常见垃圾焚烧锅炉的腐蚀成因与防范对策

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见垃圾焚烧锅炉的腐蚀成因与防范对策

焚烧,是城市生活垃圾处理的三大方法之一,其关键设备——生活垃圾焚烧锅炉诞生已有100多年历史。当今,采用焚烧技术处理生活垃圾,已成为众多发达国家和地区城市最重要的垃圾处理方式。

深圳市于1988年在国内建成第一座生活垃圾焚烧厂——深圳市政环卫综合处理厂,在此基础上成功进行引进垃圾焚烧锅炉提高蒸汽参数的技术改造,实现了向垃圾发电厂职能转变;与杭州锅炉厂合作开发国产150t/d垃圾焚烧炉,实现了焚烧锅炉的国产化.改革开放以来,国内已建成深圳清水河、龙岗和珠海、温州垃圾焚烧发电厂。目前上海浦东、江桥和杭州、宁波、厦门、广州等地正在筹建城市生活垃圾焚烧处理设施,垃圾焚烧工艺越来越受到有关地区和主管部门的重视。

生活垃圾焚烧锅炉是垃圾化学能转换为热能的关键设备,其工艺过程是将生活垃圾作为固体燃料,投入焚烧锅炉内,在高温条件下,垃圾中的可燃质与空气中的氧发生剧烈化学反应,放出热量,转化为高温燃烧气体和性质稳定的固态炉渣,完成生活垃圾的减容、灭菌过程,实现无害化处理。高温烟气通过余热锅炉产生蒸汽用于发电、供热,实现垃圾化学能向热能、电能的转换。生活垃圾焚烧锅炉与传统的燃煤、燃油锅炉相比较,其金属受热面因腐蚀导致事故频率要高得多,占其汽水系统事故频发率第一位。出于发电效益要求,目前垃圾焚烧锅炉工质已从低参数饱和蒸汽向中温中压过热蒸汽参数过渡。垃圾锅炉既要满足发电工质参数要求,又要避免工质过热段金属受热面超温,产生高温腐蚀现象,认真探讨垃圾锅炉腐蚀成因并研究其防范对策,对垃圾焚烧锅炉和整个电厂的安全运行,具有重要意义。

1垃圾锅炉独有的运行特征

(1)垃圾焚烧锅炉是以焚烧处理生活垃圾为目的,对生活垃圾进行焚烧,实现其减量化、无害化和余热利用的热力设备,其基本考核指标是日处理垃圾数量、焚烧后炉渣的热灼减率、余热锅炉工质参数和锅炉效率等。在额定出力范围内,锅炉蒸发量随垃圾处理量和垃圾发热量变化在一定范围内波动,锅炉蒸发量决定发电出力。垃圾焚烧锅炉热效率一般在80%以下,低于普通工业锅炉和电站锅炉。垃圾发电厂用电率一般为25%~35%,远高于普通火力发电厂。

(2)作为锅炉燃料的生活垃圾成分比较复杂,由各种不同类别固体废弃物混合构成,低位发热量较低,当前国内经济较为发达的城市一般为3350~6280kJ/kg;含水率高,一般为50%~70%;组分成分变化大,燃烧难以控制等特点。发达城市或地区的生活垃圾中橡胶、塑料所占比重较大,在焚烧过程中产生HCL、SOx等酸性气体,若不加以控制,会在锅炉金属受热面产生高温腐蚀和低温腐蚀。

(3)二恶英(Dioxin)类是垃圾焚烧过程中产生的有害物质,具有极强的致癌性。出于对该类物质排放控制要求,垃圾焚烧锅炉的运行除满足蒸汽品质外,还要求二恶英类必须在炉内充分裂解,垃圾焚烧锅炉运行还必须满足如下三T+E的燃烧工况:

①温度:Temperature炉膛烟气温度控制在850~950℃;

②时间:Time烟气在上述温度条件下停留2秒以上;

③湍流+空气:Turbulence + Excess air要求炉膛内烟气有足够的湍流强度,焚烧炉出口烟气含氧量控制在6%~12%。炉排型垃圾焚烧锅炉过剩空气系数一般为1.6~2.0,远大于普通工业锅炉与电站锅炉。

2常见的生活垃圾焚烧锅炉腐蚀成因

生活垃圾作为燃料,具有含水率高,低位发热量低,组分成分变化大等特点,在运行过程中,其特有的燃烧工况对锅炉的金属受热面产生腐蚀,主要有以下几方面原因:

(1)生活垃圾在炉内燃烧过程中、分解出浓度较高的氯化物、碱性金属、焦硫酸盐和与腐蚀相关的一些重金属及较低熔点的混合物、在高温烟气和金属管壁温较高条件下,其复合作用主要在过热器位置对金属受热面产生高温腐蚀。

(2)管壁上灰垢中含有K2SO4、Na2SO4,在含有SO3烟气中与管壁表面氧化铁作用形成碱金属复合硫酸盐K3Fe(SO4)3、Na3Fe(SO4)等,该类复合硫酸盐在550℃~570℃范围内会熔化成液态,对金属管壁具有强烈腐蚀性,在壁温600℃~700℃时腐蚀最为严重。因而,早期的垃圾焚烧锅炉工质为低参数饱和蒸汽,使受热面金属管壁在较低温度下减慢腐蚀速度。随着焚烧工艺的完善和一些新型耐腐材料的应用,大多数国家的垃圾焚烧锅炉工质参数已选择在4.0MPa/400℃以下,过热器壁温控制在130℃以下。

(3)烟气中携带固态颗粒和频繁吹灰引起受热面金属管壁冲刷磨损和腐蚀磨损。

(4)垃圾组分的不定性,会导致垃圾焚烧锅炉燃烧温度和工质参数在较大范围内波动,会加速受热面金属的疲劳,产生疲劳裂纹,外部腐蚀性气体侵蚀裂纹间隙,加速管壁腐蚀。

(5)锅炉给水品质恶化,使受热面管子内壁结垢,导致管壁局部超温,加速金属的蠕变速度和外壁高温腐蚀。

(6)过热器结构不良,过热器管束的形状突变部位或鳍片型过热器的鳍片根部,在应力集中处会以蠕变和高温腐蚀联合作用形式导致管壁破裂。

(7)垃圾焚烧锅炉在启停炉时,金属受热面壁温低于烟气中酸的露点,发生低温腐蚀。

3垃圾焚烧锅炉腐蚀的防范对策

(1)严格限制锅炉过热器区域入口烟温。过热器因高温腐蚀爆管,占垃圾锅炉汽水系统事故频发率首位,烟气温度过高是重要原因。因燃料构成不同,尽管电站锅炉烟温更高,高温腐蚀不是主要防范因素,过热器材质主要选择耐高温合金钢,其过热器正常腐蚀限度小于0.1mm/a。而垃圾锅炉过热器腐蚀速度通常大于0.3mm/a,若不采取防范措施,其

腐蚀速度会大于1mm/a。因而炉排型垃圾锅炉过热器大多数布置在第三烟道,入口端烟温控制在650℃以下,必要时亦可在过热器入口端烟道再布置一段蒸发器,可有效解决该区域烟温过高问题。

(2)严格控制过热器管壁温度,是有效防止过热器发生高温腐蚀措施之一。垃圾焚烧锅炉过热器受热面富裕度过大,会导致减温前工质温度偏高,使管壁温度处于超过高温氧化许用极限温度之上,产生高温腐蚀。从深圳市政综合厂二台日本垃圾焚烧锅炉加装过热器使用效果来看,位于炉膛出口的凝渣管处,高于过热器区段,因管内工质为饱和水、汽,其管壁温度低于过热器管壁温度,并未发生高温腐蚀现象。同样,在过热器周边区域的锅炉水冷壁和对流管段,已运行十余年,亦未出现高温腐蚀。因而,在锅炉运行中必须严格控制过热器的温度,避免超温。其基本对策是,合理计算过热器受热面,锅炉减温水流量调节精确、可靠,调节范围尽可能工作在线性区;根据垃圾不同组分变化,炉排炉选择合适料位和配风,尽量稳定炉温,避免过热器管壁超温。过热器设计应避免选用鳍片型过热器结构,避免鳍片根部产生应力集中现象。大多数生产厂家过热器在保证过热器空间位置条件下,采用光管结构,适度富裕量,以减少管壁表面沾污几率并避免结构因素发生应力集中现象。

(3)过热器全部或高温段采用新型耐高温腐蚀材料,可有效延长过热器使用寿命。在一般情况下,垃圾焚烧过热蒸汽温度小于400℃,管壁温度不超过430℃,在部分条件下,可用普通碳钢管材代替价格昂贵的高镍铬合金材料,以降低锅炉造价,但过热器金属受热面因高温腐蚀使其使用寿命极为有限。当锅炉工质参数较高,为保证锅炉的安全运行,一些生产厂家已选用耐氯化物、耐高温腐蚀的Incone1625合金管材制作高温段过热器,其不足之处是材料成本极高,但使用寿命长,可以保证过热器在长时间恶劣条件下安全运行。国外资料介绍管壁为2.5mm的Incone1625管材制作垃圾焚烧锅炉过热器,一般使用寿

相关文档
最新文档