数字图像处理(简单理解、例题解析、考点清晰)精品PPT课件

合集下载

数字图像处理课件ppt

数字图像处理课件ppt

06 数字图像处理的应用案例
人脸识别系统
总结词
人脸识别系统是数字图像处理技术的重要应 用之一,它利用计算机视觉和图像处理技术 识别人的面部特征,实现身份认证和安全监 控等功能。
详细描述
人脸识别系统通过采集输入的人脸图像,提 取出面部的各种特征,如眼睛、鼻子、嘴巴 等部位的形状、大小、位置等信息,并与预 先存储的人脸特征进行比对,从而判断出人 的身份。该系统广泛应用于门禁系统、安全
分类器设计
总结词
分类器设计是图像识别技术的核心,它通过训练分类器,使其能够根据提取的特征对图 像进行分类和识别。
详细描述
分类器设计通常采用机器学习算法,如支持向量机、神经网络和决策树等。这些算法通 过训练数据集进行学习,并生成分类器模型,用于对新的未知图像进行分类和识别。
模式识别
总结词
模式识别是图像识别技术的最终目标,它通 过分类器对提取的特征进行分类和识别,实 现对图像的智能理解和处理。
源调查和环境监测。
计算机视觉
为机器人和自动化系统提供视 觉感知能力,用于工业自动化
、自主导航等。
数字图像处理的基本流程
特征提取
从图像中提取感兴趣的区域、 边缘、纹理等特征,为后续分 类或识别提供依据。
图像表示与压缩
将图像转换为易于处理和分析 的表示形式,同时进行数据压 缩,减少存储和传输成本。
预处理
详细描述
模式识别在许多领域都有广泛应用,如人脸 识别、物体识别、车牌识别等。通过模式识 别技术,可以实现自动化监控、智能安防、 智能驾驶等应用。随着深度学习技术的发展 ,模式识别的准确率和鲁棒性得到了显著提 高。
05 数字图像处理中的常用算 法
傅里叶变换算法
傅里叶变换

数字图像处理精品PPT课件

数字图像处理精品PPT课件
被模糊。
G
x, y
e e
x2 y 22
2
r2 222 平滑来自设计离散高斯滤波器的方法:
T2, 2f x 1,y 1
1 引言
4)相关与卷积的物理含义
相关运算是将模板当权重矩阵作加权平均; 而卷积先沿纵轴翻转,再沿横轴翻转后再加
权平均。 如果模板是对称的,那么相关与卷积运算结
果完全相同。 邻域运算实际上就是卷积和相关运算,用信
号分析的观点就是滤波。
2 平滑
图像平滑的目的
100 101 918 927 1010 79 96 106 1203 935 892 67 87 121 817 924 871 72 86 133 99 103 85 75 92 99 111 102 78 74 95 102 121 111 112 73
86 102 84 100 88 98 92 90 97 91 90 88
数字图像处理
第七章 邻域运算
CH7 邻域运算
一、引言 二、平滑 三、中值滤波 四、边缘检测 五、细化 上机实习
1 引言
1)邻域运算
定义 输出图像中每个像素是由对应的输入像素及其一个 邻域内的像素共同决定时的图像运算。
通常邻域是远比图像尺寸小的一规则形状。如下面 情况中,一个点的邻域定义为以该点为中心的一个 圆内部或边界上点的集合。
fx,y T*f x,y
m1 i0
m1 j0
T
i
,
j
f
x
i
m 2
1
,
y
j
m 2
1
当m 3时
f x,y T0,0f x 1,y 1 T0,1f x 1,y
T0, 2f x 1,y 1 T1,0f x,y 1

《数字图像处理课件》

《数字图像处理课件》

视频增强
视频增强技术可以通过改善视频的亮度和对比度来提高视频的质量。
常见的图像滤波方法和应用
线性滤波
线性滤波技术可以通过改变像 素的亮度和颜色来改善图像的 质量。
图像增强
图像增强技术可以通过增强图 像的对比度和清晰度,使图像 更加清晰和鲜明。
降噪处理
降噪处理可以去除图像中的噪 声,提高图像的质量和可视性。
图像变换与增强技术
1
灰度变换
灰度变换可以通过改变图像的像素灰度级别来调整图像的对比度和亮度。
图像复原
图像复原可以通过去除图像中 的模糊和失真,使图像ቤተ መጻሕፍቲ ባይዱ复到 原始的清晰度和细节。
图像修复
图像修复可以恢复被损坏或丢 失的部分,使图像完整和连续。
视频图像处理的基本原理和算法
帧间压缩
帧间压缩方法通过比较连续的视频帧来减 小视频文件的大小。
运动估计
运动估计可以提取视频中物体的运动信息, 为视频图像处理提供基础。
数字图像处理课件
数字图像处理是一个广泛应用于医学影像、安全监控、航天测量等领域的重 要技术。本课件将全面介绍数字图像处理的概念、方法和应用,并展望其未 来发展趋势。
概述数字图像处理
应用范围广泛
数字图像处理在各行各业都有 广泛的应用,从个人摄影到自 动化生产都离不开它。
基于数学算法
数字图像处理使用数学算法对 图像进行处理和分析,帮助我 们理解和改善图像。
在医学领域中的应用
数字图像处理在医学领域中起 着至关重要的作用,如医学影 像的处理和分析。
图像的数字化表示和存储
像素
通过像素,图像被分割为不同的单元。
压缩技术
图像压缩技术可以减少图像文件的大小,节 省存储空间。

《数字图像处理基础》课件

《数字图像处理基础》课件

数字图像的表示与存 储方式
讨论数字图像的表示方法,包 括二进制表示、向量图像和光 栅图像等。
第三章:数字图像预处理
1
图像增强
2
探讨图像增强的方法和技术,如直方图
均衡化、增强对比度等。
3
图像边缘检测
4
介绍常用的边缘检测算法,如Sobel、滤波
解释图像滤波的概念和作用,介绍常用 的滤波器及其应用。
《数字图像处理基础》 PPT课件
数字图像处理基础PPT课件将帮助您深入了解数字图像处理的原理、方法和应 用。通过本课程,您将掌握数字图像处理领域的基本概念和技巧,为将来的 进一步学习和应用打下坚实的基础。
第一章:数字图像处理概述
数字图像处理介绍
了解数字图像处理的定义和基本原理,并掌握其在各个领域中的应用。
第五章:数字图像特征提取与识别
图像特征提取
介绍图像特征提取的目的和方 法,如灰度共生矩阵和尺度不 变特征变换(SIFT)。
模板匹配
解释模板匹配的原理和应用, 讨论常见的模板匹配算法。
目标检测
探讨目标检测的技术和方法, 如基于特征的方法和深度学习 方法。
第六章:数字图像处理算法优化
1
图像处理算法优化的意义
图像二值化
讲解图像二值化的原理和算法,介绍基 于阈值的二值化方法。
第四章:数字图像分割
图像分割概述
解释图像分割的概念和作用,并 探讨常见的图像分割方法。
基于边缘分割
介绍基于边缘检测的图像分割方 法,包括Canny边缘检测和Sobel 边缘检测。
基于区域分割
讨论基于区域的图像分割方法, 如区域生长和分水岭算法。
数字图像技术趋势
讨论数字图像处理技术的趋势,如增强现实和虚拟现实的发展。

《数字图像处理》课件

《数字图像处理》课件

数字图像处理的优势及应用前 景
数字图像处理能够提取、增强和分析图像中的信息,具有广泛的应用前景, 包括医学、遥感、安防、影视等领域。
主要应用领域
医学影像
数字图像处理在医学影像诊断中起到了关 键的作用,能够帮助医生更准确地诊断和 治疗疾病。
安防
数字图像处理在视频监控和图像识别中广 泛应用,能够提高安防系统的准确性和效 率。
遥感
遥感图像处理在土地利用、环境保护、气 象预测等方面发挥着重要的作用,能够提 供大量的地理信息。
影视
数字图像处理在电影、动画和游戏等领域 中起到了关键的作用,能够创造出逼真的 视觉效果。
《数字图像处理》PPT课 件
数字图像处理是应用数字计算机来获取、处理和展示图像的技术。它在医学 影像、遥感、安防、影视等领域都有广泛的应用。
背景介绍
随着计算机技术的发展,数字图像处理成为了一门重要的技术和学科,它能 够对图像进行增强、压缩、分割等处理,为人们带来了许多便利。
数字图像处理的定义
数字图像处理是使用计算机算法对数字图像进行各种操作和处理的过程,包 括图像增强、滤波、分割、特征提取等技术。
常见的数字图像处理方法
图像分割
图像压缩
将图像分成多个独立的区域, 用于目标检测和图像分析。
减少图像占用的存储空间, 提高传输速度和存储效率。
图像特征提取
从图像中提取出有用的特征 信息,用于分类和识别。
数字图像处理的未来发展方向
1 人工智能的应用
通过结合人工智能技术,使数字图像处理更加智能化和自动化。
2 虚拟现实与增强现实的结合
将数字图像处理技术与虚拟现实和增强现实相结合,创造出更逼真的虚拟体验。
3 社会影响与挑战随着数字图处理技术的发展,也带来了一些社会影响和挑战,需要加以关注和解决。

数字图像处理ppt课件

数字图像处理ppt课件

04
CATALOGUE
特征提取
颜色特征提取
颜色直方图
通过统计图像中不同颜色像素的数量 ,形成颜色直方图作为图像的颜色特 征。该方法简单、有效,适用于不同 光照和视角变化的场景。
颜色矩
利用图像颜色的分布信息,通过计算 一阶矩(均值)、二阶矩(方差)和 三阶矩(偏度)来表示颜色特征。该 方法对颜色突变和噪声不敏感。
数字图像处理 ppt课件
contents
目录
• 数字图像处理简介 • 图像增强 • 图像分割 • 特征提取 • 图像识别 • 数字图像处理的发展趋势与挑战
01
CATALOGUE
数字图像处理简介
数字图像处理定义
01
02
03
数字图像处理
使用计算机对图像进行加 工和分析,以满足各种应 用需求的技术。
纹理特征提取
灰度共生矩阵
通过分析图像中像素灰度值的空间依赖关系,形成共生矩阵,并从中提取出统 计特征,如对比度、能量和相关性等。该方法适用于描述图像的粗糙程度和方 向性。
小波变换
将图像分解成不同频率和方向的小波分量,通过分析小波系数的统计特性来提 取纹理特征。该方法能够有效地表示图像的细节信息和全局结构。
02
CATALOGUE
图像增强
对比度增强
提高图像的明暗对比度,使图像细 节更加清晰可见。
通过调整像素的亮度或对比度,使图 像的明暗区域更加明显,增强图像的 视觉效果。常用的方法包括直方图均 衡化、对比度拉伸等。
锐化处理
突出图像中的边缘和细节,增强图像的清晰度。
通过增强图像中的高频分量,突出显示图像中的边缘和细节,使图像看起来更加 清晰。常用的方法包括拉普拉斯算子、梯度算子等。

数字图像处理技术PPT课件.ppt

数字图像处理技术PPT课件.ppt

数字图像处理技术概述
数字图像处理又称为计算机图像处理,它是指将图像信 号转换成数字信号并利用计算机对其进行处理的过程。
这一过程包括对图像进行增强、除噪、分割、复原、编 码、压缩、提取特征等内容,图像处理技术的产生离不开计 算机的发展、数学的发展以及各个行业的应用需求的增长。 20世纪60年代,图像处理的技术开始得到较为科学的应用, 人们用这种技术进行输出图像的理想化处理。
第一章 图像处理技术概述
4
数字图像处理技术概述 数字图像处理技术特点
1.更好的再现性
数字图像处理与传统的模拟图 像处理相比,不会因为图像处理过 程中的存储、复制或传输等环节引 起图像质量的改变。
3.适用面宽
可以从各个途;径获得数据源, 从显微镜到天文望远镜的图像都可 以进行数字处理。
2.占用的频带更宽
这一点是相对于语言信息而 言的,图像信息比语言信息所占 频带要大好几个数量级,因此图 像信息在实现操作的过程中难度 更大。
4.具有较高的灵活性
只要可以用数学公式和数理 逻辑表达的内容;,几乎都可以用 电子图像来进行表现处理。
第一章 图像处理技术概述
5
过渡页
TRANSITION PAGE
01 图像处理技术概述 0022 图图像像处处理理技技术术发发展展现现状状 03 图像处理技术的利用
之后பைடு நூலகம்年
数字图像处理技术朝着更高深的方向发展,人们开始通过计算 机构建出数字化的人类视觉系统,这项技术被称为图像理解或 计算机视觉。
第二章 图像处理技术发展现状
7
2.2 我国数字图像处理技术的发展
我国在建国之初就展开了计算机技术的研究,而改革开 放以来,我国在计算机数字图像处理技术上的发展进步也是 非常大的,甚至在某些理论研究方面已赶上了世界先进水平。

(完整版)数字图像处理课件第二章PPT文档

(完整版)数字图像处理课件第二章PPT文档
位图和矢量图的比较(4)
➢位图修改麻烦,矢量图形修改随心所欲
位图的编辑受到限制。位图是像素的排列,局部移动 或改变会影响到其他部分的像素(包括前面讲的对图像进 行放大)。
虽然矢量图形的作画方式特别(如前述例子),但是 在修改方面却是比点位图更胜一筹。在矢量图形中,一 个图形对象的改变,不会影响其他图形对象。
位图难以重复使用,矢量图形可以随意重复使用 在漫画创作中,尤其在漫画故事创作中,若能重复使用一些图像元素,可以大大提高创作效率。
采样方式:有缝、无缝和重叠采样。
18
第二章 数字图像处理基础
量化过程
将各像素的明暗信息离散化,用数字表示像素 点信息称为图像的量化。
量化值一般用整数来表示。考虑人眼的识别能 力,目前非特殊用途的图像均为8bit量化,即 用0~255描述“黑~白”。
若连续灰度值用z来表示,对于满足 zi≤z≤zi+1的z值,都量化为整数qi。qi称为像 素的灰度值,z与qi的差称为量化误差。
19
第二章 数字图像处理基础
量化过程
ቤተ መጻሕፍቲ ባይዱ
Zi+ 1 Zi
Zi- 1
qi+ 1 qi- 1
连续 灰度值 灰度 标度
量 化 值 (整 数 值 ) 灰度 量化
(a)


2 55 2 54
1 28 1 27
1 0
量化为8 bit
(b)
20
第二章 数字图像处理基础
量化级数
每个像素量化后的灰度二进制位数为Q,一般Q总是 取为2的整数幂,即Q=2k。
31
第二章 数字图像处理基础 基本相同的一幅Corel Draw矢量图漫画。同样是要修改女
孩的腰部。很简单,选择修改工具,如图2拖拉一下腰部曲线 的节点就可以把腰部调细了,如图3。不满意,再调整一下即 可(这种调整修改不会影响到其他图形对象,可以随意修改)。

数字图像处理(简单理解、例题解析、考点清晰)ppt课件

数字图像处理(简单理解、例题解析、考点清晰)ppt课件

原灰度级分 布
原来像 素数
新灰度 级
新灰度级分布
原灰度 分布
0
790 s0’(790) 790/4096=0.19 0.19
1/7=0.14 1023 s1’(1023) 1023/4096=0.25 0.25
2/7=0.29 3/7=0.43
850 s2’(850) 850/4096=0.21 0.21
▪ 空间域平滑通过积分过程使得图像边缘模糊,图 像锐化通过微分而使图像边缘突出、清晰。
12
二、灰度变换
理论基础 ▪ 当观察直方图形态时,发现直方图的峰值偏向
亮度坐标轴左侧,则说明图像偏暗; ▪ 峰值偏向坐标轴右侧,则说明图像偏亮; ▪ 峰值提升过陡、过窄,说明图像的高密度值过
于集中。 ▪ 以上情况均是图像对比度较小,图像质量较差
的反映。
13
从直方图形态判断图像质量 14
三、直方图修整法
1.直方图均衡化
直方图均衡化是将原图像通过某种变换,得到一 幅灰度直方图为均匀分布的新图像的方法。
直方图均衡化方法的基本思想是对在图像中像素个 数多的灰度级进行展宽,而对像素个数少的灰度级进行缩 减。从而达到清晰图像的目的。
直方图均衡化
15
Ps(sk)
0.25 0.20 0.15 0.10 0.05
0
rk
0
sk
(a)原直方图
(b)均衡后的直方图
图像直方图均衡化
19
定义: 对一个滑动窗口内的诸像素灰度值排序,用中值代替
窗口中心像素的原来灰度值,因此它是一种非线性的图像 平滑法。
20
中值滤波 原理示例:
m-2
m-1
6
10

数字图像处理概述精选ppt课件

数字图像处理概述精选ppt课件
图像处理计算机:PC、工作站等 图像存储设备:磁盘、光盘、硬盘等 图像输出设备:显示器、打印机等
精选编辑ppt 26
第一章 数字图像处理概论
图像输入系统
图像处理与 分析系统
图像输出系统
图像存储系统
精选编辑ppt 27
第一章 数字图像处理概论
采集:x光透视成像仪、扫描仪、数码相机等 处理和分析:主要是利用计算机运算,还可
精选编辑ppt 65
第一章 数字图像处理概论
Anonymous
精选编辑ppt 3
第一章 数字图像处理概论
精选编辑ppt 4
第一章 数字图像处理概论
第一章 数字图像处理概论
• 图像的基本概念 • 数字图像的基本类型 • 数字图像处理系统 • 数字图像处理的发展及特点 • 数字图像处理的主要内容及应用 • 图像的统计特征
精选编辑ppt 5
第一章 数字图像处理概论
--图像复原和图像增强的研究和发展。
精选编辑ppt 43
第一章 数字图像处理概论
1964 年 : 美 国 喷 气 推 进 实 验 室 (JPL) 用计算机对“徘徊者七号”太空船发回 的大批月球照片进行处理。
精选编辑ppt 44
第一章 数字图像处理概论
精选编辑ppt
美国航天器传 送的第一张月 球照片,“旅 行者7号”卫 星1964年7月 31日9点09分 (东部白天时 间)在光线影 响月球表面17 分钟时摄取的 图像
1922年在信号两次穿 越大西洋后,从穿孔 精选编辑p纸pt 带得到的数字图像
41
第一章 数字图像处理概论
精选编辑ppt
1929年从伦敦 到纽约用15级 色调设备传送 的照片
42
第一章 数字图像处理概论

数字图像处理 PPT课件

数字图像处理 PPT课件
tt p : // ww w. xd u ph .co m
课程教学引导 • 教材选择 • 教学结构及主要重点 • 教学目的
目录
第一章 概 论 第二章 数字图像处理基础 第三章 VC++图像编程基础 第四章 图像增强与平滑 第五章 图像分割与边缘检测 第六章 图像的几何变换 第七章 频域处理 第八章 数学形态学及其应用 第九章 图像特征与理解 第十章 图像编码 第十一章 图像复原
应用实例(续)
无线电波成像 主要用途: ������ 医学(核磁共振成像)
������ 天文观测
应用实例(续)
其它成像模式 ������ 声波成像:
������ 地质勘探、工业、医学 ������ 电子显微镜
应用实例(续)
数字图像处理-绪论
基本概念 应用实例 研究目的 主要研究内容 本课程特点
当造成图像退化(图像品质下降)的原因已知时,
复原技术可以对图像进行校正。图像复原最关键的是对每
种退化都需要有一个合理的模型。
主要研究内容(续)
4、图像分割(Image Segmentation)
主要研究内容(续)
5、图像分析
图像处理应用的目标几乎均涉及到图像分析, 即 对图像中的不同对象进行分割、 特征提取和表示,从
1. 2. 3. 4. 5. 6. 7. 图像获取、表示与表现 ������图像增强 ������图像复原 ������图像分割 图像分析 ������图像重建 ������图像编码压缩 ……
主要研究内容(续)
1. 图像获取、表示和表现
该过程主要是把模拟图像信号转化为计算机所能 接受的数字形式,以及把数字图像显示和表现出来( 如打印)。这一过程主要包括摄取图像、 光电转换及 数字化等几个步骤。

数字图像处理课件ppt

数字图像处理课件ppt
几何变换
几何变换是对图像进行形状、大小、位置等变换的过程。常见的几何变换包括 平移、旋转、缩放、扭曲等。这些变换可以通过矩阵运算来实现。
空间滤波
空间滤波是在图像上应用滤波器来改变图像的像素值。常见的空间滤波包括均 值滤波、中值滤波、高斯滤波等。这些滤波器可以用于去除噪声、增强边缘等 操作。
数字图像处理算法
01
计算机视觉
实现机器视觉,进行目标检测、识 别、跟踪等任务。
安全监控
利用数字图像处理技术实现安全监 控,提高监控的准确性和效率。
03
02
医学影像分析
对医学影像进行各种处理,以辅助 医生进行疾病诊断和治疗。
遥感影像处理
对遥感影像进行各种处理和分析, 以提取有用的地理信息。
04
数字图像处理基础
02
知识
特定目标分割
采用特定目标检测和跟踪技术,实现特定目 标的分割。
数字图像处理实践
04
使用Python进行图像处理的基本步骤和常用库
01
02
03
04
05
安装Python和相 导入图像 关库
图像预处理
图像分析
结果可视化
为了使用Python进行图像 处理,需要先安装Python 解释器和相关的图像处理 库,如OpenCV、Pillow等 。
人脸识别
人脸识别是在人脸检测的基础上,对检测到的人脸进行特征提取和比对,从而识别出不同的人脸。人脸识别算法 通常采用深度学习模型,如卷积神经网络(CNN)或循环神经网络(RNN)。
车牌识别系统
车牌定位
车牌定位是车牌识别系统的第一步,其 目的是在给定的图像中找到车牌的位置 和大小。车牌定位算法通常采用基于颜 色和形状的方法,结合图像处理技术进 行实现。

数字图像处理(简单理解、例题解析、考点清晰)讲义PPT文档共51页

数字图像处理(简单理解、例题解析、考点清晰)讲义PPT文档共51页
数字图像处理(简单理解、例 题解析、考点清晰)讲义
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的倚靠在明眼的跛子肩上。——叔本华
谢谢!
51
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理复习课
▪ 填空题(20分) ▪ 判断题(10分) ▪ 问答题(20分) ▪ 计算题(35分) ▪ 编码题(15分)
第一章 导论
▪ 数字图像的分类: 按图像空间坐标和亮度的连续性可分为模拟
图像和数字图像 ▪ 图像处理的内容图像处理的内容:
根据抽象程度不同可分为三个层次:狭义图 像处理、图像分析和图像理解。
i
3 1 2 3 1 2 2 1 v7=5/64
二、直方图的性质
①灰度直方图只能反映图像的灰度分布情况,而不能反 映图像像素的位置,即丢失了像素的位置信息。
②一幅图像对应唯一的灰度直方图,反之不成立。不同 的图像可对应相同的直方图。
不同的图像具有相同直方图
③一幅图像分成多个区域,多个区域的直方图之和即为 原图像的直方图。
(a)原直方图
Ps(sk)
0.25 0.20 0.15 0.10 0.05
0
sk
(b)均衡后的直方图
图像直方图均衡化
定义:
对一个滑动窗口内的诸像素灰度值排序,用中值代替 窗口中心像素的原来灰度值,因此它是一种非线性的图像 平滑法。
中值滤波 原理示例:
m-2
m-1
6
10
m
m+1
62
5
数值排序
m
m+1
表示像素明暗程度的整数称为像素的灰度级 或灰度值或灰度 。
一幅数字图像中不同灰度级的个数称为灰度 级数,用G表示。
一般来说,G 2g ,g就是表示存储图像像素灰度值所 需的比特位数。
若一幅数字图像的量化灰度级数G=256=28级,灰度取 值范围一般是0~255的整数,由于用8bit就能表示灰度图像 像素的灰度值,因此常称8 bit 量化
第2章 DIP的基本概念
▪ 物体的色分为:有色物体和消色物体 ▪ 马赫带效应:指有一定反差的图像临界部位在视
觉上给人以特别白或特别黑的感觉。 ▪ 一幅图像可以被看做是空间上各点光强度的集合。
数字图像用矩阵表示。
采样行
采样列
像素 行间隔
采样间隔
经采样图像被分割成空间上离散的像素,但其灰 度是连续的,还不能用计算机进行处理。 将像素灰 度转换成离散的整数值的过程叫量化。
第三章 图像变换
▪ 傅里叶变换图像理解 图像的频率是表征图像中灰度变化剧烈程度的指
标,是灰度在平面空间上的梯度。 经过傅里叶变换后的图像,四角对应于低频成分,
中央部位对应于高频部分。
第四章 图像增强
▪ 点运算:指像素值通过运算改变之后,可以改善 图像的显示效果。是一种像素的逐点运算。
▪ 对比度增强、对比度拉伸或灰度变换都属于点运 算。它是图像数字化软件和图像显示软件的重要 组成部分。
的反映。
从直方图形态判断图像质量
三、直方图修整法
1.直方图均衡化
直方图均衡化是将原图像通过某种变换,得到一 幅灰度直方图为均匀分布的新图像的方法。
直方图均衡化方法的基本思想是对在图像中像素个 数多的灰度级进行展宽,而对像素个数少的灰度级进行缩 减。从而达到清晰图像的目的。
直方图均衡化
例.假设有一幅图像,共有64×64个像素,8个 灰度级,各灰度级概率分布见下表 ,试将其直
方图均匀化。
灰度级rk 0 1/7 2/7 3/7 4/7 5/7 6/7 1
像素数nk
790
102 3
850
656
329
245
122
81
概率 Pk(rk)
0.1 9
0.25
0.2 1
0.16
0.08
0.06
0.03
0.0 2
0
s0 T (r0 ) Pr (rj ) 0.19 j0
1
s1 T (r1) Pr (rj ) Pr (r0 ) Pr (r1) 0.19 0.25 0.44 j0
原灰度级分 布
原来像 素数
新灰度 级
新灰度级分布
原灰度 分布
0 1/7=0.14
790 s0’(79 790/4096=0.19 0.19
0)
1023 s1’(10231)023/4096=0.25 0.25
2/7=0.29 3/7=0.43
850 s2’(8 850/4096=0.21 0.21
656 50)
▪ 空间域平滑通过积分过程使得图像边缘模糊,图 像锐化通过微分而使图像边缘突出、清晰。
二、灰度变换
理论基础 ▪ 当观察直方图形态时,发现直方图的峰值偏向
亮度坐标轴左侧,则说明图像偏暗; ▪ 峰值偏向坐标轴右侧,则说明图像偏亮; ▪ 峰值提升过陡、过窄,说明图像的高密度值过
于集中。 ▪ 以上情况均是图像对比度较小,图像质量较差
m-2
2
5
6
m+2 8
2
6
m+2 8
m-1 10
0 1 3 2 1 3 2 1 v0=5/64
vi

0 5 7 6 2 5 6 7 v1=12/64
1 6 0 6 3 5 1 2 v2=18/64
2 6 7 5 3 6 5 0 v3=8/64
3 2 2 7 2 4 1 6 v4=1/64
22562760 12321212
v5=5/64 v6=8/64
由下面公式可以得到s2…..s7
sk
T (rk )
k j0
Pr (rj )
k j0
nj N
均衡化过程
原灰度级 变换函数值
r0=0
r1=1/7
r2=2/7 r3=3/7 r4=4/7 r5=5/7 r6=6/7 r7=1
ss00==TT((rr00))==00..1199
ss11==TT((rr11))==00..4444 s2s=2=TT(r(r2)2=)=00.6.655 s33=T(r33)=0.81 ss44==TT((rr44))==00..8899 s5=T(r5)=0.95 s66=T(r66)=0.98 s77=T(r77)=1.00
图像灰度直方图
一、概念
1、定义
灰度直方图反映的是一幅图像中各灰度级像素出现 的频率。以灰度级为横坐标,纵坐标为灰度级的频率, 绘制频率同灰度级的关系图就是灰度直方图。它是图像 的一个重要特征,反映了图像灰度分布的情况。
频率的计算式为
vi
ni n
2、计算
该图像像元总数为8*8=64, i=[0,7]
0.16
4/7=0.57 5/7=0.71 6/7=0.86
1.00
329 s3’(9859)85/4096=0.24 0.08
245
0.06
122 s4’(448) 448/4096=0.11 0.03
81
0.02
直方图均衡化结果
Pk(rk) 0.25 0.20 0.15 0.10 0.05
0
rk
相关文档
最新文档