厌氧生物处理法、流程及动力学特征
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章厌氧生物处理法
本章重点:厌氧过程动力学
20世纪70年代以来,由于城市的扩大和工业的迅速发展,有机废.如仍用需氧法处理则需要消耗大量的能量。随着全球性能源问题的日益突出,在废水处理领域内,人们便逐渐对厌氧生物处理工艺产生了新的认识和估价。
厌氧生物处理法的主要优点有:能耗低;可回收生物能源(沼气);每去除单位质量底物产生的微生物(污泥)量少;而且由于处理过程不需要氧,所以不受传氧能力的限制,因而具有较高的有机物负荷的潜力。其缺点是处理后出水的COD、BOD值较高,水力停留时间较长并产生恶臭等。
§10.1 厌氧生物处理法的基本原理和流程
1.基本原理
可将有机物在厌氧条件下的降解过程分成三个反应阶段。
第一阶段是,废水中的溶性大分子有机物和不溶性有机物水解为溶性小分子有机物。
反应的第二阶段为产酸和脱氢阶段。水解形成的溶性小分子有机物被产酸细菌作为碳源和能源,最终产生短链的挥发酸,如乙酸等。
在废水的厌氧生物处理过程中,有机物的真正稳定发生在反应的第三阶段,即产甲烷阶段。产甲烷的反应由严格的专一性厌氧细菌来完成,这类细菌将产酸阶段产生的短链挥发酸(主要是乙酸)氧化成甲烷和二氧化碳。
图 10-1 厌氧处理的连续反应过程
2.甲烷的产生与形成途径
产甲烷阶段,又称碱性发酵阶段,这一阶段产甲烷菌利用前一阶段的产物,并将其转化为CH 4和CO 2,可能反应如下:
4H 2+CO 2
CH 4+2H 2O (10-1)
4H 2+CH 3COOH 2CH 4+2H 2O (10-2) CH 3COOH
CH 4+CO 2
(10-3)
因为氧化氢形成甲烷的细菌可从二氧化碳中获得碳源,所以这些细菌带有自养性,其生长速率很慢,虽然它们与分解乙酸的细菌在厌氧反应器中有共生关系,但其数量较少,在厌氧反应过程中,生成的甲院大部分来自乙酸的分解。主要参与微生物统称为产甲烷菌; 其特点有:1)生长慢;2)对环境条件(温度、pH 、抑制物等)非常敏感。
3.基本流程
不溶性有机物和大分子溶性有机物
图10-3为废水厌氧处理的基本流程图,图中以虚线框标出厌氧处理单元,主要由六部分组成,简单说明如下:
⑴厌氧反应器厌氧处理中的发生生物氧化反应的主体设备。
⑵促使反应器中主体液体与进水充分混合的设备或手段。
⑶保持反应器中主体液体达到所需温度的设备。
⑷pH值调节剂投加设备。
⑸沼气的排放、贮存和利用设备。
⑹废弃厌氧生物污泥的贮存和处理设备。
厌氧生物处理工艺的发展简史:
①上述的厌氧过程广泛地存在于自然界中;
②人类第一次利用厌氧消化处理废弃物,是始于1881年——Louis Mouras的“自动净
化器”;
③随后人类开始较大规模地应用厌氧消化过程来处理城市污水(如化粪池、双层沉淀池
等)和剩余污泥(如各种厌氧消化池等);
——长的HRT、低的处理效率、浓臭的气味等;
④50、60年代,特别是70年代中后期,随着能源危机的加剧,人们对利用厌氧消化过
程处理有机废水的研究得以强化,出现了一批被称为现代高速厌氧消化反应器的
处理工艺,厌氧消化工艺开始大规模地应用于废水处理;
——HRT大大缩短,有机负荷大大提高,处理效率也大大提高;
——厌氧接触法、厌氧滤池(AF)、上流式厌氧污泥床(UASB)反应器、厌氧流化床(AFB)、AAFEB、厌氧生物转盘(ARBC)和挡板式厌氧反应器等;
——HRT与SRT分离,SRT相对很长,HRT则可以较短,反应器内生物量很高。
⑤最近(90年代以后),随着UASB反应器的广泛应用,在其基础上又发展起来了EGSB
和IC反应器;
——EGSB反应器可以在较低温度下处理低浓度的有机废水;
——IC反应器则主要应用于处理高浓度有机废水,可以达到更高的有机负荷。
在厌氧反应器构型的开发研究过程中,可以认为,在消化池出现之前,人们主要集中于设法将废水中悬浮物的沉淀和污泥的厌氧发酵分开;而在消化池出现之后,则主要集中于将消化池中的水力停留时间和厌氧生物污泥的停留时间分开。由于产甲烷细菌的增殖率很低,消化池不得不采用很长的水力停留时间,一般为10—25d,这就使池子的体积很大,而容积负荷很低。为解决这一问题,近年来国内外进行了广泛的研究,出现了不少新的厌氧工艺和新型的厌氧反应器,其中包括:
⑴两相厌氧法(two-phase anaerobic treatment process) 这种工艺也称两段(twostage)厌
氧法,是根据产甲烷细菌与其它非产甲烷细菌在生长特性方面的差异建立起来的,如图10-4(a)。
①工艺流程与特点:
这是70年代随着厌氧微生物学的研究不断深入应运而生的;着重于工艺流程的变革,而不是着重于反应器构造变革;在单相反应器中,存在着脂肪酸的产生与被利用之间的平衡,维持两类微生物之间的协调与平衡十分不易;两相厌氧消化工艺就是为了克服单相厌氧消化工艺的上述缺点而提出的;两个反应器中分别培养发酵细菌和产甲烷菌,并控制不同的运行参数,使其分别满足两类不同细菌的最适生长条件;反应器可以采用前述任一种反应器,二者可以相同也可以不同。
两相工艺最本质的特征是实现相的分离,方法主要有:①化学法:投加抑制剂或调整氧化还原电位,抑制产甲烷菌在产酸相中的生长;②物理法:采用选择性的半透明膜使进入两个反应器的基质有显著的差别,以实现相的分离;③动力学控制法:利用产酸菌和产甲烷菌在生长速率上的差异,控制两个反应器的水力停留时间,使产甲烷菌无法在产酸相中生长;实际上,很难做到相的完全分离。
主要优点:
有机负荷比单相工艺明显提高;产甲烷相中的产甲烷菌活性得到提高,产气量增加;运行更加稳定,承受冲击负荷的能力较强;当废水中含有SO42-等抑制物质时,其对产甲烷菌的影响由于相的分离而减弱;对于复杂有机物(如纤维素等),可以提高其水解反应速率,因而提高了其厌氧消化的效果。
②应用情况
Ⅰ荷兰:淀粉废水