晶振的工作原理
晶振的工作原理
晶振的工作原理
晶振(Oscillator)是一种用来生成稳定的时钟信号的电子元件。
其工作原理主要基于谐振现象。
晶振通常由晶体和驱动电路组成。
晶体是晶振的核心部件,一般使用石英晶体。
晶振驱动电路提供激励信号,激励晶体产生振荡。
该电路一般由几个主要组成部分组成:放大电路、反馈电路和调谐电路。
具体工作原理如下:
1. 激励信号:由驱动电路通过提供适当的激励信号来引发晶体振荡。
这个激励信号可以是电压脉冲、电流脉冲或连续信号,其频率通常在晶体的共振频率附近。
2. 晶体共振:晶体共振是指在特定频率下,晶体的振荡达到最大幅度的状态。
晶体的共振频率是由晶体的物理特性决定的,例如晶体的尺寸、形状和材料等。
晶振的频率通常设计为晶体的共振频率。
3. 反馈电路:晶体振荡产生的信号经过放大电路被反馈到晶体上,使晶体持续振荡。
放大电路可以将晶体输出的微弱信号放大到足够的幅度,以供后续电路使用。
4. 调谐电路:调谐电路用来微调晶振的频率,以使其与所需的时钟频率完全匹配。
调谐电路通常由电容和电感等元件组成,通过改变这些元件的数值,可以微调晶振的频率。
通过以上过程,晶振能够产生一个稳定、精确的时钟信号,用于驱动各种电子设备的工作。
这些设备需要准确的时钟信号来同步各个部件的操作。
晶振的工作原理
晶振的工作原理晶振(Crystal Oscillator)是一种常见的电子元件,广泛应用于各种电子设备中,如计算机、手机、电视等。
它的主要功能是产生稳定的电信号,用于驱动其他电子元件的工作。
晶振的工作原理基于压电效应和谐振现象。
压电效应是指某些晶体在受到外力作用时会产生电荷分布的变化,而谐振现象是指在特定频率下,系统对外界激励的响应最大。
晶振通常由一个晶体片和与之相连的电路组成。
晶体片是由石英或类似材料制成的,具有稳定的物理特性。
电路部分包括放大器、反馈电路和输出电路等。
晶振的工作过程如下:1. 激励信号:外部电路向晶体片提供激励信号,通常是一个交流电压信号。
2. 压电效应:晶体片受到激励信号的作用,产生压电效应。
这会导致晶体片内部的晶格结构发生微小变化,进而产生电荷分布的变化。
3. 反馈电路:晶体片输出的电荷变化信号被放大器接收,并通过反馈电路送回晶体片。
反馈电路的作用是保持晶体片的振荡频率稳定。
4. 谐振现象:反馈电路的作用使晶体片在特定频率下达到谐振。
这个频率称为谐振频率,是晶体片的固有特性。
5. 输出信号:晶体片在谐振频率下不断振荡,产生稳定的输出信号。
这个输出信号可以作为其他电子元件的时钟信号或频率参考信号。
晶振的工作原理可以简单总结为:外界激励引起晶体片的压电效应,通过反馈电路使晶体片达到谐振频率,产生稳定的输出信号。
晶振的工作频率取决于晶体片的物理特性和电路的设计。
常见的晶振频率有几十kHz到几百MHz不等。
选用不同频率的晶振可以满足不同电子设备的需求。
总之,晶振是一种基于压电效应和谐振现象的电子元件,用于产生稳定的电信号。
它在各种电子设备中起着重要的作用,确保设备的正常工作。
晶振工作原理
晶振工作原理
晶振工作原理是指利用晶体产生机械振动并将其转化为电信号的过程。
晶振器由一个压电晶体和两个电极组成。
当对晶体施加外加电场时,晶体会发生机械振动,这是由于电场使晶体内部正负离子分离而产生的电荷的作用。
晶体的尺寸和形状会影响其机械振动的频率。
在晶体振动过程中,晶体会产生电压,这是由于晶体的压电效应。
压电效应是指在某些晶体中,当施加机械应力时,晶体会在两端产生电荷差。
这个电荷差可以被测量并转化为电信号。
晶振器的电路中会加入一个反馈电路,用于维持晶体振动的稳定性。
当晶体振动频率趋向于不稳定时,反馈电路会通过相应的电路调整晶体周围的电场,使振动频率恢复到设定的数值。
晶振器可以根据需求选择不同频率的晶体来实现不同的工作频率。
晶振器广泛应用于各种电子设备中,例如计算机、通信设备、数字电视等,用于提供稳定的时钟信号或频率参考。
晶振的工作原理
晶振的工作原理晶振(Crystal Oscillator)是一种电子元件,用于产生稳定的高频振荡信号。
它广泛应用于各种电子设备中,包括计算机、通信设备、无线电设备等。
晶振的工作原理是基于压电效应和谐振原理。
晶振通常由晶体谐振器和振荡电路组成。
晶体谐振器是晶振的核心部件,它由一个压电晶体片和两个金属电极组成。
压电晶体片通常采用石英晶体,因为石英具有稳定性好、温度特性好等优点。
金属电极则用于提供电场,使晶体产生压电效应。
晶振的工作原理如下:1. 振荡电路提供反馈:晶振的振荡电路包含一个放大器和一个反馈网络。
放大器将晶体谐振器输出的信号放大,然后将放大后的信号送回晶体谐振器,形成一个正反馈回路。
2. 压电效应产生振荡:当电场施加到晶体上时,晶体味发生压电效应,即晶体味产生机械变形。
这种机械变形会导致晶体的厚度发生弱小的变化,从而改变晶体的谐振频率。
3. 谐振频率确定:晶体的谐振频率由晶体的物理尺寸和材料特性决定。
通过精确控制晶体的尺寸和材料,可以实现特定的谐振频率。
常见的谐振频率有4MHz、8MHz、16MHz等。
4. 反馈调整振荡频率:当振荡频率偏离谐振频率时,反馈网络会调整放大器的增益,使振荡频率逐渐接近谐振频率。
最终,振荡频率稳定在谐振频率附近。
晶振的工作原理可以通过以下步骤总结:1. 振荡电路提供反馈。
2. 压电效应产生振荡。
3. 谐振频率由晶体的尺寸和材料决定。
4. 反馈调整振荡频率,使其稳定在谐振频率附近。
晶振在电子设备中的应用非常广泛。
它提供了稳定的时钟信号,用于同步各个电路的工作。
例如,在计算机中,晶振用于控制CPU的时钟频率,确保计算机的稳定运行。
在通信设备中,晶振用于产生精确的调制信号,实现高质量的通信。
在无线电设备中,晶振用于产生精确的射频信号,实现无线通信。
总之,晶振的工作原理是基于压电效应和谐振原理,通过振荡电路提供反馈,产生稳定的高频振荡信号。
它在各种电子设备中发挥着重要的作用,确保设备的稳定运行和高质量的信号传输。
晶振的工作原理
晶振的工作原理晶振是一种常见的电子元件,广泛应用于电子设备中。
它主要用于产生稳定的时钟信号,为电子设备的正常运行提供精确的时间基准。
本文将详细介绍晶振的工作原理。
一、晶振的结构晶振由晶体谐振器和驱动电路组成。
晶体谐振器是晶振的核心部件,其主要由晶体片、电极和封装壳体组成。
晶体片通常由石英晶体材料制成,具有高稳定性和精确的谐振频率。
二、晶振的工作原理晶振的工作原理基于晶体的压电效应。
当外加电场作用于晶体时,晶体会发生形变,产生机械振动。
而当晶体处于谐振频率附近时,机械振动会引起晶体内部电荷的积累和释放,从而产生电压信号。
晶振的驱动电路通过提供适当的电压和电流,使晶体谐振器处于谐振频率附近,从而产生稳定的振荡信号。
驱动电路通常由晶振振荡器、放大器和反馈电路组成。
晶振振荡器提供适当的激励信号,放大器放大振荡信号,反馈电路将一部分输出信号送回晶振振荡器,以维持振荡的稳定性。
三、晶振的特性1. 频率稳定性:晶振具有高度稳定的频率特性,通常在几个PPM(百万分之几)的范围内。
这使得晶振成为电子设备中精确计时的理想选择。
2. 温度特性:晶振的频率受温度影响较大。
在温度变化时,晶体的谐振频率会发生变化,因此晶振通常需要通过温度补偿电路来提高稳定性。
3. 启动时间:晶振的启动时间通常较短,只需几毫秒即可达到稳定的工作状态。
4. 功耗:晶振的功耗通常较低,这使得它适用于电池供电的设备。
四、应用领域晶振广泛应用于各种电子设备,包括计算机、通信设备、消费电子产品等。
它在这些设备中起着关键的作用,为设备提供准确的时钟信号,保证设备的正常运行。
在计算机领域,晶振被用于处理器、主板、内存等部件,确保它们以准确的速度进行工作。
在通信领域,晶振用于手机、无线路由器等设备,提供精确的时钟信号,保证通信的稳定性和可靠性。
在消费电子产品中,晶振被广泛应用于电视、音响、摄像机等设备,提供准确的时钟信号,保证设备的正常运行和功能的实现。
总结:晶振是电子设备中常见的元件,通过晶体的压电效应产生稳定的时钟信号。
晶振的工作原理
晶振的工作原理引言概述:晶振是电子设备中常见的一种元件,它在电子设备中起着非常重要的作用。
晶振的工作原理是什么呢?接下来我们将详细介绍晶振的工作原理。
一、晶振的基本结构1.1 晶振由晶体谐振器和振荡电路组成,晶体谐振器是晶振的核心部件。
1.2 晶体谐振器是由晶体片、电极和封装壳体组成的。
1.3 振荡电路由晶振管脚、电容器和电阻器等元件组成。
二、晶振的工作原理2.1 当晶振通电后,晶体片受到电场的作用会发生压电效应,产生机械振动。
2.2 晶体片振动时,会产生声波,声波通过振荡电路反馈到晶体片上,形成正反馈。
2.3 正反馈作用下,晶体片会以共振频率振动,产生稳定的振荡信号。
三、晶振的频率稳定性3.1 晶振的频率稳定性取决于晶体片的质量和振荡电路的稳定性。
3.2 晶振的频率受温度、电压等外部环境因素的影响较小。
3.3 晶振的频率稳定性对于电子设备的正常运行至关重要。
四、晶振的应用领域4.1 晶振广泛应用于计算机、通信设备、数字电子产品等领域。
4.2 晶振在时钟信号、同步信号等方面有着重要作用。
4.3 晶振的稳定性和精度直接影响到设备的性能和稳定性。
五、晶振的发展趋势5.1 随着科技的不断进步,晶振的频率稳定性和精度会不断提高。
5.2 晶振将会更加小型化、高集成化,以适应电子产品的发展需求。
5.3 晶振的应用范围将会继续扩大,成为电子设备中不可或者缺的重要元件。
总结:通过以上介绍,我们了解了晶振的基本结构、工作原理、频率稳定性、应用领域以及发展趋势。
晶振作为电子设备中的重要元件,其稳定性和精度对设备的性能起着至关重要的作用,未来随着科技的不断发展,晶振将会更加小型化、高集成化,应用范围也将不断扩大。
晶振的工作原理
晶振的工作原理晶振(Crystal Oscillator)是一种基于晶体的电子元件,常用于电子设备中的时钟电路和频率稳定器。
晶振的工作原理是利用晶体的压电效应和谐振效应来产生稳定的振荡信号。
1. 晶体的压电效应晶体具有压电效应,即在晶体的两个相对平行的表面上施加压力时,会在晶体内部产生电荷分布的不均匀,从而产生电势差。
这种压电效应是由于晶体的晶格结构对压力的敏感性导致的。
2. 晶体的谐振效应晶体具有谐振效应,即当外加电场频率等于晶体的固有频率时,晶体会发生共振现象,产生较大的振荡幅度。
这是因为晶体的晶格结构对外加电场的频率具有选择性响应。
基于以上两个原理,晶振的工作可以描述如下:1. 晶振电路的组成晶振电路主要由晶体、电容和放大器组成。
晶体作为振荡元件,电容用于调节振荡频率,放大器用于放大振荡信号。
2. 晶振的工作过程首先,电源提供直流电压给晶振电路。
晶振电路中的放大器将直流电压转换为交流信号,并输入到晶体上。
晶体受到电场的作用,根据压电效应产生电势差,并通过电容调节后反馈给放大器。
当输入信号的频率等于晶体的固有频率时,晶体发生谐振现象,产生稳定的振荡信号。
这个振荡信号经过放大器放大后,输出到外部电路中。
3. 晶振的稳定性晶振具有较高的频率稳定性,这是由于晶体的固有频率非常稳定。
晶体的固有频率主要取决于晶体的物理结构和材料特性,而这些因素在制造过程中可以严格控制,从而保证了晶振的频率稳定性。
4. 晶振的应用晶振广泛应用于各种电子设备中,如计算机、手机、通信设备等。
它们在时钟电路中用于提供稳定的时钟信号,使设备能够按照预定的频率和时间进行工作。
此外,晶振还可以用作频率稳定器,用于调整和控制电子设备中的频率。
总结:晶振是一种基于晶体的电子元件,利用晶体的压电效应和谐振效应来产生稳定的振荡信号。
晶振电路由晶体、电容和放大器组成,工作过程中,晶体受到电场的作用产生电势差,并通过电容反馈给放大器,当输入信号的频率等于晶体的固有频率时,晶体发生谐振现象,产生稳定的振荡信号。
晶振的工作原理
晶振的工作原理
晶振是一种常见的电子元件,用于产生稳定的时钟信号或频率信号。
它广泛应用于电子设备中,如计算机、手机、电视等。
晶振的工作原理是基于晶体的压电效应和谐振原理。
晶振通常由一个晶体片和与之相连的电路组成。
晶体片是由石英或陶瓷材料制成的,具有压电效应。
当施加电压或机械应力到晶体片上时,晶体片会产生电荷的堆积,这种现象被称为压电效应。
晶体片的尺寸和形状决定了它的谐振频率。
晶振电路一般由晶体片、电容和电感组成。
晶体片被连接到电路中,形成一个谐振回路。
当电路中施加电压时,晶体片开始振动,并产生一个稳定的频率。
这个频率由晶体片的物理特性决定,通常在几千赫兹到几百兆赫兹之间。
晶振的工作原理可以通过以下步骤来解释:
1. 施加电压:将电压施加到晶体片上。
这可以通过将晶振连接到电源电路或控制电路来实现。
2. 压电效应:施加电压后,晶体片会产生压电效应,即电荷的堆积。
这是由于晶体片的结构和材料特性导致的。
3. 谐振频率:晶体片的尺寸和形状决定了它的谐振频率。
当施加的电压频率与晶体片的谐振频率相匹配时,晶体片会开始振动。
4. 产生稳定信号:晶体片的振动会产生一个稳定的频率信号。
这个信号可以被用作时钟信号或频率参考信号。
晶振的工作原理基于晶体的物理特性和电路的谐振原理。
它的稳定性和精确性使其成为电子设备中不可或缺的元件。
通过合理设计晶振的参数,可以满足不同设备对时钟信号或频率信号的需求。
晶振的工作原理及不能运行分析
二、不能运行分析
在电子线路中,晶振的主要失效模式是开路、短路、频率稳定性差等。
1、造成开路、短路的原因主要为支架脱落、脱锡、外壳封装系统机械损伤等,而造成频率稳定性差的因素很多。
2、晶振在使用和贮存过程中,随着时间的变化而出现老化现象,通过对成品的解剖和原材料、制造工艺的分析,应用扫描电子显微镜的观察,初步认为失效的晶振频率稳定性差是由使用的原材料不当、石英晶片表层清洁处理不良、表层污染、蒸发的银膜层附着性差因素造成的。
晶振的工作原理及不能运行分析,松季电子具体介绍如下:
ቤተ መጻሕፍቲ ባይዱ、晶振的工作原理
晶振也称晶体谐振器,主要由石英晶片、银膜层电极、引线、支架和外壳等组成,是用电损耗很小的石英晶体经精密切割磨削并镀上电极焊上引线做成。这种晶体有一个很重要的机电效应特性,即通电就会产生机械振荡,反之,如果施加机械力则又会产生电。机电效应一个很重要的特点,就是其振荡频率与他们的形状,材料,切割方向等密切相关。
晶振的工作原理
晶振的工作原理:晶振是晶体振荡器的简称,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。
由于晶体自身的特性导致这两个频率的距离相当的接近,在这个极窄的频率围,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。
这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。
晶振的参数:晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。
晶振的应用:普通的晶振振荡电路都是在一个反相放大器 (注意是放大器不是反相器) 的两端接入晶振,再有两个电容分别接到晶振的两端,每一个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意普通IC 的引脚都有等效输入电容,这个不能忽略。
普通的晶振的负载电容为15p 或者12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p 的电容构成晶振的振荡电路就是比较好的选择。
晶体振荡器也分为无源晶振和有源晶振两种类型。
无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal (晶体),而有源晶振则叫做oscillator (振荡器)。
无源晶振需要借助于时钟电路才干产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不许确;有源晶振是一个完整的谐振振荡器。
晶振的种类:谐振振荡器包括石英 (或者其晶体材料)晶体谐振器,瓷谐振器,LC 谐振器等。
晶振与谐振振荡器有其共同的交集有源晶体谐振振荡器。
石英晶片所以能做振荡电路(谐振) 是基于它的压电效应,从物理学中知道,若在晶片的两个极板间加一电场,会使晶体产生机械变形;反之,若在极板间施加机械力,又会在相应的方向上产生电场,这种现象称为压电效应。
晶振的工作原理
晶振的工作原理
晶振(Crystal Oscillator)是一种用于产生稳定频率的电子元件,广泛应用于各种电子设备中。
它是基于晶体的压电效应而工作的,能够将电能转换为机械振动,进而产生稳定的电信号。
晶振的工作原理可以分为以下几个方面:
1. 晶体的压电效应:晶振的核心部件是晶体,通常使用的是石英晶体。
石英晶体具有压电效应,即在受到外力作用时会产生电荷分布的变化,从而产生电势差。
这种压电效应使得晶体具有机械振动的能力。
2. 电路的谐振:晶振通常采用谐振电路来实现稳定的振荡。
谐振电路由晶体、电容和电感等元件组成,通过调整电路的参数,使得电路能够在特定的频率下产生谐振。
晶振的频率由晶体的物理特性决定,通过选择适当的晶体和电路参数,可以实现所需的频率输出。
3. 反馈放大:晶振在工作过程中需要保持振荡的稳定性,这就需要通过反馈放大来实现。
晶振电路中通常会添加一个放大器,将晶体的输出信号放大后再送回给晶体,使其继续产生振荡。
通过适当的反馈,可以实现振荡频率的稳定。
4. 温度补偿:晶振的频率受到温度的影响较大,为了保持频率的稳定,通常会在晶振电路中加入温度补偿电路。
温度补偿电路可以根据环境温度的变化自动调整电路参数,使得晶振的频率保持在稳定的范围内。
总结起来,晶振的工作原理是基于晶体的压电效应和谐振电路的相互作用。
通过合理设计电路参数和加入温度补偿电路,可以实现稳定的频率输出。
晶振广泛应用于各种电子设备中,如计算机、手机、通信设备等,为这些设备提供稳定的时钟信号和频率参考。
晶振的工作原理
晶振的工作原理晶振,也称为晶体振荡器,是一种电子元件,常用于电子设备中的时钟电路、计时器、通信设备等。
它的主要功能是产生稳定的振荡信号,用于同步和控制电子设备的工作。
晶振的工作原理如下:1. 晶体的特性:晶振的核心部件是一个晶体,通常采用石英晶体。
石英晶体具有压电效应,即当施加压力或电场时,会产生电荷分布不均,从而产生电势差。
2. 振荡回路:晶振由一个振荡回路组成,包括晶体、电容和电感等元件。
这些元件形成了一个闭合的电路,使得电荷在晶体中来回振荡。
3. 激励信号:为了启动晶振的振荡,需要一个激励信号。
通常,一个电压脉冲或电压波形被施加到振荡回路中,以激励晶体开始振荡。
4. 振荡频率的选择:晶振的振荡频率由晶体的物理尺寸和晶体的谐振频率决定。
在制造晶振时,可以通过选择合适的晶体尺寸和加工工艺来实现所需的振荡频率。
5. 反馈机制:晶振通过反馈机制来保持振荡的稳定性。
当晶体振荡时,振荡回路会将一部分振荡信号反馈给晶体,这个反馈信号有助于维持振荡的稳定性。
6. 输出信号:晶振的振荡信号可以通过输出引脚传递给其他电子设备,用于同步和控制它们的工作。
晶振的工作原理可以简单总结为:通过激励信号激励晶体,使其产生振荡信号,并通过振荡回路和反馈机制维持振荡的稳定性,最终输出稳定的振荡信号。
晶振在电子设备中起着重要的作用,它提供了稳定的时钟信号,使得设备能够按照预定的频率和时间进行工作。
同时,晶振还具有较高的频率稳定性和温度稳定性,使得设备在不同环境下都能正常工作。
需要注意的是,晶振的选择应根据具体的应用需求来确定,包括振荡频率、尺寸、温度特性等。
不同的应用场景可能需要不同类型的晶振,因此在设计电子设备时,需要仔细选择合适的晶振。
总结起来,晶振是一种重要的电子元件,通过激励信号和振荡回路实现稳定的振荡,并输出稳定的振荡信号。
它在电子设备中具有关键的作用,用于提供稳定的时钟信号和控制信号,确保设备的正常工作。
晶振的工作原理
晶振的工作原理晶振(Crystal Oscillator)是一种常用的电子元件,用于产生稳定的高频振荡信号。
它在各种电子设备中广泛应用,如计算机、通信设备、无线电设备等。
晶振的工作原理基于晶体的压电效应和谐振现象。
晶振的主要组成部分是晶体谐振器,通常由一个晶体片和两个电极组成。
晶体片是由具有压电效应的材料制成,如石英(Quartz)、石英晶体(Quartz Crystal)等。
晶体片的形状和尺寸决定了晶振的频率。
晶振的工作原理如下:1. 晶体谐振器的电极施加交流电压。
当电压施加到晶体片的电极上时,晶体片会发生压电效应,即在晶体片的表面产生机械应变。
2. 机械应变引起晶体片的厚度和长度的微小变化,这种变化称为压电效应。
压电效应会导致晶体片的机械谐振。
3. 当施加的交流电压的频率与晶体片的机械谐振频率相等时,晶体片会产生共振现象。
在共振频率附近,晶体片的机械振动幅度最大。
4. 晶体片的机械振动会导致电荷的积累和释放,形成一个交变电场。
这个交变电场会在晶体片的电极之间产生交流电压信号。
5. 交流电压信号经过放大和整形电路后,就可以作为稳定的高频振荡信号输出。
晶振的工作原理可以通过以下几个要点总结:1. 晶振利用晶体片的压电效应和谐振现象来产生稳定的高频振荡信号。
2. 施加交流电压引起晶体片的机械振动,机械振动导致电荷的积累和释放,形成交变电场。
3. 交变电场经过放大和整形后,输出稳定的高频振荡信号。
晶振的工作原理决定了它具有以下特点:1. 高稳定性:晶振利用晶体的谐振现象,因此具有较高的频率稳定性,可以提供精确的时钟信号。
2. 高精度:晶振的频率由晶体片的形状和尺寸决定,可以通过精确的制造工艺来控制频率,提供高精度的振荡信号。
3. 快启动时间:晶振具有快速启动时间,可以迅速达到稳定的工作状态。
4. 低功耗:晶振工作时的功耗较低,适用于各种电子设备。
总结:晶振是一种常用的电子元件,利用晶体的压电效应和谐振现象来产生稳定的高频振荡信号。
晶振工作原理
晶振工作原理晶振工作原理:一、概述1、晶振是电子技术专有名词,通常用来指定某种电子元件,用于调节振荡器的频率,从而确保精确的信号产生和传输。
晶振是一种电子设备,可以精确地产生指定频率的振荡信号。
2、晶振是集成电路(IC)上最常使用的器件,它具有宽广的功能,并可用于多种电子设备。
主要应用于通信、计算机、家用电器、车载电子、消费类电子和医疗等多个领域。
3、晶振的种类多样,有高晕、低晕、金属陶瓷介质、不锈钢质介质,以及分贝抗、压控振荡器等等,几乎涵盖了所有应用环境中所需要的晶振参数和类型。
二、工作原理1、晶体具有独特的晶格结构,具有极高的晶格弹性及电容和电晶体应力及晶格匹配面,触发电容形成驻波振荡,形成自记忆性振荡现象,把信号多次反馈到波特定频率,形成贴近此特定频率的振荡。
2、晶振的工作频率要求,取决于其内部结构和电容的大小,不同晶体结构具有不同的工作频率,电容越大工作频率越低,电容越小工作频率越高,通过调节电容大小,可以改变晶体振荡器的频率。
3、晶振的频率具有极高的稳定性,并不受外界电磁干扰的影响,是控制电子设备的信号频率的最佳选择,所以晶振也被称为精密控制信号的“深沉定时器”,只要用正确的电容可以实现纳米级的调节,能够实现极高的频率精度,满足多种设备的需求。
三、使用要点1、精度要求:根据不同的应用,晶振要求的精度也不同,其决定要素是精密胶制电容、设计精度以及波特率等,对于要求极高精度的应用,选择精度更高的晶振,以确保信号精确。
2、历史稳定性和温度特性:晶体的工作历史稳定性和温度敏感性是外界环境变化对晶振性能影响最大的因素,如果没有经过严格的质量评估,那么就会降低整个系统的稳定性和可靠性,从而导致错误。
3、阻抗负载:晶振输出信号的功率和它的负载有关系,当它处于高阻抗负载条件下,驻波比较高,从而降低了信号输出的精度和频率成功率,因此,在测试和使用晶振时,应确保其负载阻抗处于正常水平。
晶振的工作原理
晶振的工作原理晶振,也被称为晶体振荡器,是一种电子元件,常用于电子设备中的时钟电路、频率调整电路等。
它主要通过晶体的压电效应来产生稳定的振荡信号。
晶振的工作原理可以分为以下几个方面。
1. 晶体的压电效应:晶振的核心部件是晶体,晶体具有压电效应。
当施加外力或者电场时,晶体味产生电荷的分布变化,从而产生电压。
反之,当施加电压时,晶体味发生形变。
这种压电效应使得晶体成为产生稳定振荡信号的理想材料。
2. 晶体的谐振特性:晶体具有谐振特性,即在特定频率下,晶体味发生共振现象。
当施加电场或者外力使晶体振动时,如果振动频率与晶体的固有频率相同,晶体将会发生共振,振幅将会达到最大值。
这种谐振特性使得晶体能够产生稳定的振荡信号。
3. 晶体的振荡电路:晶振通常由晶体振荡器和振荡电路组成。
振荡电路中包含放大器和反馈电路。
晶体振荡器将晶体的振荡信号放大,并通过反馈电路将一部份输出信号再次输入到晶体中,使晶体保持振荡。
通过适当的放大和反馈控制,晶振可以产生稳定的振荡信号。
4. 频率稳定性:晶振的一个重要特点是频率稳定性。
晶体的固有频率非常稳定,因此晶振产生的振荡信号频率也非常稳定。
这使得晶振广泛应用于需要精确计时和频率控制的电子设备中,如计算机、通信设备、电视等。
5. 工作电压和频率范围:晶振的工作电压和频率范围根据具体的型号和应用需求而有所不同。
普通来说,晶振的工作电压在几伏到几十伏之间,频率范围从几千赫兹到几百兆赫兹不等。
总结:晶振的工作原理是基于晶体的压电效应和谐振特性,通过晶体振荡器和振荡电路产生稳定的振荡信号。
晶振具有频率稳定性,适合于各种需要精确计时和频率控制的电子设备。
它是现代电子技术中不可或者缺的重要组成部份。
晶振工作原理
晶振工作原理
晶振是一种常见的电子元件,广泛应用于各种电子设备中,它的工作原理是怎样的呢?让我们一起来了解一下。
晶振是一种利用晶体的谐振特性来产生稳定频率的元件。
它由晶片和外部电路组成,晶片通常采用石英晶体或陶瓷晶体。
在晶振的外部电路中,一般包括晶片、电容和电阻等元件。
晶振的工作原理可以简单地描述为,当晶片受到外部电压激励时,晶片内的晶体会产生机械振动,这种振动会产生一定的频率。
同时,晶片的两个电极之间会产生电场,这个电场会影响晶片的振动频率。
通过合适的外部电路设计,可以使晶片在特定的频率下工作,从而产生稳定的时钟信号。
晶振的频率稳定性非常高,通常可以达到几个百万分之一,这使得晶振成为各种精密电子设备中不可或缺的元件。
晶振的频率稳定性主要取决于晶片的质量、外部电路的设计和制造工艺等因素。
在实际应用中,晶振通常被用作时钟信号发生器,用于各种数字电子设备中,比如微处理器、微控制器、计算机等。
它的稳定性和精度对整个系统的性能有着重要的影响。
除了时钟信号发生器外,晶振还被广泛应用于各种通信设备中,比如手机、无线路由器、通信基站等。
在这些设备中,晶振不仅用于产生时钟信号,还可以用于产生射频信号,用于调制解调等通信功能。
总的来说,晶振是一种非常重要的电子元件,它的工作原理简单而又精密,应用范围非常广泛。
它的稳定性和精度对各种电子设备的性能有着重要的影响,可以说是现代电子设备中不可或缺的一部分。
cpu的晶振
cpu的晶振CPU的晶振是指中央处理器(CPU)上的晶体振荡器,它是计算机系统中非常重要的组成部分。
晶振的作用是提供一个稳定的时钟信号,用于同步计算机内部各个组件的工作。
本文将从晶振的原理、工作方式和应用等方面进行阐述。
一、晶振的原理晶振是利用晶体的机械振动产生电信号的装置。
在CPU中,晶振通过振荡晶体的机械振动产生一定频率的电信号,这个频率就是CPU 的工作频率。
晶振的原理是利用晶体的压电效应和回路反馈原理,通过在晶体上施加电压,使晶体发生机械振动,从而产生电信号。
二、晶振的工作方式晶振由晶体振荡器和频率稳定电路组成。
晶体振荡器是通过在晶体上施加电场,使晶体的机械振动频率与晶体的谐振频率保持一致,从而产生稳定的时钟信号。
频率稳定电路用于对晶振输出的时钟信号进行滤波和放大,以保证时钟信号的稳定性和可靠性。
三、晶振的应用晶振广泛应用于计算机、通信设备、电子仪器等领域。
在计算机中,晶振作为时钟源,用于控制CPU和其他硬件组件的工作频率,确保计算机系统的正常运行。
在通信设备中,晶振用于同步数据传输和调整通信速率。
在电子仪器中,晶振用于提供精确的时间基准,以保证仪器的测量和控制精度。
晶振的频率决定了CPU的工作速度和性能。
目前常用的晶振频率有3.2GHz、3.6GHz、4.0GHz等,随着技术的不断发展,晶振的频率也在不断提高。
高频率的晶振可以提高CPU的计算速度和数据处理能力,但也会带来更高的功耗和发热量,需要进行散热和功耗管理。
晶振的选择和设计对计算机系统的性能和稳定性有着重要影响。
一方面,选择合适的晶振频率可以提升系统性能,但过高或过低的频率都会导致系统不稳定或性能下降。
另一方面,晶振的精度和稳定性也会影响系统的时钟同步和数据传输,不同领域的应用对晶振的要求也不同。
总结起来,CPU的晶振作为计算机系统中的重要组成部分,提供稳定的时钟信号,确保系统的正常运行。
晶振的原理是利用晶体的机械振动产生电信号,通过晶振器和频率稳定电路实现。
晶振工作原理
晶振工作原理
晶振,也称为晶体振荡器,是一种用于产生稳定频率的精密电子组件。
它具有工作原理简单、体积小、功耗低等优点,因此被广泛应用于各种电子设备中。
晶振的核心部件是一个晶体谐振器。
晶体谐振器通常由石英晶体制成,具有两个电极,两端通过金属焊接或直接接触晶体的方式连接至电路中。
晶体谐振器中的石英晶体在电场作用下会发生压电效应,即当施加电压时,晶体会产生机械弯曲。
同样地,当晶体受到机械压缩时,会产生电荷。
这种压电效应使得石英晶体具备了振荡的特性。
晶振的工作原理基于石英晶体的压电效应以及谐振现象。
当施加一个电压到晶振的晶体谐振器上时,石英晶体会开始振动,振动频率与晶体的尺寸和材料特性有关。
在一定的外部条件下,晶体振荡频率非常稳定,几乎不受外界环境的影响。
晶振通常与其他电子元件连接在一起,例如微处理器或计算机芯片。
晶振将稳定的频率信号提供给芯片,使其内部电路能够按照这个频率进行工作。
通过晶振,芯片能够准确地计时和同步各种操作,提高系统的性能和可靠性。
总体来说,晶振的工作原理是通过石英晶体的压电效应和谐振现象来产生稳定的频率信号。
它在电子设备中具有重要的作用,为系统提供精确的时钟信号,以确保设备正常运行。
晶振的工作原理
晶振的工作原理晶振是一种常见的电子元件,广泛应用于各种电子设备中,如计算机、手机、电视等。
它的主要作用是提供稳定的时钟信号,用于同步各个电路的工作。
本文将详细介绍晶振的工作原理。
一、晶振的结构和组成晶振由晶体谐振器和驱动电路两部分组成。
1. 晶体谐振器:晶体谐振器是晶振的核心部件,通常由石英晶体制成。
石英晶体具有压电效应,当施加外力或电场时,晶体会发生形变,产生电荷。
在晶体的特定方向上,电荷的积累和释放会形成特定频率的振荡。
晶体谐振器通常由两块石英晶体片组成,中间夹有金属电极,形成一个电容器,称为谐振腔。
当外加电场频率等于晶体的谐振频率时,晶体谐振器就会开始振荡。
2. 驱动电路:驱动电路是晶振的控制部分,主要包括晶振激励电路和放大电路。
晶振激励电路会向晶体谐振器提供一定的激励电压,使晶体开始振荡。
放大电路会放大晶振输出的信号,以便其他电路可以正常工作。
二、晶振的工作原理可以分为激励和振荡两个阶段。
1. 激励阶段:当外加电压施加到晶体谐振器上时,电场会使晶体发生形变,产生电荷。
当电场的频率等于晶体的谐振频率时,晶体谐振器开始振荡。
晶体谐振器的振荡频率由晶体的物理特性和谐振腔的尺寸决定。
2. 振荡阶段:一旦晶体谐振器开始振荡,它会在谐振频率上产生稳定的振荡信号。
这个振荡信号被放大电路放大后输出,供其他电路使用。
晶振的输出信号通常是一个方波信号,频率非常稳定,可以作为时钟信号来同步其他电路的工作。
三、晶振的特点和应用晶振具有以下特点:1. 高稳定性:晶振的振荡频率非常稳定,受温度和供电电压变化的影响较小。
这使得晶振非常适合用作时钟信号源,确保电子设备的稳定运行。
2. 高精度:晶振的频率精度通常在几个百万分之一或更高,可以满足大多数电子设备对时钟信号精度的要求。
3. 小型化:晶振的体积小,重量轻,适合集成到各种小型电子设备中。
4. 易于使用:晶振只需要外加电压即可工作,使用方便。
晶振广泛应用于各种电子设备中,包括但不限于:1. 计算机:晶振作为计算机的时钟源,提供稳定的时钟信号,确保计算机各个部件的协调工作。
晶振的工作原理
晶振的工作原理晶振(Crystal Oscillator)是一种常用的电子元件,广泛应用于各种电子设备中,包括计算机、手机、电视等。
它是一种能够产生稳定振荡信号的设备,用于提供时钟信号或频率参考。
晶振的工作原理主要涉及晶体的压电效应和谐振原理。
1. 晶体的压电效应晶振中使用的晶体通常是石英晶体,它具有压电效应。
当施加外力或电场时,晶体会发生形变,产生电荷。
反之,当施加电压时,晶体会发生形变。
这种压电效应使得晶振能够将电能转化为机械振动,或将机械振动转化为电能。
2. 谐振原理晶振中的晶体通常采用谐振器的原理工作。
谐振器是一种能够在特定频率下产生共振的装置。
晶振中的晶体具有特定的谐振频率,当施加外部电压时,晶体会以谐振频率振动。
晶振的工作过程如下:1. 电源施加电压晶振通常需要外部电源供电。
当电源施加电压时,电流通过晶体,使其产生机械振动。
2. 晶体振动晶体受到电流的作用,产生机械振动。
这种振动是由晶体的压电效应引起的。
晶体的振动频率由晶体的物理特性决定。
3. 谐振频率晶振中的晶体具有特定的谐振频率。
当施加外部电压时,晶体会以谐振频率振动。
这种谐振频率通常是非常稳定的,可以提供准确的时钟信号或频率参考。
4. 输出信号晶振的输出信号通常是一个稳定的、高精度的振荡信号。
这个信号可以用于驱动其他电子元件,例如时钟电路、计数器等。
晶振的工作原理使得它在电子设备中具有重要的作用。
它可以提供准确的时钟信号,保证设备的正常运行。
同时,晶振的稳定性和精度也决定了设备的性能和精度。
总结:晶振是一种能够产生稳定振荡信号的电子元件,它的工作原理基于晶体的压电效应和谐振原理。
晶振通过施加电压使晶体产生机械振动,并以特定的谐振频率振动。
这种振动可以提供稳定的、高精度的振荡信号,用于驱动其他电子元件。
晶振的稳定性和精度对于电子设备的性能和精度至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶振的工作原理:晶振是晶体振荡器的简称,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。
由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率围,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。
这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。
晶振的参数:晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。
晶振的应用:一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。
一般的晶振的负载电容为15p或12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p 的电容构成晶振的振荡电路就是比较好的选择。
晶体振荡器也分为无源晶振和有源晶振两种类型。
无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。
无源晶振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的谐振振荡器。
晶振的种类:谐振振荡器包括石英(或其晶体材料)晶体谐振器,瓷谐振器,LC谐振器等。
晶振与谐振振荡器有其共同的交集有源晶体谐振振荡器。
石英晶片所以能做振荡电路(谐振)是基于它的压电效应,从物理学中知道,若在晶片的两个极板间加一电场,会使晶体产生机械变形;反之,若在极板间施加机械力,又会在相应的方向上产生电场,这种现象称为压电效应。
如在极板间所加的是交变电压,就会产生机械变形振动,同时机械变形振动又会产生交变电场。
一般来说,这种机械振动的振幅是比较小的,其振动频率则是很稳定的。
但当外加交变电压的频率与晶片的固有频率(决定于晶片的尺寸)相等时,机械振动的幅度将急剧增加,这种现象称为压电谐振,因此石英晶体又称为石英晶体谐振器。
其特点是频率稳定度很高。
晶振的万用表测试方法:小技巧:没有示波器情况下如何测量晶振是否起振?可以用万用表测量晶振两个引脚电压是否是芯片工作电压的一半,比如工作电压是5V则测出的是否是2.5V左右。
另外如果用镊子碰晶体另外一个脚,这个电压有明显变化,证明是起振了的.小窍门:就是弄一节1.5V的电池接在晶振的两端把晶振放到耳边仔细的听,当听到哒哒的声音那就说明它起振了,就是好的嘛!1.电阻法把万用表拨在R×10K挡,测量石英晶体两引脚间的电阻值应为无穷大。
如果测量出的电阻值不是无穷大甚至接近于零,则说明被测晶体漏电或击穿。
这种办法只能测晶体是否漏电,如果晶体部出现断路,电阻法就无能为力了,此时必须采用下面介绍的方法2 .自制测试器按图所示电路,焊接一个简易石英晶体测试器,就可以准确地测试出晶体的好坏。
图中XS1、XS2两个测试插口可用小七脚或小九脚电子管管座中拆下来的插口。
LED发光管选择高亮度的较好。
检测石英晶体时,把石英晶体的两个管脚插入到XS1和XS2两个插口中,按下开关SB,如果石英晶体是好的则由三极管VT1、C1、C2等元器件构成的震荡电路产生震荡,震荡信号经C3耦合至VD2检波,检波后的直流信号电压使VT2导通,于是接在VT2集电极回路中的LED发光,指示被测石英晶体是好的,如果LED不亮,则说明被测石英晶体是坏的.本测试器测试石英晶体的频率很宽,但最佳工作频率为几百千赫至几十兆赫。
一个简易石英晶体测试器晶振的稳定性指标总频差:在规定的时间,由于规定的工作和非工作参数全部组合而引起的晶体振荡器频率与给定标称频率的最大偏差。
说明:总频差包括频率温度稳定度、频率老化率造成的偏差、频率电压特性和频率负载特性等共同造成的最大频差。
一般只在对短期频率稳定度关心,而对其他频率稳定度指标不严格要求的场合采用。
例如:精密制导雷达。
频率稳定度:任何晶振,频率不稳定是绝对的,程度不同而已。
一个晶振的输出频率随时间变化的曲线如图2。
图中表现出频率不稳定的三种因素:老化、飘移和短稳。
图2 晶振输出频率随时间变化的示意图曲线1是用0.1秒测量一次的情况,表现了晶振的短稳;曲线3是用100秒测量一次的情况,表现了晶振的漂移;曲线4 是用1天一次测量的情况。
表现了晶振的老化。
频率温度稳定度:在标称电源和负载下,工作在规定温度围的不带隐含基准温度或带隐含基准温度的最大允许频偏。
ft=±(fmax-fmin)/(fmax+fmin)ftref =±MAX[|(fmax-fref)/fref|,|(fmin-fref)/fref|]ft:频率温度稳定度(不带隐含基准温度)ftref:频率温度稳定度(带隐含基准温度)fmax :规定温度围测得的最高频率fmin:规定温度围测得的最低频率fref:规定基准温度测得的频率说明:采用ftref指标的晶体振荡器其生产难度要高于采用ft指标的晶体振荡器,故ftref指标的晶体振荡器售价较高。
开机特性(频率稳定预热时间):指开机后一段时间(如5分钟)的频率到开机后另一段时间(如1小时)的频率的变化率。
表示了晶振达到稳定的速度。
这指标对经常开关的仪器如频率计等很有用。
说明:在多数应用中,晶体振荡器是长期加电的,然而在某些应用中晶体振荡器需要频繁的开机和关机,这时频率稳定预热时间指标需要被考虑到(尤其是对于在苛刻环境中使用的军用通讯电台,当要求频率温度稳定度≤±0.3ppm(-45℃~85℃),采用OCXO作为本振,频率稳定预热时间将不少于5分钟,而采用MCXO只需要十几秒钟)。
频率老化率:在恒定的环境条件下测量振荡器频率时,振荡器频率和时间之间的关系。
这种长期频率漂移是由晶体元件和振荡器电路元件的缓慢变化造成的,因此,其频率偏移的速率叫老化率,可用规定时限后的最大变化率(如±10ppb/天,加电72小时后),或规定的时限最大的总频率变化(如:±1ppm/(第一年)和±5ppm/(十年))来表示。
晶体老化是因为在生产晶体的时候存在应力、污染物、残留气体、结构工艺缺陷等问题。
应力要经过一段时间的变化才能稳定,一种叫“应力补偿”的晶体切割方法(SC切割法)使晶体有较好的特性。
污染物和残留气体的分子会沉积在晶体片上或使晶体电极氧化,振荡频率越高,所用的晶体片就越薄,这种影响就越厉害。
这种影响要经过一段较长的时间才能逐渐稳定,而且这种稳定随着温度或工作状态的变化会有反复——使污染物在晶体表面再度集中或分散。
因此,频率低的晶振比频率高的晶振、工作时间长的晶振比工作时间短的晶振、连续工作的晶振比断续工作的晶振的老化率要好。
说明:TCXO的频率老化率为:±0.2ppm~±2ppm(第一年)和±1ppm~±5ppm(十年)(除特殊情况,TCXO很少采用每天频率老化率的指标,因为即使在实验室的条件下,温度变化引起的频率变化也将大大超过温度补偿晶体振荡器每天的频率老化,因此这个指标失去了实际的意义)。
OCXO的频率老化率为:±0.5ppb~±10ppb/天(加电72小时后),±30ppb~±2ppm(第一年),±0.3ppm~±3ppm(十年)。
短稳:短期稳定度,观察的时间为1毫秒、10毫秒、100毫秒、1秒、10秒。
晶振的输出频率受到部电路的影响(晶体的Q值、元器件的噪音、电路的稳定性、工作状态等)而产生频谱很宽的不稳定。
测量一连串的频率值后,用阿伦方程计算。
相位噪音也同样可以反映短稳的情况(要有专用仪器测量)。
重现性:定义:晶振经长时间工作稳定后关机,停机一段时间t1(如24小时),开机一段时间t2(如4小时),测得频率f1,再停机同一段时间t1,再开机同一段时间t2,测得频率f2。
重现性=(f2-f1)/f2。
频率压控围:将频率控制电压从基准电压调到规定的终点电压,晶体振荡器频率的最小峰值改变量。
说明:基准电压为+2.5V,规定终点电压为+0.5V和+4.5V,压控晶体振荡器在+0.5V频率控制电压时频率改变量为-2ppm,在+4.5V频率控制电压时频率改变量为+2.1ppm,则VCXO电压控制频率压控围表示为:≥±2ppm(2.5V±2V),斜率为正,线性为+2.4%。
压控频率响应围:当调制频率变化时,峰值频偏与调制频率之间的关系。
通常用规定的调制频率比规定的调制基准频率低若干dB表示。
说明:VCXO频率压控围频率响应为0~10kHz。
频率压控线性:与理想(直线)函数相比的输出频率-输入控制电压传输特性的一种量度,它以百分数表示整个围频偏的可容许非线性度。
说明:典型的VCXO频率压控线性为:≤±10%,≤±20%。
简单的VCXO频率压控线性计算方法为(当频率压控极性为正极性时):频率压控线性=±((fmax-fmin)/ f0)×100%fmax:VCXO在最大压控电压时的输出频率fmin:VCXO在最小压控电压时的输出频率f0:压控中心电压频率单边带相位噪声£(f):偏离载波f处,一个相位调制边带的功率密度与载波功率之比。
输出波形:从大类来说,输出波形可以分为方波和正弦波两类。
方波主要用于数字通信系统时钟上,对方波主要有输出电平、占空比、上升/下降时间、驱动能力等几个指标要求。
随着科学技术的迅猛发展,通信、雷达和高速数传等类似系统中,需要高质量的信号源作为日趋复杂的基带信息的载波。
因为一个带有寄生调幅及调相的载波信号(不干净的信号)被载有信息的基带信号调制后,这些理想状态下不应存在的频谱成份(载波中的寄生调制)会导致所传输的信号质量及数传误码率明显变坏。
所以作为所传输信号的载体,载波信号的干净程度(频谱纯度)对通信质量有着直接的影响。
对于正弦波,通常需要提供例如谐波、噪声和输出功率等指标。
晶振的应用:图3为红外线发射出电路。
图4为晶振式发射机电路。
电路中J、VD1、L1、C3~C5、V1组成晶体振荡电路。
由于石英晶体J的频率稳定性好,受温度影响也较小,所以广泛用于无绳及AV调制器中。
V1是29~36MHz晶体振荡三极管,发射极输出含有丰富的谐波成分,经V2放大后,在集电极由C7、L2构成谐振于88~108MHz的网络选出3倍频信号(即87~108MHz的信号最强),再经V3放大,L3、C9选频后得到较理想的调频频段信号。