第23章旋转复习小结
九年级上册第23章旋转小结、复习、习题(新人教版)优秀课件省名师优质课赛课获奖课件市赛课一等奖课件

探究: 等边三角形绕它旳中心至少需要旋 转多少度才干和本身重叠? 正方形呢? 正角为 360 n
圆 旳旋转角是任意角度
已知线段AB和点O,请画
旋转作图 出线段AB绕点O按逆时针
旋转1000后旳图形. (1)拟定旋转中心; (2)拟定图形中旳M B′ 关键点;
;
2、点P(-1,3)绕着原点旋转90o后
与P'重叠,则P'旳坐标为
。
3、下列漂亮旳图案,既是轴对称图形又是中
心对称图形旳个数是( C )
A.1个 B.2个 C.3个 D.4个
4.移动一块正方形 (1)使得到图形只是轴对称图形; (2)使得到图形只是中心对称图形; (3)既是轴对称图形又是中心对称图形:
(3)作出将关键点 沿指定旳方向旋转指
A′ N B
定旳角度后旳相应点;
(4)连结各点,得
到所需图形. 线段A′B′即O
为所求旳线段。
A
⑴如图,画出△ABC绕点A按逆时针方 向旋转900后旳相应三角形;
(2).假如AD=1cm,那么点D旋转过旳 途径是多少cm?
C B'
C' D
△AB′C′即为所求旳D三' 角形。
①具有某种性质旳一种图形 ②对称点在一种图形上
若把中心对称图形旳两部分分别看作两个图形,则它们成中心对称,若把中 联络 心对称旳两个图形看作一种整体,则成为中心对称图形。
中心对称和中心对称图形旳比较
由
.
非
由
有关原点中心对称旳性质
有关x轴对称旳点: 横坐标不变,纵坐标互 为相反数.
有关y轴对称旳点: 横坐标互为相反数,纵 坐标不变.
(4)请写出经过线段A1B1中点,并 与直线AB平行旳直线旳解析式; (5)试猜测直线AB与直线A1B1旳位 置关系,并阐明理由;
第二十三章旋转知识点总结,经典例题,单元测试

第二十三章旋转知识点总结,经典例题,单元测试:1.旋转:把一个平面图形绕着平面内某一点0转动一个角度,就叫做图形的旋转。
点0叫做旋转中心,旋动的角叫做旋转角。
旋转方向:顺时针和逆时针。
2.旋转的特征:(旋转不改变图形的大小和方向)(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角都等于旋转角。
(3)旋转前、后的图形全等。
3.旋转对称图形:一个图形绕着某一动点转动一定的角度后能与自身完全重合,这种图形称为旋转对称图形,绕着转动的这一点,称为旋转中心。
注:结合旋转对称图形的定义知:正三角形绕其中心旋转1200后能与自身完全重合,故正三角形是旋转对称图形;正方形绕其对角线的交点(旋转中心)旋转900后能与自身完全重合,故正方形是旋转对称图形。
一般的正n(n≥3)变形是旋转对称图形,那么最少旋转时,能与自身完全重合。
4.设计旋转对称图形:(1)确定旋转中心、旋转角度和旋转方向;这是旋转的三要素。
(2)确定图形中的关键点;(3)将这些关键点绕旋转中心绕指定方向旋转指定的角度。
(4)顺次连接新关键点,得到所求图形。
旋转的定义:【例1】如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:1.旋转中心是什么?旋转角是什么?2.经过旋转,点A、B分别移动到什么位置?【例2】如图所示,⊿ABC 和⊿ADE 都是等腰直角三角形,∠ACB 和∠AED 都是直角,点C 在AD 上,如果⊿ABC 经旋转后能与⊿ADE 重合,那么哪一点是旋转中心?旋转角度是多少?并指出对应点。
CBDEAM DBC EAN练一练:如图所示,⊿ABC 是等腰三角形,∠ACB=900,D 是AB 边上一点,⊿CBD 经逆时针旋转后到达⊿CAE 的位置,则旋转中心是 ,旋转角度是 ,点B 的对应点是 ,点D 的对应点是 ,线段CB 的对应线段是 ,线段CD 的对应线段是 ,∠CBD 的对应角是 ,如果点M 是线段BC 的中点,点N 是线段AC 的中点,那么经过上述旋转之后,点M 旋转到了 。
人教版九年级数学上册教案:第二十三章《旋转》小结与复习

【数学·九年级·上册】第二十三章小结与复习【教学目标】1.总结和复习图形旋转、中心对称的基本性质的应用及两个点关于原点对称时坐标之间的关系;2.注意复习平移、轴对称、旋转的联系和区别,旋转和中心对称的联系和区别,运用图形旋转、中心对称的基本性质解一些简单问题.【学情简析】本章先学习了旋转的有关知识,要求能够从旋转的角度观察图形,进而认识特殊的旋转——中心对称,最后运用轴对称、平移、旋转的组合进行图案设计.【教学重点】复习图形旋转的基本性质和中心对称的基本性质及两个点关于原点对称时,它们坐标之间的关系.【教学难点】运用旋转的性质解决问题.【课时安排】3课时【教学过程】环节教学内容教师的行为学生的活动唤起希望差异指导引发碰撞再激希望一、复习展示问题1平移、轴对称、旋转的区别与联系个人二次备课二、典型例题例 1 (1)如图,△ABC 为等边三角形,D 是△ABC 内一点,若将△ABD 经过旋转后到△ACP 位置,则旋转中心是______,旋转角等于_____度,△ADP是______三角形.(2)如图,正方形ABCD 中,E 是AD上一点,将△CDE 逆时针旋转后得到△CBM.则旋转中心是______,△CDE 旋转了___度,△CEM 是_____三角形.例2(1)画出点P 绕点O 顺时针旋PPT给出图片及问题个人二次备课板书课题巡视,指导,检查学生独立思考个人二次备课整理笔记小组合作探究ABDPCDAEBCM转 30°后的对应点.(2)画出线段AB 绕点A(或点M )逆时针旋转45°后的图形.(3)画出△DEC 绕点C 逆时针旋转 90°后的图形.个人二次备课三、复习展示问题2旋转和中心对称的区别与联系.四、典型例题例3下列图形中,既是轴对称图形,又是中心对称图形的是().例4已知:△ABC 中,A(-2,3),B(-3,1), C(-1,2).请画出△ABC关于原点O 对称的△A1B1C1.五、小结1.平移、轴对称和旋转有什么区别与联系?2.旋转和中心对称有什么区别与联系?3.怎样利用旋转的定义和性质作图?个人二次备课个人二次备课巡视指导巡视,检查对各组完成的情况进行点评归纳本节课所学布置作业教科书复习题23第 1,4,5 题.个人二次备课小组合作探究整理笔记个人二次备课个人二次备课教学反思。
人教版九年级数学上:第23章旋转小结与复习ppt课件

A2,B2的坐标.
解析 (1)因为旋转角90 °,故用直角三角板及圆规可快 速确定对应点的位置;(2)先根据关于原点对称的点 的坐标确定对称顶点的坐标,再依次连结得到所要画的 图形. 解:(1)如图所示; (2)如图所示,点A2的坐标为 (-3,-2),B2的坐标为(-1,-3). B1
A2 易错提示 作旋转图形不要搞错方向. B2 A1 y B A O x
二、中心对称 1.中心对称
把一个图形绕着某一个点旋转180 ____ ,如果它能与 °
另一个图形重合,那么就说这两个图形成中心对称,
这个点叫做对称中心,这两个图形中的对应点叫做关
于中心的对称点.
2.中心对称的特征 中心对称的特征:在成中心对称的两个图形中, 对应点所连线段都经过 对称中心 平分 . 称中心________ 3.中心对称图形 把一个图形绕某个点旋转180°,如果旋转后的 图形能与原来的图形重合,那么这个图形叫做中心对 称图形,这个点叫做它的对称中心. ,并且被对
利用全等三角形对应角相等即可得证.
解:(1)补全图形,如图所示; (2)由旋转的性质得,DC=FC, ∠DCF=90°, ∴∠DCE+∠ECF=90°. ∵∠ACB=90°, ∴∠DCE+∠BCD=90°, ∴∠ECF=∠BCD, ∵EF∥DC, ∴∠EFC+∠DCF=180°, ∴∠EFC=90°, ∴△BDC≌△EFC(SAS), ∴∠BDC=∠EFC=90°.
针对训练
5.下列说法不正确的是( B ) A.任何一个具有对称中心的四边形都是平行四边形 B.平行四边形既是轴对称图形,又是中心对称图形 C.线段、平行四边形、矩形、菱形、正方形都是中心对 称图形
例4 如图,有一张不规则纸片,若连接EB,则纸片被 分为矩形FABE和菱形EBCD,请你用无刻度的直尺画
人教版九年级数学上册知识点总结:第二十三章旋转

人教版九年级数学上册知识点总结第二十三章旋转23.1 图形的旋转知识点一旋转的定义在平面内,把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角。
我们把旋转中心、旋转角度、旋转方向称为旋转的三要素。
知识点二旋转的性质旋转的特征:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等。
理解以下几点:(1)图形中的每一个点都绕旋转中心旋转了同样大小的角度。
(2)对应点到旋转中心的距离相等,对应线段相等,对应角相等。
(3)图形的大小和形状都没有发生改变,只改变了图形的位置。
知识点三利用旋转性质作图旋转有两条重要性质:(1)任意一对对应点与旋转中心所连线段的夹角等于旋转角;(2)对应点到旋转中心的距离相等,它是利用旋转的性质作图的关键。
步骤可分为:①连:即连接图形中每一个关键点与旋转中心;②转:即把直线按要求绕旋转中心转过一定角度(作旋转角)③截:即在角的另一边上截取关键点到旋转中心的距离,得到各点的对应点;④接:即连接到所连接的各点。
23.2 中心对称知识点一中心对称的定义中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。
注意以下几点:中心对称指的是两个图形的位置关系;只有一个对称中心;绕对称中心旋转180°两个图形能够完全重合。
知识点二作一个图形关于某点对称的图形要作出一个图形关于某一点的成中心对称的图形,关键是作出该图形上关键点关于对称中心的对称点。
最后将对称点按照原图形的形状连接起来,即可得出成中心对称图形。
知识点三中心对称的性质有以下几点:(1)关于中心对称的两个图形上的对应点的连线都经过对称中心,并且都被对称中心平分;(2)关于中心对称的两个图形能够互相重合,是全等形;(3)关于中心对称的两个图形,对应线段平行(或共线)且相等。
第23章 旋转 复习与小结 (2)

(1)中心对称的两个图形,对称点所连线段都经
过对_称__中__心_,而且被对称中心平所_平__分___.
(2)中心对称的两个图形是_全__等__图_.形
广东省怀集县冷坑中学 李银玲
一、基础知识
知识点二
练一练
1.关于中心对称的两个图形,对应线段的关 系是(D ). A.平行 B. 相等 C. 平行且相等 D .相等且平行或在同一直线上
旋转 复习与小结
一、基础知识
知识点二0_°_,如果它能够 与另一个图形_重__合___ ,那么就说这两个图形关于 这个点_对__称___或中__心__对_称_ ,这个点叫做 对__称__中__心 . 这两个图形中的对应点叫做关于对称中心的 _对__称__点_.
2. ΔABC和ΔA’B’C’关于点O中心对称,若 ΔABC的周长为12cm,ΔA’B’C’的面积为 6cm2,则ΔA’B’C’的周长为_1_2_c__m_,ΔABC
的面积为__6_c_m__2__。
广东省怀集县冷坑中学 李银玲
一、基础知识
知识点三:中心对称图形 1、中心对称图形的定义
把一个图形绕着某一个点旋转180°,如果旋转 后的图形能够与原来的图形重合,那么这个图 形叫做中心对称图形,这个点就是它的对称中. 心 2、中心对称图形的识别: 图形旋转180 °后是否能够与原图形重合。 3、常见的几何图形,如: 线段、平行四边形、矩形、正方形、圆形等
广东省怀集县冷坑中学 李银玲
一、基础知识 知识点三: 练一练 4、 1.下列汉字或字母中既是中心对称 图形又是轴对称图形的是(D )
A.干 B.由 C.Z D.H 2.在下列图形中,是中心对称图形的是(C )
广东省怀集县冷坑中学 李银玲
23章旋转小结复习(课堂PPT)

2.典型例题
例1 (1)如图,△ABC 为等边三角形,D 是 △ABC 内一点,若将△ABD 经过旋转后到△ACP 位置, 则旋转中心是______,旋转角等于_____度,△ADP 是 ______三角形.
A
P
D
B
C
2.典型例题
例1 (2)如图,正方形 ABCD 中,E 是 AD 上一 点,将△CDE 逆时针旋转后得到△CBM.则旋转中心是 ______,△CDE 旋转了___度,△CEM 是_____三角形.
23章旋转复习
1
课件说明
• 学习目标: 1.总结和复习图形旋转、中心对称的基本性质的应 用及两个点关于原点对称时坐标之间的关系; 2.注意复习平移、轴对称、旋转的联系和区别,旋 转和中心对称的联系和区别,运用图形旋转、中 心对称的基本性质解一些简单问题.
• 教学重点: 复习图形旋转的基本性质和中心对称的基本性质及两 个点关于原点对称时,它们坐标之间的关系.
D
C
E
A
M
B
练习
如图,点E为正方形ABCD的边CD上一点,AB=5,
DE=6。△DAE旋转后能与△DCF重合,(1)旋
转中心是哪一点?(2)旋转了多少度?(3)如
果连接EF,那么△DEF是怎样的三角形?(4)四
边形DEBF的周长和面积?
F
D
C
AE
B 7
4.简单图形的旋转作图 :
(1)确定旋转中心; (2)确定图形中的关键点; (3)将关键点沿指定的方向旋转指 定的角度; (4)连结各点,得到原图形旋转 后的图形.
(一)图形的旋转 1.旋转的定义:
在平面内,将一个图形绕一个定点沿某 个方向转动一个角度,这样的图形变换称 为旋转,这个定点称为旋转中心,转动的 角称为旋转角. 注意: 在旋转过程中保持不动的点是旋转中心.
第23章旋转小结与复习课件

3. 中心对称图形 把一个图形绕某个点旋转 180°,如果旋转后的图形能与 本来的图形重合,那么这个图形叫做中心对称图形,这个点 叫做它的对称中心.
第23章 小结与复习
4.关于原点对称的点的坐标
两点关于原点对称时,它们的对应坐标互为相反数,即点 P(x ,y) 关于原点的对称点为 P′(-x , -y ).
(2) 旋转作图时要明确三个方面:旋转中心、 旋转角度及旋转方向 (顺时针或逆时针).
第23章 小结与复习
考点二 旋转变换 例3 如图,在Rt△ABC中,∠ACB = 90°,点 D,E 分别 在 AB,AC 上,CE = BC,连接 CD,将线段 CD 绕点 C 按顺时针方向旋转 90° 后得 CF,连接 EF. (1)补充完成图形; (2)若 EF∥CD,求证:∠BDC = 90°.
A2
易错提示:旋转作图不要搞错方向.
B2
第23章 小结与复习 考点三 中心对称
例 5.(2021·黄冈中考)下列图形中,是轴对称图形 但不是中心对称图形的是( A ) A.正三角形 B.正方形 C.正六边形 D.圆
第23章 小结与复习
例 6.数学世界奇妙无穷,其中曲线是微分几何的 研究对象之一,下列数学曲线既是轴对称图形,又 是中心对称图形的是( C )
第23章 小结与复习
解析:(1) 因为旋转角 90°,故用直角三角板及圆规可快速确定
对应点的位置;(2) 先根据关于原点对称的点的坐标确定对称顶点
的坐标,再依次连接得到所要画的图形.
解:(1) 如图所示.
y
A1
B
(2) 如图所示,
点 A2 的坐标为(-3,-2),