度有机废水,喷射式好氧反应器,COD浓度:6000mg/L,去除率80%。
1.2.4 深井曝气法
深井曝气首先由英国帝国化学工业有限公司于1968年发明。他们在进行利用好氧菌生产单细胞蛋白的研究中,设计出了充氧能力很高的深井培养槽,并把这项技术应用于废水处理中。其后,日本、美国、加拿大、法国等相继进行了研究,并相继建成了一批生产处理装置。目前,此工艺已用于处理化工废水、制药废水、食品加工废水、造纸废水和混合废水等。 深井被分隔为上升管和下降管两部分,污水和活性污泥沿下降管下降,再沿上升管上升,并形成循环。深井曝气运行有水泵循环和气体循环两种方式。水泵循环为自吸进气方式,有设备少,运行控制稳定,处理后的微气泡易脱除等优点,气体循环法应用于大井时较水泵循环方式节省能耗,在国外普遍采用气体循环方式。在国内气体循环法尚不完善。但中国沈阳等地己建成了气体循环深井曝气装置。 深井曝气法存在的主要缺点是处理过程容易遭受变化,比普通活性污泥法要求更高、更熟练的技术人员对它进行运行管理,否则很难正常的运行。目前,深井曝气技术在净化理论、应用范围、运行方式等方面都得到了很大的发展。深井曝气具有效率高、投资及运行维护费用低及占地面积小等优点,较适合我国使用。它的耐低温特点,特别适合我国北方地区使用。
?具有较高的有机负荷,水力负荷能满足要求。
?污泥颗粒化后使反应器耐不利条件的冲击能力增强。
?具有较高的上升流速,尤其是颗粒污泥IC反应器,由于颗粒污泥的密度较小,在适度的水力负荷范围内,可以靠反应器内产生的气体来实现污泥与基质的充分混合及接触,大大提高反应器的效率。
?在反应器上部设置了气—固—液三相分离器,对沉降良好的污泥或颗粒污泥可以自行分离沉降并返回反应器主体,不须附设沉淀分离装置、辅助脱气装置及回流污泥设备,简化了工艺,节约了投资和运行费用。
1.2.5 射流曝气器法
射流曝气是利用射流曝气器将气流或气液混合液导入曝气池,以增加液体中氧含量的系统。它具有下列优点。
?(1)有较高的氧吸收率和充氧能力,混合搅拌作用强;
?(2)污泥活性好,基质降解常数较高,提高了污泥的沉淀性能;
?(3)构造简单、运转灵活、便于调节、维修管理方便。
射流曝气器既不是一种气泡扩散装置,也不是一种机械曝气设备,而是介于这二者之间的一种设备,利用气泡扩散和水力剪切这两个作用达到曝气和混合的目的。在射流曝气器混合部内,由于射流的紊动及能量交换作用,形成剧烈的混掺现象,不仅在瞬间完成了氧气从气相向液相中的转移,而且射流曝气工作水流为进水和回流污泥的混合液,因此在射流器混合部内迅速地进行着泥(微生物)、水(有机物)、气(溶解氧)三者间的传质与生化反应,这是一个在特定条件下发生的快速生物反应与传质的综合过程,是与其它任何活性污泥法不同的。 根据供气方式的不同,射流曝气可分为两大类。
?(2)转刷曝气器:转刷在曝气的同时,推动水体流动,形成环流。
例1:化学酒精高浓度有机废水,UASB反应器,COD浓度:30000mg/L,去除率90%。
例2:退浆淀粉高浓度有机废水,IC反应器,COD浓度:8000mg/L,去除率80-90%。
例3:酒厂高浓度有机废水,EGSB反应器,COD浓度:7000mg/L,去除率90%。
在已开发的厌氧反应器中,第三代的EGSB和IC反应器是一种研究最为深入、技术最为先进的厌氧反应器。它是在第二代UASB反应器的基础上发展起来的高效反应器,尤其适用于中等浓度(COD在10000mg/l以下)的有机废水的处理,并成功地应用于各种废水的处理。相对于其它类型的反应器,EGSB/IC反应器具有一些突出的优点:
图1是一种三相生物流化床结构示意图,可应用于石化、制药、食品和印染等废水的处理,并且该三相生物流化床对各种有机废水都具有很好的处理效果,其COD去除率都在70%以上,流化床容积负荷也在5.0 Kg [COD]/m3·d以上;此外,实验及实际运行中发现,与其他生物处理工艺相比,三相生物流化床工艺的剩余污泥产生量很少,尤其是对于COD浓度较低的废水,如印染废水,剩余污泥量更少;流化床的流化区内,活性污泥浓度达到10-20 g/L,加上生物载体表面的微生物,流化床具有很高的微生物浓度。
1.2.3 HCR反应器
HCR工艺(High Performance Compact Reactor)是德国克劳斯塔尔(Clausthal)工业大学物相传递研究所于80年代发明的,是第三代生物反应器。由于该反应器采用高速射流曝气,具有深井曝气和流化床的特点。HCR通过提高传质速率,以高充氧能力和高污泥活性来满足短时间内快速降解有机物的要求,从而实现高效的目的;其氧的转移率高,反应器的容积负荷大,水力停留时间短,是一种高效好氧生物处理方法。该工艺的主要特点是的高径比较大,由于HCR为完全混合型反应器,加上高浓度污泥的协同作用,使进水量和浓度的大幅度波动得以充分缓和,毒害性物质也得到稀释,从而有效提高了HCR系统的抗冲击负荷能力。 HCR系统的反应效率较常规活性污泥法大大提高,接近到纯氧曝气的水平,根据挪威“克瓦纳”公司提供的数据,HCR的容积负荷可达50-70 kg[COD]/m3·d,是常规活性污泥法的10-30倍,反应时间为1-2小时,是常规活性污泥法1/2-1/4,污泥负荷可达5-10 kg[COD]/kg[MLSS],是常规活性污泥法的2-3倍,因此HCR系统的反应体积仅为常规活性污泥法的1/50-1/30。一般HCR工艺所产生的剩余污泥量为0.15-0.2 kg[SS]/ kg[BOD],比其他好氧方法平均减少40%左右,从而大大减少了污泥处理量。
厌氧处理工艺的选择及介绍
1 厌氧处理工艺的选择
厌氧反应器既有传统的反应器又有现代高效反应器,这些工艺又可分为厌氧悬浮生长和厌氧接触生长工艺。
厌氧工艺经百余年的发展已从最初的第一代的厌氧消化池发展到第二代的厌氧滤器(AF)、厌氧流化床反应器(AFB)、上流式厌氧污泥床(UASB)以及第三代的膨胀颗粒污泥床反应器(EGSB和IC)这几种反应器形式。
目前,HCR工艺已在德国、挪威、法国和加拿大等国家应用于造纸废水、酵母生产废水、屠宰废水、化工废水的处理,并取得了较好的效果。拉维克市雀斯科夫锐兹公司(Treschow-Fritze, Larvik)的半化学纸浆废液,COD浓度高达20000 mg/L,采用HCR工艺处理,容积负荷为80 kg[COD]/(m3·d),COD去除率达到70%,废水中含有过氧漂白污水,但它对于水处理效果没有任何不良影响,其剩余污泥产率约为0.2 kg[SS]/kg[COD]。
1.2 高强好氧处理工艺的选择
1.2.1复合式生物反应器
为了在原有活性污泥工艺基础上,提高曝气池内生物量,增强废水处理能力,克服活性污泥膨胀,提高运行稳定性,人们发明了在曝气池中投加载体的方法,即在曝气池中投加各种能提供微生物附着生长表面的载体,利用载体容易截留和附着生物量大的特点,使曝气池中同时存在附着相和悬浮相生物,充分发挥两者的优越性,使之扬长避短,相互补充,将这种反应器称为复合生物反应器HBR(Hybrid Biological Reactor)。复合式生物反应系统是将生物膜反应系统和活性污泥系统结合起来。虽然这种方法保留了原有工艺的主体构造,但是由于填料的加入,使污水处理机理和效能都大为改变[7]。在这个系统中,微生物生存的基础环境由原来的气、液两相转变成气、液、固三相,这种转变为微生物创造了更丰富的存在形式,形成一个更为复杂的复合式生态系统。
由上述可知,深井曝气法和HCR曝气法通过改变曝气方式,提高氧的利用效率,从而提高好氧生物反应器中微生物的活性;生物流化床是将化工过程的流态化技术应用于污水处理,综合了活性污泥法和生物膜法两者的优点并加以发展,提高了传质效率和生物粒子沉降性能,从而提高好氧生物反应器中微生物的浓度;复合生物反应器则是在原有活性污泥法工艺基础上,在曝气池中投加各种能提供微生物附着生长表面的载体,利用载体容易截留和附着生物量大的特点,使曝气池中同时存在附着相和悬浮相生物,充分发挥两者的优越性,从而提高曝气池内微生物量,增强废水处理能力。
在已开发的厌氧反应器中,第三代的EGSB和IC反应器是一种研究最上发展起来的高效反应器,尤其适用于中等浓度(COD在10000mg/l以下)的有机废水的处理,并成功地应用于各种废水的处理。相对于其它类型的反应器,EGSB/IC反应器具有一些突出的优点:
1.2.2好氧生物流化床
好氧生物流化床反应器是将普通活性污泥法和生物膜法的优点有机地结合,是七十年代开始应用于污水处理的一种高效的生物处理工艺,并引入流化技术处理有机废水的反应装置,因而具有容积负荷高、生物降解速度快、占地面积小、基建投资和运行费用低等优点。 生物流化床处理技术是借助流体(液体、气体)使表面生长着微生物的固体颗粒(生物颗粒)呈流态化,同时进行去除和降解有机污染物的生物膜法处理技术。微生物生长在载体表面,载体则在反应器中流动,是悬浮生长型和附着生长型的复合。它可以保持高浓度的微生物量,传质效率高,体积负荷可以比传统活性污泥法高6-10倍。
1.2.3 HCR反应器
HCR工艺(High Performance Compact Reactor)是德国克劳斯塔尔(Clausthal)工业大学物相传递研究所于80年代发明的,是第三代生物反应器。由于该反应器采用高速射流曝气,具有深井曝气和流化床的特点。HCR通过提高传质速率,以高充氧能力和高污泥活性来满足短时间内快速降解有机物的要求,从而实现高效的目的;其氧的转移率高,反应器的容积负荷大,水力停留时间短,是一种高效好氧生物处理方法。该工艺的主要特点是的高径比较大,由于HCR为完全混合型反应器,加上高浓度污泥的协同作用,使进水量和浓度的大幅度波动得以充分缓和,毒害性物质也得到稀释,从而有效提高了HCR系统的抗冲击负荷能力。 HCR系统的反应效率较常规活性污泥法大大提高,接近到纯氧曝气的水平,根据挪威“克瓦纳”公司提供的数据,HCR的容积负荷可达50-70 kg[COD]/m3·d,是常规活性污泥法的10-30倍,反应时间为1-2小时,是常规活性污泥法1/2-1/4,污泥负荷可达5-10 kg[COD]/kg[MLSS],是常规活性污泥法的2-3倍,因此HCR系统的反应体积仅为常规活性污泥法的1/50-1/30。一般HCR工艺所产生的剩余污泥量为0.15-0.2 kg[SS]/ kg[BOD],比其他好氧方法平均减少40%左右,从而大大减少了污泥处理量。