安徽中考数学试题及答案(解析版)#.
2020年安徽省中考数学试题及参考答案(word解析版)
2020年安徽省初中学业水平考试数学(试题卷)(试卷满分为150分,考试时间为120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.下列各数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.22.计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a23.下面四个几何体中,主视图为三角形的是()A.B.C.D.4.安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×1075.下列方程中,有两个相等实数根的是()A.x2+1=2x B.x2+1=0 C.x2﹣2x=3 D.x2﹣2x=06.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11 B.平均数是12 C.方差是D.中位数是137.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)8.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cosA=,则BD的长度为()A.B.C.D.49.已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:﹣1=.12.分解因式:ab2﹣a=.13.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠PAQ的大小为;(2)当四边形APCD是平行四边形时,的值为.三、(本大题共2小题,每小题8分,满分16分)15.解不等式:>1.16.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.四、(本大题共2小题,每小题8分,满分16分)17.观察以下等式:第1个等式:×(1+)=2﹣,第2个等式:×(1+)=2﹣,第3个等式:×(1+)=2﹣,第4个等式:×(1+)=2﹣.第5个等式:×(1+)=2﹣.…按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.18.如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)五、(本大题共2小题,每小题10分,满分20分)19.某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份 a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.20.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.六、(本题满分12分)21.某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.七、(本题满分12分)22.在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.八、(本题满分14分)23.如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=AG.参考答案与解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.下列各数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.2【知识考点】有理数大小比较.【思路分析】先根据正数都大于0,负数都小于0,可排除C、D,再根据两个负数,绝对值大的反而小,可得比﹣2小的数是﹣3.【解题过程】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2.故选:A.【总结归纳】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.2.计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a2【知识考点】幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用同底数幂的除法运算法则计算得出答案.【解题过程】解:原式=a6÷a3=a3.故选:C.【总结归纳】此题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.3.下面四个几何体中,主视图为三角形的是()A.B.C.D.【知识考点】简单几何体的三视图.【思路分析】根据主视图是从正面看得到的图形,可得答案.【解题过程】解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.【总结归纳】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×107【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解题过程】解:54700000用科学记数法表示为:5.47×107.故选:D.【总结归纳】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.5.下列方程中,有两个相等实数根的是()A.x2+1=2x B.x2+1=0 C.x2﹣2x=3 D.x2﹣2x=0【知识考点】根的判别式.【思路分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.有两个相等实数根的一元二次方程就是判别式的值是0的一元二次方程.【解题过程】解:A、△=(﹣2)2﹣4×1×1=0,有两个相等实数根;B、△=0﹣4=﹣4<0,没有实数根;C、△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等实数根;D、△=(﹣2)2﹣4×1×0=4>0,有两个不相等实数根.故选:A.【总结归纳】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11 B.平均数是12 C.方差是D.中位数是13【知识考点】算术平均数;中位数;众数;方差.【思路分析】根据平均数、众数、中位数、方差的计算方法分别计算这组数据的平均数、众数、中位数、方差,最后做出选择.【解题过程】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D符合题意;=(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B不符合题意;S2=[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2]=,因此方差为,于是选项C不符合题意;故选:D.【总结归纳】本题考查平均数、中位数、众数、方差的意义和计算方法,掌握计算方法是得出正确答案的前提.7.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)【知识考点】一次函数的性质;一次函数图象上点的坐标特征.【思路分析】由点A的坐标,利用一次函数图象上点的坐标特征求出k值,结合y随x的增大而减小即可确定结论.【解题过程】解:A、当点A的坐标为(﹣1,2)时,﹣k+3=3,解得:k=1>0,∴y随x的增大而增大,选项A不符合题意;B、当点A的坐标为(1,﹣2)时,k+3=﹣2,解得:k=﹣5<0,∴y随x的增大而减小,选项B符合题意;C、当点A的坐标为(2,3)时,2k+3=3,解得:k=0,选项C不符合题意;D、当点A的坐标为(3,4)时,3k+3=4,解得:k=>0,∴y随x的增大而增大,选项D不符合题意.故选:B.【总结归纳】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,根据点的坐标,利用一次函数图象上点的坐标特征求出k值是解题的关键.8.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cosA=,则BD 的长度为()A.B.C.D.4【知识考点】相似三角形的判定与性质;解直角三角形.【思路分析】在△ABC中,由三角函数求得AB,再由勾股定理求得BC,最后在△BCD中由三角函数求得BD.【解题过程】解:∵∠C=90°,AC=4,cosA=,∴AB=,∴,∵∠DBC=∠A.∴cos∠DBC=cos∠A=,∴,故选:C.【总结归纳】本题主要考查了勾股定理,解直角三角形的应用,关键是解直角三角形.9.已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC【知识考点】命题与定理.【思路分析】根据垂径定理,平行四边形的性质判断即可.【解题过程】解:A、如图,若半径OB平分弦AC,则四边形OABC不一定是平行四边形;原命题是假命题;B、若四边形OABC是平行四边形,则AB=OC,OA=BC,∵OA=OB=OC,∴AB=OA=OB=BC=OC,∴∠ABO=∠OBC=60°,∴∠ABC=120°,是真命题;C、如图,若∠ABC=120°,则弦AC不平分半径OB,原命题是假命题;D、如图,若弦AC平分半径OB,则半径OB不一定平分弦AC,原命题是假命题;故选:B.【总结归纳】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()B.B.C.D.【知识考点】动点问题的函数图象.【思路分析】分为0<x≤2、2<x≤4两种情况,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.【解题过程】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=EJ=x,∴y=EJ•GH=x2.当x=2时,y=,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y=FJ•GH=(4﹣x)2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A.【总结归纳】本题主要考查的是动点问题的函数图象,求得函数的解析式是解题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:﹣1=.【知识考点】实数的运算.【思路分析】直接利用二次根式的性质化简进而得出答案.【解题过程】解:原式=3﹣1=2.故答案为:2.【总结归纳】此题主要考查了实数运算,正确化简二次根式是解题关键.12.分解因式:ab2﹣a=.【知识考点】提公因式法与公式法的综合运用.【思路分析】原式提取a,再利用平方差公式分解即可.【解题过程】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)【总结归纳】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为.【知识考点】反比例函数与一次函数的交点问题.【思路分析】分别求出矩形ODCE与△OAB的面积,即可求解.【解题过程】解:一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B,令x=0,则y=k,令y=0,则x=﹣k,故点A、B的坐标分别为(﹣k,0)、(0,k),则△OAB的面积=OA•OB=k2,而矩形ODCE的面积为k,则k2=k,解得:k=0(舍去)或2,故答案为2.【总结归纳】本题考查的是反比例函数与一次函数的交点问题,计算矩形ODCE与△OAB的面积是解题的关键.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠PAQ的大小为;(2)当四边形APCD是平行四边形时,的值为.【知识考点】平行四边形的性质;翻折变换(折叠问题).【思路分析】(1)由折叠的性质可得∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,由平角的性质可得∠D+∠C=180°,∠AQP=90°,可证AD∥BC,由平行线的性质可得∠DAB=90°,即可求解;(2)由平行四边形和折叠的性质可得AR=PR,由直角三角形的性质可得AP=2PB=2QR,AB =PB,即可求解.【解题过程】解:(1)由折叠的性质可得:∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,∵∠QRA+∠QRP=180°,∴∠D+∠C=180°,∴AD∥BC,∴∠B+∠DAB=180°,∵∠DQR+∠CQR=180°,∴∠DQA+∠CQP=90°,∴∠AQP=90°,∴∠B=∠AQP=90°,∴∠DAB=90°,∴∠DAQ=∠QAP=∠PAB=30°,故答案为:30;(2)由折叠的性质可得:AD=AR,CP=PR,∵四边形APCD是平行四边形,∴AD=PC,∴AR=PR,又∵∠AQP=90°,∴QR=AP,∵∠PAB=30°,∠B=90°,∴AP=2PB,AB=PB,∴PB=QR,∴=,故答案为:.【总结归纳】本题考查了翻折变换,平行四边形的性质,直角三角形的性质,熟练运用这些性质解决问题是本题的关键.三、(本大题共2小题,每小题8分,满分16分)15.解不等式:>1.【知识考点】解一元一次不等式.【思路分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.【解题过程】解:去分母,得:2x﹣1>2,移项,得:2x>2+1,合并,得:2x>3,系数化为1,得:x>.【总结归纳】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.【知识考点】作图﹣轴对称变换;作图﹣旋转变换.【思路分析】(1)分别作出A,B的对应点A1,B2即可.(2)作出点A1的对应点A2即可.【解题过程】解:(1)如图线段A1B1即为所求.(2)如图,线段B1A2即为所求.【总结归纳】本题考查作图﹣旋转变换,轴对称变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.四、(本大题共2小题,每小题8分,满分16分)17.观察以下等式:第1个等式:×(1+)=2﹣,第2个等式:×(1+)=2﹣,第3个等式:×(1+)=2﹣,第4个等式:×(1+)=2﹣.第5个等式:×(1+)=2﹣.…按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【知识考点】列代数式;规律型:数字的变化类.【思路分析】(1)根据题目中前5个等式,可以发现式子的变化特点,从而可以写出第6个等式;(2)把上面发现的规律用字母n表示出来,并运用分式的混合运算法则计算等号的右边的值,进而得到左右相等便可.【解题过程】解:(1)第6个等式:×(1+)=2﹣;(2)猜想的第n个等式:×(1+)=2﹣.证明:∵左边=×==2﹣=右边,∴等式成立.故答案为:×(1+)=2﹣;×(1+)=2﹣.【总结归纳】本题考查数字的变化类,解答本题的关键是明确题意,发现式子的变化特点,写出相应的等式,并证明猜想的正确性.18.如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)【知识考点】解直角三角形的应用﹣仰角俯角问题.【思路分析】根据三角函数的定义和直角三角形的性质解答即可.【解题过程】解:由题意,在Rt△ABD中,tan∠ABD=,∴tan42.0°=≈0.9,∴AD≈0.9BD,在Rt△BCD中,tan∠CBD=,∴tan36.9°=≈0.75,∴CD≈0.75BD,∵AC=AD﹣CD,∴15=0.15BD,∴BD=100米,∴CD=0.75BD=75(米),答:山高CD为75米.【总结归纳】本题考查了解直角三角形的应用﹣仰角俯角问题,注意方程思想与数形结合思想的应用.五、(本大题共2小题,每小题10分,满分20分)19.某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份 a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.【知识考点】列代数式;一元一次方程的应用.【思路分析】(1)由线下销售额的增长率,即可用含a,x的代数式表示出2020年4月份的线下销售额;(2)根据2020年4月份的销售总额=线上销售额+线下销售额,即可得出关于x的一元一次方程,解之即可得出x的值(用含a的代数式表示),再将其代入中即可求出结论.【解题过程】解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a﹣x)元.故答案为:1.04(a﹣x).(2)依题意,得:1.1a=1.43x+1.04(a﹣x),解得:x=,∴===0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.【总结归纳】本题考查了一元一次方程的应用以及列代数式,找准等量关系,正确列出一元一次方程是解题的关键.20.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.【知识考点】全等三角形的判定与性质;圆周角定理;切线的性质.【思路分析】(1)根据圆周角定理得到∠ACB=∠ADB=90°,根据全等三角形的判定定理即可得到结论;(2)根据等腰三角形的性质得到∠E=∠BFE,根据切线的性质得到∠ABE=90°,根据三角形的内角和以及角平分线的定义即可得到结论.【解题过程】(1)证明:∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,在Rt△CBA与Rt△DAB中,,∴Rt△CBA≌Rt△DAB(HL);(2)解:∵BE=BF,由(1)知BC⊥EF,∴∠E=∠BFE,∵BE是半圆O所在圆的切线,∴∠ABE=90°,∴∠E+∠BAE=90°,由(1)知∠D=90°,∴∠DAF+∠AFD=90°,∵∠AFD=∠BFE,∴∠AFD=∠E,∴∠DAF=90°﹣∠AFD,∠BAF=90°﹣∠E,∴∠DAF=∠BAF,∴AC平分∠DAB.【总结归纳】本题考查了切线的性质,全等三角形的判定和性质,圆周角定理,正确的识别图形是解题的关键.六、(本题满分12分)21.某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【知识考点】用样本估计总体;扇形统计图;条形统计图;列表法与树状图法.【思路分析】(1)用被调查的职工人数乘以最喜欢A套餐人数所占百分比即可得其人数;再由四种套餐人数之和等于被调查的人数求出C对应人数,继而用360°乘以最喜欢C套餐人数所占比例即可得;(2)用总人数乘以样本中最喜欢B套餐的人数所占比例即可得;(3)画树状图列出所有等可能结果,从中找到符合条件的结果数,利用概率公式求解可得答案.【解题过程】解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),则最喜欢C套餐的人数为240﹣(60+84+24)=72(人),∴扇形统计图中“C”对应扇形的圆心角的大小为360°×=108°,故答案为:60、108;(2)估计全体960名职工中最喜欢B套餐的人数为960×=336(人);(3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为=.【总结归纳】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.七、(本题满分12分)22.在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.【知识考点】一次函数图象上点的坐标特征;二次函数的性质;二次函数图象上点的坐标特征;二次函数图象与几何变换;二次函数的最值.【思路分析】(1)根据待定系数法求得直线的解析式,然后即可判断点B(2,3)在直线y=x+m 上;(2)因为直线经过A、B和点(0,1),所以经过点(0,1)的抛物线不同时经过A、B点,即可判断抛物线只能经过A、C两点,根据待定系数法即可求得a、b;(3)设平移后的抛物线为y=﹣x+px+q,其顶点坐标为(,+q),根据题意得出+q=+1,由抛物线y=﹣x+px+q与y轴交点的纵坐标为q,即可得出q=﹣﹣1=﹣(p﹣1)2+,从而得出q的最大值.【解题过程】解:(1)点B是在直线y=x+m上,理由如下:∵直线y=x+m经过点A(1,2),∴2=1+m,解得m=1,∴直线为y=x+1,把x=2代入y=x+1得y=3,∴点B(2,3)在直线y=x+m上;(2)∵直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),且B、C两点的横坐标相同,∴抛物线只能经过A、C两点,把A(1,2),C(2,1)代入y=ax2+bx+1得,解得a=﹣1,b=2;(3)由(2)知,抛物线为y=﹣x2+2x+1,设平移后的抛物线为y=﹣x+px+q,其顶点坐标为(,+q),∵顶点仍在直线y=x+1上,∴+q=+1,∴q=﹣﹣1,∵抛物线y=﹣x+px+q与y轴的交点的纵坐标为q,∴q=﹣﹣1=﹣(p﹣1)2+,∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为.【总结归纳】本题考查了待定系数法求一次函数的解析式和二次函数的解析式,二次函数的图象与几何变换,二次函数的性质,题目有一定难度.八、(本题满分14分)23.如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=AG.【知识考点】四边形综合题.【思路分析】(1)证明△AEF≌△ADB(SAS),得出∠AEF=∠ADB,证得∠EGB=90°,则结论得出;(2)证明△AEF∽△DCF,得出,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解方程即可得出答案;(3)在线段EG上取点P,使得EP=DG,证明△AEP≌△ADG(SAS),得出AP=AG,∠EAP =∠DAG,证得△PAG为等腰直角三角形,可得出结论.【解题过程】(1)证明:∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC,(2)解:∵四边形ABCD是矩形,∴AE∥CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解得或(舍去),∴AE=.(3)如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠PAG=∠PAD+∠DAG=∠PAD+∠EAP=∠DAE=90°,∴△PAG为等腰直角三角形,∴EG﹣DG=EG﹣EP=PG=AG.【总结归纳】本题是四边形综合题,考查了矩形的性质,相似三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.。
2021年安徽省中考数学真题(解析版)
故选B.
【点睛】本题考查了科学记数法的定义及其应用,解决本题的关键是牢记其概念和公式,本题易错点是含有单位“万”,学生在转化时容易出现错误.
3.计算 的结果是( )
A. B. C. D.
【答案】D
【解析】
【分析】利用同底数幂的乘法法则计算即可
【详解】解:
可得三角形ABC是等边三角形,
∴∠BAC=60°,AC=AB=2,
∴OA=1,∠AOE=30°,
∴AE= ,
∴x=OE=
∴四边形EFGH的周长为EF+FG+GH+HE= ,
故选A.
【点睛】本题考查了菱形的性质、矩形的判定与性质、等边三角形的判定与性质、勾股定理、直角三角形的性质等内容,要求学生在理解相关概念的基础上学会应用,能分析并综合运用相关条件完成线段关系的转换,考查了学生的综合分析与应用的能力.
故答案为:2 ;
(2)由(1)可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖;
当正方形地砖只有1块时,等腰直角三角形地砖有6块,即2+4;
所以当地砖有n块时,等腰直角三角形地砖有( )块;
故答案为: ;
(3)令 则
当 时,
此时,剩下一块等腰直角三角形地砖
需要正方形地砖1008块.
【点睛】本题为图形规律题,涉及到了一元一次方程、列代数式以及代数式的应用等,考查了学生的观察、发现、归纳以及应用的能力,解题的关键是发现规律,并能列代数式表示其中的规律等.
因为O点是菱形ABCD的对称中心,
∴O点到各边的距离相等,即OE=OF=OG=OH,
∴∠OEF=∠OFE=30°,∠OEH=∠OHE=60°,
2024年安徽省中考数学试题含答案解析
数学试题注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4、考试结束后,请将“试题卷”和“答题卷”一并交回.审核:魏敬德老师一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1. ﹣5的绝对值是( )A. 5B. ﹣5C. 15− D. 15【答案】A【解析】【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2. 据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为( )A. 70.94410×B. 69.4410×C. 79.4410×D. 694.410× 【答案】B【解析】【分析】本题考查了科学记数法,先把944万转化为9440000,再根据科学记数法:10na ×(110a ≤<,n 为整数),先确定a 的值,然后根据小数点移动的数位确定n 的值即可,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:944万694400009.4410=×,故选:B .3. 某几何体的三视图如图所示,则该几何体为( )A. B.C. D.【答案】D【解析】【分析】本题主要考查由三视图判断几何体,关键是熟悉三视图的定义.【详解】解:根据三视图的形状,结合三视图的定义以及几何体的形状特征可得该几何体为D 选项. 故选:D .4. 下列计算正确的是( )A. 356a a a +=B. 632a a a ÷=C. ()22a a −=D. a =【答案】C【解析】【分析】题目主要考查合并同类项、同底数幂的除法、积的乘方运算、二次根式的化简,根据这些运算法则依次判断即可【详解】解:A 、3a 与5a 不是同类项,不能合并,选项错误,不符合题意;B 、633a a a ÷=,选项错误,不符合题意;C 、()22a a −=,选项正确,符合题意;D a =,当0a ≥a =,当0a <a =−,选项错误,不符合题意; 故选:C5. 若扇形AOB 的半径为6,120AOB ∠=°,则 AB 的长为( )A. 2πB. 3πC. 4πD. 6π【答案】C【解析】【分析】此题考查了弧长公式,根据弧长公式计算即可.【详解】解:由题意可得, AB 的长为12064180ππ×=, 故选:C .6. 已知反比例函数()0k y k x=≠与一次函数2y x =−的图象的一个交点的横坐标为3,则k 的值为( ) A. 3−B. 1−C. 1D. 3 【答案】A【解析】【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出231y =−=−,代入反比例函数求解即可【详解】解:∵反比例函数()0k y k x=≠与一次函数2y x =−的图象的一个交点的横坐标为3, ∴231y =−=−, ∴13k −=,∴3k =−, 故选:A 7. 如图,在Rt ABC △中,2AC BC ==,点D 在AB 的延长线上,且CD AB =,则BD 的长是( )A. B. C. 2− D. −【答案】B【解析】【分析】本题考查了等腰直角三角形的判定和性质,对顶角的性质,勾股定理,过点D 作DE CB ⊥的延长线于点E ,则90BED ∠=°,由90ACB ∠=°,2AC BC ==,可得AB =,45A ABC ∠=∠=°,进而得到CD =,45DBE ∠=°,即得BDE △为等腰直角三角形,得到DE BE =,设DE BE x ==,由勾股定理得()(2222x x ++,求出x 即可求解,正确作出辅助线是解题的关键.【详解】解:过点D 作DE CB ⊥的延长线于点E ,则90BED ∠=°,∵90ACB ∠=°,2AC BC ==,∴AB 45A ABC ∠=∠=°,∴CD =,45DBE ∠=°,∴BDE △为等腰直角三角形,∴DE BE =,设DEBE x ==,则2CE x =+, 在Rt CDE △中,222CE DE CD +=,∴()(2222x x ++,解得11x =−,21x −(舍去),∴1DE BE ==−,∴BD ==,故选:B .8. 已知实数a ,b 满足10a b −+=,011a b <++<,则下列判断正确的是( )A. 102a −<<B. 112b << C. 2241a b −<+<D. 1420a b −<+<【答案】C【解析】 【分析】题目主要考查不等式的性质,根据等量代换及不等式的性质依次判断即可得出结果,熟练掌握不等式的性质是解题关键【详解】解:∵10a b −+=,∴1a b =−,∵011a b <++<, ∴0111b b <−++<,∴102b <<,选项B 错误,不符合题意; ∵10a b −+=,∴1b a =+,∵011a b <++<,∴0111a a <+++<, ∴112a −<<−,选项A 错误,不符合题意; ∵112a −<<−,102b <<, ∴221a −<<−,042b <<, ∴2241a b −<+<,选项C 正确,符合题意;∵112a −<<−,102b <<, ∴442a −<<−,021b <<, ∴4421a b −<+<−,选项D 错误,不符合题意;故选:C 9. 在凸五边形ABCDE 中,AB AE =,BC DE =,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是( )A. ABC AED ∠=∠B. BAF EAF ∠=∠C. BCF EDF ∠=∠D. ABD AEC ∠=∠ 【答案】D【解析】【分析】本题考查了全等三角形的判定和性质,等腰三角形“三线合一”性质的应用,熟练掌握全等三角形的判定的方法是解题的关键.利用全等三角形的判定及性质对各选项进行判定,然后根据等腰三角形“三线合一”的性质即可证得结论.【详解】解:A 、连结AC AD 、,∵ABC AED ∠=∠,AB AE =,BC DE =,∴()SAS ACB ADE ≌,∴AC AD =又∵点F 为CD 的中点∴AF CD ⊥,故不符合题意;B 、连结BF EF 、,∵AB AE =,BAF EAF ∠=∠,AF AF =,∴()SAS ABF AEF ≌,∴BF EF =, AFB AFE ∠=∠又∵点F 为CD 中点,∴CF DF =,∵BC DE =,∴()SSS CBF DEF ≌,∴CFB DFE ∠=∠, ∴90CFB AFB DFE AFE ∠+∠=∠+∠=°,∴AF CD ⊥,故不符合题意;C 、连结BF EF 、,∵点F 为CD 的中点,∴CF DF =,∵BCF EDF ∠=∠,BC DE =,∴()SAS CBF DEF ≌,的∴BF EF =, CFB DFE ∠=∠, ∵AB AE =,AF AF =,∴()SAS ABF AEF ≌,∴AFB AFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=°,∴AF CD ⊥,故不符合题意;D 、ABD AEC ∠=∠,无法得出相应结论,符合题意; 故选:D .10. 如图,在Rt ABC △中,90ABC ∠=°,4AB =,2BC =,BD 是边AC 上的高.点E ,F 分别在边AB ,BC 上(不与端点重合),且DE DF ⊥.设AE x =,四边形DEBF 的面积为y ,则y 关于x 的函数图象为( )A. B.C. D.【答案】A【解析】【分析】本题主要考查了函数图象的识别,相似三角形的判定以及性质,勾股定了的应用,过点E 作EH AC ⊥与点H ,由勾股定理求出AC ,根据等面积法求出BD ,先证明ABC ADB ∽,由相似三角形的性质可得出AB AC AD AB =,即可求出AD ,再证明AED BFD ∽,由相似三角形的性质可得出2AED BFD S AD S BD = ,即可得出4AED BFD S S = ,根据()ABC AED BDC BDF DEBF S S S S S =−−− 四边形,代入可得出一次函数的解析式,最后根据自变量的大小求出对应的函数值.【详解】解:过点E 作EH AC ⊥与点H ,如下图:∵90ABC ∠=°,4AB =,2BC =,∴AC ,∵BD 是边AC 上的高. ∴1122AB BC AC BD ⋅=⋅,∴BD = ∵BAC CAB ∠=∠,90ABC ADB ∠=∠=°,∴ABC ADB ∽△△, ∴AB AC AD AB=,解得:AD =,∴DC AC AD =−==, ∵90BDF BDE BDE EDA ∠+∠=∠+∠=°,90CBD DBA DBA A ∠+∠=∠+∠=°,∴DBC A ∠=∠,BDF EDA ∠=∠,∴AED BFD ∽,∴224AED BFD S AD S BD == , ∴4AED BFD S S = ,∴()ABC AED BDC BDF DEBF S S S S S =−−− 四边形 1111sin 2224BFD AB BC AE AD A DC DB S ⋅−⋅∠−⋅+1311422422x =××−× 16355x =− ∵04x <<,∴当0x =时,165DEBF S =四边形 , 当4x =时,45DEBF S =四边形. 故选:A .二、填空题(本大题共4小题,每小题5分,满分20分)11. 若代数式14−x 有意义,则实数x 取值范围是_____. 【答案】4x ≠【解析】【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.【详解】解: 分式有意义的条件是分母不能等于0,∴40x −≠∴4x ≠.故答案:4x ≠.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件. 12.,祖冲之给出圆周率的一种分数形式的近似值为227.比较大______227(填“>”或“<”). 【答案】>【解析】【分析】本题考查的是实数的大小比较,先比较两个正数的平方,从而可得答案. 【详解】解:∵222484749 =,24901049==, 而4844904949<,∴22227 <,227>; 故答案为:>13. 不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是______.的为【答案】16【解析】【分析】本题考查了用树状图或列表法求概率,画出树状图即可求解,掌握树状图或列表法是解题的关键.【详解】解:画树状图如下:由树状图可得,共有12种等结果,其中恰为2个红球的结果有2种,∴恰为2个红球的概率为21126=, 故答案为:16. 14. 如图,现有正方形纸片ABCD ,点E ,F 分别在边,AB BC 上,沿垂直于EF 的直线折叠得到折痕MN ,点B ,C 分别落在正方形所在平面内的点B ′,C ′处,然后还原.(1)若点N 在边CD 上,且BEF α∠=,则C NM ′∠=______(用含α式子表示); (2)再沿垂直于MN 的直线折叠得到折痕GH ,点G ,H 分别在边,CD AD 上,点D 落在正方形所在平面内的点D '处,然后还原.若点D '在线段B C ′′上,且四边形EFGH 是正方形,4AE =,8EB =,MN 与GH 的交点为P ,则PH 的长为______.【答案】 ①. 90α°− ②.【解析】【分析】①连接CC ′,根据正方形的性质每个内角为直角以及折叠带来的折痕与对称点连线段垂直的性质,再结合平行线的性质即可求解;②记HG 与NC ′交于点K , 可证:AEH BFE DHG CGF △≌△≌△≌△,则4AE CG DH ===,8DG BE ==,由勾股定理可求HG =,由折叠的性质得到:90NC B NCB ′∠=∠=°,89∠=∠,90D GD H ′∠=∠=°,NC NC ′=,8GD GD ′==,则NG NK =,4KC GC ′==,由的NC GD ′′∥,得HC K HD G ′′△∽,继而可证明HK KG =,由等腰三角形的性质得到PK PG =,故34PH HG ==. 【详解】解:①连接CC ′,由题意得4C NM ′∠=∠,MN CC ′⊥,∵MN EF ⊥,∴CC FE ′∥,∴12∠=∠,∵四边形ABCD 是正方形,∴90B BCD ∠=∠=°,∴343290∠+∠=∠+∠=°,190BEF ∠+∠=°,∴24∠∠=,190α∠=°−, ∴490α∠=°−<∴90C NM α′∠=°−,故答案为:90α°−;②记HG 与NC ′交于点K ,如图:∵四边形ABCD 是正方形,四边形EFGH 是正方形,∴90A B C D ∠=∠=∠=∠=°,HE FE =,90HEF ∠=°,∴567690∠+∠=∠+∠=°,∴57∠=∠,∴AEH BFE △≌△,同理可证:AEH BFE DHG CGF △≌△≌△≌△,∴4AE CG DH ===,8DG BE ==,在Rt HDG △中,由勾股定理得HG =由题意得:90NC B NCB ′∠=∠=°,89∠=∠,90D GD H ′∠=∠=°,NC NC ′=,8GD GD ′==, ∴NC GD ′′∥,∴9NKG ∠=∠,∴8NKG ∠=∠,∴NG NK =,∴NC NG NC NK ′−=−,即4KC GC ′==,∵NC GD ′′∥,∴HC K HD G ′′△∽,∴12HKC K HGD G ′==′, ∴12HK HG =, ∴HK KG =,由题意得MN HG ⊥,而NG NK =,∴PK PG =,∴34PH HG ==故答案为:.【点睛】本题考查了正方形的性质,折叠的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握知识点,正确添加辅助线是解决本题的关键.三、(本大题共2小题,每小题8分,满分16分)15. 解方程:223x x −=【答案】13x =,21x =−【解析】【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x −=,∴223=0x x −−,∴(3)(1)0x x −+=, ∴13x =,21x =−.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.16. 如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy ,格点(网格线的交点)A 、B ,C 、D 的坐标分别为()7,8,()2,8,()10,4,()5,4.(1)以点D 为旋转中心,将ABC 旋转180°得到111A B C △,画出111A B C △;(2)直接写出以B ,1C ,1B ,C 为顶点四边形的面积;(3)在所给的网格图中确定一个格点E ,使得射线AE 平分BAC ∠,写出点E 的坐标.【答案】(1)见详解 (2)40(3)()6,6E (答案不唯一)【解析】【分析】本题主要考查了画旋转图形,平行四边形的判定以及性质,等腰三角形的判定以及性质等知识,结合网格解题是解题的关键.(1)将点A ,B ,C 分别绕点D 旋转180°得到对应点,即可得出111A B C △.(2)连接1BB ,1CC ,证明四边形11BC B C 是平行四边形,利用平行四边形的性质以及网格求出面积即可.(3)根据网格信息可得出5AB =,5AC,即可得出ABC 是等腰三角形,根据三线合一的性质即可求出点E 的坐标.【小问1详解】解:111A B C △如下图所示: 【小问2详解】连接1BB ,1CC ,的∵点B 与1B ,点C 与1C 分别关于点D 成中心对称,∴1DB DB =,1DC DC =,∴四边形11BC B C 是平行四边形, ∴1111122104402BC B C S CC B ==×××= . 【小问3详解】∵根据网格信息可得出5AB =,5AC, ∴ABC 是等腰三角形,∴AE 也是线段BC 的垂直平分线,∵B ,C 的坐标分别为,()2,8,()10,4 ∴点21084,22E ++, 即()6,6E .(答案不唯一)四、(本大题共2小题,每小题8分,满分16分)17. 乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植A B ,两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:农作物品种每公顷所需人数 每公顷所需投入资金(万元) A4 8 B 3 9已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元.问A B ,这两种农作物的种植面积各多少公顷?【答案】A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.【解析】【分析】本题考查了二元一次方程组的应用,设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,根据题意列出二元一次方程组即可求解,根据题意,找到等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,由题意可得,43248960x y x y += +=, 解得34x y = = , 答:设A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.18. 数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y −(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数): N 奇数 4的倍数表示结果 22110=− 22420=−22321=−22831=− 22532=− 221242=−22743=− 221653=−22954=−222064=−一般结论()22211n n n −=−− 4n =______按上表规律,完成下列问题:(ⅰ)24=( )2−( )2;(ⅱ)4n =______; (2)兴趣小组还猜测:像261014 ,,,,这些形如42n −(n 为正整数)的正整数N 不能表示为22x y −(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y −=−,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m −=−=−为4的倍数.而42n −不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数, 则()()22222121x y k m −=+−+=______为4的倍数.而42n −不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y −为奇数.而42n −是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +−−; (2)()224k m k m −+−【解析】【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解; (2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【小问1详解】(ⅰ)由规律可得,222475=−,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+−−,故答案为:()()2211n n +−−;【小问2详解】解:假设2242n x y −=−,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m −=−=−为4的倍数.而42n −不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数, 则()()()22222221214x y k m k m k m −=+−+=−+−为4的倍数. 而42n −不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y −为奇数.而42n −是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m −+−. 五、(本大题共2小题,每小题10分,满分20分)19. 科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=°,点B 到水面的距离 1.20BC =m ,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60°≈,cos36.90.80°≈,tan 36.90.75°≈).【答案】43【解析】【分析】本题考查了解直角三角形,勾股定理,三角函数,过点EF AD ⊥于F ,则90AFE ∠=°,DF CE =,由题意可得,36.9BEC α∠=∠=°,CBE β∠=∠, 1.2m =EF , 解Rt BCE 求出CE 、BE ,可求出sin β,再由勾股定理可得AE ,进而得到sin γ,即可求解,正确作出辅助线是解题的关键.【详解】解:过点EF AD ⊥于F ,则90AFE ∠=°,DF CE =,由题意可得,36.9BEC α∠=∠=°,CBE β∠=∠, 1.2m =EF , 在Rt BCE 中, 1.2 1.6m tan 0.75BC CE α=≈=, 1.22m sin 0.6BC BE α=≈=, ∴ 1.64sin 25CE BE β===, 1.6m DF =, ∴ 2.5 1.60.9m AF AD DF =−=−=,∴在Rt AFE, 1.5m AE ===, ∴0.93sin 1.55AF AEγ===, ∴4sin 453sin 35βγ==.20. 如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.【答案】(1)见详解 (2)【解析】【分析】本题主要考查了等腰三角形的性质,圆周角定理,勾股定理等知识,掌握这些性质以及定理是解题的关键.(1)由等边对等角得出FAE AEF ∠=∠,由同弧所对的圆周角相等得出FAE BCE ∠=∠,由对顶角相等得出AEF CEB ∠=∠,等量代换得出CEB BCE ∠=∠,由角角平分线的定义可得出ACE DCE ∠=∠,由直径所对的圆周角等于90°可得出90ACB ∠=°,即可得出90CEB DCE BCE ACE ACB ∠+∠=∠+∠=∠=°,即90CDE ∠=°.(2)由(1)知,CEB BCE ∠=∠,根据等边对等角得出BE BC =,根据等腰三角形三线合一的性质可得出MA ,AE 的值,进一步求出OA ,BE ,在利用勾股定理即可求出AC .【小问1详解】证明:∵FA FE =,∴FAE AEF ∠=∠,又FAE ∠与BCE ∠都是 BF所对的圆周角, ∴FAE BCE ∠=∠,∵AEF CEB ∠=∠,∴CEB BCE ∠=∠,∵CE 平分ACD ∠,∴ACE DCE ∠=∠,∵AB 是直径,∴90ACB ∠=°,∴90CEB DCE BCE ACE ACB ∠+∠=∠+∠=∠=°,故90CDE ∠=°,即CD AB ⊥.【小问2详解】由(1)知,CEB BCE ∠=∠,∴BE BC =,又FA FE =,FM AB ⊥,∴2MA ME MO OE ==+=,4AE =,∴圆的半径3OA OB AE OE ==−=,∴2BE BC OB OE ==−=,在ABC 中.26AB OA ==,2BC =∴AC即AC 的长为六、(本题满分12分)21. 综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x (单位:cm )表示.将所收集的样本数据进行如下分组:组别 AB C D E x 3.5 4.5x ≤< 4.5 5.5x ≤< 5.5 6.5x ≤< 6.57.5x ≤< 7.58.5x ≤≤整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1 求图1中a 的值.【数据分析与运用】任务2 A ,B ,C ,D ,E 五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数. 任务3 下列结论一定正确的是______(填正确结论的序号).①两园样本数据的中位数均在C 组;②两园样本数据的众数均在C 组;③两园样本数据的最大数与最小数的差相等.任务4 结合市场情况,将C ,D 两组的柑橘认定为一级,B 组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由. 根据所给信息,请完成以上所有任务.【答案】任务1:40;任务2:6;任务3:①;任务4:乙园的柑橘品质更优,理由见解析【解析】【分析】题目主要考查统计表及频数分布直方图,平均数、中位数及众数的求法,根据图标获取相关信息是解题关键.任务1:直接根据总数减去各部分的数据即可;任务2:根据加权平均数的计算方法求解即可;任务3:根据中位数、众数及极差的计算方法求解即可;任务4:分别计算甲和乙的一级率,比较即可.【详解】解:任务1:2001570502540a =−−−−=;任务2:1545057065071586200×+×+×+×+×=, 乙园样本数据的平均数为6;任务3:①∵1570100,157050101+++,∴甲园样本数据的中位数在C 组, ∵1550100,155070101+++,∴乙园样本数据的中位数在C 组,故①正确;②由样本数据频数直方图得,甲园样本数据的众数均在B 组,乙园样本数据的众数均在C 组,故②错误; ③无法判断两园样本数据的最大数与最小数的差是否相等,故③错误;故答案为:①;任务4:甲园样本数据的一级率为:5040100%45%200+×=, 乙园样本数据的一级率为:7050100%60%200+×=, ∵乙园样本数据的一级率高于甲园样本数据的一级率,∴乙园的柑橘品质更优.七、(本题满分12分)22. 如图1,ABCD 的对角线AC 与BD 交于点O ,点M ,N 分别在边AD ,BC 上,且AM CN =.点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD 为菱形,且2MD AM =,60EHF ∠=°,求AC BD的值. 【答案】(1)见详解 (2)(ⅰ)见详解,(ⅱ【解析】 【分析】(1)利用平行四边形的性质得出AM CN ∥,再证明AMCN 是平行四边形,再根据平行四边形的性质可得出OAE OCF ∠=∠,再利用ASA 证明AOE COF △≌△,利用全等三角形的性质可得出OE OF =.(2)(ⅰ)由平行线截直线成比例可得出OH OE OA OB =,结合已知条件等量代换OH OF OA OD=,进一步证明HOF AOD ∽ ,由相似三角形的性质可得出OHF OAD ∠=∠,即可得出HF AD ∥.(ⅱ)由菱形的性质得出AC BD ⊥,进一步得出30EHO FHO ∠=∠=°,OH =,由平行线截直线成比例可得出13AH AM HC BC ==,进一步得出2OA OH =,同理可求出5OB OE =,再根据25AC OA OH BD OB OE ==即可得出答案.【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,OA OC =,∴AM CN ∥,又∵AM CN =,∴四边形AMCN 是平行四边形,∴∥AN CM ,∵OAE OCF ∠=∠.在AOE △与COF 中,OAE OCF OA OCAOE COF ∠=∠ = ∠=∠∴()ASA AOE COF ≌.∴OE OF =.【小问2详解】(ⅰ)∵HE AB ∥∴OH OE OA OB=, 又OB OD =.OE OF =, ∴OH OF OA OD=, ∵HOF AOD ∠=∠,∴HOF AOD ∽ ,∴OHF OAD ∠=∠,∴HF AD ∥(ⅱ)∵ABCD 是菱形,∴AC BD ⊥,又OE OF =,60EHF ∠=°,∴30EHO FHO ∠=∠=°,∴OH =,∵AM BC ∥.2MD AM =, ∴13AHAM HC BC ==, 即3HC AH =,∴()3OA AH OA OH +=−,∴2OA OH =,∵BN AD ∥,2MD AM =,AM CN =, ∴23BEBN ED AD ==, 即32BE ED =,∴()()32OB OE OB OE −+∴5OB OE =,故25ACOA OH BD OB OE ===. 【点睛】本题主要考查了平行四边形的判定以及性质,全等三角形判定以及性质,相似三角形的判定以及性质,平行线截线段成比例以及菱形的性质,掌握这些判定方法以及性质是解题的关键.八、(本题满分14分)23. 已知抛物线2y x bx =−+(b 为常数)的顶点横坐标比抛物线22y x x =−+的顶点横坐标大1.(1)求b 的值;(2)点()11,A x y 在抛物线22y x x =−+上,点()11,B x t y h ++在抛物线2y x bx =−+上. (ⅰ)若3h t =,且10x ≥,0t >,求h 的值;(ⅱ)若11x t =−,求h 的最大值.【答案】(1)4b =(2)(ⅰ)3;(ⅱ)103 【解析】【分析】题目主要考查二次函数的基本性质及化为顶点式,解一元二次方程,理解题意,熟练掌握运用二次根数的基本性质是解题关键.(1)根据题意求出22yx x =−+的顶点为()1,1,确定抛物线2y x bx =−+(b 为常数)的顶点横坐标为2,即可求解; (2)根据题意得出21112y x x =−+, 2111()4()y h x t x t +=−+++,然后整理化简211224h t x t x t =−−++;(ⅰ)将3h t =代入求解即可;(ⅱ)将11x t =−代入整理为顶点式,即可得出结果.【小问1详解】解:2222(21)1(1)1yx x x x x =−+=−−++=−−+, ∴22y x x =−+的顶点为()1,1,∵抛物线2y x bx =−+(b 为常数)的顶点横坐标比抛物线22y x x =−+的顶点横坐标大1, ∴抛物线2y x bx =−+(b 为常数)的顶点横坐标为2, ∴()221b −=×−, ∴4b =;【小问2详解】由(1)得224y x bx x x =−+=−+ ∵点()11,A x y 在抛物线22y x x =−+上,点()11,B x t y h ++在抛物线24y x x =−+上. ∴21112y x x =−+, 2111()4()y h x t x t +=−+++,整理得:211224h t x t x t =−−++ (ⅰ)∵3h t =, ∴2113224t t x t x t =−−++,整理得:()1122t t x t x +=+, ∵10x ≥,0t >, ∴1t =,∴3h =;(ⅱ)将11x t =−代入211224h t x t x t =−−++, 整理得224103823()33h t t t =−+−=−−+, ∵30−<, ∴当43t =,即113x =时,h 取得最大值为103.。
2019年安徽省中考数学试题(解析版)
2019年安徽省中考数学一、选择题(本大题共10小题,每小题4分,满分40分)1.在-2,-1,0,1这四个数中,最小的数是( ) A. -2 B. -1 C. 0 D. 1【答案】A 【解析】 【分析】根据正数大于0,负数小于0,负数绝对值越大值越小即可求解. 【详解】解:在2-、1-、0、1这四个数中, 大小顺序为:2101-<-<<, 所以最小的数是2-. 故选:A.【点睛】此题考查了有理数的大小的比较,解题的关键利用正负数的性质及数轴可以解决问题.2.计算3()a a •- 的结果是( ) A. a 2 B. -a 2 C. a 4 D. -a 4【答案】D 【解析】 【分析】直接利用同底数幂的乘法运算法则计算得出答案.【详解】解:34()=a a a •--,故选:D .【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.3.一个由圆柱和圆锥组成的几何体如图水平放置,它的俯视图是( )A. B. C. D.【答案】C【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从上面看,一个正方形里面有一个圆且是实线.故选:C.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.2019年“五一”假日期间,某省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为()A. 1.61×109B. 1.61×1010C. 1.61×1011D. 1.61×1012【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.详解】解:161亿=16100000000=1.61×1010.故选:B.【点睛】此题考查科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.已知点A(1,-3)关于x轴的对称点A'在反比例函数ky=的图像上,则实数k的值为()xA. 3B. 13C. -3D. 1-3【答案】A【解析】【分析】先求出A'坐标,代入函数解析式即可求出k.【详解】解:点A(1,-3)关于x轴的对称点A'的坐标为:(1,3),将(1,3)代入反比例函数ky=x,可得:k=1×3=3,故选:A.【点睛】本题考查了反比例函数图像上点的坐标特征,根据对称的性质求出A'的坐标是解题关键.6.在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A. 60B. 50C. 40D. 15【答案】C【解析】【分析】一组数据中出现次数最多的数据叫做众数,由此可得出答案【详解】解:车速为40km/h的车辆数最多,这50辆车的车速的众数为40km/h,故选:C.【点睛】本题考查了众数的定义,众数是一组数据中出现次数最多的数,注意众数可以不止一个.7.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G,若EF=EG,则CD的长为()A. 3.6B. 4C. 4.8D. 5【答案】B【解析】【分析】过点D作DH⊥BC交AB于点H,根据△AFE∽△ACD和△AEG∽△ADH可得DC=DH,再由△BDH∽△BCA,根据相似三角形的性质列出方程即可求出CD. 【详解】解:过点D作DH⊥BC交AB于点H,∵EF⊥AC,∴EF∥BC,∴△AFE∽△ACD,∴EF AE DC AD=,∵DH⊥BC,EG⊥EF,∴DH∥EG,∴△AEG∽△ADH,∴EG AE DH AD=,∴EF EG DC DH=∵EF=EG,∴DC=DH,设DH=DC=x,则BD=12-x,又∵△BDH∽△BCA,∴DH BD CABC=,即12612x x-=,解得:x=4,即CD=4,故选:B.【点睛】本题考查了相似三角形的判定和性质,根据相似的性质得到DC=DH是解题关键.8.据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是()A. 2019年B. 2020年C. 2021年D. 2022年【答案】B【解析】【分析】根据2018年全年国内生产总值和增长率求出2019年,2020年等国内生产总值,直到国内生产总值首次突破100万亿即可得到答案.【详解】解:根据题意得2019年国内生产总值为90.3万亿×(1+6.6%)=96.2598万亿,2020年国内生产总值为96.2598×(1+6.6%)≈102.61万亿,故选:B.【点睛】本题考查了增长率的问题,能够根据题意列出算式,求出下一年的国内生产总值是解题关键. 9.已知三个实数a,b,c满足a-2b+c=0,a+2b+c<0,则()A. b>0,b2-ac≤0B. b<0,b2-ac≤0C. b>0,b2-ac≥0D. b<0,b2-ac≥0 【答案】D【解析】【分析】根据题意得a+c=2b,然后将a+c替换掉可求得b<0,将b2-ac变形为()24a c-,可根据平方的非负性求得b2-ac≥0.【详解】解:∵a-2b+c=0,∴a+c=2b,∴a+2b+c=4b<0,∴b<0,∴a2+2ac+c2=4b2,即22 224a ac c b++=∴b2-ac=()22222220 444a ca ac c a ac cac-++-+-==≥,故选:D.【点睛】本题考查了等式的性质以及完全平方公式的应用,熟练掌握完全平方公式是解题关键.10.如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A. 0B. 4C. 6D. 8【答案】D【解析】【分析】P点是正方形的边上的动点,我们可以先求PE+PF的最小值,然后根据PE+PF=9判断得出其中一边上P点的个数,即可解决问题.【详解】解:如图,作点F关于BC的对称点M,连接FM交BC于点N,连接EM,交BC于点H∵点E,F将对角线AC三等分,且AC=12,∴EC=8,FC=4=AE,∵点M与点F关于BC对称∴CF=CM=4,∠ACB=∠BCM=45°∴∠ACM=90°∴2245ECCM+=则在线段BC存在点H到点E和点F的距离之和最小为59在点H右侧,当点P与点C重合时,则PE+PF=12∴点P在CH上时,5PE+PF≤12在点H左侧,当点P与点B重合时,22210FNBN+=∵AB=BC,CF=AE,∠BAE=∠BCF∴△ABE≌△CBF(SAS)∴10∴10∴点P在BH上时,5PE+PF<10∴在线段BC上点H的左右两边各有一个点P使PE+PF=9,同理在线段AB,AD,CD上都存在两个点使PE+PF=9.即共有8个点P满足PE+PF=9,故选:D.【点睛】本题主要考查了正方形的性质以及根据轴对称求最短路径,有一定难度,巧妙的运用求最值的思想判断满足题意的点的个数是解题关键.二、填空题(本大共4小题,每小题5分,满分30分)11.__________.【答案】3【解析】【分析】根据二次根式的除法计算即可.,故答案为:3【点睛】本题考查了二次根式的除法,熟练掌握运算法则是解题关键.12.命题“如果a+b=0,那么a,b互为相反数”的逆命题为____________________________.【答案】如果a,b互为相反数,那么a+b=0【解析】【分析】交换原命题的题设与结论即可得到其逆命题.【详解】解:逆命题为:如果a,b互为相反数,那么a+b=0.故答案为:如果a,b互为相反数,那么a+b=0.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.13.如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O的半径为2,则CD 的长为_____【答案】2【解析】【分析】连接OA,OC,根据∠COA=2∠CBA=90°可求出AC=22,然后在Rt△ACD中利用三角函数即可求得CD 的长.【详解】解:连接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=22222222OA OC+=+=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=12222⨯=,故答案为:2.【点睛】本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.14.在平面直角坐标系中,垂直于x轴的直线l分别于函数y=x-a+1和y+x2-2ax的图像相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是_______【答案】a>1或a<-1【解析】【分析】首先求出y=x-a+1<0和y=x2-2ax<0的解集,然后分情况讨论,联立不等式,即可得到a的取值范围. 【详解】解:∵直线l分别与函数y=x-a+1和y=x2-2ax的图像相交于P,Q两点,且都在x轴的下方,∴令y=x-a+1<0,解得x<a-1,令y=x2-2ax<0,当a>0时,解得:0<x<2a;当a<0时,解得:2a<x<0,①当a>0时,若102x ax a-⎧⎨⎩<<<有解,则0a1-<,解得:a>1,②当a<0时,若120x aa x<<<-⎧⎨⎩有解,则2a a1-<,解得:a<-1,综上所述,实数a的取值范围是a>1或a<-1.【点睛】本题考查了一次函数、二次函数与不等式的关系,利用数形结合与分类讨论思想是解题关键.三、(本大题共2小题,每小题8分,满分16分)15.解方程:2(1)4x-=【答案】x=-1或x=3【解析】【分析】本题利用直接开平方法即可求出答案.【详解】解:x-1=±2,x-1= 2或x-1=-2,解得:x=-1或x=3.【点睛】本题考查了直接开平方法解一元二次方程,能够根据方程特点选取不同的解法是解题关键. 16.如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD.(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据平移的性质作图即可;(2)根据菱形的性质作图即可.【详解】解:(1)如图,线段CD即为所求;(2)如图,菱形CDEF即为所求(菱形CDEF不唯一).【点睛】本题考查了平移的性质以及菱形的性质,根据题意结合网格特点画出图形是解题关键.四、(本大题共2小题,每小题8分,满分16分)17.为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?【答案】甲乙两个工程队还需联合工作10天.【解析】【分析】设甲工程队每天掘进x米,则乙工程队每天掘进(x-2)米,利用甲、乙两工程队3天共掘进26米列出方程,分别求得甲、乙工程队每天的工作量,再求出结果即可.【详解】解:设甲工程队每天掘进x米,则乙工程队每天掘进(x-2)米,由题意得2x+(x+x-2)=26,解得x=7,所以乙工程队每天掘进5米,146-26=1075+(天)答:甲乙两个工程队还需联合工作10天【点睛】本题考查了一元一次方程的实际应用,理解题意,找到等量关系并列出方程是解题关键.18.观察以下等式:第1个等式:211 =111+,第2个等式:211 =326+,第3个等式:211=5315+,第4个等式:211=7428+,第5个等式:211=9545+,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1)211=11666+;(2)21121(21)n n n n=+--,见解析.【解析】【分析】观察各式子的分母之间的关系发现:等式左边式子的分母的值从1开始,后一项的值比前一个分母的值大2,分子不变,等式右边分子不变,第一个式子的分母等序增加,第二个分母的值依次为:1,6,15,28,45,根据顺序关系可以记作第n组式子对应的分母为n(2n+1),然后解题即可.【详解】解:(1)第6个等式:211= 11666+(2)211=2n-1n n2n-1+()证明:∵右边112n-1+12====n n2n-1n2n-12n-1+()()左边.∴等式成立【点睛】本题是规律探究题,解答过程中,要注意各式中相同位置数字的变化规律,并将其用代数式表示出来.五、(本大题共2小题,每小题10分,满分20分)19.筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)【答案】6.64米【解析】【分析】通过垂径定理求出AD,再通过三角函数解直角三角形,求出AO和OD的值,从而得到点C到弦AB所在直线的距离.【详解】解:如图:连接CO并延长,交AB于点D,∵OD ⊥AB ,AB=6, ∴AD=12AB=3, 在Rt △OAD 中, ∠OAB=41.3°,cos ∠OAD=ADAO, ∴AO=4cos OADAD∠=,∵sin ∠OAD=ODAO, ∴OD=AO·sin ∠OAD=2.64, ∴CD=OC+OD=AO+OD=4+2.64=6.64米, 答:点C 到弦AB 所在直线的距离是6.64米.【点睛】本题为圆中计算的典型考题,考查了垂径定理和三角函数的应用,通过垂径定理求出AD 的值是解题关键.20.如图,点E 在▱ABCD 内部,AF ∥BE ,DF ∥CE .(1)求证:△BCE ≌△ADF ;(2)设▱ABCD 的面积为S ,四边形AEDF 的面积为T ,求ST的值 【答案】(1)证明略;(2)S T=2 【解析】 【分析】(1)已知AD=BC ,可以通过证明EBC FAD ∠=∠,ECB FDA ∠=∠来证明BCE ADF ≅V V (ASA ); (2)连接EF ,易证四边形ABEF ,四边形CDFE 为平行四边形,则AFE FED ABE CDE AEDF S S S S T S =+=+=V V V V 四边形12S =,即可得ST=2. 【详解】(1)证明:∵四边形ABCD 为平行四边形, ∴AD BC ∥,180BAD ABC ︒∴∠+∠=,又//AF BE Q ,180BAF ABE ︒∴∠+∠=,BAD ABE EBC FAD BAD ABE ∴∠+∠+∠=∠+∠+∠, EBC FAD ∴∠=∠,同理可得:ECB FDA ∠=∠, 在BCE V 和ADF V 中,EBC FADBC ADECB FDA ∠=∠⎧⎪=⎨⎪∠=∠⎩BCE ADF ∴≅V V(2)解:连接EF ,BCE ADF ≅QV V ,,BE AF CE DF ∴==,又,AF BE DF CE Q ∥∥,∴四边形ABEF ,四边形CDFE 为平行四边形, ∴,ABE AFE CDE FED S S S S ==V V V V ,∴AFE FED ABE CDE AEDF S S S S T S =+=+=V V V V 四边形,设点E 到AB 的距离为h 1,到CD 的距离为h 2,线段AB 到CD 的距离为h , 则h= h 1+ h 2, ∴()1212111222T AB h CD h AB h h =⋅⋅+⋅⋅=⋅⋅+1122AB h S =⋅⋅=,即ST=2.【点睛】本题考查了三角形全等的判定和性质、平行四边形的判定和性质以及相关面积计算,熟练掌握所学性质定理并能灵活运用进行推理计算是解题的关键.六、(本题满分12分)21.为监控某条生产线上产品的质量,检测员每个相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的个数据按从小到大的顺序整理成如下表格:编号①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮尺寸(cm)8.72 8.88 8.92 8.93 8.94 8.96 8.97 8.98 a 9.03 9.04 9.06 9.07 9.08 b按照生产标准,产品等次规定如下:尺寸(单位:cm)产品等次8.97≤x≤9.03 特等品8.95≤x≤9.05 优等品8.90≤x≤9.10 合格品x<8.90或x>9.10 非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)仅算在内. (1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由(2)已知此次抽检出的优等品尺寸的中位数为9cm.(i)求a的值,(ii )将这些优等品分成两组,一组尺寸大于9cm ,另一组尺寸不大于9cm ,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率. 【答案】(1)不合格,见解析;(2)(i )a =9.02,(ii )49. 【解析】 【分析】(1)判断出非合格品有3个,其中①②是非合格品,即可确定⑮是非合格品;(2)(i )判断出符合优等品尺寸的编号是⑥~⑪,根据中位数是9可得正中间两个数据的平均数是9,可求出a 的值;(ii )优等品尺寸大于9cm 的有⑨⑩⑪,小于9cm 的有⑥⑦⑧,其中特等品为⑦⑧⑨⑩,画树状图即可. 【详解】解:(1)不合格.因为15×80%=12,不合格的有15-12=3个,给出的数据只有①②两个不合格; (2)(i )优等品有⑥~⑪,中位数在⑧8.98,⑨a 之间,∴8.98a=92,解得a=9.02 (ii )大于9cm 的有⑨⑩⑪,小于9cm 的有⑥⑦⑧,其中特等品为⑦⑧⑨⑩ 画树状图为:共有九种等可能的情况,其中抽到两种产品都是特等品的情况有4种, ∴抽到两种产品都是特等品的概率P=49【点睛】本题主要考查了中位数、树状图或列表法求概率,用到的知识点为:概率=所求情况数与总情况数之比.七、(本题满分12分)22.一次函数y =kx +4与二次函数y =ax 2+c 的图像的一个交点坐标为(1,2),另一个交点是该二次函数图像的顶点(1)求k ,a ,c 的值;(2)过点A (0,m )(0<m <4)且垂直于y 轴的直线与二次函数y =ax 2+c 的图像相交于B ,C 两点,点O 为坐标原点,记W =OA 2+BC 2,求W 关于m 的函数解析式,并求W 的最小值.【答案】(1)k =-2,a =-2,c =4;(2)2(1)7W m =-+, W 取得最小值7. 【解析】 【分析】(1)把(1,2)分别代入y=kx+4和y=ax 2+c ,得k+4=-2和a+c=2,然后求出二次函数图像的顶点坐标为(0,4),可得c=4,然后计算得到a 的值;(2)由A (0,m )(0<m <4)可得OA=m ,令y=-2x 2+4=m ,求出B ,C 坐标,进而表示出BC 长度,将OA ,BC 代入W=OA 2+BC 2中得到W 关于m 的函数解析式,求出最小值即可. 【详解】解:(1)由题意得,k+4=-2,解得k=-2, ∴一次函数解析式为:y=-2x+4 又二次函数顶点横坐标为0, ∴顶点坐标为(0,4) ∴c=4把(1,2)带入二次函数表达式得a+c=2,解得a=-2(2)由(1)得二次函数解析式为y=-2x 2+4,令y=m ,得2x 2+m-4=0∴x=±,设B ,C 两点的坐标分别为(x 1,m )(x 2,m ),则12x x + ∴W=OA 2+BC 2=2224-m m 4=m -2m+8=m-172+⨯+() ∴当m=1时,W 取得最小值7【点睛】本题考查了待定系数法求函数解析式以及二次函数的图像和性质,将二次函数图像与直线的交点问题转化为求一元二次方程的解,得到B ,C 坐标是解题的关键.八、(本题满分14分)23.如图,Rt △ABC 中,∠ACB =90°,AC =BC ,P 为△ABC 内部一点,且∠APB =∠BPC =135° (1)求证:△PAB ∽△PBC (2)求证:PA =2PC(3)若点P 到三角形的边AB ,BC ,CA 的距离分别为h 1,h 2,h 3,求证h 12=h 2·h 3【答案】(1)见解析;(2)见解析;(3)见解析. 【解析】 【分析】(1)结合题意,易得∠ABC=45°=∠PBA+∠PBC ,然后由∠APB=∠BPC=135°即可证明△PAB ∽△PBC ; (2)根据(1)中△PAB ∽△PBC ,可得PA PB AB ==PB PC BC ,然后由△ABC 是等腰直角三角形,可得出AB=2BC,易得PA=2PC ;(3)过点P 作PD ⊥BC ,PE ⊥AC 交BC 、AC 于点D ,E ,首先由Rt △AEP ∽Rt △CDP 得出PE AP==2DP PC,即32h =2h ,再根据△PAB ∽△PBC 可得出12h AB ==2h BC2123h =h h . 【详解】解:(1)∵∠ACB=90°,AC=BC , ∴∠ABC=45°=∠PBA+∠PBC 又∠APB=135°, ∴∠PAB+∠PBA=45°, ∴∠PBC=∠PAB , 又∵∠APB=∠BPC=135°, ∴△PAB ∽△PBC ; (2)∵△PAB ∽△PBC , ∴PA PB AB==PB PC BC , 在Rt △ABC 中,AC=BC , ∴AB=2BC∴PB=2PC PA=2PB , ∴PA=2PC ; (3)过点P 作PD ⊥BC ,PE ⊥AC 交BC 、AC 于点D ,E , ∵∠CPB+∠APB=135°+135°=270°, ∴∠APC=90°,∴∠EAP+∠ACP=90°, 又∵∠ACB=∠ACP+∠PCD=90° ∴∠EAP=∠PCD , ∴Rt △AEP ∽Rt △CDP , ∴PE AP==2DP PC,即32h =2h ,∴32h =2h∵△PAB ∽△PBC , ∴1122h AB==2h 2h h BC,∴ 即22122223h =2h =2h h =h h •.【点睛】本题是相似三角形综合题,主要考查了相似三角形的判定和性质以及等腰直角三角形的性质,其中第(3)问有一定难度,通过作辅助线构造出Rt △AEP ∽Rt △CDP 是解题关键.。
安徽初三初中数学中考真卷带答案解析
安徽初三初中数学中考真卷班级:___________ 姓名:___________ 分数:___________一、选择题1.下列几何体中,俯视图是矩形的是()2.与1+最接近的整数是()A.4B.3C.2D.13.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5D.1.4(1+x)+1.4(1+x)2=4.54.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分5.在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A.∠ADE=20°B.∠ADE=30°C.∠ADE=∠ADC D.∠ADE=∠ADC6.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是A.2B.3C.5D.67.如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是( )二、填空题1.-64的立方根是 .2.如图,点A 、B 、C 在半径为9的⊙O 上,的长为,则∠ACB 的大小是 .3.按一定规律排列的一列数:21,22,23,25,28,213,…,若x 、y 、z 表示这列数中的连续三个数,猜想x 、y 、z 满足的关系式是 .4.已知实数a 、b 、c 满足a +b =ab =c ,有下列结论: ①若c≠0,则;②若a =3,则b +c =9;③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8. 其中正确的是 (把所有正确结论的序号都选上).三、解答题1.先化简,再求值:,其中a =-.2.解不等式:.3.如图,平台AB 高为12m ,在B 处测得楼房CD 顶部点D 的仰角为45°,底部点C 的俯角为30°,求楼房CD 的高度(=1.7).4.A 、B 、C 三人玩篮球传球游戏,游戏规则是:第一次传球由A 将球随机地传给B 、C 两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人. (1)求两次传球后,球恰在B 手中的概率; (2)求三次传球后,球恰在A 手中的概率.5.在⊙O 中,直径AB =6,BC 是弦,∠ABC =30°,点P 在BC 上,点Q 在⊙O 上,且OP ⊥PQ .(1)如图1,当PQ ∥AB 时,求PQ 的长度;(2)如图2,当点P 在BC 上移动时,求PQ 长的最大值.6.如图,已知反比例函数与一次函数y =k 2x +b 的图象交于点A (1,8)、B (-4,m ).(1)求k 1、k 2、b 的值; (2)求△AOB 的面积;(3)若M (x 1,y 1)、N (x 2,y 2)是比例函数图象上的两点,且x 1<x 2,y 1<y 2,指出点M 、N 各位于哪个象限,并简要说明理由.7.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m 的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度为xm ,矩形区域ABCD 的面积为ym 2.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围; (2)x 为何值时,y 有最大值?最大值是多少?8.如图1,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD =∠BGC . (1)求证:AD =BC ;(2)求证:△AGD ∽△EGF ;(3)如图2,若AD 、BC 所在直线互相垂直,求的值.安徽初三初中数学中考真卷答案及解析一、选择题1.下列几何体中,俯视图是矩形的是()【答案】B.【解析】选项A、D的俯视图是圆,选项B的俯视图是矩形,选项C的俯视图是三角形,故答案选B.【考点】几何体的俯视图.2.与1+最接近的整数是()A.4B.3C.2D.1【答案】B.【解析】由可得,又因4比9更接近5,所以更接近整数3.故答案选B.【考点】二次根式的估算.3.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5D.1.4(1+x)+1.4(1+x)2=4.5【答案】C.【解析】设2014年与2015年这两年的平均增长率为x,则2014年的业务量为1.4(1+x)亿件,2015年的业务量为1.4(1+x)2亿件,又因2015年的快递业务量达到4.5亿件,所以可列方程为1.4(1+x)2=4.5,故答案选C.【考点】一元二次方程的应用.4.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分【答案】D.【解析】由统计表可知总共有(2+5+6+6+8+7+6=40)名同学;45在这组数据中一个出现了8次,次数最多是众数;这组数据的中位数是第20、21两个数的平均数为45;这组数据的平均数为(35×2+39×5+42×6+44×6+45×8+48×7+50×6)÷40=44.425.所以本题选项中错误的结论只有选项D,故答案选D.【考点】中位数;众数;平均数.5.在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A.∠ADE=20°B.∠ADE=30°C.∠ADE=∠ADC D.∠ADE=∠ADC【答案】D.【解析】设∠ADE=x,∠ADC=y,由题意可得,∠ADE+∠AED+∠A=180°,∠A+∠B+∠C+∠ADC=360°,即x+60+∠A=180①,3∠A+y=360②,由①×3-②可得3x-y=0,所以,即∠ADE=∠ADC.故答案选D .【考点】三角形的内角和定理;四边形内角和定理.6.如图,矩形ABCD 中,AB =8,BC =4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是A .2B .3C .5D .6【答案】C .【解析】连接EF 交AC 于点M ,由四边形EGFH 为菱形可得FM=EM ,EF ⊥AC ;利用”AAS 或ASA”易证△FMC ≌△EMA ,根据全等三角形的性质可得AM=MC ;在Rt △ABC 中,由勾股定理求得AC=,且tan ∠BAC=;在Rt △AME 中,AM=AC=,tan ∠BAC=可得EM=;在Rt △AME 中,由勾股定理求得AE=5.故答案选C .【考点】菱形的性质;矩形的性质;勾股定理;锐角三角函数.7.如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是( )【答案】A .【解析】点P 在抛物线上,设点P (x ,ax 2+bx+c ),又因点P 在直线y=x 上,所以x= ax 2+bx+c ,即ax 2+(b-1)x+c=0;由图象可知一次函数y=x 与二次函数y= ax 2+bx+c 交于第一象限的P 、Q 两点,方程ax 2+(b-1)x+c=0有两个正实数根,所以函数y=ax 2+(b-1)x+c 的图象与x 轴有两个交点,并且这两个交点都在x 轴的正半轴上,符合条件的 只有选项A ,故答案选A .【考点】二次函数与一元二次方程的关系.二、填空题1.-64的立方根是 . 【答案】-4.【解析】∵(-4)3=-64,∴-64的立方根为-4. 考点:立方根的定义.2.如图,点A、B、C在半径为9的⊙O上,的长为,则∠ACB的大小是.【答案】20°.【解析】连接OA、OB,由弧长公式的可求得∠AOB=40°,再根据同弧所对的圆周角等于圆心角的一半可得∠ACB=20°.【考点】弧长公式;圆周角定理.3.按一定规律排列的一列数:21,22,23,25,28,213,…,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是.【答案】xy=z.【解析】观察数列可发现所以这一列数据所揭示的规律是前两个数的积等于第三个数.根据规律x、y、z表示这列数中的连续三个数,则x、y、z满足的关系式是xy=z.【考点】规律探究题.4.已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则;②若a=3,则b+c=9;③若a=b=c,则abc=0;④若a、b、c中只有两个数相等,则a+b+c=8.其中正确的是(把所有正确结论的序号都选上).【答案】①③④.【解析】在a+b=ab的两边同时除以ab(ab=c≠0)即可得,所以①正确;把a=3代入得3+b=3b=c,可得b=,c=,所以b+c=6,故②错误;把 a=b=c代入得,所以可得c=0,故③正确;当a=b时,由a+b=ab可得a=b=2,再代入可得c=4,所以a+b+c=8;当a=c时,由c=a+b可得b=0,再代入可得a=b=c=0,这与a、b、c中只有两个数相等相矛盾,故a=c这种情况不存在;当b=c时,情况同a=c,故b=c这种情况也不存在,所以④正确.所以本题正确的是①③④.【考点】分式的基本性质;分类讨论.三、解答题1.先化简,再求值:,其中a=-.【答案】.【解析】根据分式的混合运算法则先化简后再求值.试题解析:【考点】分式的混合运算.2.解不等式:.【答案】x>3.【解析】根据解不等式的基本方法解出即可.试题解析:【考点】一元一次不等式的解法.3.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).【答案】32.4米.【解析】过点B作BE⊥DC于E,在Rt△BEC中,求BE的长;在Rt△BED中,求DE的长;根据CD=CE+DE可求得CD的长.试题解析:解:过点B作BE⊥DC于E,则CE=AB=12,在Rt△BEC中,.在Rt△BED中,DE=BE·tan∠DBE=.∴CD=CE+DE=12+≈32.4.所以,楼房CD的高度为32.4米.【考点】解直角三角形.4.A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.【答案】(1);(2).【解析】(1)直接列举出两次传球的所有结果,球球恰在B手中的结果只有一种即可求概率;(2)画出树状图,表示出三次传球的所有结果,三次传球后,球恰在A手中的结果有2种,即可求出三次传球后,球恰在A手中的概率.试题解析:解:(1)两次传球的所有结果有4种,分别是A→B→C,A→B→A,A→C→B,A→C→A.每种结果发生的可能性相等,球球恰在B手中的结果只有一种,所以两次传球后,球恰在B手中的概率是;(2)树状图如下,由树状图可知,三次传球的所有结果有8种,每种结果发生的可能性相等.其中,三次传球后,球恰在A 手中的结果有A→B→C→A ,A→C→B→A 这两种,所以三次传球后,球恰在A 手中的概率是.【考点】用列举法求概率.5.在⊙O 中,直径AB =6,BC 是弦,∠ABC =30°,点P 在BC 上,点Q 在⊙O 上,且OP ⊥PQ .(1)如图1,当PQ ∥AB 时,求PQ 的长度;(2)如图2,当点P 在BC 上移动时,求PQ 长的最大值. 【答案】(1);(2).【解析】(1)在Rt △OPB 中,由OP=OB·tan ∠ABC 可求得OP=,连接OQ ,在Rt △OPQ 中,根据勾股定理可得PQ 的长;(2)由勾股定理可知OQ 为定值,所以当当OP 最小时,PQ 最大.根据垂线段最短可知,当OP ⊥BC 时OP 最小,所以在Rt △OPB 中,由OP=OB·sin ∠ABC 求得OP 的长;在Rt △OPQ中,根据勾股定理求得PQ 的长.试题解析:解:(1)∵OP ⊥PQ ,PQ ∥AB ,∴OP ⊥AB . 在Rt △OPB 中,OP=OB·tan ∠ABC=3·tan30°=. 连接OQ ,在Rt △OPQ 中,.(2) ∵∴当OP 最小时,PQ 最大,此时OP ⊥BC . OP=OB·sin ∠ABC=3·sin30°=.∴PQ 长的最大值为.【考点】解直角三角形;勾股定理.6.如图,已知反比例函数与一次函数y =k 2x +b 的图象交于点A (1,8)、B (-4,m ).(1)求k 1、k 2、b 的值; (2)求△AOB 的面积;(3)若M (x 1,y 1)、N (x 2,y 2)是比例函数图象上的两点,且x 1<x 2,y 1<y 2,指出点M 、N 各位于哪个象限,并简要说明理由. 【答案】(1)=8,;(2)S △ABC =15;(3)点M 在第三象限,点N 在第一象限,理由见解析.【解析】(1)把A (1,8)代入求得=8,把B (-4,m )代入求得m=-2,把A (1,8)、B (-4,-2)代入求得、b 的值;(2)设直线y=2x+6与x 轴的交点为C ,可求得OC 的长,根据S △ABC =S △AOC +S △BOC 即可求得△AOB 的面积;(3)由<可知有三种情况,①点M 、N 在第三象限的分支上,②点M 、N 在第一象限的分支上,③ M 在第三象限,点N 在第一象限,分类讨论把不合题意的舍去即可. 试题解析:解:(1)把A (1,8), B (-4,m )分别代入,得=8,m=-2.∵A (1,8)、B (-4,-2)在图象上,∴, 解得,.(2)设直线y=2x+6与x 轴的交点为C ,当y=0时,x=-3, ∴OC=3∴S △ABC =S △AOC +S △BOC =(3)点M 在第三象限,点N 在第一象限.①若<<0,点M 、N 在第三象限的分支上,则>,不合题意; ②若0<<,点M 、N 在第一象限的分支上,则>,不合题意;③若<0<,M 在第三象限,点N 在第一象限,则<0<,符合题意.【考点】反比例函数与一次函数的交点坐标;用待定系数法求函数表达式;反比例函数的性质.7.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m 的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度为xm ,矩形区域ABCD 的面积为ym 2.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围; (2)x 为何值时,y 有最大值?最大值是多少? 【答案】(1)(0<x <40);(2)当x=20时,y 有最大值,最大值是300平方米.【解析】(1)设AE=a ,由AE·AD=2BE·BC ,AD=BC 可得BE=a ,AB=a ;根据周长为80米得方程2x+3a+2·a=80,解得a=20—x .由y=AB·BC 代入即可求y 与x 之间的函数关系式;根据题意0<BC+EF <80,所以x 的取值范围为0<x <40;(2)把y 与x 之间的函数关系式化为顶点式,利用二次函数的性质即可求解. 试题解析:解:(1)设AE=a ,由题意可得,AE·AD=2BE·BC ,AD=BC ,∴BE=a ,AB=a .由题意,得2x+3a+2·a=80,∴a=20—x .∴y=AB·BC=ax=(20—x )x ,即(0<x <40).(2)∵∴当x=20时,y 有最大值,最大值是300平方米. 【考点】二次函数的应用及性质.8.如图1,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD =∠BGC .(1)求证:AD=BC;(2)求证:△AGD∽△EGF;(3)如图2,若AD、BC所在直线互相垂直,求的值.【答案】(1)见解析;(2)见解析;(3)【解析】(1)根据线段垂直平分线上的点到线段两个端点的距离相等可得GA=GB,GD=GC.由“SAS”可判定△AGD≌△BGC根据全等三角形的对应边相等即可得AD=BC.(2)根据两边对应成比例且夹角相等的两个三角形相似可判定△AGB∽△DGC,再由相似三角形对应高的比等于相似比可得,再证得∠AGD=∠EGF,根据两边对应成比例且夹角相等的两个三角形相似即可判定△AGD∽△EGF.(3)如图1,延长AD交GB于点M,交BC的延长线于点H,则AH⊥BH.由△AGD≌△BGC可知∠GAD=∠GBC.在△GAM和△HBM中,由∠GAD=∠GBC,∠GMA=∠HMB可证得∠AGB=∠AHB=90°,根据等腰三角形三线合一的性质可得∠AGE =45°,即可得出根据相似三角形对应边的比相等即可得试题解析:(1)证明:∵GE是AB的垂直平分线,∴GA=GB.同理GD=GC.在△AGD和△BGC中,∵GA=GB,∠AGD=∠BGC,GD=GC,∴△AGD≌△BGC.∴AD=BC.(2)证明:∵∠AGD=∠BGC,∴∠AGB=∠DGC.在△AGB和△DGC中,,∠AGB=∠DGC,∴△AGB∽△DGC.∴,又∠AGE=∠DGF,∴∠AGD=∠EGF,∴△AGD∽△EGF.(3)解:如图1,延长AD交GB于点M,交BC的延长线于点H,则AH⊥BH.由△AGD≌△BGC,知∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB.∴∠AGB=∠AHB=90°,∴∠AGE=∠AGB=45°,∴又△AGD∽△EGF,∴(本小题解法有多种,如可按图2、图3做辅助线求解,过程略)【考点】线段垂直平分线的性质;全等三角形的判定及性质;相似三角形的判定及性质;等腰直角三角形的性质.。
历年安徽省中考数学试卷及解析答案(收藏版)
2006年安徽省中考数学试题考生注意:本卷共八大题,计 23 小题,满分 150 分,时间 120 分钟.一、选择题(本题共 10 小题,每小题 4 分,满分 40 分)每一个小题都给出代号为 A 、B 、C 、D 的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号.每一小题:选对得 4 分,不选、选错或选出的代号超过一个的(不论是否写在括号内)均不得分. 1.计算 2 一的结果是( )A 。
1B —1C .一 7D . 52 。
近几年安徽省教育事业加快发展,据 2005 年末统计的数据显示,仅普通初中在校生就约有334 万人,334 人用科学记数法表示为( ) A . 3 。
34 106 B . 33 。
4 10 5 C 、334 104 D 、 0 。
334 107 3 。
计算(—21ab)的结果正确的是( ) A 。
2441b a B 。
3816b a C 。
—3681b a D 。
—3581b a4 。
把过期的药品随意丢弃,会造成对土壤和水体的污染,危害人们的健康.如何处理过期药品,有关机构随机对若干家庭进行调查,调查结果如图.其中对过期药品处理不正确的家庭达到( )A 。
79 %B . 80 %C 。
18 %D . 82 %5 .如图,直线a //b,点B 在直线b 上,且AB ⊥BC ,∠1 二 55º ,则∠2 的度数为( )A 。
35ºB 。
45 ºC 。
55 ºD . 125º6。
方程01221=---x x 的根是( ) A .—3 B 。
0 C.2 D 。
37 。
如图, △ ABC 中,∠B = 90 º ,∠C 二 30º , AB = 1 ,将 △ ABC 绕顶点 A 旋转 1800 ,点 C 落在 C ′处,则 CC ′的长为( ) A . 4 B 。
4 C 。
2 D . 28。
安徽省2023年中考数学试题+参考答案
安徽省2023年中考数学试题一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的。
1.-5的相反数是()A.5B.-5C.15D.-152.某几何体的三视图如图所示,则该几何体为()A. B.C. D.3.下列计算正确的是()A.a4+a4=a8B.a4⋅a4=a16C.a4 4=a16D.a8÷a4=a24.在数轴上表示不等式x-12<0的解集,正确的是()A. B.C. D.5.下列函数中,y的值随x值的增大而减小的是()A.y=x2+1B.y=-x2+1C.y=2x+1D.y=-2x+16.如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD=()A.60°B.54°C.48°D.36°7.如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A.59B.12C.13D.298.如图,点E 在正方形ABCD 的对角线AC 上,EF ⊥AB 于点F ,连接DE 并延长,交边BC 于点M ,交边AB 的延长线于点G .若AF =2,FB =1,则MG =()A.23B.352C.5+1D.109.已知反比例函数y =kxk ≠0 在第一象限内的图象与一次函数y =-x +b 的图象如图所示,则函数y =x 2-bx +k -1的图象可能为()A. B.C. D.10.如图,E 是线段AB 上一点,△ADE 和△BCE 是位于直线AB 同侧的两个等边三角形,点P ,F 分别是CD ,AB 的中点.若AB =4,则下列结论错误的是()A.PA +PB 的最小值为33B.PE +PF 的最小值为23C.△CDE 周长的最小值为6D.四边形ABCD 面积的最小值为33二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:38+1=。
2021年安徽省中考数学试题解析版
2021年安徽省中考数学试题解析版一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣2的绝对值是()A.﹣2 B.2 C.±2 D.2.运算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣83.2021年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107 B.83.62×106 C.0.8362×108D.8.362×1084.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.5.方程=3的解是()A.﹣B.C.﹣4 D.46.2020年我省财政收入比2020年增长8.9%,2020年比2020年增长9.5%,若2020年和2020年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)7.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x≥12A.18户B.20户C.22户D.24户8.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4C.6 D.49.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A动身,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人动身后2小时内运动路程y(千米)与时刻x(小时)函数关系的图象是()A.B.C.D.10.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2 C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x﹣2≥1的解集是.12.因式分解:a3﹣a=.13.如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.14.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.运算:(﹣2021)0++tan45°.16.解方程:x2﹣2x=4.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.18.(1)观看下列图形与等式的关系,并填空:(2)观看下图,依照(1)中结论,运算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1=.五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB 上),测得∠DEB=60°,求C、D两点间的距离.20.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求现在点M 的坐标.六、(本大题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌平均,再任取一个小球,对应的数字作为那个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本大题满分12分)22.如图,二次函数y=ax2+bx的图象通过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、(本大题满分14分)23.如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.2021年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣2的绝对值是()A.﹣2 B.2 C.±2 D.【考点】绝对值.【分析】直截了当利用数轴上某个数与原点的距离叫做那个数的绝对值,进而得出答案.【解答】解:﹣2的绝对值是:2.故选:B.2.运算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣8【考点】同底数幂的除法;负整数指数幂.【分析】直截了当利用同底数幂的除法运算法则化简求出答案.【解答】解:a10÷a2(a≠0)=a8.故选:C.3.2021年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107 B.83.62×106 C.0.8362×108D.8.362×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8362万=8362 0000=8.362×107,故选:A.4.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】依照三视图的定义求解.【解答】解:圆柱的主(正)视图为矩形.故选C.5.方程=3的解是()A.﹣B.C.﹣4 D.4【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+1=3x﹣3,解得:x=4,经检验x=4是分式方程的解,故选D.6.2020年我省财政收入比2020年增长8.9%,2020年比2020年增长9.5%,若2020年和2020年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)【考点】列代数式.【分析】依照2020年我省财政收入和2020年我省财政收入比2020年增长8.9%,求出2020年我省财政收入,再依照出2020年比2020年增长9.5%,2020年我省财政收为b亿元,即可得出a、b之间的关系式.【解答】解:∵2020年我省财政收入为a亿元,2020年我省财政收入比2020年增长8.9%,∴2020年我省财政收入为a(1+8.9%)亿元,∵2020年比2020年增长9.5%,2020年我省财政收为b亿元,∴2020年我省财政收为b=a(1+8.9%)(1+9.5%);故选C.7.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x≥12A.18户B.20户C.22户D.24户【考点】扇形统计图.【分析】依照除B组以外参与调查的用户共64户及A、C、D、E四组的百分率可得参与调查的总户数及B组的百分率,将总户数乘以月用水量在6吨以下(A、B两组)的百分率可得答案.【解答】解:依照题意,参与调查的户数为:=80(户),其中B组用户数占被调查户数的百分比为:1﹣10%﹣35%﹣30%﹣5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选:D.8.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4C.6 D.4【考点】相似三角形的判定与性质.【分析】依照AD是中线,得出CD=4,再依照AA证出△CBA∽△CAD,得出=,求出AC即可.【解答】解:∵BC=8,∴CD=4,在△CBA和△CAD中,∵∠B=∠DAC,∠C=∠C,∴△CBA∽△CAD,∴=,∴AC2=CD•BC=4×8=32,∴AC=4;故选B.9.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A动身,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人动身后2小时内运动路程y(千米)与时刻x(小时)函数关系的图象是()A.B.C.D.【考点】函数的图象.【分析】分别求出甲乙两人到达C地的时刻,再结合已知条件即可解决问题.【解答】解;由题意,甲走了1小时到了B地,在B地休息了半个小时,2小时正好走到C 地,乙走了小时到了C地,在C地休息了小时.由此可知正确的图象是A.故选A.10.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2 C.D.【考点】点与圆的位置关系;圆周角定理.【分析】第一证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,现在PC最小,利用勾股定理求出OC即可解决问题.【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,现在PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC=OP=5﹣3=2.∴PC最小值为2.故选B.二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x﹣2≥1的解集是x≥3.【考点】解一元一次不等式.【分析】不等式移项合并,即可确定出解集.【解答】解:不等式x﹣2≥1,解得:x≥3,故答案为:x≥312.因式分解:a3﹣a=a(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),故答案为:a(a+1)(a﹣1)13.如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.【考点】切线的性质;弧长的运算.【分析】依照已知条件求出圆心角∠BOC的大小,然后利用弧长公式即可解决问题.【解答】解:∵AB是⊙O切线,∴AB⊥OB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=90°﹣∠A=60°,∴∠BOC=120°,∴的长为=.故答案为.14.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是①③④.(把所有正确结论的序号都选上)【考点】相似形综合题.【分析】由折叠性质得∠1=∠2,CE=FE,BF=BC=10,则在Rt△ABF中利用勾股定理可运算出AF=8,因此DF=AD﹣AF=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中利用勾股定理得(6﹣x)2+22=x2,解得x=,即ED=;再利用折叠性质得∠3=∠4,BH=BA=6,AG=HG,易得∠2+∠3=45°,因此可对①进行判定;设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中利用勾股定理得到y2+42=(8﹣y)2,解得y=3,则AG=GH=3,GF=5,由于∠A=∠D和≠,可判定△ABG与△DEF不相似,则可对②进行判定;依照三角形面积公式可对③进行判定;利用AG=3,GF=5,DF=2可对④进行判定.【解答】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt△ABF中,∵AB=6,BF=10,∴AF==8,∴DF=AD﹣AF=10﹣8=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中,∵DE2+DF2=EF2,∴(6﹣x)2+22=x2,解得x=,∴ED=,∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠2+∠3=∠ABC=45°,因此①正确;HF=BF﹣BH=10﹣6=4,设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8﹣y)2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D,==,=,∴≠,∴△ABG与△DEF不相似,因此②错误;∵S△ABG=•6•3=9,S△FGH=•GH•HF=×3×4=6,∴S△ABG=S△FGH,因此③正确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF,因此④正确.故答案为①③④.三、(本大题共2小题,每小题8分,满分16分)15.运算:(﹣2021)0++tan45°.【考点】实数的运算;零指数幂;专门角的三角函数值.【分析】直截了当利用专门角的三角函数值以及立方根的性质分别化简求出答案.【解答】解:(﹣2021)0++tan45°=1﹣2+1=0.16.解方程:x2﹣2x=4.【考点】解一元二次方程-配方法;零指数幂.【分析】在方程的左右两边同时加上一次项系数一半的平方,左边确实是完全平方式,右边确实是常数,然后利用平方根的定义即可求解【解答】解:配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x 1=1+,x2=1﹣.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.【考点】作图-平移变换.【分析】(1)画出点B关于直线AC的对称点D即可解决问题.(2)将四边形ABCD各个点向下平移5个单位即可得到四边形A′B′C′D′.【解答】解:(1)点D以及四边形ABCD另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.18.(1)观看下列图形与等式的关系,并填空:(2)观看下图,依照(1)中结论,运算图中黑球的个数,用含有n 的代数式填空:1+3+5+…+(2n ﹣1)+( 2n+1 )+(2n ﹣1)+…+5+3+1= 2n 2+2n+1 .【考点】规律型:图形的变化类.【分析】(1)依照1+3+5+7=16可得出16=42;设第n 幅图中球的个数为a n ,列出部分a n 的值,依照数据的变化找出变化规律“a n ﹣1=1+3+5+…+(2n ﹣1)=n 2”,依此规律即可解决问题;(2)观看(1)可将(2)图中得黑球分三部分,1到n 行,第n+1行,n+2行到2n+1行,再结合(1)的规律即可得出结论.【解答】解:(1)1+3+5+7=16=42,设第n 幅图中球的个数为a n ,观看,发觉规律:a 1=1+3=22,a 2=1+3+5=32,a 3=1+3+5+7=42,…,∴a n ﹣1=1+3+5+…+(2n ﹣1)=n 2.故答案为:42;n 2.(2)观看图形发觉:图中黑球可分三部分,1到n 行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n ﹣1)+[2(n+1)﹣1]+(2n ﹣1)+…+5+3+1,=1+3+5+…+(2n ﹣1)+(2n+1)+(2n ﹣1)+…+5+3+1,=a n ﹣1+(2n+1)+a n ﹣1,=n 2+2n+1+n 2,=2n 2+2n+1.故答案为:2n+1;2n 2+2n+1.五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB 上),测得∠DEB=60°,求C、D两点间的距离.【考点】两点间的距离.【分析】直截了当利用等腰三角形的判定与性质得出DE=AE=20,进而求出EF的长,再得出四边形ACDF为矩形,则CD=AF=AE+EF求出答案.【解答】解:过点D作l1的垂线,垂足为F,∵∠DEB=60°,∠DAB=30°,∴∠ADE=∠DEB﹣∠DAB=30°,∴△ADE为等腰三角形,∴DE=AE=20,在Rt△DEF中,EF=DE•cos60°=20×=10,∵DF⊥AF,∴∠DFB=90°,∴AC∥DF,由已知l1∥l2,∴CD∥AF,∴四边形ACDF为矩形,CD=AF=AE+EF=30,答:C、D两点间的距离为30m.20.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求现在点M 的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法即可解答;(2)设点M的坐标为(x,2x﹣5),依照MB=MC,得到,即可解答.【解答】解:(1)把点A(4,3)代入函数y=得:a=3×4=12,∴y=.OA==5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).六、(本大题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌平均,再任取一个小球,对应的数字作为那个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.【考点】列表法与树状图法;算术平方根.【分析】(1)利用树状图展现所有16种等可能的结果数,然后把它们分别写出来;(2)利用算术平方根的定义找出大于16小于49的数,然后依照概率公式求解.【解答】解:(1)画树状图:共有16种等可能的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)算术平方根大于4且小于7的结果数为6,因此算术平方根大于4且小于7的概率==.七、(本大题满分12分)22.如图,二次函数y=ax2+bx的图象通过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.【考点】待定系数法求二次函数解析式;二次函数的最值.【分析】(1)把A与B坐标代入二次函数解析式求出a与b的值即可;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x 轴,垂足分别为E,F,分别表示出三角形OAD,三角形ACD,以及三角形BCD的面积,之和即为S,确定出S关于x的函数解析式,并求出x的范畴,利用二次函数性质即可确定出S的最大值,以及现在x的值.【解答】解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x 轴,垂足分别为E,F,S△OAD=OD•AD=×2×4=4;S△ACD=AD•CE=×4×(x﹣2)=2x﹣4;S△BCD=BD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=S△OAD+S△ACD+S△BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.八、(本大题满分14分)23.如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.【考点】相似形综合题.【分析】(1)依照三角形中位线的性质得到DE=OC,∥OC,CE=OD,CE∥OD,推出四边形ODEC是平行四边形,因此得到∠OCE=∠ODE,依照等腰直角三角形的定义得到∠PCO=∠QDO=90°,依照等腰直角三角形的性质得到得到PC=ED,CE=DQ,即可得到结论(2)①连接RO,由于PR与QR分别是OA,OB的垂直平分线,得到AP=OR=RB,由等腰三角形的性质得到∠ARC=∠ORC,∠ORQ=∠BRO,依照四边形的内角和得到∠CRD=30°,即可得到结论;②由(1)得,EQ=EP,∠DEQ=∠CPE,推出∠PEQ=∠ACR=90°,证得△PEQ是等腰直角三角形,依照相似三角形的性质得到ARB=∠PEQ=90°,依照四边形的内角和得到∠MON=135°,求得∠APB=90°,依照等腰直角三角形的性质得到结论.【解答】(1)证明:∵点C、D、E分别是OA,OB,AB的中点,∴DE=OC,∥OC,CE=OD,CE∥OD,∴四边形ODEC是平行四边形,∴∠OCE=∠ODE,∵△OAP,△OBQ是等腰直角三角形,∴∠PCO=∠QDO=90°,∴∠PCE=∠PCO+∠OCE=∠QDO=∠ODQ=∠EDQ,∵PC=AO=OC=ED,CE=OD=OB=DQ,在△PCE与△EDQ中,,∴△PCE≌△EDQ;(2)①如图2,连接RO,∵PR与QR分别是OA,OB的垂直平分线,∴AP=OR=RB,∴∠ARC=∠ORC,∠ORQ=∠BRO,∵∠RCO=∠RDO=90°,∠COD=150°,∴∠CRD=30°,∴∠ARB=60°,∴△ARB是等边三角形;②由(1)得,EQ=EP,∠DEQ=∠CPE,∴∠PEQ=∠CED﹣∠CEP﹣∠DEQ=∠ACE﹣∠CEP﹣∠CPE=∠ACE﹣∠RCE=∠ACR=90°,∴△PEQ是等腰直角三角形,∵△ARB∽△PEQ,∴∠ARB=∠PEQ=90°,∴∠OCR=∠ODR=90°,∠CRD=∠ARB=45°,∴∠MON=135°,现在P,O,B在一条直线上,△PAB为直角三角形,且∠APB=90°,∴AB=2PE=2×PQ=PQ ,∴=.2021年6月25日。
2020年安徽省中考数学试卷(含解析)打印版
2020年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.22.(4分)计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a23.(4分)下面四个几何体中,主视图为三角形的是()A.B.C.D.4.(4分)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×1075.(4分)下列方程中,有两个相等实数根的是()A.x2+1=2x B.x2+1=0C.x2﹣2x=3D.x2﹣2x=06.(4分)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是D.中位数是137.(4分)已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)8.(4分)如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cos A=,则BD 的长度为()A.B.C.D.49.(4分)已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC10.(4分)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)计算:﹣1=.12.(5分)分解因式:ab2﹣a=.13.(5分)如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为.14.(5分)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D 落在AP上的同一点R处.请完成下列探究:(1)∠P AQ的大小为°;(2)当四边形APCD是平行四边形时,的值为.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解不等式:>1.16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.四、(本大题共2小题,每小题8分,满分16分)17.(8分)观察以下等式:第1个等式:×(1+)=2﹣,第2个等式:×(1+)=2﹣,第3个等式:×(1+)=2﹣,第4个等式:×(1+)=2﹣.第5个等式:×(1+)=2﹣.…按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.18.(8分)如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)五、(本大题共2小题,每小题10分,满分20分)19.(10分)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.20.(10分)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.六、(本题满分12分)21.(12分)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.七、(本题满分12分)22.(12分)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.八、(本题满分14分)23.(14分)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=AG.2020年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.2【分析】先根据正数都大于0,负数都小于0,可排除C、D,再根据两个负数,绝对值大的反而小,可得比﹣2小的数是﹣3.【解答】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2.故选:A.2.(4分)计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a2【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:原式=a6÷a3=a3.故选:C.3.(4分)下面四个几何体中,主视图为三角形的是()A.B.C.D.【分析】根据主视图是从正面看得到的图形,可得答案.【解答】解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.4.(4分)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:54700000用科学记数法表示为:5.47×107.故选:D.5.(4分)下列方程中,有两个相等实数根的是()A.x2+1=2x B.x2+1=0C.x2﹣2x=3D.x2﹣2x=0【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.有两个相等实数根的一元二次方程就是判别式的值是0的一元二次方程.【解答】解:A、△=(﹣2)2﹣4×1×1=0,有两个相等实数根;B、△=0﹣4=﹣4<0,没有实数根;C、△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等实数根;D、△=(﹣2)2﹣4×1×0=4>0,有两个不相等实数根.故选:A.6.(4分)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是D.中位数是13【分析】根据平均数、众数、中位数、方差的计算方法分别计算这组数据的平均数、众数、中位数、方差,最后做出选择.【解答】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D符合题意;=(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B不符合题意;S2=[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2]=,因此方差为,于是选项C不符合题意;故选:D.7.(4分)已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)【分析】由点A的坐标,利用一次函数图象上点的坐标特征求出k值,结合y随x的增大而减小即可确定结论.【解答】解:A、当点A的坐标为(﹣1,2)时,﹣k+3=2,解得:k=1>0,∴y随x的增大而增大,选项A不符合题意;B、当点A的坐标为(1,﹣2)时,k+3=﹣2,解得:k=﹣5<0,∴y随x的增大而减小,选项B符合题意;C、当点A的坐标为(2,3)时,2k+3=3,解得:k=0,选项C不符合题意;D、当点A的坐标为(3,4)时,3k+3=4,解得:k=>0,∴y随x的增大而增大,选项D不符合题意.故选:B.8.(4分)如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cos A=,则BD 的长度为()A.B.C.D.4【分析】在△ABC中,由三角函数求得AB,再由勾股定理求得BC,最后在△BCD中由三角函数求得BD.【解答】解:∵∠C=90°,AC=4,cos A=,∴AB=,∴,∵∠DBC=∠A.∴cos∠DBC=cos∠A=,∴,故选:C.9.(4分)已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC【分析】根据垂径定理,平行四边形的性质判断即可.【解答】解:A、如图,若半径OB平分弦AC,则四边形OABC不一定是平行四边形;原命题是假命题;B、若四边形OABC是平行四边形,则AB=OC,OA=BC,∵OA=OB=OC,∴AB=OA=OB=BC=OC,∴∠ABO=∠OBC=60°,∴∠ABC=120°,是真命题;C、如图,若∠ABC=120°,则弦AC不平分半径OB,原命题是假命题;D、如图,若弦AC平分半径OB,则半径OB不一定平分弦AC,原命题是假命题;故选:B.10.(4分)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.【分析】分为0<x≤2、2<x≤4两种情况,然后依据等边三角形的性质和三角形的面积公式可求得y 与x的函数关系式,于是可求得问题的答案.【解答】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=EJ=x,∴y=EJ•GH=x2.当x=2时,y=,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y=FJ•GH=(4﹣x)2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)计算:﹣1=2.【分析】直接利用二次根式的性质化简进而得出答案.【解答】解:原式=3﹣1=2.故答案为:2.12.(5分)分解因式:ab2﹣a=a(b+1)(b﹣1).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)13.(5分)如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为2.【分析】分别求出矩形ODCE与△OAB的面积,即可求解.【解答】解:一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B,令x=0,则y=k,令y=0,则x=﹣k,故点A、B的坐标分别为(﹣k,0)、(0,k),则△OAB的面积=OA•OB=k2,而矩形ODCE的面积为k,则k2=k,解得:k=0(舍去)或2,故答案为2.14.(5分)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D 落在AP上的同一点R处.请完成下列探究:(1)∠P AQ的大小为30°;(2)当四边形APCD是平行四边形时,的值为.【分析】(1)由折叠的性质可得∠B=∠AQP,∠DAQ=∠QAP=∠P AB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,由平角的性质可得∠D+∠C=180°,∠AQP=90°,可证AD ∥BC,由平行线的性质可得∠DAB=90°,即可求解;(2)由平行四边形和折叠的性质可得AR=PR,由直角三角形的性质可得AP=2PB=2QR,AB=PB,即可求解.【解答】解:(1)由折叠的性质可得:∠B=∠AQP,∠DAQ=∠QAP=∠P AB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,∵∠QRA+∠QRP=180°,∴∠D+∠C=180°,∴AD∥BC,∴∠B+∠DAB=180°,∵∠DQR+∠CQR=180°,∴∠DQA+∠CQP=90°,∴∠AQP=90°,∴∠B=∠AQP=90°,∴∠DAB=90°,∴∠DAQ=∠QAP=∠P AB=30°,故答案为:30;(2)由折叠的性质可得:AD=AR,CP=PR,∵四边形APCD是平行四边形,∴AD=PC,∴AR=PR,又∵∠AQP=90°,∴QR=AP,∵∠P AB=30°,∠B=90°,∴AP=2PB,AB=PB,∴PB=QR,∴=,故答案为:.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解不等式:>1.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.【解答】解:去分母,得:2x﹣1>2,移项,得:2x>2+1,合并,得:2x>3,系数化为1,得:x>.16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.【分析】(1)分别作出A,B的对应点A1,B2即可.(2)作出点A1的对应点A2即可.【解答】解:(1)如图线段A1B1即为所求.(2)如图,线段B1A2即为所求.四、(本大题共2小题,每小题8分,满分16分)17.(8分)观察以下等式:第1个等式:×(1+)=2﹣,第2个等式:×(1+)=2﹣,第3个等式:×(1+)=2﹣,第4个等式:×(1+)=2﹣.第5个等式:×(1+)=2﹣.…按照以上规律,解决下列问题:(1)写出第6个等式:×(1+)=2﹣;(2)写出你猜想的第n个等式:×(1+)=2﹣(用含n的等式表示),并证明.【分析】(1)根据题目中前5个等式,可以发现式子的变化特点,从而可以写出第6个等式;(2)把上面发现的规律用字母n表示出来,并运用分式的混合运算法则计算等号的右边的值,进而得到左右相等便可.【解答】解:(1)第6个等式:×(1+)=2﹣;(2)猜想的第n个等式:×(1+)=2﹣.证明:∵左边=×==2﹣=右边,∴等式成立.故答案为:×(1+)=2﹣;×(1+)=2﹣.18.(8分)如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)【分析】根据三角函数的定义和直角三角形的性质解答即可.【解答】解:由题意,在Rt△ABD中,tan∠ABD=,∴tan42.0°=≈0.9,∴AD≈0.9BD,在Rt△BCD中,tan∠CBD=,∴tan36.9°=≈0.75,∴CD≈0.75BD,∵AC=AD﹣CD,∴15=0.15BD,∴BD=100米,∴CD=0.75BD=75(米),答:山高CD为75米.五、(本大题共2小题,每小题10分,满分20分)19.(10分)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x 1.04(a﹣x)(2)求2020年4月份线上销售额与当月销售总额的比值.【分析】(1)由线下销售额的增长率,即可用含a,x的代数式表示出2020年4月份的线下销售额;(2)根据2020年4月份的销售总额=线上销售额+线下销售额,即可得出关于x的一元一次方程,解之即可得出x的值(用含a的代数式表示),再将其代入中即可求出结论.【解答】解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a﹣x)元.故答案为:1.04(a﹣x).(2)依题意,得:1.1a=1.43x+1.04(a﹣x),解得:x=a,∴===0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.20.(10分)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.【分析】(1)根据圆周角定理得到∠ACB=∠ADB=90°,根据全等三角形的判定定理即可得到结论;(2)根据等腰三角形的性质得到∠E=∠BFE,根据切线的性质得到∠ABE=90°,根据三角形的内角和以及角平分线的定义即可得到结论.【解答】(1)证明:∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,在Rt△CBA与Rt△DAB中,,∴Rt△CBA≌Rt△DAB(HL);(2)解:∵BE=BF,由(1)知BC⊥EF,∴∠E=∠BFE,∵BE是半圆O所在圆的切线,∴∠ABE=90°,∴∠E+∠BAE=90°,由(1)知∠D=90°,∴∠DAF+∠AFD=90°,∵∠AFD=∠BFE,∴∠AFD=∠E,∴∠DAF=90°﹣∠AFD,∠BAF=90°﹣∠E,∴∠DAF=∠BAF,∴AC平分∠DAB.六、(本题满分12分)21.(12分)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为60,扇形统计图中“C”对应扇形的圆心角的大小为108°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【分析】(1)用被调查的职工人数乘以最喜欢A套餐人数所占百分比即可得其人数;再由四种套餐人数之和等于被调查的人数求出C对应人数,继而用360°乘以最喜欢C套餐人数所占比例即可得;(2)用总人数乘以样本中最喜欢B套餐的人数所占比例即可得;(3)画树状图列出所有等可能结果,从中找到符合条件的结果数,利用概率公式求解可得答案.【解答】解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),则最喜欢C套餐的人数为240﹣(60+84+24)=72(人),∴扇形统计图中“C”对应扇形的圆心角的大小为360°×=108°,故答案为:60、108;(2)估计全体960名职工中最喜欢B套餐的人数为960×=336(人);(3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为=.七、(本题满分12分)22.(12分)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.【分析】(1)根据待定系数法求得直线的解析式,然后即可判断点B(2,3)在直线y=x+m上;(2)因为直线经过A、B和点(0,1),所以经过点(0,1)的抛物线不同时经过A、B点,即可判断抛物线只能经过A、C两点,根据待定系数法即可求得a、b;(3)设平移后的抛物线为y=﹣x2+px+q,其顶点坐标为(,+q),根据题意得出+q=+1,由抛物线y=﹣x2+px+q与y轴交点的纵坐标为q,即可得出q=﹣﹣1=﹣(p﹣1)2+,从而得出q的最大值.【解答】解:(1)点B是在直线y=x+m上,理由如下:∵直线y=x+m经过点A(1,2),∴2=1+m,解得m=1,∴直线为y=x+1,把x=2代入y=x+1得y=3,∴点B(2,3)在直线y=x+m上;(2)∵直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),且B、C两点的横坐标相同,∴抛物线只能经过A、C两点,把A(1,2),C(2,1)代入y=ax2+bx+1得,解得a=﹣1,b=2;(3)由(2)知,抛物线为y=﹣x2+2x+1,设平移后的抛物线为y=﹣x2+px+q,其顶点坐标为(,+q),∵顶点仍在直线y=x+1上,∴+q=+1,∴q=﹣++1,∵抛物线y=﹣x2+px+q与y轴的交点的纵坐标为q,∴q=﹣++1=﹣(p﹣1)2+,∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为.八、(本题满分14分)23.(14分)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=AG.【分析】(1)证明△AEF≌△ADB(SAS),得出∠AEF=∠ADB,证得∠EGB=90°,则结论得出;(2)证明△AEF∽△DCF,得出,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解方程即可得出答案;(3)在线段EG上取点P,使得EP=DG,证明△AEP≌△ADG(SAS),得出AP=AG,∠EAP=∠DAG,证得△P AG为等腰直角三角形,可得出结论.【解答】(1)证明:∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC,(2)解:∵四边形ABCD是矩形,∴AE∥CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解得或(舍去),∴AE=.(3)如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠P AG=∠P AD+∠DAG=∠P AD+∠EAP=∠DAE=90°,∴△P AG为等腰直角三角形,∴EG﹣DG=EG﹣EP=PG=AG.。
安徽省2021年中考数学真题卷(含答案与解析)
【详解】解: 的绝对值是:9
故选:A
【点睛】本题考查绝对值的定义,正确理解定义是关键,熟记负数的绝对值是它的相反数是重点
2.《2020年国民经济和社会发展统计公报》显示,2020年我国共资助8990万人参加基本医疗保险.其中8990万用科学记数法表示为( )
A.89.9×106B.8.99×107C.8.99×108D.0.899×109
(1)将 向右平移5个单位得到 ,画出 ;
(2)将(1)中的 绕点C1逆时针旋转 得到 ,画出 .
四、(本大题共2小题,每小题8分,满分16分)
17.学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形AEFD为矩形,点B、C分别在EF、DF上, , , , .求零件的截面面积.参考数据: , .
(1)求k,m的值;
(2)在图中画出正比例函数 图象,并根据图象,写出正比例函数值大于反比例函数值时x的取值范围.
20.如图,圆O中两条互相垂直的弦AB,CD交于点E.
(1)M是CD 中点,OM=3,CD=12,求圆O的半径长;
(2)点F在CD上,且CE=EF,求证: .
六、(本题满分12分)
21.为了解全市居民用户用电情况,某部门从居民用户中随机抽取100户进行月用电量(单位:kW•h)调查,按月用电量50~100,100~150,150~200,200~250,250~300,300~350进行分组,绘制频数分布直方图如下:
A. B. C. D.
【答案】A
【解析】
【分析】设AD、BC交于点H,作 于点F,连接EF.延长AC与BD并交于点G.由题意易证 ,从而证明ME为 中位线,即 ,故判断B正确;又易证 ,从而证明D为BG中点.即利用直角三角形斜边中线等于斜边一半即可求出 ,故判断C正确;由 、 和 可证明 .再由 、 和 可推出 ,即推出 ,即 ,故判断D正确;假设 ,可推出 ,即可推出 .由于无法确定 的大小,故 不一定成立,故可判断A错误.
安徽省2024年中考数学试卷(解析版)
2024年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2024•安徽)(﹣2)×3的结果是()A.﹣5 B.1C.﹣6 D.6考点:有理数的乘法.分析:依据两数相乘同号得正,异号得负,再把肯定值相乘,可得答案.解答:解:原式=﹣2×3=﹣6.故选:C.点评:本题考查了有理数的乘法,先确定积的符号,再进行肯定值的运算.2.(4分)(2024•安徽)x2•x3=()A.x5B.x6C.x8D.x9考点:同底数幂的乘法.分析:依据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.解答:解:x2•x3=x2+3=x5.故选A.点评:主要考查同底数幂的乘法的性质,娴熟驾驭性质是解题的关键.3.(4分)(2024•安徽)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.考点:简洁几何体的三视图.分析:俯视图是从物体上面看所得到的图形.解答:解:从几何体的上面看俯视图是,故选:D.点评:本题考查了几何体的三种视图,驾驭定义是关键.留意全部的看到的棱都应表现在三视图中.4.(4分)(2024•安徽)下列四个多项式中,能因式分解的是()A.a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y考点:因式分解的意义.分析:依据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答:解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;故选:B.点评:本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.5.(4分)(2024•安徽)某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()棉花纤维长度x频数0≤x<8 18≤x<16 216≤x<24 824≤x<32 632≤x<40 3A.0.8 B.0.7 C.0.4 D.0.2考点:频数(率)分布表.分析:求得在8≤x<32这个范围的频数,依据频率的计算公式即可求解.解答:解:在8≤x<32这个范围的频数是:2+8+6=16,则在8≤x<32这个范围的频率是:=0.8.故选A.点评:本题考查了频数分布表,用到的学问点是:频率=频数÷总数.6.(4分)(2024•安徽)设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8考点:估算无理数的大小.分析:首先得出<<,进而求出的取值范围,即可得出n的值.解答:解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.点评:此题主要考查了估算无理数,得出<<是解题关键.7.(4分)(2024•安徽)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6C.﹣2或6 D.﹣2或30考点:代数式求值.分析:方程两边同时乘以2,再化出2x2﹣4x求值.解答:解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.点评:本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.(4分)(2024•安徽)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A 点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4D.5考点:翻折变换(折叠问题).分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,依据中点的定义可得BD=3,在Rt△ABC 中,依据勾股定理可得关于x的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2++32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.9.(4分)(2024•安徽)如图,矩形ABCD中,AB=3,BC=4,动点P从A点动身,按A→B→C的方向在AB和BC上移动,记P A=x,点D到直线P A的距离为y,则y关于x的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,依据同角的余角相等求出∠APB=∠P AD,再利用相像三角形的列出比例式整理得到y与x的关系式,从而得解.解答:解:①点P在AB上时,0≤x≤3,点D 到AP 的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠P AD+∠BAP=90°,∴∠APB=∠P AD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选B.点评:本题考查了动点问题函数图象,主要利用了相像三角形的判定与性质,难点在于依据点P的位置分两种状况探讨.10.(4分)(2024•安徽)如图,正方形ABCD的对角线BD长为2,若直线l满意:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A.1B.2C.3D.4考点:正方形的性质.分析:连接AC与BD相交于O,依据正方形的性质求出OD=,然后依据点到直线的距离和平行线间的距离相等解答.解答:解:如图,连接AC与BD相交于O,∵正方形ABCD的对角线BD长为2,∴OD=,∴直线l∥AC并且到D的距离为,同理,在点D的另一侧还有一条直线满意条件,故共有2条直线l.故选B.点评:本题考查了正方形的性质,主要利用了正方形的对角线相互垂直平分,点D到O的距离小于是本题的关键.czsx二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2024•安徽)据报载,2024年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 2.5×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的肯定值与小数点移动的位数相同.当原数肯定值>1时,n是正数;当原数的肯定值<1时,n是负数.解答:解:将25000000用科学记数法表示为2.5×107户.故答案为:2.5×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(5分)(2024•安徽)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=a(1+x)2.考点:依据实际问题列二次函数关系式.分析:由一月份新产品的研发资金为a元,依据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.解答:解:∵一月份新产品的研发资金为a元,2月份起,每月新产品的研发资金与上月相比增长率都是x,∴2月份研发资金为a×(1+x),∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a(1+x)2.点评:此题主要考查了依据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题.13.(5分)(2024•安徽)方程=3的解是x=6.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:4x﹣12=3x﹣6,解得:x=6,经检验x=6是分式方程的解.故答案为:6.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程肯定留意要验根.14.(5分)(2024•安徽)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中肯定成立的是①②④.(把全部正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.考点:平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.分析:分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF (ASA),得出对应线段之间关系进而得出答案.解答:解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDE,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故答案为:①②④.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等学问,得出△AEF≌△DME是解题关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2024•安徽)计算:﹣|﹣3|﹣(﹣π)0+2024.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用平方根定义化简,其次项利用肯定值的代数意义化简,第三项利用零指数幂法则计算,计算即可得到结果.解答:解:原式=5﹣3﹣1+2024=2024.点评:此题考查了实数的运算,娴熟驾驭运算法则是解本题的关键.16.(8分)(2024•安徽)视察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…依据上述规律解决下列问题:(1)完成第四个等式:92﹣4×42=17;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.考点:规律型:数字的改变类;完全平方公式.分析:由①②③三个等式可得,被减数是从3起先连续奇数的平方,减数是从1起先连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.点评:此题考查数字的改变规律,找出数字之间的运算规律,利用规律解决问题.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2024•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相像比不为1.考点:作图—相像变换;作图-平移变换.分析:(1)利用平移的性质得出对应点位置,进而得出答案;(2)利用相像图形的性质,将各边扩大2倍,进而得出答案.解答:解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求.点评:此题主要考查了相像变换和平移变换,得出变换后图形对应点位置是解题关键.18.(8分)(2024•安徽)如图,在同一平面内,两条平行高速马路l1和l2间有一条“Z”型道路连通,其中AB段与高速马路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速马路间的距离(结果保留根号).考点:解直角三角形的应用.分析:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,依据三角函数求得BE,在Rt△BCF中,依据三角函数求得BF,在Rt△DFG中,依据三角函数求得FG,再依据EG=BE+BF+FG即可求解.解答:解:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,BE=AB•sin30°=20×=10km,在Rt△BCF中,BF=BC÷cos30°=10÷=km,CF=BF•sin30°=×=km,DF=CD﹣CF=(30﹣)km,在Rt△DFG中,FG=DF•sin30°=(30﹣)×=(15﹣)km,∴EG=BE+BF+FG=(25+5)km.故两高速马路间的距离为(25+5)km.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2024•安徽)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.考点:垂径定理;勾股定理;圆周角定理;相像三角形的判定与性质.专题:计算题.分析:由OE⊥AB得到∠OEF=90°,再依据圆周角定理由OC为小圆的直径得到∠OFC=90°,则可证明Rt△OEF∽Rt△OFC,然后利用相像比可计算出⊙O的半径OC=9;接着在Rt△OCF中,依据勾股定理可计算出C=3,由于OF⊥CD,依据垂径定理得CF=DF,所以CD=2CF=6.解答:解:∵OE⊥AB,∴∠OEF=90°,∵OC为小圆的直径,∴∠OFC=90°,而∠EOF=∠FOC,∴Rt△OEF∽Rt△OFC,∴OE:OF=OF:OC,即4:6=6:OC,∴⊙O的半径OC=9;在Rt△OCF中,OF=6,OC=9,∴CF==3,∵OF⊥CD,∴CF=DF,∴CD=2CF=6.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理和相像三角形的判定与性质.20.(10分)(2024•安徽)2024年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2024年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2024年处理的这两种垃圾数量与2024年相比没有改变,就要多支付垃圾处理费8800元.(1)该企业2024年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业安排2024年将上述两种垃圾处理总量削减到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2024年该企业最少须要支付这两种垃圾处理费共多少元?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,依据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.(2)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,须要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解.解答:解:(1)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,依据题意,得,解得.答:该企业2024年处理的餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,须要支付这两种垃圾处理费共a元,依据题意得,,解得x≥60.a=100x+30y=100x+30(240﹣x)=70x+7200,由于a的值随x的增大而增大,所以当x=60时,a值最小,最小值=70×60+7200=11400(元).答:2024年该企业最少须要支付这两种垃圾处理费共11400元.点评:本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决本题的关键;六、(本题满分12分)21.(12分)(2024•安徽)如图,管中放置着三根同样的绳子AA1、BB1、CC1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.考点:列表法与树状图法.专题:计算题.分析:(1)三根绳子选择一根,求出所求概率即可;(2)列表得出全部等可能的状况数,找出这三根绳子能连结成一根长绳的状况数,即可求出所求概率.解答:解:(1)三种等可能的状况数,则恰好选中绳子AA1的概率是;(2)列表如下:A B CA1(A,A1)(B,A1)(C,A1)B1(A,B1)(B,B1)(C,B1)C1(A,C1)(B,C1)(C,C1)全部等可能的状况有9种,其中这三根绳子能连结成一根长绳的状况有6种,则P==.点评:此题考查了列表法与树状图法,用到的学问点为:概率=所求状况数与总状况数之比.七、(本题满分12分)22.(12分)(2024•安徽)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A (1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.考点:二次函数的性质;二次函数的最值.专题:新定义.分析:(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y1的图象经过点A(1,1)可以求出m的值,然后依据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.解答:解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x﹣3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x﹣3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0.解得:m1=m2=1.∴y1=2x2﹣4x+3=2(x﹣1)2+1.∴y1+y2=2x2﹣4x+3+ax2+bx+5=(a+2)x2+(b﹣4)x+8∵y1+y2与y1为“同簇二次函数”,∴y1+y2=(a+2)(x﹣1)2+1=(a+2)x2﹣2(a+2)x+(a+2)+1.其中a+2>0,即a>﹣2.∴.解得:.∴函数y2的表达式为:y2=5x2﹣10x+5.∴y2=5x2﹣10x+5=5(x﹣1)2.∴函数y2的图象的对称轴为x=1.∵5>0,∴函数y2的图象开口向上.①当0≤x≤1时,∵函数y2的图象开口向上,∴y2随x的增大而减小.∴当x=0时,y2取最大值,最大值为5(0﹣1)2=5.②当1<x≤3时,∵函数y2的图象开口向上,∴y2随x的增大而增大.∴当x=3时,y2取最大值,最大值为5(3﹣1)2=20.综上所述:当0≤x≤3时,y2的最大值为20.点评:本题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类探讨的思想,考查了阅读理解实力.而对新定义的正确理解和分类探讨是解决其次小题的关键.八、(本题满分14分)23.(14分)(2024•安徽)如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN=60°;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,推断四边形OMGN是否为特别四边形?并说明理由.考点:四边形综合题.分析:(1)①运用∠MPN=180°﹣∠BPM﹣∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解,(2)连接OE,由△OMA≌△ONE证明,(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.,解答:解:(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为;60°.②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN 于点K,MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM=AM,HL=BP,PL=PM,NK=ND,∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=MG+GH+HP+PL+LK+KN=3a.(2)如图2,连接OE,∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN,又∵∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS)∴OM=ON.(3)如图3,连接OE,由(2)得,△OMA≌△ONE∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,∴∠MON=120°,∴∠GON=60°,∵∠GON=60°﹣∠EON,∠DON=60°﹣∠EON,∴∠GOE=∠DON,∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA),∴ON=OG,又∵∠GON=60°,∴△ONG是等边三角形,∴ON=NG,又∵OM=ON,∠MOG=60°,∴△MOG是等边三角形,∴MG=GO=MO,∴MO=ON=NG=MG,∴四边形MONG是菱形.点评:本题主要考查了四边形的综合题,解题的关键是恰当的作出协助线,依据三角形全等找出相等的线段.- 21 -。
2021年安徽省中考数学试卷及答案解析
2021年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的。
1.(4分)(2021•安徽)9-的绝对值是( )A .9B .9-C .19D .19- 2.(4分)(2021•安徽)《2020年国民经济和社会发展统计公报》显示,2020年我国共资助8990万人参加基本医疗保险.其中8990万用科学记数法表示为( )A .689.910⨯B .78.9910⨯C .88.9910⨯D .90.89910⨯ 3.(4分)(2021•安徽)计算23()x x ⋅-的结果是( )A .6xB .6x -C .5xD .5x -4.(4分)(2021•安徽)几何体的三视图如图所示,这个几何体是( )A .B .C .D .5.(4分)(2021•安徽)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒6.(4分)(2021•安徽)某品牌鞋子的长度y cm 与鞋子的“码”数x 之间满足一次函数关系.若22码鞋子的长度为16cm ,44码鞋子的长度为27cm ,则38码鞋子的长度为( )A .23cmB .24cmC .25cmD .26cm7.(4分)(2021•安徽)设a ,b ,c 为互不相等的实数,且4155b a c =+,则下列结论正确的是( ) A .a b c >> B .c b a >> C .4()a b b c -=- D .5()a c a b -=-8.(4分)(2021•安徽)如图,在菱形ABCD 中,2AB =,120A ∠=︒,过菱形ABCD 的对称中心O 分别作边AB ,BC 的垂线,交各边于点E ,F ,G ,H ,则四边形EFGH 的周长为( )A .33+B .223+C .23+D .123+9.(4分)(2021•安徽)如图在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以图成一个矩形,从这些矩形中任选一个,则所选矩形含点A 的概率是( )A .14B .13C .38D .4910.(4分)(2021•安徽)在ABC ∆中,90ACB ∠=︒,分别过点B ,C 作BAC ∠平分线的垂线,垂足分别为点D ,E ,BC 的中点是M ,连接CD ,MD ,ME .则下列结论错误的是( )A .2CD ME =B .//ME ABC .BD CD = D .ME MD =二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2021•安徽)计算:04(1)+-= .12.(5分)(2021•安徽)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形.底面正方形的边长与侧面等腰三角形底边上的高的比值是51-,它介于整数n 和1n +之间,则n 的值是 .13.(5分)(2021•安徽)如图,圆O 的半径为1,ABC ∆内接于圆O .若60A ∠=︒,75B ∠=︒,则AB = .14.(5分)(2021•安徽)设抛物线2(1)y x a x a =+++,其中a 为实数. (1)若抛物线经过点(1,)m -,则m = ;(2)将抛物线2(1)y x a x a =+++向上平移2个单位,所得抛物线顶点的纵坐标的最大值是 .三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2021•安徽)解不等式:1103x -->. 16.(8分)(2021•安徽)如图,在每个小正方形的边长为1个单位的网格中,ABC ∆的顶点均在格点(网格线的交点)上.(1)将ABC ∆向右平移5个单位得到△111A B C ,画出△111A B C ;(2)将(1)中的△111A B C 绕点1C 逆时针旋转90︒得到△221A B C ,画出△221A B C .四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2021•安徽)学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形AEFD 为矩形,点B 、C 分别在EF 、DF 上,90ABC ∠=︒,53BAD ∠=︒,10AB cm =,6BC cm =.求零件的截面面积.参考数据:sin530.80︒≈,cos530.60︒≈.18.(8分)(2021•安徽)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.[观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推.[规律总结](1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加 块;(2)若一条这样的人行道一共有(n n 为正整数)块正方形地砖,则等腰直角三角形地砖的块数为 (用含n 的代数式表示).[问题解决](3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2021•安徽)已知正比例函数(0)y kx k =≠与反比例函数6y x=的图象都经过点(,2)A m . (1)求k ,m 的值;(2)在图中画出正比例函数y kx =的图象,并根据图象,写出正比例函数值大于反比例函数值时x 的取值范围.20.(10分)(2021•安徽)如图,圆O 中两条互相垂直的弦AB ,CD 交于点E .(1)M 是CD 的中点,3OM =,12CD =,求圆O 的半径长;(2)点F 在CD 上,且CE EF =,求证:AF BD ⊥.六、(本题满分12分)21.(12分)(2021•安徽)为了解全市居民用户用电情况,某部门从居民用户中随机抽取100户进行月用电量(单位:)kW h ⋅调查,按月用电量50~100,100~150,150~200,200~250,250~300,300~350进行分组,绘制频数分布直方图如图.(1)求频数分布直方图中x 的值;(2)判断这100户居民用户月用电量数据的中位数在哪一组(直接写出结果);(3)设各组居民用户月平均用电量如表: 组别50~100 100~150 150~200 200~250 250~300 300~350 月平均用电量(单位:)kW h ⋅ 75 125 175 225 275 325根据上述信息,估计该市居民用户月用电量的平均数.七、(本题满分12分)22.(12分)(2021•安徽)已知抛物线221(0)y ax x a =-+≠的对称轴为直线1x =.(1)求a 的值;(2)若点1(M x ,1)y ,2(N x ,2)y 都在此抛物线上,且110x -<<,212x <<.比较1y 与2y 的大小,并说明理由; (3)设直线(0)y m m =>与抛物线221y ax x =-+交于点A 、B ,与抛物线23(1)y x =-交于点C ,D ,求线段AB 与线段CD 的长度之比.八、(本题满分14分)23.(14分)(2021•安徽)如图1,在四边形ABCD 中,ABC BCD ∠=∠,点E 在边BC 上,且//AE CD ,//DE AB ,作//CF AD 交线段AE 于点F ,连接BF .(1)求证:ABF EAD ∆≅∆;(2)如图2.若9AB =,5CD =,ECF AED ∠=∠,求BE 的长;(3)如图3,若BF的延长线经过AD的中点M,求BE的值.EC2021年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的。
2022年安徽省中考数学试卷(解析版)
2022年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)(2022•安徽)下列为负数的是()A.|﹣2| B.C.0 D.﹣52.(4分)(2022•安徽)据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为()A.3.4×108B.0.34×108C.3.4×107D.34×1063.(4分)(2022•安徽)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.4.(4分)(2022•安徽)下列各式中,计算结果等于a9的是()A.a3+a6B.a3•a6C.a10﹣a D.a18÷a25.(4分)(2022•安徽)甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算,走得最快的是()A.甲B.乙C.丙D.丁6.(4分)(2022•安徽)两个矩形的位置如图所示,若∠1=α,则∠2=()A.α﹣90°B.α﹣45°C.180°﹣αD.270°﹣α7.(4分)(2022•安徽)已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若PA=4,PB=6,则OP=()A.B.4 C.D.58.(4分)(2022•安徽)随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“”进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小正方形和一个白色小正方形的概率为()A.B.C.D.9.(4分)(2022•安徽)在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a 的图象可能是()A.B.C.D.10.(4分)(2022•安徽)已知点O是边长为6的等边△ABC的中心,点P在△ABC 外,△ABC,△PAB,△PBC,△PCA的面积分别记为S0,S1,S2,S3.若S1+S2+S3=2S0,则线段OP长的最小值是()A.B.C.3D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2022•安徽)不等式≥1的解集为.12.(5分)(2022•安徽)若一元二次方程2x2﹣4x+m=0有两个相等的实数根,则m=.13.(5分)(2022•安徽)如图,▱OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数y=的图象经过点C,y=(k≠0)的图象经过点B.若OC=AC,则k=.14.(5分)(2022•安徽)如图,四边形ABCD是正方形,点E在边AD上,△BEF 是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F 作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:(1)∠FDG=°;(2)若DE=1,DF=2,则MN=.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2022•安徽)计算:()0﹣+(﹣2)2.16.(8分)(2022•安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2022•安徽)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:年份进口额/亿元出口额/亿元进出口总额/亿元2020 x y5202021 1.25x 1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元?18.(8分)(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2022•安徽)已知AB为⊙O的直径,C为⊙O上一点,D为BA的延长线上一点,连接CD.(1)如图1,若CO⊥AB,∠D=30°,OA=1,求AD的长;(2)如图2,若DC与⊙O相切,E为OA上一点,且∠ACD=∠ACE.求证:CE ⊥AB.20.(10分)(2022•安徽)如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37°方向上,沿正东方向行走90米至观测点D,测得A在D的正北方向,B在D的北偏西53°方向上.求A,B两点间的距离.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.六、(本题满分12分)21.(12分)(2022•安徽)第24届冬奥会于2022年2月20日在北京胜利闭幕.某校七、八年级各有500名学生,为了解这两个年级学生对本次冬奥会的关注程度,现从这两个年级各随机抽取n名学生进行冬奥会知识测试,将测试成绩按以下六组进行整理(得分用x表示):A:70≤x<75,B:75≤x<80,C:80≤x<85,D:85≤x<90,E:90≤x<95,F:95≤x≤100,并绘制七年级测试成绩频数分布直方图和八年级测试成绩扇形统计图,部分信息如下:已知八年级测试成绩D组的全部数据如下:86,85,87,86,85,89,88.请根据以上信息,完成下列问题:(1)n=,a=;(2)八年级测试成绩的中位数是;(3)若测试成绩不低于90分,则认定该学生对冬奥会关注程度高.请估计该校七、八两个年级对冬奥会关注程度高的学生一共有多少人,并说明理由.七、(本题满分12分)22.(12分)(2022•安徽)已知四边形ABCD中,BC=CD,连接BD,过点C作BD 的垂线交AB于点E,连接DE.(1)如图1,若DE∥BC,求证:四边形BCDE是菱形;(2)如图2,连接AC,设BD,AC相交于点F,DE垂直平分线段AC.(ⅰ)求∠CED的大小;(ⅱ)若AF=AE,求证:BE=CF.八、(本题满分14分)23.(14分)(2022•安徽)如图1,隧道截面由抛物线的一部分AED和矩形ABCD 构成,矩形的一边BC为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.(1)求此抛物线对应的函数表达式;(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点P1,P4在x轴上,MN与矩形P1P2P3P4的一边平行且相等.栅栏总长l为图中粗线段P1P2,P2P3,P3P4,MN长度之和,请解决以下问题:(ⅰ)修建一个“”型栅栏,如图2,点P2,P3在抛物线AED上.设点P1的横坐标为m(0<m≤6),求栅栏总长l与m之间的函数表达式和l的最大值;(ⅱ)现修建一个总长为18的栅栏,有如图3所示的“”型和“”型两种设计方案,请你从中选择一种,求出该方案下矩形P1P2P3P4面积的最大值,及取最大值时点P1的横坐标的取值范围(P1在P4右侧).2022年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)(2022•安徽)下列为负数的是()A.|﹣2| B.C.0 D.﹣5【考点】非负数的性质:算术平方根;有理数;绝对值.【分析】根据实数的定义判断即可.【解答】解:A.|﹣2|=2,是正数,故本选项不合题意;B.是正数,故本选项不合题意;C.0既不是正数,也不是负数,故本选项不合题意;D.﹣5是负数,故本选项符合题意.故选:D.【点评】本题考查了有理数,绝对值以及算术平方根,掌握负数的定义是解答本题的关键.2.(4分)(2022•安徽)据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为()A.3.4×108B.0.34×108C.3.4×107D.34×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:3400万=34000000=3.4×107.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.3.(4分)(2022•安徽)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】找到从上面看所得到的图形即可,注意看见的棱用实线表示.【解答】解:从上面看,是一个矩形.故选:A.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.(4分)(2022•安徽)下列各式中,计算结果等于a9的是()A.a3+a6B.a3•a6C.a10﹣a D.a18÷a2【考点】同底数幂的除法;整式的加减;同底数幂的乘法.【分析】A.应用整式加减法则进行求解即可得出答案;B.应用同底数幂乘法法则进行求解即可得出答案;C.应用整式加减法则进行求解即可出答案;D.应用同底数幂除法法则进行求解即可出答案.【解答】解:A.因为a2与a6不是同类项,所以不能合并,故A选项不符合题意;B.因为a2•a6=a2+6=a8,所以B选项结果不等于a9,故B选项不符合题意;C.因为a10与a不是同类项,所以不能合并,故C选项不符合题意;D.因为a18÷a2=a9,所以D选项结果等于a9,故D选项符合题意.故选:D.【点评】本题主要考查了同底数幂乘除法,整式加减,熟练掌握同底数幂乘除法,整式加减运算法则进行求解是解决本题的关键.5.(4分)(2022•安徽)甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算,走得最快的是()A.甲B.乙C.丙D.丁【考点】函数的图象.【分析】当时间一样的时候,分别比较甲、乙和丙、丁的平均速度;当路程都是3千米的时候,比较甲、丁的平均速度即可得出答案.【解答】解:∵30分钟甲比乙步行的路程多,50分钟丁比丙步行的路程多,∴甲的平均速度>乙的平均速度,丁的平均速度>丙的平均速度,∵步行3千米时,甲比丁用的时间少,∴甲的平均速度>丁的平均速度,∴走的最快的是甲,故选:A.【点评】本题考查了函数的图象,通过控制变量法比较平均速度的大小是解题的关键.6.(4分)(2022•安徽)两个矩形的位置如图所示,若∠1=α,则∠2=()A.α﹣90°B.α﹣45°C.180°﹣αD.270°﹣α【考点】矩形的性质.【分析】根据矩形的性质和三角形外角的性质,可以用含α的式子表示出∠2.【解答】解:由图可得,∠1=90°+∠3,∵∠1=α,∴∠3=α﹣90°,∵∠3+∠2=90°,∴∠2=90°﹣∠3=90°﹣(α﹣90°)=90°﹣α+90°=180°﹣α,故选:C.【点评】本题考查矩形的性质、三角形外角的性质,解答本题的关键是明确题意,用含α的代数式表示出∠2.7.(4分)(2022•安徽)已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若PA=4,PB=6,则OP=()A.B.4 C.D.5【考点】垂径定理;勾股定理.【分析】过点O作OC⊥AB于点C,连接OB,根据垂径定理可得AC=BC=5,所以PC=PB﹣BC=1,根据勾股定理即可解决问题.【解答】解:如图,过点O作OC⊥AB于点C,连接OB,则OB=7,∵PA=4,PB=6,∴AB=PA+PB=10,∵OC⊥AB,∴AC=BC=5,∴PC=PB﹣BC=1,在Rt△OBC中,根据勾股定理得:OC2=OB2﹣BC2=72﹣52=24,在Rt△OPC中,根据勾股定理得:OP===5,故选:D.【点评】本题考查了垂径定理,勾股定理,解决本题的关键是掌握垂径定理.8.(4分)(2022•安徽)随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“”进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小正方形和一个白色小正方形的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:画树状图如下:由树状图知,共有8种等可能结果,其中恰好是两个黑色小正方形和一个白色小正方形的有3种结果,所以恰好是两个黑色小正方形和一个白色小正方形的概率为,故选:B.【点评】本题主要考查列表法与树状图法求概率,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.9.(4分)(2022•安徽)在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】利用一次函数的性质进行判断.【解答】解:若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴;若a<0,则一次函数y=ax+a2是减函数,交y轴的正半轴,y=a2x+a是增函数,交y轴的负半轴,且两直线的交点的横坐标为1;故选:D.【点评】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.10.(4分)(2022•安徽)已知点O是边长为6的等边△ABC的中心,点P在△ABC 外,△ABC,△PAB,△PBC,△PCA的面积分别记为S0,S1,S2,S3.若S1+S2+S3=2S0,则线段OP长的最小值是()A.B.C.3D.【考点】勾股定理;等边三角形的性质.【分析】如图,不妨假设点P在AB的左侧,证明△PAB的面积是定值,过点P作AB的平行线PM,连接COM延长CO交AB于点RM,交PM于点T.因为△PAB的面积是定值,推出点P的运动轨迹是直线PM,求出OT的值,可得结论.【解答】解:如图,不妨假设点P在AB的左侧,∵S△PAB+S△ABC=S△PBC+S△PAC,∴S1+S0=S2+S3,∵S1+S2+S3=2S0,∴S1+S1+S0=2,∴S1=S0,∵△ABC是等边三角形,边长为6,∴S0=×62=9,∴S1=,过点P作AB的平行线PM,连接COM延长CO交AB于点RM,交PM于点T.∵△PAB的面积是定值,∴点P的运动轨迹是直线PM,∵O是△ABC的中心,∴CT⊥AB,CT⊥PM,∴•AB•RT=,CR=3,OR=,∴RT=,∴OT=OR+TR=,∵OP≥OT,∴OP的最小值为,故选:B.【点评】本题考查等边三角形的性质,解直角三角形,三角形的面积等知识,解题的关键是证明△PAB的面积是定值.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2022•安徽)不等式≥1的解集为x≥5 .【考点】解一元一次不等式组.【分析】先去分母、再移项即可.【解答】解:≥1,x﹣3≥2,x≥3+2,x≥5.故答案为:x≥5.【点评】本题考查的是解一元一次不等式,掌握解一元一次不等式是解答本题的关键.12.(5分)(2022•安徽)若一元二次方程2x2﹣4x+m=0有两个相等的实数根,则m= 2 .【考点】根的判别式.【分析】根据方程的系数结合根的判别式,即可得出Δ=16﹣8m=0,解之即可得出结论.【解答】解:∵一元二次方程2x2﹣4x+m=0有两个相等的实数根,∴Δ=16﹣8m=0,解得:m=2.故答案为:2.【点评】本题考查了根的判别式以及解一元一次方程,牢记“当Δ=0时,方程有两个相等实数根”是解题的关键.13.(5分)(2022•安徽)如图,▱OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数y=的图象经过点C,y=(k≠0)的图象经过点B.若OC=AC,则k= 3 .【考点】平行四边形的性质;反比例函数的图象.【分析】设出C点的坐标,根据C点的坐标得出B点的坐标,然后计算出k 值即可.【解答】解:由题知,反比例函数y=的图象经过点C,设C点坐标为(a,),作CH⊥OA于H,过A点作AG⊥BC于G,∵四边形OABC是平行四边形,OC=AC,∴OH=AH,CG=BG,四边形HAGC是矩形,∴OH=CG=BG=a,即B(3a,),∵y=(k≠0)的图象经过点B,∴k=3a•=3,故答案为:3.【点评】本题主要考查反比例函数的图象和性质,熟练掌握反比例函数的图象和性质,平行四边形的性质等知识是解题的关键.14.(5分)(2022•安徽)如图,四边形ABCD是正方形,点E在边AD上,△BEF 是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F 作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:(1)∠FDG=45 °;(2)若DE=1,DF=2,则MN=.【考点】正方形的性质;勾股定理;等腰直角三角形.【分析】(1)根据AAS证△ABE≌△GEF,得出EG=AB,GF=AE,推出DG=GF 即可得出∠FDG的度数;(2)由(1)的结论得出CD的长度,GF的长度,根据相似三角形的性质分别求出DM,NC的值即可得出MN的值.【解答】解:由题知,△BEF是以E为直角顶点的等腰直角三角形,∴∠AEB+∠GEF=90°,∵∠AEB+∠ABE=90°,∴∠GEF=∠ABE,在△ABE和△GEF中,,∴△ABE≌△GEF(AAS),∴EG=AB=AD,GF=AE,即DG+DE=AE+DE,∴DG=AE,∴DG=GF,即△DGF是等腰直角三角形,∴∠FDG=45°,故答案为:45°;(2)∵DE=1,DF=2,由(1)知,△DGF是等腰直角三角形,∴DG=GF=2,AB=AD=CD=ED+DG=2+1=3,延长GF和BC交于点H,∴CD∥GH,∴△EDM∽△EGF,∴,即,∴MD=,同理△BNC∽△BFH,∴,即,∴,∴NC=,∴MN=CD﹣MD﹣NC=3﹣﹣=,故答案为:.【点评】本题主要考查正方形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,熟练掌握这些基础知识是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2022•安徽)计算:()0﹣+(﹣2)2.【考点】零指数幂;有理数的乘方;算术平方根;实数的运算.【分析】应用零指数幂,算术平方根,有理数的乘方运算法则进行求解即可得出答案.【解答】解:原式=1﹣4+4=1.【点评】本题主要考查了零指数幂,算术平方根,有理数的乘方,熟练掌握零指数幂,算术平方根,有理数的乘方运算法则进行求解是解决本题的关键.16.(8分)(2022•安徽)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.【考点】作图﹣旋转变换;作图﹣平移变换.【分析】(1)根据平移的性质可得△A1B1C1;(2)根据旋转的性质可得△A2B2C2.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.【点评】本题主要考查了作图﹣平移变换,旋转变换,熟练掌握平移和旋转的性质是解题的关键.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2022•安徽)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:年份进口额/亿元出口额/亿元进出口总额/亿元2020 x y5202021 1.25x 1.3y 1.25x+1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元?【考点】二元一次方程组的应用;列代数式.【分析】(1)根据题意和表格中的数据,可以用含x、y的代数式表示出2021年进出口总额;(2)根据题意和题目中的数据,可以列出相应的方程组,然后求解即可.【解答】解:(1)由表格可得,2021年进出口总额为:1.25x+1.3y,故答案为:1.25x+1.3y;(2)由题意可得,,解得,答:2021年进口额是320亿元,出口额是200亿元.【点评】本题考查二元一次方程组的应用、列代数式,解答本题的关键是明确题意,找出等量关心,列出相应的方程组.18.(8分)(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:(2×5+1)2=(6×10+1)2﹣(6×8)2;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【考点】规律型:数字的变化类.【分析】(1)根据题目中等式的特点,可以写出第5个等式;(2)根据题目中等式的特点,可以写出猜想,然后将等式左边和右边展开,看是否相等,即可证明猜想.【解答】解:(1)因为第1个等式:(2×2+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×8)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×8)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.【点评】本题考查数字的变化类、列代数式,解答本题的关键是明确题意,发现式子的变化特点,写出相应的等式和猜想,并证明.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2022•安徽)已知AB为⊙O的直径,C为⊙O上一点,D为BA的延长线上一点,连接CD.(1)如图1,若CO⊥AB,∠D=30°,OA=1,求AD的长;(2)如图2,若DC与⊙O相切,E为OA上一点,且∠ACD=∠ACE.求证:CE ⊥AB.【考点】切线的性质;含30度角的直角三角形.【分析】(1)根据直角三角形的边角关系可求出OD,进而求出AD;(2)根据切线的性质可得OC⊥CD,再根据等腰三角形的性质可得∠OCA=∠OAC,由各个角之间的关系以及等量代换可得答案.【解答】解:(1)∵OA=1=OC,CO⊥AB,∠D=30°,∴OD=•OC=,∴AD=OD﹣OA=﹣1;(2)∵DC与⊙O相切,∴OC⊥CD,即∠ACD+∠OCA=90°,∵OA=OC,∴∠OCA=∠OAC,∵∠ACD=∠ACE,∴∠OAC+∠ACE=90°,∴∠AEC=90°,即CE⊥AB.【点评】本题考查切线的性质,直角三角形的边角关系以及等腰三角形的性质,掌握直角三角形的边角关系、等腰三角形的性质是解决问题的前提.20.(10分)(2022•安徽)如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37°方向上,沿正东方向行走90米至观测点D,测得A在D的正北方向,B在D的北偏西53°方向上.求A,B两点间的距离.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.【考点】解直角三角形的应用﹣方向角问题.【分析】由三角形内角和定理证得△CBD和△ABD是直角三角形,解直角三角形即可求出AB.【解答】解:∵CE∥AD,∴∠A=∠ECA=37°,∴∠CBD=∠A+∠ADB=37°+53°=90°,∴∠ABD=90°,在Rt△BCD中,∠BDC=90°﹣53°=37°,CD=90米,cos∠BDC=,∴BD=CD•cos∠37°≈90×0.80=72(米),在Rt△ABD中,∠A=37°,BD=72米,tan A=,∴AB=≈=96(米).答:A,B两点间的距离约96米.【点评】本题主要考查了解直角三角形的应用,证得△CBD和△ABD是直角三角形是解决问题的关键.六、(本题满分12分)21.(12分)(2022•安徽)第24届冬奥会于2022年2月20日在北京胜利闭幕.某校七、八年级各有500名学生,为了解这两个年级学生对本次冬奥会的关注程度,现从这两个年级各随机抽取n名学生进行冬奥会知识测试,将测试成绩按以下六组进行整理(得分用x表示):A:70≤x<75,B:75≤x<80,C:80≤x<85,D:85≤x<90,E:90≤x<95,F:95≤x≤100,并绘制七年级测试成绩频数分布直方图和八年级测试成绩扇形统计图,部分信息如下:已知八年级测试成绩D组的全部数据如下:86,85,87,86,85,89,88.请根据以上信息,完成下列问题:(1)n=20 ,a= 4 ;(2)八年级测试成绩的中位数是86.5 ;(3)若测试成绩不低于90分,则认定该学生对冬奥会关注程度高.请估计该校七、八两个年级对冬奥会关注程度高的学生一共有多少人,并说明理由.【考点】扇形统计图;中位数;用样本估计总体;频数(率)分布直方图.【分析】(1)根据八年级D组人数及其所占百分比即可得出n的值,用n的值分别减去其它各组的频数即可得出a的值.(2)根据中位数的定义解答即可.(3)用样本估计总体即可.【解答】解:(1)由题意得:n=7÷35%=20(人),故2a=20﹣1﹣2﹣3﹣6=8,解得a=4,故答案为:20;4;(2)把八年级测试成绩从小到大排列,排在中间的两个数分别为86,87,故中位数为=86.5,故答案为:86.5;(3)500×+500×(1﹣5%﹣5%﹣20%﹣35%)=100+175=275(人),故估计该校七、八两个年级对冬奥会关注程度高的学生一共有275人.【点评】本题考查频数分布直方图、扇形统计图、中位数、用样本估计总体等知识,解题的关键是利用数形结合的思想解答.七、(本题满分12分)22.(12分)(2022•安徽)已知四边形ABCD中,BC=CD,连接BD,过点C作BD 的垂线交AB于点E,连接DE.(1)如图1,若DE∥BC,求证:四边形BCDE是菱形;(2)如图2,连接AC,设BD,AC相交于点F,DE垂直平分线段AC.(ⅰ)求∠CED的大小;(ⅱ)若AF=AE,求证:BE=CF.【考点】四边形综合题.【分析】(1)利用AAS证明△DOE≌△BOC,得DE=BC,从而得出四边形BCDE 是平行四边形,再根据CD=CB,即可证明结论;(2)(i)根据线段垂直平分线的性质得,AE=EC,ED=EB,则∠AED=∠CED =∠BEC,再根据平角的定义,可得答案;(ii)利用AAS证明△ABF≌△ACE,可得AC=AB,由AE=AF,利用等式的性质,即可证明结论.【解答】(1)证明:∵CB=CD,CE⊥BD,∴DO=BO,∵DE∥BC,∴∠DEO=∠BCO,∵∠DOE=∠BOC,∴△DOE≌△BOC(AAS),∴DE=BC,∴四边形BCDE是平行四边形,∵CD=CB,∴平行四边形BCDE是菱形;(2)(i)解:∵DE垂直平分AC,∴AE=EC且DE⊥AC,∴∠AED=∠CED,又∵CD=CB且CE⊥BD,∴CE垂直平分DB,∴DE=BE,∴∠DEC=∠BEC,∴∠AED=∠CED=∠BEC,又∵∠AED+∠CED+∠BEC=180°,∴∠CED=;(ii)证明:由(i)得AE=EC,又∵∠AEC=∠AED+∠DEC=120°,∴∠ACE=30°,同理可得,在等腰△DEB中,∠EBD=30°,∴∠ACE=∠ABF=30°,在△ACE与△ABF中,,∴△ABF≌△ACE(AAS),∴AC=AB,又∵AE=AF,∴AB﹣AE=AC﹣AF,即BE=CF.【点评】本题是四边形综合题,主要考查了菱形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质等知识,熟练掌握线段垂直平分线的性质是解题的关键.八、(本题满分14分)23.(14分)(2022•安徽)如图1,隧道截面由抛物线的一部分AED和矩形ABCD 构成,矩形的一边BC为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.(1)求此抛物线对应的函数表达式;(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点P1,P4在x轴上,MN与矩形P1P2P3P4的一边平行且相等.栅栏总长l为图中粗线段P1P2,P2P3,P3P4,MN长度之和,请解决以下问题:(ⅰ)修建一个“”型栅栏,如图2,点P2,P3在抛物线AED上.设点P1的横坐标为m(0<m≤6),求栅栏总长l与m之间的函数表达式和l的最大值;(ⅱ)现修建一个总长为18的栅栏,有如图3所示的“”型和“”型两种设计方案,请你从中选择一种,求出该方案下矩形P1P2P3P4面积的最大值,及取最大值时点P1的横坐标的取值范围(P1在P4右侧).【考点】二次函数综合题.【分析】(1)通过分析A点坐标,利用待定系数法求函数解析式;(2)(ⅰ)结合矩形性质分析得出P2的坐标为(m,﹣m2+8),然后列出函数关系式,利用二次函数的性质分析最值;(ⅱ)设P2P1=n,分别表示出方案一和方案二的矩形面积,利用二次函数的性质分析最值,从而利用数形结合思想确定取值范围.【解答】解:(1)由题意可得:A(﹣6,2),D(6,2),又∵E(0,8)是抛物线的顶点,设抛物线对应的函数表达式为y=ax2+8,将A(﹣6,2)代入,(﹣6)2a+8=2,解得:a=﹣,∴抛物线对应的函数表达式为y=﹣x2+8;(2)(ⅰ)∵点P1的横坐标为m(0<m≤6),且四边形P1P2P3P4为矩形,点P2,P在抛物线AED上,3∴P2的坐标为(m,﹣m2+8),∴P1P2=P3P4=MN=﹣m2+8,P2P3=2m,∴l=3(﹣m2+8)+2m=﹣m2+2m+24=﹣(m﹣2)2+26,∵﹣<0,∴当m=2时,l有最大值为26,即栅栏总长l与m之间的函数表达式为l=﹣m2+2m+24,l的最大值为26;(ⅱ)方案一:设P2P1=n,则P2P3=18﹣3n,∴矩形P1P2P3P4面积为(18﹣3n)n=﹣3n2+18n=﹣3(n﹣3)2+27,∵﹣3<0,∴当n=3时,矩形面积有最大值为27,此时P2P1=3,P2P3=9,令﹣x2+8=3,解得:x=±,∴此时P1的横坐标的取值范围为﹣+9≤P1横坐标≤,方案二:设P2P1=n,则P2P3==9﹣n,∴矩形P1P2P3P4面积为(9﹣n)n=﹣n2+n=﹣(n﹣)2+,∵﹣1<0,∴当n=时,矩形面积有最大值为,此时P2P1=,P2P3=,令﹣x2+8=,解得:x=±,∴此时P1的横坐标的取值范围为﹣+≤P1横坐标≤.【点评】本题考查二次函数的应用,掌握待定系数法求函数解析式,准确识图,确定关键点的坐标,利用数形结合思想解题是关键.。
安徽省2020年中考数学试题(解析版)
2020年安徽省初中学业水平考试数学试题卷考生须知:1.本试卷满分120分,考试时间为120分钟.2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内.3.请按照题号顺序在答题卡各题目的区域内作答,超出答题区域的答案无效;在草稿纸上、试题纸上答案无效.4.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.5.保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀.一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.下列各数中比2-小的数是( )A. 3-B. 1-C. 0D. 2【答案】A【解析】【分析】先根据正数都大于0,负数都小于0,可排除C 、D ,再根据两个负数,绝对值大的反而小,可得比-2小的数是-3.【详解】∵|-3|=3,|-1|=1,又0<1<2<3,∴-3<-2,所以,所给出的四个数中比-2小的数是-3,故选:A【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.2.计算()63a a -÷的结果是( )A. 3a -B. 2a -C. 3aD. 2a 【答案】C【解析】【分析】先处理符号,化为同底数幂的除法,再计算即可.【详解】解:()63a a -÷ 63a a =÷3.a =故选C .【点睛】本题考查的是乘方符号的处理,考查同底数幂的除法运算,掌握以上知识是解题的关键. 3.下列四个几何体中,主视图为三角形的是 A. B. C. D.【答案】A【解析】试题分析:主视图是从物体正面看,所得到的图形.A 、圆锥的主视图是三角形,符合题意;B 、球的主视图是圆,不符合题意;C 、圆柱的主视图是长方形,不符合题意;D 、正方体的主视图是正方形,不符合题意.故选A .考点: 简单几何体的三视图.4.安徽省计划到2022年建成54 700 000亩高标准农田,其中54 700 000用科学记数法表示为()A. 0.547B. 80.54710⨯C. 554710⨯D. 75.4710⨯【答案】D【解析】【分析】根据科学记数法的表示方法对数值进行表示即可.【详解】解:54700000=5.47×107,故选:D .【点睛】本题考查了科学记数法,掌握科学记数法的表示方法是解题关键.5.下列方程中,有两个相等实数根的是( )A. 212x x +=B. 21=0x +C. 223x x -=D. 220x x -=【答案】A【解析】【分析】根据根的判别式逐一判断即可.【详解】A.212x x +=变形为2210x x -+=,此时△=4-4=0,此方程有两个相等的实数根,故选项A 正确;B.21=0x +中△=0-4=-4<0,此时方程无实数根,故选项B 错误;C.223x x -=整理为2230x x --=,此时△=4+12=16>0,此方程有两个不相等的实数根,故此选项错误;D.220x x -=中,△=4>0,此方程有两个不相等的实数根,故选项D 错误.故选:A.【点睛】本题主要考查根的判别式,熟练掌握根的情况与判别式间的关系是解题的关键.6.冉冉的妈妈在网上销售装饰品.最近一周, 每天销售某种装饰品的个数为:11,10,11,13,11,1315,.关于这组数据,冉冉得出如下结果,其中错误的是( )A. 众数是11B. 平均数是12C. 方差是187D. 中位数是13 【答案】D【解析】【分析】分别根据众数、平均数、方差、中位数的定义判断即可.【详解】将这组数据从小到大的顺序排列:10,11,11,11,13,13,15,A .这组数据的众数为11,此选项正确,不符合题意;B .这组数据的平均数为(10+11+11+11+13+13+15)÷7=12,此选项正确,不符合题意;C .这组数据的方差为22221(1012)(1112)3(1312)2(1512)7⎡⎤-+-⨯+-⨯+-⎣⎦=187,此选项正确,不符合题意;D .这组数据的中位数为11,此选项错误,符合题意,故选:D .【点睛】本题考查了众数、平均数、方差、中位数,熟练掌握他们的意义和计算方法是解答的关键. 7.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A. ()1,2-B. ()1,2-C. ()2,3D. ()3,4 【答案】B【解析】【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可.【详解】∵一次函数3y kx =+的函数值y 随x 的增大而减小,∴k ﹤0,A .当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C .当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意, 故选:B .【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.8.如图,Rt ABC 中,90C ∠=︒ ,点D 在AC 上,DBC A ∠=∠.若44,5AC cosA ==,则BD 的长度为( )A. 94B. 125C. 154D. 4 【答案】C【解析】【分析】先根据445AC cosA ==,,求出AB=5,再根据勾股定理求出BC=3,然后根据DBC A ∠=∠,即可得cos ∠DBC=cosA=45,即可求出BD . 【详解】∵∠C=90°, ∴cos =AC A AB, ∵445AC cosA ==,, ∴AB=5,根据勾股定理可得22AB AC -, ∵DBC A ∠=∠,∴cos ∠DBC=cosA=45, ∴cos ∠DBC=BC BD =45,即3BD =45∴BD=154,故选:C .【点睛】本题考查了解直角三角形和勾股定理,求出BC 的长是解题关键.9.已知点,,A B C 在O 上.则下列命题为真命题的是( )A. 若半径OB 平分弦AC .则四边形OABC 是平行四边形B. 若四边形OABC 是平行四边形.则120ABC ∠=︒C. 若120ABC ∠=︒.则弦AC 平分半径OBD. 若弦AC 平分半径OB .则半径OB 平分弦AC【答案】B【解析】【分析】根据圆的有关性质、垂径定理及其推论、特殊平行四边形的判定与性质依次对各项判断即可.【详解】A .∵半径OB 平分弦AC ,∴OB ⊥AC ,AB=BC ,不能判断四边形OABC 是平行四边形,假命题; B .∵四边形OABC 是平行四边形,且OA=OC, ∴四边形OABC 是菱形,∴OA=AB=OB ,OA ∥BC ,∴△OAB 是等边三角形,∴∠OAB=60º,∴∠ABC=120º,真命题; C .∵120ABC ∠=︒,∴∠AOC=120º,不能判断出弦AC 平分半径OB , 假命题;D .只有当弦AC 垂直平分半径OB 时,半径OB 平分弦AC ,所以是 假命题,故选:B .【点睛】本题主要考查命题与证明,涉及垂径定理及其推论、菱形的判定与性质、等边三角形的判定与性质等知识,解答的关键是会利用所学的知识进行推理证明命题的真假. 10.如图ABC 和DEF 都是边长为2的等边三角形,它们的边,BC EF 在同一条直线l 上,点C ,E 重合,现将ABC ∆沿着直线l 向右移动,直至点B 与F 重合时停止移动.在此过程中,设点移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图像大致为( )A. B.C. D.【答案】A【解析】【分析】根据图象可得出重叠部分三角形的边长为x,3x,由此得出面积y是x的二次函数,直到重合面积固定,再往右移动重叠部分的边长变为(4-x),同时可得【详解】C点移动到F点,重叠部分三角形的边长为x,由于是等边三角形,则高为32x,面积为y=x·32x·1223,B点移动到F点,重叠部分三角形的边长为(4-x),34x,面积为y=(4-x)·34x·12)234x-,两个三角形重合时面积正好为3由二次函数图象的性质可判断答案为A,故选A.【点睛】本题考查三角形运动面积和二次函数图像性质,关键在于通过三角形面积公式结合二次函数图形得出结论.二、填空题(本大题共4小题,每小题5分,满分20分)11.91=______.【答案】2【解析】 【分析】根据算术平方根的性质即可求解.【详解】91-=3-1=2.故填:2. 【点睛】此题主要考查实数的运算,解题的关键是熟知算术平方根的性质. 12.分解因式:2ab a -=______.【答案】a (b +1)(b ﹣1).【解析】【详解】解:原式=2(1)a b -=a (b +1)(b ﹣1), 故答案为a (b +1)(b ﹣1).13.如图,一次函数()0y x k k =+>的图象与x 轴和y 轴分别交于点A 和点B 与反比例函数k y x =上的图象在第一象限内交于点,C CD x ⊥轴,CE y ⊥轴,垂足分别为点,D E ,当矩形ODCE 与OAB ∆的面积相等时,k 的值为__________.【答案】2【解析】【分析】根据题意由反比例函数k 的几何意义得:,ODCE S k =矩形再求解,A B 的坐标及21,2ABO S k =建立方程求解即可.【详解】解: 矩形ODCE ,C 在k y x=上, ,ODCE S k ∴=矩形把0x =代入:,y x k =+,y k ∴=()0,,B k ∴把0y =代入:,y x k =+,x k ∴=-(),0,A k ∴-21,2ABO S k ∴= 由题意得:21,2k k = 解得:2,0k k ==(舍去)2.k ∴=故答案为:2.【点睛】本题考查的是一次函数与反比例函数的性质,掌握反比例函数中k 的几何意义,一次函数与坐标轴围成的三角形面积的计算是解题的关键.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处,折痕为AP ;再将,PCQ ADQ ∆∆分别沿,PQ AQ 折叠,此时点,C D 落在AP 上的同一点R 处.请完成下列探究:()1PAQ ∠的大小为__________︒;()2当四边形APCD 是平行四边形时AB QR的值为__________.【答案】 (1). 30 (2).3【解析】【分析】 (1)根据折叠得到∠D+∠C=180°,推出AD ∥BC ,,进而得到∠AQP=90°,以及∠A=180°-∠B=90°,再由折叠,得到∠DAQ=∠BAP=∠PAQ=30°即可;(2)根据题意得到DC ∥AP ,从而证明∠APQ=∠PQR ,得到QR=PR 和QR=AR ,结合(1)中结论,设QR=a ,则AP=2a ,由勾股定理表达出223AP QP a -=即可解答.【详解】解:(1)由题意可知,∠D+∠C=180°,∴AD ∥BC ,由折叠可知∠AQD=∠AQR ,∠CQP=∠PQR ,∴∠AQR+∠PQR=1()902DQR CQR ∠+∠=︒,即∠AQP=90°, ∴∠B=90°,则∠A=180°-∠B=90°,由折叠可知,∠DAQ=∠BAP=∠PAQ ,∴∠DAQ=∠BAP=∠PAQ=30°,故答案为:30;(2)若四边形APCD 为平行四边形,则DC ∥AP ,∴∠CQP=∠APQ ,由折叠可知:∠CQP=∠PQR ,∴∠APQ=∠PQR ,∴QR=PR ,同理可得:QR=AR ,即R 为AP 的中点,由(1)可知,∠AQP=90°,∠PAQ=30°,且AB=AQ ,设QR=a ,则AP=2a ,∴QP=12AP a =,∴=,∴AB QR a==【点睛】本题考查了四边形中的折叠问题,涉及了平行四边形的性质,勾股定理等知识点,解题的关键是读懂题意,熟悉折叠的性质.三、解答题15.解不等式:2112x -> 【答案】32x >【解析】【分析】根据解不等式的方法求解即可. 【详解】解:2112x -> 212x ->23x >32x >. 【点睛】此题主要考查不等式的求解,解题的关键是熟知其解法.16.如图1,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段,M N 在网格线上,()1画出线段AB 关于线段MN 所在直线对称的线段11A B (点11A B 分别为,A B 的对应点);()2将线段11B A ,绕点1B ,顺时针旋转90︒得到线段12B A ,画出线段12B A .【答案】(1)见解析;(2)见解析.【解析】【分析】(1)先找出A ,B 两点关于MN 对称的点A 1,B 1,然后连接A 1B 1即可;(2)根据旋转的定义作图可得线段B 1A 2.【详解】(1)如图所示,11A B 即为所作;(2)如图所示,12B A 即为所作.【点睛】本题主要考查作图-旋转与轴对称,解题的关键是掌握旋转变换和轴对称的定义与性质.四、解答题17.观察以下等式:第1个等式:12112311⎛⎫⨯+=- ⎪⎝⎭ 第2个等式:32112422⎛⎫⨯+=- ⎪⎝⎭第3个等式:52112533⎛⎫⨯+=- ⎪⎝⎭ 第4个等式:72112644⎛⎫⨯+=- ⎪⎝⎭ 第5个等式:92112755⎛⎫⨯+=- ⎪⎝⎭ ······按照以上规律.解决下列问题:()1写出第6个等式____________;()2写出你猜想的第n 个等式: (用含n 的等式表示),并证明.【答案】(1)112112866⎛⎫⨯+=- ⎪⎝⎭;(2)2121122n n n n-⎛⎫⨯+=- ⎪+⎝⎭,证明见解析. 【解析】 【分析】(1)根据前五个个式子的规律写出第六个式子即可;(2)观察各个式子之间的规律,然后作出总结,再根据等式两边相等作出证明即可.【详解】(1)由前五个式子可推出第6个等式为:112112866⎛⎫⨯+=- ⎪⎝⎭; (2)2121122n n n n-⎛⎫⨯+=- ⎪+⎝⎭, 证明:∵左边=2122122111222n n n n n n n n n n--+-⎛⎫⨯+=⨯==- ⎪++⎝⎭=右边, ∴等式成立.【点睛】本题是规律探究题,解答过程中,要注意各式中相同位置数字的变化规律,并将其用代数式表示出来.18.如图,山顶上有一个信号塔AC ,已知信号塔高15AC =米,在山脚下点B 处测得塔底C 的仰角36.9CBD ∠=︒,塔顶A 的仰角42ABD ∠=︒.求山高CD (点,,A C D 在同一条竖直线上).(参考数据:36.90.75, 36.90.60, 42.00.90tan sin tan ︒≈︒≈︒≈ )【答案】75米【解析】【分析】设山高CD=x米,先在Rt△BCD中利用三角函数用含x的代数式表示出BD,再在Rt△ABD中,利用三角函数用含x的代数式表示出AD,然后可得关于x的方程,解方程即得结果.【详解】解:设山高CD=x米,则在Rt△BCD中,tanCDCBDBD∠=,即tan36.9xBD︒=,∴4tan36.90.753x xBD x=≈=︒,在Rt△ABD中,tanADABDBD∠=,即tan4243ADx︒=,∴44tan420.9 1.233AD x x x=⋅︒≈⋅=,∵AD-CD=15,∴1.2x-x=15,解得:x=75.∴山高CD=75米.【点睛】本题考查了解直角三角形的应用,属于常考题型,正确理解题意、熟练掌握三角函数的知识是解题的关键.五、解答题19.某超市有线上和线下两种销售方式.与2019年4月份相比.该超市2020年4月份销售总额增长10%,其中线上销售额增长43%.线下销售额增长4%,()1设2019年4月份的销售总额为a元.线上销售额为x元,请用含,a x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);()2求2020年4月份线上销售额与当月销售总额的比值.【答案】()1()1.04a x-;()21.5【解析】【分析】()1根据增长率的含义可得答案;()2由题意列方程()1.43 1.04 1.1,x a x a+-=求解x即可得到比值.【详解】解:()12020年线下销售额为()1.04a x-元,故答案为:()1.04a x -.()2由题意得:()1.43 1.04 1.1,x a x a +-=0.390.06,x a ∴=2,13x a∴=∴ 2020年4月份线上销售额与当月销售总额的比值为:21.432113 1.3.1.1135aa ⨯=⨯= 答:2020年4月份线上销售额与当月销售总额的比值为:1.5【点睛】本题考查的列代数式及一元一次方程的应用,掌握列一元一次方程解决应用题是解题的关键. 20.如图,AB 是半圆O 的直径,,C D 是半圆O 上不同于,A B 的两点,AD BC AC =与BD 相交于点,F BE 是半圆O 所任圆的切线,与AC 的延长线相交于点E ,()1求证:CBA DAB ∆∆≌;()2若,BE BF =求AC 平分DAB ∠.【答案】()1证明见解析;()2证明见解析. 【解析】 【分析】()1利用,AD BC =证明,ABD BAC ∠=∠利用AB直径,证明90,ADB BCA ∠=∠=︒结合已知条件可得结论;()2利用等腰三角形的性质证明:,EBC FBC ∠=∠ 再证明,CBF DAF ∠=∠ 利用切线的性质与直径所对的圆周角是直角证明:,EBC CAB ∠=∠ 从而可得答案. 【详解】()1证明:,AD BC =,AD BC ∴= ,ABD BAC ∴∠=∠AB 为直径,90,ADB BCA ∴∠=∠=︒ ,AB BA = CBA DAB ∴≌.()2证明:,90,BE BF ACB =∠=︒,FBC EBC ∴∠=∠90,,ADC ACB DFA CFB ∠=∠=︒∠=∠ ,DAF FBC EBC ∴∠=∠=∠BE 为半圆O 的切线,90,90,ABE ABC EBC ∴∠=︒∠+∠=︒90,ACB ∠=︒90,CAB ABC ∴∠+∠=︒ ,CAB EBC ∴∠=∠ ,DAF CAB ∴∠=∠AC ∴平分DAB ∠.【点睛】本题考查的是圆的基本性质,弧,弦,圆心角,圆周角之间的关系,直径所对的圆周角是直角,三角形的全等的判定,切线的性质定理,三角形的内角和定理,掌握以上知识是解题的关键.六、解答题21.某单位食堂为全体名职工提供了,,,A B C D 四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查,根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:()1在抽取的240人中最喜欢A 套餐的人数为 ,扇形统计图中“C ”对应扇形的圆心角的大小为 ;()2依据本次调查的结果,估计全体960名职工中最喜欢B 套餐的人数;()3现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【答案】(1)60,108°;(2)336;(3)12【解析】 【分析】(1)用最喜欢A 套餐的人数对应的百分比乘以总人数即可,先求出最喜欢C 套餐的人数,然后用最喜欢C 套餐的人数占总人数的比值乘以360°即可求出答案;(2)先求出最喜欢B 套餐的人数对应的百分比,然后乘以960即可;(3)用列举法列出所有等可能的情况,然后找出甲被选到的情况即可求出概率. 【详解】(1)最喜欢A 套餐的人数=25%×240=60(人), 最喜欢C 套餐的人数=240-60-84-24=72(人), 扇形统计图中“C ”对应扇形的圆心角为:360°×72240=108°, 故答案为:60,108°;(2)最喜欢B 套餐的人数对应的百分比为:84240×100%=35%, 估计全体960名职工中最喜欢B 套餐的人数为:960×35%=336(人);(3)由题意可得,从甲、乙、丙、丁四名职工中任选两人,总共有6种不同的结果,每种结果发生的可能性相同,列举如下:甲乙,甲丙,甲丁,乙丙,乙丁,丙丁, 其中甲被选到的情况有甲乙,甲丙,甲丁3种, 故所求概率P=36=12. 【点睛】本题考查了条形统计图和扇形统计图,用样本估计总体,用列举法求概率,由图表获取正确的信息是解题关键.七、解答题22.在平而直角坐标系中,已知点()()()1,2.2,3.2,1A B C ,直线y x m =+经过点A .抛物线21y ax bx =++恰好经过,,A B C 三点中的两点.()1判断点B 是否在直线y x m =+上.并说明理由; ()2求,a b 的值;()3平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y 轴交点纵坐标的最大值.【答案】(1)点B 在直线y x m =+上,理由见详解;(2)a=-1,b=2;(3)54【解析】 【分析】(1)先将A 代入y x m =+,求出直线解析式,然后将将B 代入看式子能否成立即可;(2)先跟抛物线21y ax bx =++与直线AB 都经过(0,1)点,且B ,C 两点的横坐标相同,判断出抛物线只能经过A ,C 两点,然后将A ,C 两点坐标代入21y ax bx =++得出关于a ,b 的二元一次方程组; (3)设平移后所得抛物线的对应表达式为y=-(x-h )2+k ,根据顶点在直线1yx 上,得出k=h+1,令x=0,得到平移后抛物线与y 轴交点的纵坐标为-h 2+h+1,在将式子配方即可求出最大值. 【详解】(1)点B 在直线y x m =+上,理由如下: 将A (1,2)代入y x m =+得21m =+, 解得m=1, ∴直线解析式为1y x ,将B (2,3)代入1yx ,式子成立,∴点B 在直线y x m =+上;(2)∵抛物线21y ax bx =++与直线AB 都经过(0,1)点,且B ,C 两点的横坐标相同, ∴抛物线只能经过A ,C 两点,将A ,C 两点坐标代入21y ax bx =++得124211a b a b ++=⎧⎨++=⎩,解得:a=-1,b=2;(3)设平移后所得抛物线的对应表达式为y=-(x-h )2+k , ∵顶点在直线1y x 上,∴k=h+1,令x=0,得到平移后抛物线与y 轴交点的纵坐标为-h 2+h+1, ∵-h 2+h+1=-(h-12)2+54, ∴当h=12时,此抛物线与y 轴交点的纵坐标取得最大值54. 【点睛】本题考查了求一次函数解析式,用待定系数法求二次函数解析式,二次函数的平移和求最值,求出两个函数的表达式是解题关键.八、解答题23.如图1.已知四边形ABCD 是矩形.点E 在BA 的延长线上.. AE AD EC =与BD 相交于点G ,与AD 相交于点,.F AF AB =()1求证:BD EC ⊥;()2若1AB =,求AE 的长;()3如图2,连接AG ,求证:2EG DG AG -=.【答案】(1)见解析;(2)152+;(3)见解析 【解析】 【分析】(1)由矩形的形及已知证得△EAF ≌△DAB ,则有∠E=∠ADB ,进而证得∠EGB=90º即可证得结论; (2)设AE=x ,利用矩形性质知AF ∥BC ,则有EA AFEB BC=,进而得到x 的方程,解之即可; (3)在EF 上截取EH=DG ,进而证明△EHA ≌△DGA ,得到∠EAH=∠DAG ,AH=AG ,则证得△HAG 为等腰直角三角形,即可得证结论. 【详解】(1)∵四边形ABCD 是矩形, ∴∠BAD=∠EAD=90º,AO=BC ,AD ∥BC , 在△EAF 和△DAB ,AE AD EAF DAB AF AB =⎧⎪∠=∠⎨⎪=⎩, ∴△EAF ≌△DAB(SAS), ∴∠E=∠BDA , ∵∠BDA+∠ABD=90º, ∴∠E+∠ABD=90º, ∴∠EGB=90º, ∴BG ⊥EC ;(2)设AE=x,则EB=1+x,BC=AD=AE=x,∵AF∥BC,∠E=∠E,∴△EAF∽△EBC,∴EA AFEB BC=,又AF=AB=1,∴11xx x=+即210x x--=,解得:152x+=,152x-=(舍去)即AE=15+;(3)在EG上截取EH=DG,连接AH,在△EAH和△DAG,AE ADHEA GDAEH DG=⎧⎪∠=∠⎨⎪=⎩,∴△EAH≌△DAG(SAS),∴∠EAH=∠DAG,AH=AG,∵∠EAH+∠DAH=90º,∴∠DAG+∠DAH=90º,∴∠EAG=90º,∴△GAH是等腰直角三角形,∴222AH AG GH+=即222AG GH=,∴GH=2AG,∵GH=EG-EH=EG-DG,∴2EG DG AG-=.【点睛】本题主要考查了矩形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、直角定义、相似三角形的判定与性质、解一元二次方程等知识,涉及知识面广,解答的关键是认真审题,提取相关信息,利用截长补短等解题方法确定解题思路,进而推理、探究、发现和计算.。
安徽省2020年中考数学试题(解析版)
【答案】75米
【解析】
【分析】
设山高CD=x米,先在Rt△BCD中利用三角函数用含x的代数式表示出BD,再在Rt△ABD中,利用三角函数用含x的代数式表示出AD,然后可得关于x的方程,解方程即得结果.
【详解】解:设山高CD=x米,则在Rt△BCD中, ,即 ,
∴ ,
在Rt△ABD中, ,即 ,
故选:B.
【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.
8.如图, 中, ,点 在 上, .若 ,则 的长度为()
A. B。 C。 D。
【答案】C
【解析】
【分析】
先根据 ,求出AB=5,再根据勾股定理求出BC=3,然后根据 ,即可得cos∠DBC=cosA= ,即可求出BD.
【详解】解: 矩形 , 在 上,
把 代入:
把 代入:
由题意得:
解得: (舍去)
故答案为:
【点睛】本题考查的是一次函数与反比例函数的性质,掌握反比例函数中 的几何意义,一次函数与坐标轴围成的三角形面积的计算是解题的关键.
14。在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片 沿过点 的直线折叠,使得点 落在 上的点 处,折痕为 ;再将 分别沿 折叠,此时点 落在 上的同一点 处.请完成下列探究:
∴四边形 是菱形,
∴OA=AB=OB,OA∥BC,
∴△OAB是等边三角形,
∴∠OAB=60º,
∴∠ABC=120º,
真命题;
C.∵ ,
∴∠AOC=120º,不能判断出弦 平分半径 ,
假命题;
D.只有当弦 垂直平分半径 时,半径 平分弦 ,所以是
假命题,
2022年安徽省中考数学真题(解析版)
【详解】(1)∵四边形ABCD是正方形,
∴∠A=90°,AB=AD,
∴∠ABE+∠AEB=90°,
∵FG⊥AG,
∴∠G=∠A=90°,
∵△BEF是等腰直角三角形,
(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:
年份
进口额/亿元
出口额/亿元
进出口总额/亿元
2020
x
y
520
2021
1.25x
1.3y
(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额度分别是多少亿元?
∴S平行四边形OCBA=4S△OCD=2,
∴S△OBA= ,
∴S△OBE=S△OBA+S△ABE= ,
∴ .
故答案为3.
【点睛】本题考查反比例函数k的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质,掌握反比例函数k的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质.
∴∠MFP=∠NFH,
∵∠MPF=∠NHF=90°,
∴△MPF∽△NHF,
∴ ,即 ,
∴NH= ,
∴MN=MH+NH= + = .
故填: .
【点睛】本题主要考查正方形的性质及判定以及相似三角形的性质和判定,熟知相关知识点并能熟练运用,正确添加辅助线是解题的关键.
三、(本大题共2小题,每小题8分,满分16分)
故选B.
【点睛】本题考查了等边三角形的性质,勾股定理,三角形的面积等知识,弄清题意,找到P点的位置是解题的关键.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.(4分)(2015•安徽)在﹣4,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣4 B.2C.﹣1 D.32.(4分)(2015•安徽)计算×的结果是()A.B.4C.D.23.(4分)(2015•安徽)移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B.1.62×106C.1.62×108D.0.162×1094.(4分)(2015•安徽)下列几何体中,俯视图是矩形的是()A. B. C. D.5.(4分)(2015•安徽)与1+最接近的整数是()A.4B.3C.2D.16.(4分)(2015•安徽)我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5 D.1.4(1+x)+1.4(1+x)2=4.57.(4分)(2015•安徽)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分)35 39 42 44 45 48 50人数(人) 2 5 6 6 8 7 6根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分8.(4分)(2015•安徽)在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A.∠ADE=20°B.∠ADE=30°C.∠ADE=∠ADCD.∠ADE=∠ADC9.(4分)(2015•安徽)如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2B.3C.5D.610.(4分)(2015•安徽)如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b ﹣1)x+c的图象可能是()二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2015•安徽)﹣64的立方根是.12.(5分)(2015•安徽)如图,点A、B、C在半径为9的⊙O上,的长为2π,则∠ACB的大小是.13.(5分)(2015•安徽)按一定规律排列的一列数:21,22,23,25,28,213,…,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是.14.(5分)(2015•安徽)已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则+=1;②若a=3,则b+c=9;③若a=b=c,则abc=0;④若a、b、c中只有两个数相等,则a+b+c=8.A.B.C.D.其中正确的是(把所有正确结论的序号都选上).三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2015•安徽)先化简,再求值:(+)•,其中a=﹣16.(8分)(2015•安徽)解不等式:>1﹣.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2015•安徽)如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.18.(8分)(2015•安徽)如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2015•安徽)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.20.(10分)(2015•安徽)在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图1,当PQ∥AB时,求PQ的长度;(2)如图2,当点P在BC上移动时,求PQ长的最大值.六、(本题满分12分)21.(12分)(2015•安徽)如图,已知反比例函数y=与一次函数y=k2x+b的图象交于点A(1,8)、B(﹣4,m).(1)求k1、k2、b的值;(2)求△AOB的面积;(3)若M(x1,y1)、N(x2,y2)是比例函数y=图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.七、(本题满分12分)22.(12分)(2015•安徽)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?八、(本题满分14分)23.(14分)(2015•安徽)如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)求证:AD=BC;(2)求证:△AGD∽△EGF;(3)如图2,若AD、BC所在直线互相垂直,求的值.2015年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.(4分)(2015•安徽)在﹣4,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣4 B.2C.﹣1 D.3考点:有理数大小比较.分析:根据有理数大小比较的法则直接求得结果,再判定正确选项.解答:解:∵正数和0大于负数,∴排除2和3.∵|﹣2|=2,|﹣1|=1,|﹣4|=4,∴4>2>1,即|﹣4|>|﹣2|>|﹣1|,∴﹣4<﹣2<﹣1.故选:A.点评:考查了有理数大小比较法则.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.2.(4分)(2015•安徽)计算×的结果是()A.B.4C.D.2考点:二次根式的乘除法.分析:直接利用二次根式的乘法运算法则求出即可.解答:解:×==4.故选:B.点评:此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.3.(4分)(2015•安徽)移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B.1.62×106C.1.62×108D.0.162×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1.62亿用科学记数法表示为1.62×108.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)(2015•安徽)下列几何体中,俯视图是矩形的是()A.B.C.D.考点:简单几何体的三视图.分析:根据简单和几何体的三视图判断方法,判断圆柱、圆锥、三棱柱、球的俯视图,即可解答.解答:解:A、俯视图为圆,故错误;B、俯视图为矩形,正确;C、俯视图为三角形,故错误;D、俯视图为圆,故错误;故选:B.点评:本题考查了几何体的三种视图,掌握定义是关键.5.(4分)(2015•安徽)与1+最接近的整数是()A.4B.3C.2D.1考点:估算无理数的大小.分析:由于4<5<9,由此根据算术平方根的概念可以找到5接近的两个完全平方数,再估算与1+最接近的整数即可求解.解答:解:∵4<5<9,∴2<<3.又5和4比较接近,∴最接近的整数是2,∴与1+最接近的整数是3,故选:B.点评:此题主要考查了无理数的估算能力,估算无理数的时候,“夹逼法”是估算的一般方法,也是常用方法.6.(4分)(2015•安徽)我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5 D.1.4(1+x)+1.4(1+x)2=4.5考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:根据题意可得等量关系:2013年的快递业务量×(1+增长率)2=2015年的快递业务量,根据等量关系列出方程即可.解答:解:设2014年与2013年这两年的平均增长率为x,由题意得:1.4(1+x)2=4.5,故选:C.点评:此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7.(4分)(2015•安徽)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分)35 39 42 44 45 48 50人数(人) 2 5 6 6 8 7 6根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分考点:众数;统计表;加权平均数;中位数.分析:结合表格根据众数、平均数、中位数的概念求解.解答:解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.425.故错误的为D.故选D.点评:本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.8.(4分)(2015•安徽)在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A.∠ADE=20°B.∠ADE=30°C.∠ADE=∠ADC D.∠ADE=∠ADC考点:多边形内角与外角;三角形内角和定理.分析:利用三角形的内角和为180°,四边形的内角和为360°,分别表示出∠A,∠B,∠C,根据∠A=∠B=∠C,得到∠ADE=∠EDC,因为∠ADC=∠ADE+∠EDC=∠EDC+∠EDC=∠EDC,所以∠ADC=∠ADC,即可解答.解答:解:如图,在△AED中,∠AED=60°,∴∠A=180°﹣∠AED﹣∠ADE=120°﹣∠ADE,在四边形DEBC中,∠DEB=180°﹣∠AED=180°﹣60°=120°,∴∠B=∠C=(360°﹣∠DEB﹣∠EDC)÷2=120°﹣∠EDC,∵∠A=∠B=∠C,∴120°﹣∠ADE=120°﹣∠EDC,∴∠ADE=∠EDC,∵∠ADC=∠ADE+∠EDC=∠EDC+∠EDC=∠EDC,∴∠ADE=∠ADC,故选:D.点评:本题考查了多边形的内角和,解决本题的关键是根据利用三角形的内角和为180°,四边形的内角和为360°,分别表示出∠A,∠B,∠C.9.(4分)(2015•安徽)如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2B.3C.5D.6考点:菱形的性质;矩形的性质.分析:连接EF交AC于O,由四边形EGFH是菱形,得到EF⊥AC,OE=OF,由于四边形ABCD是矩形,得到∠B=∠D=90°,AB∥CD,通过△CFO≌△AOE,得到AO=CO,求出AO=AC=2,根据△AOE∽△ABC,即可得到结果.解答:解;连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AOE,∴AO=CO,∵AC==4,∴AO=AC=2,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴,∴,∴AE=5.故选C.点评:本题考查了菱形的性质,全等三角形的判定和性质,相似三角形的判定和性质,熟练运用定理是解题的关键.10.(4分)(2015•安徽)如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b ﹣1)x+c的图象可能是()A.B.C.D.考点:二次函数的图象;正比例函数的图象.分析:由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b ﹣1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b﹣1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,即可进行判断.解答:解:∵一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,∴方程ax2+(b﹣1)x+c=0有两个不相等的根,∴函数y=ax2+(b﹣1)x+c与x轴有两个交点,∵方程ax2+(b﹣1)x+c=0的两个不相等的根x1>0,x2>0,∴x1+x2=﹣>0,∴﹣>0,∴函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,∵a>0,开口向上,∴A符合条件,故选A.点评:本题考查了二次函数的图象,直线和抛物线的交点,交点坐标和方程的关系以及方程和二次函数的关系等,熟练掌握二次函数的性质是解题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2015•安徽)﹣64的立方根是﹣4.考点:立方根.分析:根据立方根的定义求解即可.解答:解:∵(﹣4)3=﹣64,∴﹣64的立方根是﹣4.故选﹣4.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.12.(5分)(2015•安徽)如图,点A、B、C在半径为9的⊙O上,的长为2π,则∠ACB的大小是20°.考点:弧长的计算;圆周角定理.分析:连结OA、OB.先由的长为2π,利用弧长计算公式求出∠AOB=40°,再根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半得到∠ACB=∠AOB=20°.解答:解:连结OA、OB.设∠AOB=n°.∵的长为2π,∴=2π,∴n=40,∴∠AOB=40°,∴∠ACB=∠AOB=20°.故答案为20°.点评:本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),同时考查了圆周角定理.13.(5分)(2015•安徽)按一定规律排列的一列数:21,22,23,25,28,213,…,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是xy=z.考点:规律型:数字的变化类.分析:首项判断出这列数中,2的指数各项依次为1,2,3,5,8,13,…,从第三个数起,每个数都是前两数之和;然后根据同底数的幂相乘,底数不变,指数相加,可得这列数中的连续三个数,满足xy=z,据此解答即可.解答:解:∵21×22=23,22×23=25,23×25=28,25×28=213,…,∴x、y、z满足的关系式是:xy=z.故答案为:xy=z.点评:此题主要考查了探寻数列规律问题,考查了同底数幂的乘法法则,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出x、y、z的指数的特征.14.(5分)(2015•安徽)已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则+=1;②若a=3,则b+c=9;③若a=b=c,则abc=0;④若a、b、c中只有两个数相等,则a+b+c=8.其中正确的是①③④(把所有正确结论的序号都选上).考点:分式的混合运算;解一元一次方程.分析:按照字母满足的条件,逐一分析计算得出答案,进一步比较得出结论即可.解答:解:①∵a+b=ab≠0,∴+=1,此选项正确;②∵a=3,则3+b=3b,b=,c=,∴b+c=+=6,此选项错误;③∵a=b=c,则2a=a2=a,∴a=0,abc=0,此选项正确;④∵a、b、c中只有两个数相等,不妨a=b,则2a=a2,a=0,或a=2,a=0不合题意,a=2,则b=2,c=4,∴a+b+c=8,此选项正确.其中正确的是①③④.故答案为:①③④.点评:此题考查分式的混合运算,一元一次方程的运用,灵活利用题目中的已知条件,选择正确的方法解决问题.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2015•安徽)先化简,再求值:(+)•,其中a=﹣.考点:分式的化简求值.专题:计算题.分析:原式括号中第二项变形后,利用同分母分式的减法法则计算,约分得到最简结果,把a的值代入计算即可求出值.解答:解:原式=(﹣)•=•=,当a=﹣时,原式=﹣1.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16.(8分)(2015•安徽)解不等式:>1﹣.考点:解一元一次不等式.分析:先去分母,然后移项并合并同类项,最后系数化为1即可求出不等式的解集.解答:解:去分母,得2x>6﹣x+3,移项,得2x+x>6+3,合并,得3x>9,系数化为1,得x>3.点评:本题考查了一元一次不等式的解法,解答本题的关键是熟练掌握解不等式的方法步骤,此题比较简单.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2015•安徽)如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.考点:作图-轴对称变换;作图-平移变换.分析:(1)利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出平移后对应点位置进而得出答案.解答:解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.点评:此题主要考查了轴对称变换以及平移变换,根据图形的性质得出对应点位置是解题关键.18.(8分)(2015•安徽)如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).考点:解直角三角形的应用-仰角俯角问题.分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.解答:解:如图,过点B作BE⊥CD于点E,根据题意,∠DBE=45°,∠CBE=30°.∵AB⊥AC,CD⊥AC,∴四边形ABEC为矩形.∴CE=AB=12m.在Rt△CBE中,cot∠CBE=,∴BE=CE•cot30°=12×=12.在Rt△BDE中,由∠DBE=45°,得DE=BE=12.∴CD=CE+DE=12(+1)≈32.4.答:楼房CD的高度约为32.4m.点评:考查了解直角三角形的应用﹣仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2015•安徽)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.考点:列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次传球后,球恰在B手中的情况,再利用概率公式即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与三次传球后,球恰在A手中的情况,再利用概率公式即可求得答案.解答:解:(1)画树状图得:∵共有4种等可能的结果,两次传球后,球恰在B手中的只有1种情况,∴两次传球后,球恰在B手中的概率为:;(2)画树状图得:∵共有8种等可能的结果,三次传球后,球恰在A手中的有2种情况,∴三次传球后,球恰在A手中的概率为:=.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.20.(10分)(2015•安徽)在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图1,当PQ∥AB时,求PQ的长度;(2)如图2,当点P在BC上移动时,求PQ长的最大值.考点:圆周角定理;勾股定理;解直角三角形.专题:计算题.分析:(1)连结OQ,如图1,由PQ∥AB,OP⊥PQ得到OP⊥AB,在Rt△OBP中,利用正切定义可计算出OP=3tan30°=,然后在Rt△OPQ中利用勾股定理可计算出PQ=;(2)连结OQ,如图2,在Rt△OPQ中,根据勾股定理得到PQ=,则当OP的长最小时,PQ的长最大,根据垂线段最短得到OP⊥BC,则OP=OB=,所以PQ长的最大值=.解答:解:(1)连结OQ,如图1,∵PQ∥AB,OP⊥PQ,∴OP⊥AB,在Rt△OBP中,∵tan∠B=,∴OP=3tan30°=,在Rt△OPQ中,∵OP=,OQ=3,∴PQ==;(2)连结OQ,如图2,在Rt△OPQ中,PQ==,当OP的长最小时,PQ的长最大,此时OP⊥BC,则OP=OB=,∴PQ长的最大值为=.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了勾股定理和解直角三角形.六、(本题满分12分)21.(12分)(2015•安徽)如图,已知反比例函数y=与一次函数y=k2x+b的图象交于点A(1,8)、B(﹣4,m).(1)求k1、k2、b的值;(2)求△AOB的面积;(3)若M(x1,y1)、N(x2,y2)是比例函数y=图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.考点:反比例函数与一次函数的交点问题.分析:(1)先把A点坐标代入y=可求得k1=8,则可得到反比例函数解析式,再把B(﹣4,m)代入反比例函数求得m,得到B点坐标,然后利用待定系数法确定一次函数解析式即可求得结果;(2)由(1)知一次函数y=k2x+b的图象与y轴的交点坐标为(0,6),可求S△AOB=×6×2+×6×1=9;(3)根据反比例函数的性质即可得到结果.解答:解:(1)∵反比例函数y=与一次函数y=k2x+b的图象交于点A(1,8)、B(﹣4,m),∴k1=8,B(﹣4,﹣2),解,解得;(2)由(1)知一次函数y=k2x+b的图象与y轴的交点坐标为C(0,6),∴S△AOB=S△COB+S△AOC=×6×4+×6×1=15;(3)∵比例函数y=的图象位于一、三象限,∴在每个象限内,y随x的增大而减小,∵x1<x2,y1<y2,∴M,N在不同的象限,∴M(x1,y1)在第三象限,N(x2,y2)在第一象限.点评:本题考查了反比例函数与一次函数的交点问题,求三角形的面积,求函数的解析式,正确掌握反比例函数的性质是解题的关键.七、(本题满分12分)22.(12分)(2015•安徽)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?考点:二次函数的应用.专题:应用题.分析:(1)根据三个矩形面积相等,得到矩形AEFD面积是矩形BCFE面积的2倍,可得出AE=2BE,设BE=a,则有AE=2a,表示出a与2a,进而表示出y与x的关系式,并求出x的范围即可;(2)利用二次函数的性质求出y的最大值,以及此时x的值即可.解答:解:(1)∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BE=a,则AE=2a,∴8a+2x=80,∴a=﹣x+10,2a=﹣x+20,∴y=(﹣x+20)x+(﹣x+10)x=﹣x2+30x,∵a=﹣x+10>0,∴x<40,则y=﹣x2+30x(0<x<40);(2)∵y=﹣x2+30x=﹣(x﹣20)2+300(0<x<40),且二次项系数为﹣<0,∴当x=20时,y有最大值,最大值为300平方米.点评:此题考查了二次函数的应用,以及列代数式,熟练掌握二次函数的性质是解本题的关键.八、(本题满分14分)23.(14分)(2015•安徽)如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)求证:AD=BC;(2)求证:△AGD∽△EGF;(3)如图2,若AD、BC所在直线互相垂直,求的值.考点:相似形综合题.分析:(1)由线段垂直平分线的性质得出GA=GB,GD=GC,由SAS证明△AGD≌△BGC,得出对应边相等即可;(2)先证出∠AGB=∠DGC,由,证出△AGB∽△DGC,得出比例式,再证出∠AGD=∠EGF,即可得出△AGD∽△EGF;(3)延长AD交GB于点M,交BC的延长线于点H,则AH⊥BH,由△AGD≌△BGC,得出∠GAD=∠GBC,再求出∠AGE=∠AHB=90°,得出∠AGE=∠AGB=45°,求出,由△AGD∽△EGF,即可得出的值.解答:(1)证明:∵GE是AB的垂直平分线,∴GA=GB,同理:GD=GC,在△AGD和△BGC中,,∴△AGD≌△BGC(SAS),∴AD=BC;(2)证明:∵∠AGD=∠BGC,∴∠AGB=∠DGC,在△AGB和△DGC中,,∴△AGB∽△DGC,∴,又∵∠AGE=∠DGF,∴∠AGD=∠EGF,∴△AGD∽△EGF;(3)解:延长AD交GB于点M,交BC的延长线于点H,如图所示:则AH⊥BH,∵△AGD≌△BGC,∴∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,∴∠AGB=∠AHB=90°,∴∠AGE=∠AGB=45°,∴,又∵△AGD∽△EGF,∴==.点评:本题是相似形综合题目,考查了线段垂直平分线的性质、全等三角形的判定与性质、相似三角形的判定与性质、三角函数等知识;本题难度较大,综合性强,特别是(3)中,需要通过作辅助线综合运用(1)(2)的结论和三角函数才能得出结果.lk....................................................................xc....................................................................................................................................................................................。