贝塞尔方程的通解

合集下载

贝塞尔函数详细介绍(全面)

贝塞尔函数详细介绍(全面)

y x 1J m (x) x J m (x)
y 1x 2 Jm (x) x 1Jm (x) x 1Jm (x) x 2 Jm(x)
x 2 Jm(x) 2x 1Jm (x) 1 x 2 Jm (x)
x 2 Jm(x) 2x 1Jm (x) 1x 2 Jm (x)
xnYn1(x)
d
dx
xnYn (x)
x
Y n n1
(
x)
Yn1 ( x)
Yn1 ( x)
2n x
Yn
(x)
Yn1(x) Yn1(x) 2Yn(x)
例1 求下列微积分
(1)
d dx
J0
(
x)
J 0
(x)
J1(x)
(2)
J0(x)
1 x
J0(x)
J1(x)
1 x
J1(x)
1 2
J
0
(x)
1 2 x
x 1Jm (x) x Jm (x)
2
2
m2 x2
x
J
m
(x)
x 2 Jm(x) x 1Jm (x) x2 2 m2 x 2 Jm (x)
x 2 x2 2 Jm(x) xJm (x) x2 2 m2 Jm (x)
x2 t 2Jm(t) tJm (t) t 2 m2 Jm (t)
J
(x)
y AJn (x) BYn (x)
数学物理方程与特殊函数
x2 y xy x2 n2 y 0
J
n
(
x)
m0
(1)m m!(n m
1)
x 2
n2m
Yn
(
x)
lim
n

第五章 数理方程 贝塞尔函数

第五章  数理方程 贝塞尔函数

(1) 由 ( n m 1) ( n m )! 得 1 1 m J n ( x) 1 n2 m xn2m 2 m! n m ! 1 m 0 0 (2)取n=N , 在 J n x 中,由于m<N时, N m 1
a 2 t
5.1 贝塞尔方程的引入
(2) 亥姆霍兹方程(Helmholtz)
2V 2V 2 V 0 2 x y
由边界条件,可知
V
x2 y2 R2
0
在极坐标系下,问题可以写成
2V 1 V 1 2V 2 V 0 0 R 2 2 V | 0 R
2 k 1 d x k 1 k (2k 2) x 1 2 k 2 2 1 2 k 2 2 dx 2 k 1 ! 2 [ k 1 !] 1 1 n m 2m Jn x 1 x n2m 2 k 1 2 m! n×(-1) m ! x0 k m 1 2k 1 2 及k ! 1 ! : k 得 n 1 分别令n 0
所以级数从m=N开始 1 1 m J N ( x) 1 N 2 m x N 2m 2 m ! N m 1 m N
N N 1 N 4 x x x N (1) N N 2 N 4 2 N ! 2 ( N 1)! 2 ( N 2)!2! (1) N J N ( x)
y CJ n x DYn x
5.3 n 为整数时贝塞尔方程的通解
x 2 (1) x Y0 x J 0 x (ln C ) 2 m 0 (m !)2 2 2
n 1 m
2m m

贝塞尔函数的应用 数学物理方程

贝塞尔函数的应用 数学物理方程

贝塞尔函数的应用(11.13)形如222''()'()()()0x f x xf x x v f x ++-=的二阶微分方程称为v 阶贝塞尔方程。

且()()v f x J x =是方程的一个解。

此外,当v 不是整数时,()()v f x J x -=是方程的一个与()v J x 线性无关的解,因此,此时贝塞尔方程的通解为12()()()v v f x C J x C J x -=+当v 是整数时,()()v f x Y x =是方程的一个与()v J x 线性无关的解,因此,此时贝塞尔方程的通解为12()()()v v f x C J x C Y x =+问题1:考虑极坐标下的二维波动方程212()tt rr r u c u r u r u θθ--=++(,,)0, (,,0)(,), (,,0)0t u b t u r f r u r θθθθ===根据变量分离法,首先假设(,,)()()()u r t R r T t θθ=Θ代入原微分方程后可得212()()''()''()()()'()()()()''()()R r T t c R r T t r R r T t r R r T t θθθθ--⎡⎤Θ=Θ+Θ+Θ⎣⎦移项整理可得1222''()''()()'()()()''()0()()()T t R r r R r r R r c T t R r θθθμθ--Θ+Θ+Θ==-<Θ 因此22''()()0T t c T t μ+=同时1222''()'()''()0()()R r r R r r v R r θμθ--+Θ+=-=>Θ 因此2''()()0v θθΘ+Θ=2222''()'()()()0r R r rR r r v R r μ++-=分别求解上述三个微分方程对于方程2''()()0v θθΘ+Θ=,由于题目中没有给定θ的范围,因此(,,)(,2,)u r t u r t θθπ=+即()(2)θθπΘ=Θ+由于其通解为012()(cos sin )e C v C v θθθΘ=+同时 1212(2)cos (2)sin (2)cos(2)sin(2)C v C v C v v C v v θπθπθπθπθπΘ+=+++=+++。

数学物理方程学习指导书第8章贝塞尔函数讲解

数学物理方程学习指导书第8章贝塞尔函数讲解

第8章 贝塞尔函数本章我们来讨论贝塞尔方程的解法以及解的性质. 下面将要看到,在一般的情况下,贝塞尔方程的解不能用初等函数表出,从而就导入了一类特殊函数,称之为贝塞尔函数,贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交性,这个正交性恰好是前面所述的施特姆-刘维尔理论的一个特例.8.1 贝塞尔方程的求解在7.1中,我们从解决圆盘的瞬时温度分布问题引出了贝塞尔方程,以x 表示自变量,y 表示未知函数,则n 阶贝塞尔方程为22222()0,d y dy x x x n y dx dx++-= (8.1) 其中n 为任意实数或复数. 由于方程的系数中出现2n 的项,所以在讨论时,不妨暂先假定0n >.设方程(8.1)有一个级数解,其形式为2012()c k k y x a a x a x a x =+++++c k k k a x ∞+==∑, 00,a ≠ (8.2)其中常数c 和(1,2,3)k a k =可以通过把y 和它的导数,y y '''代入(8.1)来确定.将(8.2)及其导数代入(8.1)后得{}220()(1)()()0.c kk k c k c k c k xn a x ∞+=⎡⎤++-+++-=⎣⎦∑化简后写成()}{22221220122()1()0,cc c kk k k c n a x c n a xc k n a a x ∞++-=⎡⎤⎡⎤-++-++-+=⎣⎦⎣⎦∑ 要使上式成为恒等式,必须各个x 幂的系数全为零,从而得下列各式:2202212221()0;2[(1)]0;3[()]0(2,3,).k k a c n a c n c k n a a k --=+-=+-+==由 1得c n =±,代入2得10a =.现暂取c n =,代入 3得24.(2)k k a a k n k --=+因为10a =,由 4知13570,a a a a =====而246,,,a a a 都可以用0a 表示,即2,2(22)a a n -=+4,24(22)(24)a a n n =⋅++6,246(22)(24)(26)a a n n n -=⋅⋅+++………………………………………………2(1)2462(22)(24)(22)mm a a m n n n m =-⋅⋅+++2(1).2!(1)(2)()m ma m n n n m -=+++由此知(8.2)的一般项为202(1),2!(1)(2)()n mmma x m n n n m +-+++0a 是一个任意常数,取定后就得(8.1)式的一个特解.我们把0a 取作012(1)n a n =Γ+,这样选取0a 可使一般项系数中2的次数与x 的次数相同,并可以运用下列恒等式()(1)(1)(1)(1)(1)n m n m n n n n m ++-++Γ+=Γ++使分母简化,这样选0a 后,一般项的系数就整齐了221(1).2!(1)mm n ma m n m +=-Γ++ (8.3) 以(8.3)代入(8.2)得到(8.1)的一个特解2120(1)(0).2!(1)n mmn mm x y n m n m +∞+==-≥Γ++∑用级数的比值判别法(或称达朗倍尔判别法)可以判定这个级数在整个数轴上收敛. 这个无穷级数所确定的函数,称为n 阶第一类贝塞尔函数,记作220()(1)(0).2!(1)n mmn n mm x J x n m n m +∞+==-≥Γ++∑ (8.4)至此,我们就求出了贝塞尔方程的一个特解().n J x当n 为正整数或零时,(1)()!n m n m Γ++=+,故有220()(1)(0,1,2,).2!()!n mmn n m m x J x n m n m +∞+==-=+∑ (8.5)取c n =-时,用同样方法可得(8.1)式另一特解220()(1)(1,2,).2!(1)!n mmn n m m x J x n m n m -+∞--+==-≠Γ-++∑ (8.6)比较(8.4)式与(8.6)式可见,只要在(8.4)的右端把n 换成n -,即可得到(8.6)式,因此不论n 是正数还是负数,总可以用(8.4)式统一地表达第一类贝塞尔函数.当n 不为整数时,这两个特解()n J x 与()n J x -是线性无关的,由齐次线性微分主程的通解的结构定理知道,(8.1)的通解为()()n n y AJ x BJ x -=+ (8.7)其中,A B 为两个任意常数.当然,在n 不为整数的情况,方程(8.1)的通解除了可以写成(8.7)式以外还可写成其他的形式,只要能够找到该方程另一个与()n J x 线性无关的特解,它与()n J x 就可构成(8.1)的通解,这样的特解是容易找到的. 例如,在(8.7)中取,csc ,A ctgn B n ππ==-则得到(8.1)的一个特解()()csc ()n n n Y x ctgn J x n J x ππ-=-()cos ()sin n n J x n J x n ππ--=(n ≠ 整数) (8.8)显然,()n Y x 与()n J x 是线性无关的,因此,(8.1)的通解可写成()().n n y AJ x BY x =+ (8.7)’由(8.8)式所确定的函数()n Y x 称为第二类贝塞尔函数,或称牛曼函数.8.2 当n 为整数时贝塞尔方程的通解上一节说明,当n 不为整数时,贝塞尔方程(8.1)的通解由(8.7)或(8.7)’式确定,当n 为整数时,(8.1)的通解应该是什么样子呢?首先,我们证明当n 为整数时,()n J x 与()n J x -是线性相关的,事实上,我们不妨设n 为正整数N (这不失一般性,因n 为负整数时,会得到同样的结果),则在(8.6)中,1(1)n m Γ-++当0,1,2,,(1)m N =-时均为零,这时级数从m N =起才开始出现非零项,于是(8.6)可以写成22()(1)2!(1)N mmN N m m Nx J x m N m -+∞--+==-Γ-++∑2424(1)2!2(1)!2(2)!2!NN N N N N N xx x N N N ++++⎧⎫⎪=--++⎨⎬++⎪⎭⎩ (1)().N N J x =-即()N J x 与()N J x -线性相关,这时()N J x 与()N J x -已不能构成贝塞尔方程的通解了.为了求出贝塞尔方程的通解,还要求出一个与()N J x 线性无关的特解.取哪一个特解?自然我们想到第二类贝塞尔函数.不过当n 为整数时(8.8)的右端没有意义,要想把整数阶贝塞尔方程的通解也写成(8.7)’的形式,必须先修改第二类贝塞尔函数的定义. 在n 为整数的情况,我们定义第二类贝塞尔函数为()cos ()()limsin n n J x a J x Y x αααπαπ-→-= (n =整数). (8.9)由于当n 为整数时,()(1)()cos ()nn n n J x J x n J x π-=-=,所以上式右端的极限是"0"形式的不定型的极限,应用洛必塔法则并经过冗长的推导(可参阅A.Ⅱ.萨波洛夫斯基著《特殊函数》,魏执权等译,中国工业出版社出版),最后得到210020(1)2212()()ln ,2(!)1m mm m k x x Y x J x c m k ππ∞-==⎛⎫- ⎪⎛⎫⎝⎭=+- ⎪+⎝⎭∑∑ 21021(1)!()()ln 2!2n mn n m m x n m x Y x J x c m ππ-+-=--⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭∑211000(1)1112(1,2,3,),!()!11n mmn m m m k k x n m n m k k π+∞+--===⎛⎫- ⎪⎛⎫⎝⎭-+= ⎪+++⎝⎭∑∑∑ (8.10) 其中111lim 1ln 0.5772,23n c n n →∞⎛⎫=++++-= ⎪⎝⎭称为欧拉常数.根据这个函数的定义,它确是贝塞尔方程的一个特解,而且与()n J x 是线性无关的(因为当0x =时,()n J x 为有限值,而()n Y x 为无穷大).综合上面所述,不论n 是否为整数,贝塞尔方程(8.1)的通解都可表示为()()n n y AJ x BY x =+,其中,A B 为任意常数,n 为任意实数.8.3 贝塞尔函数的递推公式不同阶的贝塞尔函数之间不是彼此孤立的,而是有一定的联系,本节我们来建立反映这种联系的递推公式.首先考察零阶与一阶贝塞尔函数之间的关系. 在(8.5)中令0n =及1n =得:246024262()122(2!)2(3!)x x x J x =+-+222(1)2(!)kk x kk +-+3571357()222!22!3!23!4!x x x x J x =-+-+⋅⋅⋅2121(1)2!(1)!k kk x k k +++-++取出第一个级数的第2k +项求导数,得[][]22211222222(22)(1)(1)2(1)!2(1)!k k k k k k d x k x dx k k ++++++-=--++ 2121(1).2!(1)!k kk x k k ++=--+ 这个式子正好是1()J x 中含21k x +这一项的负值,且知0()J x 的第一项导数为零,故得关系式1()().dJ x J x dx =- (8.11) 将1()J x 乘以x 并求导数,又得24221321[()](1)222!2!(1)!k kk d d x x x xJ x dx dx k k ++⎡⎤=-++-+⎢⎥⋅+⎣⎦321222(1)22(!)k kk x x x k +=-++-+222221(1).22(!)kkk x x x k ⎡⎤=-++-+⎢⎥⎣⎦即10[()]().dxJ x xJ x dx= (8.12) 以上结果可以推广,现将()n J x 乘以nx 求导数,得2220[()](1)2!(1)n m n mn n m m d d x x J x dx dx m n m +∞+==-Γ++∑ 21210(1)2!()n m n mn m m x x m n m +-∞+-==-Γ+∑1(),n n x J x -=即1[()]().nn n n d x J x x J x dx-= (8.13) 同理可得1[()]().nn n n d x J x x J x dx--+=- (8.14) 将(8.13)和(8.14)两式展开,并经过化简,则分别得'1()()(),n n n xJ x nJ x xJ x -+=及'1()()(),n n n xJ x nJ x xJ x --=-将这两式相减及相加,分别得到112()()(),n n nJ x J x nJ x x -++=(8.15) 11()()2().n n n J x J x J x -+'-= (8.16)以上几式便是贝塞尔函数的递推公式.它们在有关贝塞尔函数的分析运算中甚为有用.特别值得一提的是,应有(8.15)式可以用较低阶的贝塞尔函数把较高阶的贝塞尔函数表示出来.因此如果我们已有零阶与一阶贝塞尔函数表,则利用此表和(8.15),即可计算任意正整数阶的贝塞尔函数的数值.第二类贝塞尔函数也满足与第一类贝塞尔函数相类似的递推公式.1111'11()(),[()](),2()()(),()()2().n nn n n n n n n n n n n n d x Y x x Y x dx d x Y x x Y x dxnY x Y x Y x x Y x Y x Y x ---+-+-+⎧⎡⎤=⎣⎦⎪⎪⎪=-⎪⎨⎪+=⎪⎪⎪-=⎩ (8.17) 作为递推公式的一个应用,我们来考虑半奇数阶的贝塞尔函数,先计算1122(),().J x Jx -由(8.4)可得122102(1)(),32!2m mm x J x m m +∞=-⎛⎫=⎪⎛⎫⎝⎭Γ+ ⎪⎝⎭∑而 13135(21)1222m m m +⋅⋅+⎛⎫⎛⎫Γ+=Γ⎪ ⎪⎝⎭⎝⎭12m +=从而21102(1)().(21)!m m J x x x m∞+=-=+ (8.18) 同理,可求得12().J x x -=(8.19) 利用递推公式(8.15)得到31122211()()()cos sin J x J x J x x x x x -⎫=-=-+⎪⎭ 321sin d x x x dx x ⎛⎫=⋅⎪⎝⎭321sin d x x x dx x ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭. 同理可得32321cos ().d x J x x x dx x -⎛⎫⎛⎫=⎪⎪⎝⎭⎝⎭ 一般言之,有1212121()221sin ()(1);21cos ().nn n n nn n d x J x xx dx x d x Jx xx dx x ππ+++-+⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭(8.20)从(8.20)可能看出,半奇数阶的贝塞尔函数都是初等函数.8.4 贝塞尔函数的零点与模值贝塞尔方程的固有值与固有函数都与贝塞尔函数的零点有密切关系.同时,为了将一个函数按贝塞尔函数展开,需要用到贝塞尔函数的模值.本节我们来叙述贝塞尔函数零点的有关结论并计算贝塞尔函数的模值. 6.4.1 贝塞尔函数的零点第一类贝塞尔函数()n J x 的零点的几个重要结论:1()n J x 有无穷多个单重实零点,且这无穷多个零点在x 轴上关于原点是对称分布着的.因而()n J x 必有无穷多个正的零点;2()n J x 的零点与1()n J x +的零点是彼此相间分布的,即()n J x 的任意两个相邻零点之间必存在一个且仅有一个1()n J x +的零点;图8-13以()n m μ表示()n J x 的正零点,则当()()1n n m m m μμ+-→∞时无限地接近于π,即()n J x 几乎是以π2为周期的周期函数. 0()J x 与1()J x 的图形见图8-1.为了便于工程技术上的应用,贝塞尔函数零点的数值已被详细计算出来,并列成表格.下表给出了()(0,1,2,,5)n J x n =的前9个正零点)9,,2,1()( =m n mμ的近似值.6.4.2 贝塞尔函数的模值所谓贝塞尔函数的模值就是指定积分()20n am n J r rdr a μ⎛⎫ ⎪⎝⎭⎰的平方根,其中()n m μ是()n J x 的正零点,a 为一正常数.为了计算这个积分,以1()R r ,2()R r 分别表示下列函数()1()n mn R r J r aμ⎛⎫=⎪⎝⎭, ()2()n R r J r α= α(为任意参数).则1()R r ,2()R r 分别满足方程2()2110,n m dR d n r r R dr dr a r μ⎡⎤⎛⎫⎡⎤⎢⎥+-= ⎪⎢⎥⎣⎦⎢⎥⎝⎭⎣⎦22220.dR d n r r R dr dr r α⎡⎤⎡⎤+-=⎢⎥⎢⎥⎣⎦⎣⎦以2()R r 乘第一个方程减去以1()R r 乘第二个方程,然后对r 从0到a 积分,得}{()2''12211200()()[()()()()]0.n a a m rR r R r dr r R r R r R r R r a μα⎡⎤⎛⎫-+-=⎢⎥ ⎪⎝⎭⎣⎦⎰ 由此可得()();()()20()2()().n n n am n n m m n n n m J a J rJ r J r dr aa μαμμαμα⎛⎫=-⎪⎛⎫⎝⎭- ⎪⎝⎭⎰当()n maμα→时,上式右端是"0"型,利用洛必塔法则计算这个极限,得 ()()()222'()2()10.22n an n m n n m n m a a rJ r dr J J a μμμ-⎛⎫⎡⎤== ⎪⎣⎦⎝⎭⎰这个公式在下节计算傅里叶-贝塞尔级数的系数时就要用到.8.5 贝塞尔方程的边值问题在7.1中,我们已将求解圆盘的温度分布问题通过分离变量法转化成求解贝塞尔方程的固有值问题.() 自然边界条件 222()()()0,0;(8.21)()0,(8.22)(0)()(8.23)r a r R r rR r r n R r r a R r R λ=⎧'''++-=<<⎪⎪=⎨⎪<∞⎪⎩方程(8.21)的通解为)()),n nR r AJ BY =+由条件(8.23)可得 0B =,即()),n R r AJ =利用条件(8.22)得)0,n J =应该是()n J x 的零点,以表示()()()12,,,,()n n n m n J x μμμ的正零点,则方程(8.21)的固有值为2()()n n m ma μλ⎛⎫= ⎪⎝⎭(1,2,m =),与这些固有值相对应的边值问题(8.21)—(8.23)的固有函数是()().n mm n R r J r aμ⎛⎫=⎪⎝⎭根据施特姆-刘维尔理论,()(1,2,3,)m R r m =关于权函数()r r ρ=是正交的,即()()0().(8.24)n n am k n n J r J r rdr m k a a μμ⎛⎫⎛⎫=≠ ⎪ ⎪⎝⎭⎝⎭⎰同时,下述展开定理成立:任何一个下两次可微的函数()f r ,若在0r =处有界,而且在r a =处等于零,则它可以展开为绝对一致收敛的傅里叶-贝塞尔级数:()(),n mm n m a f r A J r aμ∞=⎛⎫=⎪⎝⎭∑ (8.25) 其中系数m A 可用下述方法确定:在展开式(8.25)的两端同乘以(),n mn rJ r aμ⎛⎫⎪⎝⎭并对r 从0到a 积分,由正交关系式(8.24)得()()20().n n aa mmn m n f r J r rdr A rJ r dr a aμμ⎛⎫⎛⎫=⎪⎪⎝⎭⎝⎭⎰⎰ 利用前面计算过的贝塞尔函数的模值公式得到()()02'()2().[]2n am n m n n m f r J r rdra A a J μμ⎛⎫ ⎪⎝⎭=⎰(8.26) 下面我们举两个例子,说明用贝塞尔函数求解定解问题的全过程.例1 设有半径为1的薄均匀圆盘,边界上温度为零,初始时刻圆盘内温度分布为21r -,其中r 是圆盘内任一点的极半径,求圆内温度分布规律.解 根据问题的要求,即可归结为求解下列定解问题:22222120;0;1.r t u uu a tx y u u r ==⎧⎛⎫∂∂∂=+⎪ ⎪∂∂∂⎝⎭⎪⎪=⎨⎪=-⎪⎪⎩采用极坐标系,并考虑到定解条件与θ无关,所以温度u 只能是,r t 的函数,于是上述问题可写为2221201;(8.27)0;(8.28)1.(8.29)r t u u u a tr r r u u r ==⎧⎛⎫∂∂∂=+⎪ ⎪∂∂∂⎝⎭⎪⎪=⎨⎪=-⎪⎪⎩此外,由物理意义,还有条件令 (,)()(),u r t R r T t = 代入方程(8.27)得21,RT a R R T r ⎛⎫''''=+ ⎪⎝⎭或 21,R R T r a T Rλ'''+'==由此得22''0,r R rR r R λ+-= (8.30)2'0.T a T λ-= (8.31)方程(8.31)的解为2()a t T t Ce λ=,因为t →+∞,时0,u →λ只能小于零,令2λβ=-则22().a t T t Ce β-=此时方程(8.30)的通解为1020()()().R r C J r C Y r ββ=+由(,)u r t 的有界性,可知20C =,再由(8.28)得0()0J β=,即β是0()J x 的零点,以n α表示0()J x 的正零点,则(1,2,3,),nn βα==综合以上结果可得0()(),n n R r J r α=22().n a t n n T t C e α-=从而 220(,)().n a tn n n u r t C eJ r αα-=利用叠加原理,可得原问题的解为2201(,)().n a t n n n n u r t C e J r αα∞-==∑由条件(8.29)2011().n n n r C J r α∞=-=∑从而120202(1)()[()]n n n C r rJ r dr J αα=-'⎰1130020012()(),[()]n n n rJ r dr r J r dr J ααα⎡⎤=-⎢⎥⎣⎦⎰⎰因 10[()()]()[()()],n n n n n d r J r r J r d r ααααα= 即 10()(),n n n rJ r d rJ r dr ααα⎡⎤=⎢⎥⎣⎦故得111100()()().n n n nnrJ r J rJ r dr ααααα==⎰另外11320000()()n n n rJ r r J r dr r d ααα⎡⎤=⎢⎥⎣⎦⎰⎰ 1312110()2()n n nr J r r J r dr αααα=-⎰121122220()()2()2(),n n n n nnnnJ J J r J r αααααααα=-=-从而 22214().()n n n n J C J ααα= 所以,所求定解问题的解为222022114()(,)(),()n a tn n n n nJ u r t J r e J ααααα∞-==∑(8.32) 其中n α是0()J r 的正零点. 例2 求下列定解问题22222022001,0;(8.33)0;(8.34)0,1.(8.35)r r R t t u u u a r R tr r r u u r u r u t R ====⎧⎛⎫∂∂∂=+<<⎪ ⎪∂∂∂⎝⎭⎪⎪∂⎪=<+∞⎨∂⎪⎪∂⎪==-∂⎪⎩的解.解 用分离变量法来解,令(,)()(),u r t R r T t =采用例1中同样的运算,可以得到1020()()(),R r C J r C Y r ββ=+ (8.36) 34()cos sin .T t C t C t αβαβ=+ (8.37)由(,)u r t 在0r =处的有界性,可知20,C =即10()().R r C J r β= (8.38)再根据边界条件(8.34)中第一式,得'10'()()0,R R C J R ββ==因1C β不能为零,故有0()0.J R β'=利用贝塞尔函数的递推公式(8.11)可得1()0,J R β=即R β是1()J x 的正零点,以(1)(1)(1)(1)123,,,,n μμμμ表示1()J x 的所有正零点,则(1)(1,2,3,),nR n βμ==即 (1).nRμβ= (8.39)将(8.39)分别代入(8.38),(8.37),得(1)0(),nn R r J r Rμ⎛⎫=⎪⎝⎭(1)(1)()cossin.nnn n n T t C t D t R Rαμαμ=+从而 (1)(1)(1)0(,)cos sin,n nn n n n u r t C t D t J r R R R αμαμμ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭利用叠加原理可得原定解问题的解为(1)(1)(1)01(,)cos sin,n nn n n n n u r t C t D t J r R R Rαμαμμ∞=⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭∑ 将条件(8.35)代入上式得(1)010,nn n C J r R μ∞=⎛⎫= ⎪⎝⎭∑ (8.40)(1)2(1)0211.n n n n a r D J r R R R μμ∞=⎛⎫=- ⎪⎝⎭∑ (8.41)由(8.40)得 0(1,2,3,);n C n ==由(8.41)并利用下面的结果(见习题八第14题):如果(1)n μ是1()J x 的正零点,则(1)222(1)'(1)2(1)00100()()(),22Rn n n n R R rJ r dr J J J R μμμμ⎛⎫== ⎪⎝⎭⎰得到(1)20(1)2(1)2002(1)()R n n n n r D rJ r dr RJ R R μαμμ⎛⎫=- ⎪⎝⎭⎰ (1)2(1)32(1)(1)3(1)004()4,()()()()n n n n n RJ R J J μαμμαμμ==- 所以最后得到定解问题的解为(1)(1)0(1)3(1)1041(,)sin .()()n n n n n Ru r t tJ r J R Rαμμαμμ∞=⎛⎫=- ⎪⎝⎭∑ (8.42)习 题 八1、当n 为正整数时,讨论()n J x 的收敛范围.2、写出01(),(),()(n J x J x J x n 是正整数)的组数表示式的前5项.3、证明21(0)0,n J -=其中1,2,3,n =.4、0()?dJ ax dx=.5、1[()?.dxJ ax dx= 6、证明()n y J ax =为方程2222'''()0x y xy a x n y ++-=的解. 7、证明321()cos sin ;2J x x x x x ππ⎤⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎦52233()1sin()cos().J x x x x x ππ⎤⎛⎫=--+- ⎪⎥⎝⎭⎦8、试证1232()y x J x =是方程22''(2)0.x y x y +-=的一个解.9、试证()n y xJ x =是方程222'''(1)0x y xy x n y -++-=的一个解.10、设(1,2,3,)i i λ=是方程1()0J x =的正根,将函数()0(01)f x x =<<展开成贝塞尔函数)((11x J λ=的级数. 11、设(1,2,3,)i a i =是0()0J x =的正根,将函数2()(01)f x x x =<<展开成贝塞尔函数0()i J a x 的级数. 12、设(1,2,3,)i a i =是方程0(2)0J x =的正根,将函数1,01,1(),120,12x f x x x <<⎧⎪⎪==⎨⎪<<⎪⎩展开成贝塞尔函数0()i J a x 的级数.13、把定义在[0,]a 上的函数展开成贝塞尔函数0i a J x a ⎛⎫⎪⎝⎭的级数,其中i a 是0()J x 正零点. 14、若1(1,2,3,)i λ=是1()J x 正零点,证明200200,,(),.2Ri i i j i xJ x J x dx R R R J i j λλλ≠⎧⎛⎫⎪⎛⎫=⎨ ⎪ ⎪=⎝⎭⎝⎭⎪⎩⎰[提示:可仿照8.4中推导贝塞尔函数模值的方法来证明.] 15、利用递推公式证明(1)'''2001()()();J x J x J x x=-(2)''''300()3()4()0.J x J x J x ++=16、试证1221()()(1)()(1)().nn n n o o ox Jx dx x J x n x J x n x J x dx --=+---⎰⎰17、试解下列圆柱区域的边值问题:在圆柱内0,u ∆=在圆柱侧面0a u ρ==,在下底00z u ==,在上底.z h u A ==18、解下列定解问题:22222220001;1,0;.,0.t t R u u u a t u u R t u u ρρρρρρ====⎧⎛⎫∂∂∂=+⎪ ⎪∂∂∂⎝⎭⎪⎪∂⎪=-=⎨∂⎪⎪<∞=⎪⎪⎩若上述方程换成非齐次的,即2222211u u u B a t ρρρ∂∂∂+-=-∂∂∂ (B 为常数), 而所有定解条件均为零,试求其解.。

贝塞尔函数

贝塞尔函数

xJ 'n x nJn x xJn1 x (3) xJ 'n x nJn x xJn1 x (4)
Jn1 x
Jn1 x
2n x
Jn
x
(5)
Jn1 x Jn1 x 2J 'n x (6)
1. 当n为正整数时,讨论Jn(x)的收敛范围
n为正整数时:
1 m
xnJn
x
]
xnJ
n1
x
(2)
xJ 'n x nJn x xJn1 x (3) xJ 'n x nJn x xJn1 x (4)
J n1
x
J n1
x
2n x
Jn
x
(5)
Jn1 x Jn1 x 2J 'n x (6)
(1) xJ2 xdx ?
解 由 xJ '1 x J1 x xJ2 x
Jn x m0 2n2m m ! n m
xn2m !
用级数的比值判别式(或称达朗贝尔判别法)
1 m1
2n2(m1) (m 1)! n m 1 !
1
lim
m
1m
4(m 1) n m 1
2n2m m!n m!
可以判定这个级数在整个数轴上收敛.

J n
x
m0
(2) xn1Jn axdx ?
t ax,
d dx
[
x
n
Jn
x]
x n J n1
x
(1)
xn1Jn
1 ax dx an2
t n1Jn t dt
1
an2
d dt
[t
n1J
n1
t
]dt

贝塞尔函数和球贝塞尔函数

贝塞尔函数和球贝塞尔函数

贝塞尔函数和球贝塞尔函数前言:贝塞尔函数是数学中一类特殊的函数,它是傅里叶变换的基础。

贝塞尔函数在物理学、工程学、计算机科学等学科中都有着重要的应用。

本文将重点介绍贝塞尔函数及其应用中常用到的球贝塞尔函数,分别从定义、性质、运算及应用等多个角度进行解释。

一、贝塞尔函数的定义贝塞尔函数,又称为柏松函数或泊松函数,是一个数学函数系列,其名称是为了纪念德国数学家弗里德里希·威廉·贝塞尔(Friedrich Wilhelm Bessel)而得名。

贝塞尔函数最初是为了解决圆形振动、电磁场、流体力学等问题而被引入的。

具体地说,贝塞尔函数是微分方程中的一类特殊解,其通式如下:$$ J_n(x) = \sum_{k=0}^{\infty}\frac{(-1)^k(x/2)^{n+2k}}{k!(n+k)!} $$式中,Jn(x)代表了一类常微分方程的解,其中n代表了贝塞尔函数中的次数,x代表自变量,通常被称为“辐角”。

由于贝塞尔函数满足贝塞尔微分方程,因此它有许多重要的性质和应用。

(1)奇偶性:贝塞尔函数具有两种奇偶性,一种是关于自变量x的奇偶性,另一种是关于次数n的奇偶性。

$$ J_{-n}(x) = (-1)^n J_n(x) $$(2)正交性:当n≠m时,两个不同次数的贝塞尔函数在区间[0,a]上的积分为0。

$$\int_{0}^{a}xJ_n(\alpha_n x)J_m(\alpha_mx)dx=\frac{\delta_{mn}}{\alpha_n}\frac{(J'_{n}(\alpha_n a))^2-(J_{n}(\alpha_n a))^2}{2}$$其中,δmn是Kronecker δ 符号,当n=m时为1,否则为0。

(3)渐近行为:在辐角趋近于无穷大时,贝塞尔函数的渐近行为为:$$ J_n(x)\sim\sqrt{\frac{2}{\pi x}}\cos(x-\frac{n\pi}{2}-\frac{\pi}{4}) $$(4)级数展开:贝塞尔函数能用级数的形式表示:(1)递推关系:以Jn(x)为例,它的递推关系可以表示为:(2)德拜函数:德拜函数是一个和贝塞尔函数非常相似的函数,它用来描述球面波的性质。

贝塞尔公式详细推导过程

贝塞尔公式详细推导过程

贝塞尔公式详细推导过程《贝塞尔公式的详细推导过程》引言:贝塞尔公式是数学中一种重要且广泛应用的公式,它的推导过程相对较复杂、细致,但却十分精彩。

在本文中,我们将详细介绍贝塞尔公式的推导过程,让读者对这一公式有更深入的理解。

一、贝塞尔公式的定义:贝塞尔公式是一种用连分数表示的数学公式,其一般形式为:J_n(x) = \frac{1}{\pi}\int_{0}^{\pi} \cos(n\theta - x\sin\theta)d\theta其中,J_n(x) 表示第n阶贝塞尔函数,x 是实数,\theta 表示角度,\pi 表示圆周率。

二、推导过程:1. 首先,我们从欧拉公式 e^ix = \cos(x) + i\sin(x) 出发,将其展开得到:e^{ix} = \cos(x) + i\sin(x)2. 接下来,我们将展开中的i\sin(x) 转化为两个实数的乘积。

我们知道,正弦函数的定义式为:\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}代入之前的展开式,得到:i\sin(x) = \frac{e^{ix} - e^{-ix}}{2}3. 现在,我们用这个展开式来推导贝塞尔公式。

我们首先将贝塞尔函数展开成幂级数形式:J_n(x) = \left(\frac{x}{2}\right)^n \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!}\left(\frac{x}{2}\right)^{2k}4. 接下来,我们将展开式中的 e^{ix} 替换为 \cos(x) + i\sin(x):J_n(x) = \left(\frac{x}{2}\right)^n \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!}\left(\frac{x}{2}\right)^{2k} \left(\cos(x) + i\sin(x)\right)5. 然后,我们将正弦函数用欧拉公式展开为两个指数函数的乘积:J_n(x) = \left(\frac{x}{2}\right)^n \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!}\left(\frac{x}{2}\right)^{2k} \left(\cos(x) + i\frac{e^{ix} - e^{-ix}}{2}\right)6. 继续推导,我们可以将指数函数的乘积展开为两项之差:J_n(x) = \left(\frac{x}{2}\right)^n \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!}\left(\frac{x}{2}\right)^{2k} \left(\cos(x) + \frac{i e^{ix}}{2} - \frac{i e^{-ix}}{2}\right)7. 现在,我们可以将展开式中的 i 消去:J_n(x) = \left(\frac{x}{2}\right)^n \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!}\left(\frac{x}{2}\right)^{2k} \left(\cos(x) + \frac{e^{ix} - e^{-ix}}{2}\right)8. 之后,我们可以将展开式进行拆分,分别对两项进行求和,并利用复数的性质对其中的复数部分进行化简:J_n(x) = \left(\frac{x}{2}\right)^n \left(\sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!}\left(\frac{x}{2}\right)^{2k}\cos(x) + \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!}\left(\frac{x}{2}\right)^{2k}\frac{e^{ix} - e^{-ix}}{2}\right)9. 最后,我们可以将两个求和式进行整理,将其中的复数部分转化为积分形式:J_n(x) = \left(\frac{x}{2}\right)^n \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!}\left(\frac{x}{2}\right)^{2k}\cos(x) + \left(\frac{x}{2}\right)^n \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!}\left(\frac{x}{2}\right)^{2k}\frac{1}{\pi}\int_{0}^{\pi} \cos(n\theta -x\sin\theta)d\theta10. 将整理后的展开式中的求和式转化为连分数形式,即可得到贝塞尔公式:J_n(x) = \frac{1}{\pi}\int_{0}^{\pi} \cos(n\theta - x\sin\theta)d\theta结论:通过上述推导过程,我们可以将贝塞尔公式从指数函数的展开式推导得到,将其转化为连分数形式。

贝塞尔函数综述

贝塞尔函数综述

第一部分 Bessel 函数(阶数或自变量趋于0或无穷时,各种Bessel 函数的极限值,可以利用Mathematica 试算推得。

)一、Bessel 方程及其通解0)(22222=-++y n x dx dy x dxy d x (1) 上式称为以x 为宗量的n 阶Bessel 方程。

●当n 为整数时,(1)式的通解为)()(x BY x AJ y n n += (2)其中,A 、B 为任意实数;)(x J n 为n 阶第一类Bessel 函数;)(x Y n 为n 阶第二类Bessel 函数(或称为“诺依曼(Neumann)函数”)。

●当n 不为整数时,例如,v n =,(1)式的通解可表示为如下两种形式)()(x BJ x AJ y v v -+= (3) )()(x BY x AJ y v v += (4)其中,A 、B 为任意实数;)(x J v 和)(x J v -分别称为v 阶和v -阶第一类Bessel 函数; )(x Y v 称为v 阶第二类Bessel 函数。

另外,Bessel 方程的通解还可以表示为)()()2()1(x BH x AH y v v +=其中,)()()()1(x iY x J x H v v v +=,)()()()2(x iY x J x H v v v -=分别称为称为第一类和第二类汉克尔(Hankel )函数,或统称为第三类Bessel 函数。

●值得注意的是, ∞=-→)(lim 0x J v x ,∞=→)(lim 0x Y v x ,∞=→)(lim 0x Y n x ,当所研究的问题的区域包含0=x 时,由于要求Bessel 方程的解在0=x 处取有限值,所以,此时对(2)、(3)、(4)式而言,必有0=B 。

此条件称为“Bessel 方程的自然边界条件”。

例1:022=+'+''y x y x y x λ (10<≤x )此式为以x λ为宗量的0阶Bessel 方程,其通解为)()(00x BY x AJ y λλ+=另外,由于所求解问题的区域10<≤x 包含0=x ,根据Bessel 方程的自然边界条件,必然有0=B ,通解最后简化为)(0x AJ y λ=例2:0)413(22=-+'+''y x y x y x 为以x 3为宗量的21阶Bessel 方程,其通解为)3()3(2121x BJ x AJ y -+= 或 )3()3(2121x BY x AJ y +=例3:0)(1222=-+'+''y xm k y x y上式两边同乘以2x ,可将其化为如下的以kx 为宗量的m 阶Bessel 方程0)(2222=-+'+''y m k x y x y x (0≠x ) 例4:012=+'+''y k y xy 上式两边同乘以2x ,可将其化为如下的以kx 为宗量的0阶Bessel 方程0222=+'+''y k x y x y x (0≠x )即:0)0(2222=-+'+''y k x y x y x (0≠x )例5:0)]1([222222=+-++R l l r k rd Rd r r d R d r 令r k x =,xx y r R 2)()(π=,则可以将上式化为如下的21+l 阶Bessel 方程0])21([22222=+-++y l x xd yd x x d y d x 二、虚宗量Bessel 方程及其通解0)(22222=+-+y n x dx dy x dxy d x (5) 上式称为“n 阶虚宗量的Bessel 方程”或“n 阶修正的Bessel 方程”,其通解为)()(x BK x AI y n n += (6)其中,A 、B 为任意实数;)(x I n 为“n 阶第一类修正的Bessel 函数”,或称为“n 阶第一类虚宗量Bessel 函数”; )(x K n 为“n 阶第二类修正的Bessel 函数”,或称为“n 阶第二类虚宗量Bessel 函数”。

贝塞尔函数

贝塞尔函数

贝塞尔函数1.贝塞尔方程及解:令()()()(),,=R ,u ϕτϕτΦZ 为分离变量的解,则()R ,满足本征值问题的方程,2222210R dy dR m R dx d ω⎛⎫∂++-= ⎪∂⎝⎭(17.1.1) 其中2ω是分量的本征值问题的本征值。

若作变换()R()R()y(x);m xx x ωλνω=====或; 则上面方程可以变换:2//2/2(x )y 0x y x y ν++-= (17.1.1a )当ν≠整数时,贝塞尔方程的通解为:(x)AJ (x)BJ (x)y νν-=+当ν=整数时,由于J m -=(1)(x)m m J -,因此通解为(x)AJ (x)BY (x)m m y =+式中A 与B 为任意常数,J (x)m 与Y (x)m 分别定义为 m 阶第一类与m 阶第二类贝塞尔函数。

2.贝塞尔方程的的级数解二阶线性齐次常微分方程2'''22(x )y 0,0x y xy x b υ++-=≤≤ 为贝塞尔方程现在x=0的领域求解贝塞尔方程的解2.1级数解的形式由p(x)=1x ,q(x)=1-22xν可见,x=0是p=(x )的一阶极点,是q(x)的二阶极点。

因此,x=0是方程的正则奇点,方程的第一解具有形式;00n k k p k k k k y x C x C x ∞∞+===∑=∑ 2.1.12.2指标方程将2.1.1代入贝塞尔方程可得:22300(k )0k p k k k k k C x C x ρρν∞∞+++==⎡⎤∑+-+∑=⎣⎦ 2.1.2 由x 的最低次幂x ρ的系数为0,即得:220()C 0x ρρν-=因0C 0≠,即得指标方程220ρν-=。

由此得指标1,ρν= 2ρν=-2.3.系数递推公式为确定起见,令ν>0,并将ρ=1ρ=ν代入2.1.2中得到22200(k )0k k k k k k C x C x νννν∞∞+++==⎡⎤∑+-+∑=⎣⎦ 改变第二项的求和指标,可得202k(k 2)0k k k k k k C x C x ννν∞∞++-==∑++∑= 由x 的同次幂数之和为0,1(12)0C ν+= 2k(k 2)0k k k C C ν-++=由此得10C =2(1)k(k 2)k k C C ν--=+2.4.推公式求系数得特解………将系数代入1.1中的贝塞尔方程的一个特解为 20120(1)(1)C (x)2!(n 1)n n n n y x n ννν∞+=-Γ-+=∑Γ++2.5.另一个特解同理,令2ρρν==-可得另一个特解为20220(1)(1)C (x)2!(n 1)n n n n y x n ννν∞-=-Γ-+=∑Γ-++3.第一类贝塞尔函数第一类贝塞尔函数(x)J ν的级数形式为21(x)(1)()!(1)2k kk dy x J k νννκ+∞==-Γ++∑ 经过证明可得:,(x)(1)(x)m m m J J -=-同理可得:,(x)(x)m m J J -=因此:,(x)(1)(x)m mm J J -=-4.第二类贝塞尔函数:第二类贝塞尔函数是Weber 和Schlafli ,通常把它定义为cos (x)(x)Y (x)sin J J νννπνπ--Y (x)m 的级数形式为Y (x)m ={}1220021(m k 1)!1(1)ln (x)()(k)(m )()2!2!(m k)2k m m k m m k k k x x x J k k κγϕϕκπππ-∞-++==---⎡⎤+--++⎢⎥+⎣⎦∑∑式中γ=0.577216,而(k)ϕ=11n nκ=∑当x 很小时,可得0Y ≈2lnx π (0ν=) 当x 很大时,(x)(x )42x Y νπν≈-- (17.1.12)5.第三类贝塞尔函数通常定义为(1)H (x)iY (x)J ννν=+(2)H (x)iY (x)J ννν=- 则方程(17.1.1 a )的通解可以写成为(1)(2)y(x)AH H (x)B νν=+当x →∞时其渐进展开式为3(x )(1)22H (x )x i o νν--=+ (17.1.14a )3(x )(2)242H (x )x i o νπν----=+ (17.1.14b ) 当x 0→时其渐进展开式为(1)!2(x)()H i xννπ-≈- (ν>0) (2)2H (x)i ln x νπ≈- 总结上述,ν阶贝塞尔方程2/22(x )y 0x y xy ν++-= 的通解有三种形式:(1)y(x)AJ(x)(x)BJ =+ (ν0≠)(2)y(x)AJ(x)(x)BY ν=+ (ν可取任意整数)(3)(1)(2)y(x)AH (x)(x)BH νν=+ (ν可取任意整数)其中A,B 为常数。

11-2贝塞尔方程

11-2贝塞尔方程

l r R ( r ) l 1 1 / r
z e Z ( z) z e R( ) : m阶
( x) : l阶连
带勒让德方程
贝塞尔方程
( v 2 0) 1 Z ( z) z
(推导见P268)
第一类边界条件
[N
(m) 2 n
第二类边界条件
第三类边界条件
1 2 (m) ] 0 [ J m 1 ( n 0 )] 2 2
2 1 m ( m) 2 2 ( m) [ Nn ] ( 0 ( m) )[J m ( n 0 )]2 2 n
2 2 1 m ( m) 2 2 ( m) 2 [ Nn ] ( 0 ( m) ( m0 )[ J ( )] m n 0 2 n n ) H
m 1 R0 ( ) , R ( ) m (m 0) m ln
方程
波动方程 utt a 2 3u 0 输运方程 ut a 2 3u 0
球坐标系
柱坐标系
1 cos kat T0 (t ) ,Tk (t ) (k 0) t sin kat 3v(r ) k 2v(r ) 0
四、傅立叶-贝塞尔级数 定理:f(ρ )在(0,ρ 0)上有连续的一阶导数和分 段连续的二阶导数,且在ρ =0有限,在ρ =ρ 0满 足边界条件,则f(ρ )在(0,ρ 0)上可展为绝对且 一致收敛的级数。
(m) f ( ) f J ( n m n ) n 1 0 1 ( m) 且f f ( ) J ( n m n ) d (m) 2 [Nn ] 0
由上节,其通解为:

数学物理方程课件第五章贝塞尔函数

数学物理方程课件第五章贝塞尔函数

(c 2 n2 )a0 xc (c 1)2 n2 a1xc1 (c k )2 n 2 ) ak ak2 xck 0
k 0
(c2 n2 )a0 0
(c 1)2 n2 a1 0 (c k)2 n2 ) ak ak2 0
c n c n
a1 0
a1 a3 a5.... 0
y
x2 y xy x2 n2 y 0, x R
y( R) 0, y(0)
n阶贝塞尔方程
数学物理方程与特殊函数
第5章贝塞尔函数
二 贝塞尔方程的求解
n阶贝塞尔方程 n任意实数或复数
x2 y xy x2 n2 y 0
假设 n 0
令:y xc (a0 a1x a2 x 2 ak x k ) ak xck k 0 (c k)(c k 1) (c k) (x2 n2 ) ak xck 0 k 0
J
(x)
y AJn (x) BYn (x)
数学物理方程与特殊函数
x2 y xy x2 n2 y 0
J
n
(
x)
m0
(1)m m!(n m
1)
x 2
n2m
Yn
(
x)
lim
n
J
(x)
cos sin
J
(
x)
y AJn (x) BYn (x)
A、B为任意常数,
n为任意实数
0
数学物理方程与特殊函数
第5章贝塞尔函数
例3:将1在 0 x 1区间内展成
J
0
(
(0) i
x)
的级数形式
1
Ci
J
0
(
( i
0)
x)

Bessel方程及Bessel函数

Bessel方程及Bessel函数
1.第一类Bessel函数
1.1 第一类Bessel函数的定义式
Bessel函数的定义式为 (8)
当不为整数时,例如,,非整数阶Bessel函数为 (9)
注:求的方法 方法1)先求的数值解,再用(9)式求。 方法2)非整数阶Bessel函数也可以通过后文的递推关系得
出。 当为正整数或零时,,整数阶Bessel函数的表达式为 (10)
上面(14)、(15)的第二种写法在Penny-shaped crack问题中有重要
应用。其推导为:
两边同除以得:;
同理:
两边同除以得:
-------------------------------------------------------------------------------------------(16)
其中,, 。 (10) (11)
此二式还可以表示为如下更一般的形式: ;
(12)
(13) (14)
此二式还可以表示为如下更一般的形式: ;
(15)
(16) (17)
此二式还可以表示为如下更一般的形式: (18) (19)
(20)
4.2 第一类Bessel函数的正交性
求如下问题的固有值及固有函数 (a)式的通解为
由自然边界条件,得 ,所以
将上式代入(b)式,可得 所以,固有值为: () 与固有值相对应的固有函数为
(42)
()
(43)
上述固有函数系 () 具有如下的正交性
(44)
5.将函数展开为Fourier-Bessel级数(或称为“广
(37) (38) (为非负整数) (为非负整数,) 递推公式: (与、不一样!) (与、不一样!) 还可得: (与、一样!) (与、一样!) (与、不一样!) (与、一样!) (与、不一样!)

数学物理方法——贝塞尔函数

数学物理方法——贝塞尔函数

贝赛尔函数摘要:在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。

贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交完备性。

关键词:贝塞尔函数,通解,递推关系,正交完全性。

在圆形区域或圆柱形区域内求解定解问题时,就会出现下列形势的二阶线性常微分方程()222220y dy d x y x x n d dx x ++-= 其中n 为常数,这个方程就称为n 阶贝塞尔方程,它有什么特点呢?首先它是一个变系数的二阶线性常微分方程,其次是y ′ 与y ″的系数在0x =处为零,即在0x =处方程退化了,如果用2x 除方程两端,则y 与y ′前的系数在0x =时有奇偶性。

正因为如此,所以在用幂级数法求解时,要设解为 0c n n n y x a x ==∑∞.方程的解就称为n 阶贝赛尔函数。

利用级数解法可得它的两个特解()()()2201!12n mm n n m m x x J m n m ++==-∑++∞Γ, ()()()2201!12n mm n n m m x x J m n m -+--+==-∑-++∞Γ, 其中()x Γ是Γ-函数。

为了和其他类型的贝塞尔函数相区分,我们称()n x J ,()n x J -是第一类贝塞尔函数。

对于贝塞尔方程和贝塞尔函数,应该强调以下几点:(1) 贝塞尔方程的通解当n 不是整数且0n ≠时,可以看出()n x J 与()n x J -是线性无关的,这是因为()00n J =,()0n J -=∞。

所以贝塞尔方程的通解为()()12n n y x x C J C J -=+,其中1C ,2C 是任意常数。

当0x =时,我们只得到了一个特解()0x J ,要想得到通解还必须找到一个与()0x J 线性无关的特解。

当n 为整数时,容易说明()n x J 与()n x J -是线性相关的,所以它们也不能构成通解。

总之,当n 为零及整数时还要找一个与()n x J 线性无关的特解,这个解就是第二类贝塞尔函数,它的定义为()()()()()cos ,sin cos ,lim sin n n n a nx n x J J n z n x Y x x J J n z αααα--→-⎧∉⎪⎪=⎨-⎪∈⎪⎩ππππ 因此,不论n 是否为整数及零,贝塞尔方程的通解均可表示为()()11n n y x x C J C Y =+.特别应该强调的是:()n x J 表示一个在整个数轴上都收敛的幂级数的和,所以它在每个指定的点都取有限值,特别是在0x =处的值()0n J 是有限的,而()n x Y 在0x =处的值为无穷大。

数学物理方程第五章_贝塞尔函数

数学物理方程第五章_贝塞尔函数

y ( x) = ∑
式中, a 0 为任意常数.令
a0 =
1 2 Γ(n + 1)
n
根据 Γ 函数的性质,可得到关于系数的一个简洁的表达式
a2m

( − 1) m = n+2m 2 m! Γ ( n + m + 1)
(n ≥ 0)
这样,我们得到了式(5.1.14)的一个特解
y1 ( x) = ∑
(−1) m x n+2m n+2m 2 ! Γ ( + + 1 ) m n m m =0
(−1) m J − N ( x) = ∑ − N + 2 m x − N +2m m!Γ(− N + m + 1) m =0 2
∞ m − N =l ∞
(−1) l + N = ∑ N + 2l x N + 2l (l + N )!Γ(l + 1) l =0 2
∞ l =0
=∑
(−1) l (−1) N x N + 2l N + 2l 2 (l + N )!l!
∑ k +1
k =0

1
⎛ x ⎞ 1 Yn ( x) = J n ( x)⎜ ln + C ⎟ − π ⎝ 2 ⎠ π 2
2m
(n − m − 1)! ⎛ x ⎞ ⎜ ⎟ ∑ m! ⎝2⎠ m =0

− n+2m
⎛ x⎞ (−1) m ⎜ ⎟ ∞ n + m −1 m −1 1 1 1 ⎞ ⎝2⎠ ⎛ − ∑ +∑ ⎜ ∑ ⎟ π m =0 m!(n + m)! ⎝ k =0 k + 1 k =0 k + 1 ⎠

贝塞尔方程通解的一个简明推求

贝塞尔方程通解的一个简明推求

将要板书的内容放在 PPT 课件里, 这样就避免了 上课时, 教师长时间背对学生板书的状况, 课后学 生还可以在网上拷贝 PPT , 加强了师生互动交流. 与单纯的传统教学手段相比, 将多媒体教学与传统 教学两种教学手段有机地结合, 相互补充, 可以有 力地丰富教学手段, 加大课堂信息量、节省学时, 从 而提高教学效率和教学效果.
高等代数中大量的抽象定义、定理、证明及复 杂的计算方法一直令许多学生头疼, 大多数学生只 是知道结论, 而不能更加形象地了解这些结论的真 实原理. 数学软件实际上是高等代数教学设施的一 个很好的补充, 是教学手段的一种延伸, 也是教学 方法的一种创新. 随着现代科技的日异月新, 数学 课件、软件层出不穷, 我院还对学生开设了数学实 验课 (使用的软件主要以M a them a t ica 和M a t lab 为 主) , 这样, 不仅可以帮助学生快速进行矩阵、方程 组、向量空间等运算, 还可以帮助学生得到可视化 的图像, 生动、形象、直观地理解抽象的理论内容, 进而增强学生的学习兴趣, 提高学生的想象力和创 造力, 让学生在形、声、光、色的变化中感受到数学 在科技发展中体现的魅力.
0
(16)
利用 (11) 式, 上式可以化为
lim
Μ→m
[A
J
Μ(x ) sin
ΜΠ+
C co s ΜΠJ Μ(x ) ] =
limA [ sin ΜΠ+
Μ→m
C A
co s
ΜΠ]J
Μ(x )
=
0
(17)
由此得到线性独立的条件
(下转第 88 页)
88 阜阳师范学院学报 (自然科学版) 第 26 卷
解, 即贝塞尔函数, 其形式为

贝塞尔函数-1

贝塞尔函数-1

贝塞尔函数2.3 圆域内的二维拉普拉斯方程 的定解问题二维圆域定解问题分离变量求解 主要讨论圆域内拉普拉斯方程求解一个半径为ρ0 的薄圆盘,上下两面绝热,圆周边缘 温度分布恒保持为零度,求达到稳恒状态时圆盘内的 温度分布。

分析:这是一个稳态问题,所以温度分布满足拉普拉斯方程:∇ 2 u = 0,2 2 u u ∂ ∂ 2 ∇ u = + = 0, 2 2 ∂x ∂yux2 + y 2 = R2=03引进极坐标变换:⎧ x = ρ cos θ , (0 ≤ ρ < +∞, 0 ≤ θ ≤ 2π ) ⎨ ⎩ y = ρ sin θ方程与边界条件变换为:∂u 1 ∂u ⎧1 ∂ (ρ ) + 2 2 = 0,0 ≤ ρ < ρ0 ,0 ≤ θ ≤ 2π ,(1) ⎪ ⎨ ρ ∂ρ ∂ρ ρ ∂θ ⎪u ( ρ ,θ ) = 0,0 ≤ θ ≤ 2π (2) ⎩ 024解: 1、分离变量:u ( ρ ,θ ) = R( ρ )Φ(θ )" (5)(5)代入(1)得:R ′′Φ + 11 ∂ ∂u 1 ∂ 2u (ρ )+ 2 = 0, 0 ≤ ρ < ρ 0 , 0 ≤ θ ≤ 2π , (1) 2 ρ ∂ρ ρ ∂θ ∂ρρR ′Φ +1ρ2RΦ ′′ = 0整理后可令比值为λ:ρ 2 R′′ + ρ R′RΦ′′ =− =λ Φ5ρ 2 R′′ + ρ R′得两个常微分方程如下:RΦ′′ =− =λ ΦΦ′′ + λΦ = 0u (0, θ ) < + ∞" (6)u ( ρ , θ ) = u ( ρ , θ + 2π )ρ 2 R′′ + ρ R′ − λ R = 0" (7)u ( ρ ,θ ) = R( ρ )Φ(θ )R (0 ) < + ∞Φ (θ + 2π ) = Φ (θ )⎧ Φ′′ + λΦ = 0 ⎨ ⎩Φ (θ + 2π ) = Φ (θ )2 ⎧ ρ ⎪ R′′ + ρ R′ − λ R = 0 ⎨ ⎪ ⎩ R ( 0 ) < +∞65.1贝塞尔方程的引出(一)、贝塞尔方程 例 设有半径为R的薄圆盘,其侧面绝缘,若圆盘边 界上的温度恒保持为零度,且初始温度为已知。

数学物理方程学习指导书 第8章 贝塞尔函数.

数学物理方程学习指导书 第8章  贝塞尔函数.

第8章 贝塞尔函数本章我们来讨论贝塞尔方程的解法以及解的性质. 下面将要看到,在一般的情况下,贝塞尔方程的解不能用初等函数表出,从而就导入了一类特殊函数,称之为贝塞尔函数,贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交性,这个正交性恰好是前面所述的施特姆-刘维尔理论的一个特例.8.1 贝塞尔方程的求解在7.1中,我们从解决圆盘的瞬时温度分布问题引出了贝塞尔方程,以x 表示自变量,y 表示未知函数,则n 阶贝塞尔方程为22222()0,d y dy x x x n y dx dx++-= (8.1) 其中n 为任意实数或复数. 由于方程的系数中出现2n 的项,所以在讨论时,不妨暂先假定0n >.设方程(8.1)有一个级数解,其形式为2012()c k k y x a a x a x a x =+++++c k k k a x ∞+==∑, 00,a ≠ (8.2)其中常数c 和(1,2,3)k a k =可以通过把y 和它的导数,y y '''代入(8.1)来确定.将(8.2)及其导数代入(8.1)后得{}220()(1)()()0.c kkk c k c k c k xn a x ∞+=⎡⎤++-+++-=⎣⎦∑ 化简后写成()}{22221220122()1()0,cc c kk k k c n a x c n a xc k n a a x ∞++-=⎡⎤⎡⎤-++-++-+=⎣⎦⎣⎦∑要使上式成为恒等式,必须各个x 幂的系数全为零,从而得下列各式:2202212221()0;2[(1)]0;3[()]0(2,3,).k k a c n a c n c k n a a k --=+-=+-+==由 1得c n =±,代入 2得10a =.现暂取c n =,代入3得24.(2)k k a a k n k --=+因为10a =,由4知13570,a a a a =====而246,,,a a a 都可以用0a 表示,即2,2(22)a a n -=+4,24(22)(24)a a n n =⋅++6,246(22)(24)(26)a a n n n -=⋅⋅+++………………………………………………2(1)2462(22)(24)(22)mm a a m n n n m =-⋅⋅+++2(1).2!(1)(2)()m ma m n n n m -=+++由此知(8.2)的一般项为202(1),2!(1)(2)()n mmma x m n n n m +-+++0a 是一个任意常数,取定后就得(8.1)式的一个特解.我们把0a 取作012(1)n a n =Γ+,这样选取0a 可使一般项系数中2的次数与x 的次数相同,并可以运用下列恒等式()(1)(1)(1)(1)(1)n m n m n n n n m ++-++Γ+=Γ++使分母简化,这样选0a 后,一般项的系数就整齐了221(1).2!(1)mm n ma m n m +=-Γ++ (8.3) 以(8.3)代入(8.2)得到(8.1)的一个特解2120(1)(0).2!(1)n mmn mm x y n m n m +∞+==-≥Γ++∑用级数的比值判别法(或称达朗倍尔判别法)可以判定这个级数在整个数轴上收敛. 这个无穷级数所确定的函数,称为n 阶第一类贝塞尔函数,记作220()(1)(0).2!(1)n mmn n mm x J x n m n m +∞+==-≥Γ++∑ (8.4)至此,我们就求出了贝塞尔方程的一个特解().n J x当n 为正整数或零时,(1)()!n m n m Γ++=+,故有220()(1)(0,1,2,).2!()!n mmn n m m x J x n m n m +∞+==-=+∑ (8.5)取c n =-时,用同样方法可得(8.1)式另一特解220()(1)(1,2,).2!(1)!n mmn n m m x J x n m n m -+∞--+==-≠Γ-++∑ (8.6)比较(8.4)式与(8.6)式可见,只要在(8.4)的右端把n 换成n -,即可得到(8.6)式,因此不论n 是正数还是负数,总可以用(8.4)式统一地表达第一类贝塞尔函数.当n 不为整数时,这两个特解()n J x 与()n J x -是线性无关的,由齐次线性微分主程的通解的结构定理知道,(8.1)的通解为()()n n y AJ x BJ x -=+ (8.7)其中,A B 为两个任意常数.当然,在n 不为整数的情况,方程(8.1)的通解除了可以写成(8.7)式以外还可写成其他的形式,只要能够找到该方程另一个与()n J x 线性无关的特解,它与()n J x 就可构成(8.1)的通解,这样的特解是容易找到的. 例如,在(8.7)中取,csc ,A ctgn B n ππ==-则得到(8.1)的一个特解()()csc ()n n n Y x ctgn J x n J x ππ-=-()cos ()sin n n J x n J x n ππ--=(n ≠ 整数) (8.8)显然,()n Y x 与()n J x 是线性无关的,因此,(8.1)的通解可写成()().n n y AJ x BY x =+ (8.7)’由(8.8)式所确定的函数()n Y x 称为第二类贝塞尔函数,或称牛曼函数.8.2 当n 为整数时贝塞尔方程的通解上一节说明,当n 不为整数时,贝塞尔方程(8.1)的通解由(8.7)或(8.7)’式确定,当n 为整数时,(8.1)的通解应该是什么样子呢?首先,我们证明当n 为整数时,()n J x 与()n J x -是线性相关的,事实上,我们不妨设n 为正整数N (这不失一般性,因n 为负整数时,会得到同样的结果),则在(8.6)中,1(1)n m Γ-++当0,1,2,,(1)m N =-时均为零,这时级数从m N =起才开始出现非零项,于是(8.6)可以写成22()(1)2!(1)N mmN N mm Nx J x m N m -+∞--+==-Γ-++∑ 2424(1)2!2(1)!2(2)!2!N N N N N N N x x x N N N ++++⎧⎫⎪=--++⎨⎬++⎪⎭⎩ (1)().N N J x =-即()N J x 与()N J x -线性相关,这时()N J x 与()N J x -已不能构成贝塞尔方程的通解了.为了求出贝塞尔方程的通解,还要求出一个与()N J x 线性无关的特解.取哪一个特解?自然我们想到第二类贝塞尔函数.不过当n 为整数时(8.8)的右端没有意义,要想把整数阶贝塞尔方程的通解也写成(8.7)’的形式,必须先修改第二类贝塞尔函数的定义. 在n 为整数的情况,我们定义第二类贝塞尔函数为()cos ()()limsin n n J x a J x Y x αααπαπ-→-= (n =整数). (8.9)由于当n 为整数时,()(1)()cos ()n n n n J x J x n J x π-=-=,所以上式右端的极限是"0"形式的不定型的极限,应用洛必塔法则并经过冗长的推导(可参阅A.Ⅱ.萨波洛夫斯基著《特殊函数》,魏执权等译,中国工业出版社出版),最后得到210020(1)2212()()ln ,2(!)1m mm m k x x Y x J x c m k ππ∞-==⎛⎫- ⎪⎛⎫⎝⎭=+- ⎪+⎝⎭∑∑ 21021(1)!()()ln 2!2n mn n m m x n m x Y x J x c m ππ-+-=--⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭∑211000(1)1112(1,2,3,),!()!11n mmn m m m k k x n m n m k k π+∞+--===⎛⎫- ⎪⎛⎫⎝⎭-+= ⎪+++⎝⎭∑∑∑ (8.10) 其中111lim 1ln 0.5772,23n c n n →∞⎛⎫=++++-= ⎪⎝⎭称为欧拉常数.根据这个函数的定义,它确是贝塞尔方程的一个特解,而且与()n J x 是线性无关的(因为当0x =时,()n J x 为有限值,而()n Y x 为无穷大).综合上面所述,不论n 是否为整数,贝塞尔方程(8.1)的通解都可表示为()()n n y AJ x BY x =+,其中,A B 为任意常数,n 为任意实数.8.3 贝塞尔函数的递推公式不同阶的贝塞尔函数之间不是彼此孤立的,而是有一定的联系,本节我们来建立反映这种联系的递推公式.首先考察零阶与一阶贝塞尔函数之间的关系. 在(8.5)中令0n =及1n =得:246024262()122(2!)2(3!)x x x J x =+-+222(1)2(!)kk x kk +-+3571357()222!22!3!23!4!x x x x J x =-+-+⋅⋅⋅2121(1)2!(1)!k kk x k k +++-++取出第一个级数的第2k +项求导数,得[][]22211222222(22)(1)(1)2(1)!2(1)!k k k k k k d x k x dx k k ++++++-=--++ 2121(1).2!(1)!k kk x k k ++=--+这个式子正好是1()J x 中含21k x +这一项的负值,且知0()J x 的第一项导数为零,故得关系式1()().dJ x J x dx =- (8.11) 将1()J x 乘以x 并求导数,又得24221321[()](1)222!2!(1)!k kk d d x x x xJ x dx dx k k ++⎡⎤=-++-+⎢⎥⋅+⎣⎦321222(1)22(!)k kk x x x k +=-++-+222221(1).22(!)kkk x x x k ⎡⎤=-++-+⎢⎥⎣⎦即10[()]().dxJ x xJ x dx= (8.12) 以上结果可以推广,现将()n J x 乘以nx 求导数,得2220[()](1)2!(1)n m n mn n m m d d x x J x dx dx m n m +∞+==-Γ++∑ 2121(1)2!()n m n mn m m x x m n m +-∞+-==-Γ+∑ 1(),n n x J x -=即1[()]().nn n n d x J x x J x dx-= (8.13) 同理可得1[()]().nn n n d x J x x J x dx--+=- (8.14) 将(8.13)和(8.14)两式展开,并经过化简,则分别得'1()()(),n n n xJ x nJ x xJ x -+=及'1()()(),n n n xJ x nJ x xJ x --=-将这两式相减及相加,分别得到112()()(),n n nJ x J x nJ x x -++=(8.15) 11()()2().n n n J x J x J x -+'-= (8.16)以上几式便是贝塞尔函数的递推公式.它们在有关贝塞尔函数的分析运算中甚为有用.特别值得一提的是,应有(8.15)式可以用较低阶的贝塞尔函数把较高阶的贝塞尔函数表示出来.因此如果我们已有零阶与一阶贝塞尔函数表,则利用此表和(8.15),即可计算任意正整数阶的贝塞尔函数的数值.第二类贝塞尔函数也满足与第一类贝塞尔函数相类似的递推公式.1111'11()(),[()](),2()()(),()()2().n nn n n n n n n n n n n n d x Y x x Y x dx d x Y x x Y x dxnY x Y x Y x x Y x Y x Y x ---+-+-+⎧⎡⎤=⎣⎦⎪⎪⎪=-⎪⎨⎪+=⎪⎪⎪-=⎩ (8.17) 作为递推公式的一个应用,我们来考虑半奇数阶的贝塞尔函数,先计算1122(),().J x Jx -由(8.4)可得122102(1)(),32!2m mm x J x m m +∞=-⎛⎫= ⎪⎛⎫⎝⎭Γ+ ⎪⎝⎭∑而 13135(21)1222m m m +⋅⋅+⎛⎫⎛⎫Γ+=Γ⎪ ⎪⎝⎭⎝⎭=从而21102(1)().(21)!m m J x x x m ∞+=-=+ (8.18) 同理,可求得12().J x x -=(8.19) 利用递推公式(8.15)得到31122211()()()cos sin J x J x J x x x x x -⎫=-=-+⎪⎭321sin d x x dx x ⎛⎫=⋅⎪⎝⎭321sin d x x dx x ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭. 同理可得32321cos ().d x J x x dx x -⎛⎫⎛⎫=⎪⎪⎝⎭⎝⎭一般言之,有1212121()21sin()(1);1cos().nnnnnnd xJ xx dx xd xJ xx dx x+++-+⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭(8.20) 从(8.20)可能看出,半奇数阶的贝塞尔函数都是初等函数.8.4 贝塞尔函数的零点与模值贝塞尔方程的固有值与固有函数都与贝塞尔函数的零点有密切关系.同时,为了将一个函数按贝塞尔函数展开,需要用到贝塞尔函数的模值.本节我们来叙述贝塞尔函数零点的有关结论并计算贝塞尔函数的模值.6.4.1 贝塞尔函数的零点第一类贝塞尔函数()nJ x的零点的几个重要结论:1()nJ x有无穷多个单重实零点,且这无穷多个零点在x轴上关于原点是对称分布着的.因而()nJ x必有无穷多个正的零点;2()nJ x的零点与1()nJ x+的零点是彼此相间分布的,即()nJ x的任意两个相邻零点之间必存在一个且仅有一个1()nJ x+的零点;图8-13以()nmμ表示()nJ x的正零点,则当()()1n nm mmμμ+-→∞时无限地接近于π,即()nJ x几乎是以π2为周期的周期函数.()J x与1()J x的图形见图8-1.为了便于工程技术上的应用,贝塞尔函数零点的数值已被详细计算出来,并列成表格.下表给出了()(0,1,2,,5)n J x n =的前9个正零点)9,,2,1()( =m n m μ的近似值.6.4.2 贝塞尔函数的模值所谓贝塞尔函数的模值就是指定积分()2n am nJ r rdr a μ⎛⎫ ⎪⎝⎭⎰的平方根,其中()n m μ是()n J x 的正零点,a 为一正常数.为了计算这个积分,以1()R r ,2()R r 分别表示下列函数()1()n m n R r J r a μ⎛⎫= ⎪⎝⎭,()2()n R r J r α= α(为任意参数).则1()R r ,2()R r 分别满足方程2()2110,n m dR d n r r R dr dr a r μ⎡⎤⎛⎫⎡⎤⎢⎥+-= ⎪⎢⎥⎣⎦⎢⎥⎝⎭⎣⎦22220.dR d n r r R dr dr r α⎡⎤⎡⎤+-=⎢⎥⎢⎥⎣⎦⎣⎦以2()R r 乘第一个方程减去以1()R r 乘第二个方程,然后对r 从0到a 积分,得}{()2''12211200()()[()()()()]0.n a a m rR r R r dr r R r R r R r R r a μα⎡⎤⎛⎫-+-=⎢⎥ ⎪⎝⎭⎣⎦⎰ 由此可得()();()()20()2()().n n n am n n m m n n n m J a J rJ r J r dr aa μαμμαμα⎛⎫=-⎪⎛⎫⎝⎭- ⎪⎝⎭⎰当()n maμα→时,上式右端是"0"型,利用洛必塔法则计算这个极限,得 ()()()222'()2()10.22n an n m n n m n m a a rJ r dr J J a μμμ-⎛⎫⎡⎤== ⎪⎣⎦⎝⎭⎰这个公式在下节计算傅里叶-贝塞尔级数的系数时就要用到.8.5 贝塞尔方程的边值问题在7.1中,我们已将求解圆盘的温度分布问题通过分离变量法转化成求解贝塞尔方程的固有值问题.() 自然边界条件 222()()()0,0;(8.21)()0,(8.22)(0)()(8.23)r a r R r rR r r n R r r a R r R λ=⎧'''++-=<<⎪⎪=⎨⎪<∞⎪⎩方程(8.21)的通解为)()),n nR r AJ BY =+由条件(8.23)可得 0B =,即()),n R r AJ =利用条件(8.22)得)0,n J =应该是()n J x 的零点,以表示()()()12,,,,()n n n m n J x μμμ的正零点,则方程(8.21)的固有值为2()()n n m ma μλ⎛⎫= ⎪⎝⎭(1,2,m =),与这些固有值相对应的边值问题(8.21)—(8.23)的固有函数是()().n m m n R r J r a μ⎛⎫= ⎪⎝⎭根据施特姆-刘维尔理论,()(1,2,3,)m R r m =关于权函数()r r ρ=是正交的,即()()00().(8.24)n n am k n n J r J r rdr m k a a μμ⎛⎫⎛⎫=≠ ⎪ ⎪⎝⎭⎝⎭⎰同时,下述展开定理成立:任何一个下两次可微的函数()f r ,若在0r =处有界,而且在r a =处等于零,则它可以展开为绝对一致收敛的傅里叶-贝塞尔级数:()(),n m m n m a f r A J r a μ∞=⎛⎫= ⎪⎝⎭∑ (8.25)其中系数m A 可用下述方法确定:在展开式(8.25)的两端同乘以(),n mn rJ r aμ⎛⎫⎪⎝⎭并对r 从0到a 积分,由正交关系式(8.24)得()()20().n n aa m mn m n f r J r rdr A rJ r dr a a μμ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭⎰⎰利用前面计算过的贝塞尔函数的模值公式得到()()2'()2().[]2n am n m n n m f r J r rdra A a J μμ⎛⎫ ⎪⎝⎭=⎰(8.26) 下面我们举两个例子,说明用贝塞尔函数求解定解问题的全过程.例1 设有半径为1的薄均匀圆盘,边界上温度为零,初始时刻圆盘内温度分布为21r -,其中r 是圆盘内任一点的极半径,求圆内温度分布规律.解 根据问题的要求,即可归结为求解下列定解问题:22222120;0;1.r t u uu a tx y u u r ==⎧⎛⎫∂∂∂=+⎪ ⎪∂∂∂⎝⎭⎪⎪=⎨⎪=-⎪⎪⎩采用极坐标系,并考虑到定解条件与θ无关,所以温度u 只能是,r t 的函数,于是上述问题可写为2221201;(8.27)0;(8.28)1.(8.29)r t u u u a tr r r u u r ==⎧⎛⎫∂∂∂=+⎪ ⎪∂∂∂⎝⎭⎪⎪=⎨⎪=-⎪⎪⎩此外,由物理意义,还有条件令 (,)()(),u r t R r T t = 代入方程(8.27)得21,RT a R R T r ⎛⎫''''=+ ⎪⎝⎭或 21,R R T r a T Rλ'''+'==由此得22''0,r R rR r R λ+-= (8.30)2'0.T a T λ-= (8.31)方程(8.31)的解为2()a t T t Ce λ=,因为t →+∞,时0,u →λ只能小于零,令2λβ=-则22().a t T t Ce β-=此时方程(8.30)的通解为1020()()().R r C J r C Y r ββ=+由(,)u r t 的有界性,可知20C =,再由(8.28)得0()0J β=,即β是0()J x 的零点,以n α表示0()J x 的正零点,则(1,2,3,),nn βα==综合以上结果可得0()(),n n R r J r α=22().n a t n n T t C e α-=从而 220(,)().n a tn n n u r t C eJ r αα-=利用叠加原理,可得原问题的解为2201(,)().n a t n n n n u r t C e J r αα∞-==∑由条件(8.29)2011().n n n r C J r α∞=-=∑从而120202(1)()[()]n n n C r rJ r dr J αα=-'⎰1130020012()(),[()]n n n rJ r dr r J r dr J ααα⎡⎤=-⎢⎥⎣⎦⎰⎰因 10[()()]()[()()],n n n n n d r J r r J r d r ααααα=即 10()(),n n n rJ r d rJ r dr ααα⎡⎤=⎢⎥⎣⎦故得111100()()().n n n nnrJ r J rJ r dr ααααα==⎰另外11320000()()n n n rJ r r J r dr r d ααα⎡⎤=⎢⎥⎣⎦⎰⎰ 1312110()2()n n n r J r r J r dr αααα=-⎰121122220()()2()2(),n n n n nnnnJ J J r J r αααααααα=-=-从而 22214().()n n n n J C J ααα= 所以,所求定解问题的解为222022114()(,)(),()n a tn n n n nJ u r t J r e J ααααα∞-==∑(8.32) 其中n α是0()J r 的正零点. 例2 求下列定解问题22222022001,0;(8.33)0;(8.34)0,1.(8.35)r r R t t u u u a r R tr r r u u r u r u t R ====⎧⎛⎫∂∂∂=+<<⎪ ⎪∂∂∂⎝⎭⎪⎪∂⎪=<+∞⎨∂⎪⎪∂⎪==-∂⎪⎩的解.解 用分离变量法来解,令(,)()(),u r t R r T t =采用例1中同样的运算,可以得到1020()()(),R r C J r C Y r ββ=+ (8.36) 34()cos sin .T t C t C t αβαβ=+ (8.37)由(,)u r t 在0r =处的有界性,可知20,C =即10()().R r C J r β= (8.38)再根据边界条件(8.34)中第一式,得'10'()()0,R R C J R ββ==因1C β不能为零,故有0()0.J R β'=利用贝塞尔函数的递推公式(8.11)可得1()0,J R β=即R β是1()J x 的正零点,以(1)(1)(1)(1)123,,,,n μμμμ表示1()J x 的所有正零点,则(1)(1,2,3,),nR n βμ==即 (1).nRμβ= (8.39)将(8.39)分别代入(8.38),(8.37),得(1)0(),nn R r J r Rμ⎛⎫=⎪⎝⎭(1)(1)()cossin.nnn n n T t C t D t R Rαμαμ=+从而 (1)(1)(1)0(,)cos sin ,n nn n n n u r t C t D t J r R R R αμαμμ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭利用叠加原理可得原定解问题的解为(1)(1)(1)01(,)cos sin ,n nn n n n n u r t C t D t J r R R R αμαμμ∞=⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭∑将条件(8.35)代入上式得(1)010,nn n C J r R μ∞=⎛⎫= ⎪⎝⎭∑ (8.40)(1)2(1)0211.n n n n a r D J r R R R μμ∞=⎛⎫=- ⎪⎝⎭∑ (8.41)由(8.40)得 0(1,2,3,);n C n ==由(8.41)并利用下面的结果(见习题八第14题):如果(1)n μ是1()J x 的正零点,则(1)222(1)'(1)2(1)00100()()(),22Rn n n n R R rJ r dr J J J R μμμμ⎛⎫==⎪⎝⎭⎰得到(1)20(1)2(1)2002(1)()R n n n n r D rJ r dr RJ R R μαμμ⎛⎫=- ⎪⎝⎭⎰ (1)2(1)32(1)(1)3(1)004()4,()()()()n n n n n RJ R J J μαμμαμμ==- 所以最后得到定解问题的解为(1)(1)0(1)3(1)1041(,)sin .()()n n n n n Ru r t tJ r J R Rαμμαμμ∞=⎛⎫=- ⎪⎝⎭∑ (8.42)习 题 八1、当n 为正整数时,讨论()n J x 的收敛范围.2、写出01(),(),()(n J x J x J x n 是正整数)的组数表示式的前5项.3、证明21(0)0,n J -=其中1,2,3,n =.4、0()?dJ ax dx=.5、1[()?.dxJ ax dx= 6、证明()n y J ax =为方程2222'''()0x y xy a x n y ++-=的解. 7、证明321()cos sin ;2J x x x x x ππ⎤⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎦52233()1sin()cos().J x x x x x ππ⎤⎛⎫=--+- ⎪⎥⎝⎭⎦8、试证1232()y x J x =是方程22''(2)0.x y x y +-=的一个解.9、试证()n y xJ x =是方程222'''(1)0x y xy x n y -++-=的一个解.10、设(1,2,3,)i i λ=是方程1()0J x =的正根,将函数()0(01)f x x =<<展开成贝塞尔函数)((11x J λ=的级数. 11、设(1,2,3,)i a i =是0()0J x =的正根,将函数2()(01)f x x x =<<展开成贝塞尔函数0()i J a x 的级数. 12、设(1,2,3,)i a i =是方程0(2)0J x =的正根,将函数1,01,1(),120,12x f x x x <<⎧⎪⎪==⎨⎪<<⎪⎩展开成贝塞尔函数0()i J a x 的级数.13、把定义在[0,]a 上的函数展开成贝塞尔函数0i a J x a ⎛⎫⎪⎝⎭的级数,其中i a 是0()J x 正零点. 14、若1(1,2,3,)i λ=是1()J x 正零点,证明200200,,(),.2Ri i i j i xJ x J x dx R R R J i j λλλ≠⎧⎛⎫⎪⎛⎫=⎨ ⎪ ⎪=⎝⎭⎝⎭⎪⎩⎰[提示:可仿照8.4中推导贝塞尔函数模值的方法来证明.] 15、利用递推公式证明(1)'''2001()()();J x J x J x x =-(2)''''300()3()4()0.J x J x J x ++=16、试证1221()()(1)()(1)().nn n n o o ox Jx dx x J x n x J x n x J x dx --=+---⎰⎰17、试解下列圆柱区域的边值问题:在圆柱内0,u ∆=在圆柱侧面0a u ρ==,在下底00z u ==,在上底.z h u A ==18、解下列定解问题:22222220001;1,0;.,0.t t R u u u a tu u R t u u ρρρρρρ====⎧⎛⎫∂∂∂=+⎪ ⎪∂∂∂⎝⎭⎪⎪∂⎪=-=⎨∂⎪⎪<∞=⎪⎪⎩若上述方程换成非齐次的,即2222211u u uB a t ρρρ∂∂∂+-=-∂∂∂ (B 为常数), 而所有定解条件均为零,试求其解.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
e2 t
n
Jn( x)t n
n
利用母函数可以论证递推公式等证明题
母函数的应用
证明贝赛尔函数的加法公式:
Jn (x y) Jk (x)Jnk ( y) k
W (x, t)
x(t1)
e2 t
n
Jn( x)t n
n
贝塞尔函数的积分表达式
第二类贝塞尔函数具有相同 的递推关系
半奇数阶的贝赛尔函数
J1 (x) ?
2
Jn (x)
(1)m
m0
xn2m 2n2m m!(n
m
1)
J 1
2
(x)
(1)m
m0
1 2m
22
12m
x2 m!(1
m
1)
2
(1 m 1) ? 2
半奇数阶的贝赛尔函数
(1 m 1) ? 2
J1 (x) ?
2m 1 1 2
J1 (x) ?
2
31
2 4 6 2m
J 1 (x)
2
(1)m
m0
(2m
2 x 2 m 1
1)!
x
2
(1)m
x 2 m 1
x m0
(2m 1)!
(2m 1)!
sin x
半奇数阶的贝赛尔函数
J1 (x)
2
2 sin x
x
半奇数阶的贝赛尔函数
同理可证明
J1 (x) 2
则上述方程也可写为下列形式的 l 阶勒让德方程
d [(1 x2 ) dy ] l(l 1) y 0
dx
dx
d dx
k
(
x)
dy dx
q(
x)
y
(
x)
y
0
勒让德方程的解
y y0 y1
y0
a0 [1
l(l 1) 2!
x2
l(l
2)(l 1)(l 4!
3)
x4
...]
y1
a1[ x
(l
1)(l 3!
J3(x)dx
整数阶贝塞尔函数的母函数
• 函数 W(x,t) 按t展开成幂级数,其系数为所有整数
阶的贝塞尔函数,W(x,t) 称为贝塞尔函数的母函数,
母函数是贝塞尔函数的另一种生成方式
W ( x, t ) Jn ( x)t n n
x(t1)
W (x,t) e 2 t
W (x, t)
x(t1)
d dx
[
xnJn
(
x)]
xnJn1(
x)
ks?
偶数 积分结果中含有
J0 (x)dx
奇数 可全部消去积分号
• 递推公式应用 作业
证明
J
n
1 4
[Jn2
(x)
2Jn
(x)
Jn2
(x)]
d dx
[
J
2 n
(x)]
x 2n
[J
2 n1
(
x)
J
2 n 1 ( x)]
求积分
x5J0 (x)dx
x2J3(x)dx
J1(x)
J0 (x) J1(x) xJ1(x) xJ0 (x)
2 Jn1( x) Jn1( x) x nJn ( x) Jn1( x) Jn1( x) 2Jn ( x)
n 1
2
J0( x) J2( x) x J1( x)
J0( x) J2( x) 2J1( x)
求积分 x5J2 (x)dx
xk Js (x)dx
ks
d dx
[xnJn( x)]
xnJn1( x)
x5J2 (x)dx x2x3J2 (x)dx x2dx3J3(x)
x2 x3J3(x) x3J3(x)dx2 c x5J3(x) 2 x4J3(x)dx c
x5J3(x) 2 dx4J4 (x) c
=- xJ2 (x)-3 J0 (x) 2J1' (x) dx c
=- xJ2 (x) 6J1(x)-3 J0 (x)dx c
xk Js (x)dx
k s?
x5J2 (x)dx J2 (x)dx x2J2 (x)dx xJ3(x)dx
d dx
[xnJn( x)]
xnJn1( x)
Jn(x)
m0
(1)m
xn2m 2n2m m !(n
m
1)
n为偶数时
Jn( x)
(1)m
m0
( x)n2m 2n2m m !(n m
1)
Jn(x) Jn(x)
(1)m
m0
(1)n2m xn2m 2n2m m !(n m 1)
(1)n (1)m
m0
xn2m 2n2m m !(n
J1 (x) ?
2
31
J 1
2
(x)
(1)m
m0
2 x m1
11)
31
J1 (x)
2
(1)m
m0
12m
2x2 2m m!(2m 1)(2m 1)
31
半奇数阶的贝赛尔函数
J1 (x)
2
(1)m
m0
12m
2x2 2m m!(2m 1)(2m 1)
2
(1 m 1) (m 1)(m 1) 3 ( 3)
2
2 2 22
(3) 1 (1) 2 22
(1 m 1) (m 1)(m 1) 3 1 (1)
2
2 2 22 2
半奇数阶的贝赛尔函数
(1 m 1) (m 1)(m 1) 3 1 (1)
2
2 2 22 2
J1 (x) ?
x[
J
2 0
(
x)
J12 (x)]
求积分
x5J2 (x)dx J2 (x)dx x2J2 (x)dx xJ3(x)dx
证明
J
2
(x)
J
0
(x)
1 x
J
0
(
x)
2 Jn1( x) Jn1( x) x nJn ( x) Jn1( x) Jn1( x) 2Jn ( x)
n 1
2 J0(x) J2(x) x J1(x) J0( x) J2( x) 2J1( x)
] !
x[1
x2 22
(1)k
x2k 22k (k !)2
]
d dx
[ xJ1 ( x)]
xJ0
(x)
贝赛尔函数的递推关系
贝赛尔函数的递推公式
d dx
[xnJn( x)]
xnJn1( x)
d dx
[
xnJn
(
x)]
xnJn1(
x)
Jn1( x)
Jn1( x)
2 x
nJn( x)
J
n1
(
x5J3(x) 2x4J4(x) c
求积分 J2 (x)dx
J1' ( x)
J0(x)
2
J2(x)
J1(x) J0(x) J2(x)
x
2
J2 (x) J0 (x) 2J1(x)
J2 (x)dx
J
0
(
x)
2
J1
(
x)
dx
J0 (x)dx 2J1(x) C
x2J2(x)dx
2)
x3
(l
1)(l
3)(l 5!
2)(l
4)
x5
...]
-1 x 1
l 整数
无界
勒让德方程的解
y C 1Pl (x) C2Ql (x) l 整数
Pl (x) 1
无界 -1 x 1
[l]
Pl (x)
2
(1)k
k 0
(2l 2l k !(l
2k)!
xl2k
k)!(l 2k)!
式中
[
l 2
2 cos x
x
半奇数阶的贝赛尔函数
由递推公式可证明
J(n1) (x) 2
2
n1
x2
(
1
d
)n (cos x)
x dx x
Jn1 (x) (1)n 2
2
n1
x2
(1
d
)n (sin x)
x dx x
贝塞尔函数递推公式应用
证明
J2
(x)
J
0
(
x)
1 x
J
0
(
x)
d dx
[x
J0 ( x) J
1 ( x)]
x)
d dx
[ xnJn( x)]
xnJn1(
x)
xJ
n
(
x
)
nJn ( x)
xJn1( x)
J1' ( x)
J0( x) 2
J2(x)
J1(x) J0(x) J2(x)
x
2
2 Jn1( x) Jn1( x) x nJn ( x)
xJn ( x) nJn ( x) xJn1( x) Jn1( x) Jn1( x) 2Jn ( x)
• 贝赛尔方程的引入?
内容回忆
2V 1 V 1 2V V 0 r2 r r r2 2
极坐标系下对 亥姆霍兹方程 进行变量分离
V (r, ) P(r)()
( ) ( ) 0
r2P(r) rP(r) (r2 )P(r) 0
x2 yxx xyx (x2 n2 ) y 0 n阶贝塞尔方程
x)
Jn1(
x)
2
J
n
(
x)
相关文档
最新文档