七年级数学下册第六章实数测试题及答案

合集下载

第6章 实数 人教版数学七年级下册单元测试(含答案)

第6章 实数 人教版数学七年级下册单元测试(含答案)

第六章实数达标检测一、单选题:1.在实数,,,,,3.212212221…中,无理数的个数是()个.A.1B.2C.3D.4【答案】D【分析】无理数常见的三种类型(1)开不尽的方根;(2)特定结构的无限不循环小数;(3)含有π的绝大部分数,如2π.【详解】−1.414是有限小数,是有理数,是无理数,π是无理数,无限循环小数是有理数,是无理数,3.212212221…是无限不循环小数是无理数,故选:D.【点睛】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.2.下列各式中,正确的是( )A.B.C.D.【答案】A【分析】根据立方根,算术平方根逐项判断即可.【详解】解:A. ,故该选项正确;B. ,故该选项错误;C. ,故该选项错误;D. ,故该选项错误.故选:A.【点睛】本题考查立方根,算术平方根,解题关键是理解立方根与算术平方根的意义.3.下列说法正确的是()A.平方根是B.的平方根是C.平方根等于它本身的数是1和0D.一定是正数【答案】D【分析】A、根据平方根的概念即可得到答案;B、的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出,再利用算术平方根的性质直接得到答案.【详解】A、是负数,负数没有平方根,不符合题意;B、,9的平方根是,不符合题意;C、平方根等于它本身的数是0,1的平方根是,不符合题意;D、,正数的算术平方根大于0,符合题意.故选:D.【点睛】此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.4.下列关于的说法中,错误的是()A.是无理数B.C.5的平方根是D.【答案】C【分析】根据无理数的定义,算术平方根的估算,平方根和化简绝对值依次判断即可.【详解】解:A、是无理数,说法正确,不符合题意;B、2<<3,说法正确,不符合题意;C、5的平方根是±,故原题说法错误,符合题意;D、,说法正确, 不符合题意;故选C.【点睛】本题考查了平方根、算术平方根的估算,无理数的定义.注意一个正数的平方根有两个,它们互为相反数.5.计算:-+-的结果是( )A.1B.-1C.5D.-3【答案】D【分析】首先求出各个根式的值,进而即可求解.【详解】-+-,=-3+2-2,=-3.故选D.【点睛】此题主要考查了实数的运算,解题关键是能够求解一些简单的二次根式的加减问题.6.如图,在数轴上表示实数的点可能().A.点P B.点Q C.点M D.点N【答案】C【分析】确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【详解】解:∵9<15<16,∴3<<4,∴对应的点是M.故选:C.【点睛】本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解.7.有一个数值转换器,原理如下:当输入的x为4时,输出的y是()A.4B.2C.D.-【答案】C【分析】直接利用规定的运算顺序计算得出答案.【详解】解:4的算术平方根为:=2,则2的算术平方根为:,是无理数.故选C.【点睛】本题考查算术平方根、有理数和无理数定义,正确把握运算顺序是解题关键.8.若与互为相反数,则的值为().A.B.C.D.【答案】A【分析】根据相反数与立方根的性质计算即可得答案.【详解】解:∵与是相反数,∴==∴3x-1=2y-1,整理得:3x=2y,即,故选A.【点睛】本题主要考查立方根的性质,正数的立方根是正数,负数的立方根还是负数,一个数只有一个立方根,熟练掌握立方根的性质是解题关键.9.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是( )A.﹣2π﹣1B.﹣1+πC.﹣1+2πD.﹣π【答案】D【分析】先求出圆的周长π,即得到OA的长,然后根据数轴上的点与实数一一对应的关系即可得到点A表示的数.【详解】∵直径为单位1的圆的周长=π×1=π,∴OA=π,∴点A表示的数为﹣π,故选D.【点睛】本题考查了实数与数轴,解题的关键是熟知数轴上的点与实数一一对应.10.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )A.2B.C.5D.【答案】B【分析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.二、填空题:11.的算术平方根是_________;的平方根是____________.【答案】 2【分析】根据算术平方根和平方根的定义求解即可.【详解】解∵,∴的算术平方根是2,的平方根是±3.故答案为:2,±3.【点睛】本题主要考查了算术平方根,平方根的定义,解题的关键在于能够熟练掌握平方根和算术平方根的定义.12._____;______;______;______.【答案】 2 3.5【分析】根据平方根的定义、算术平方根的定义以及立方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根;一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根,记作;如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果,那么x叫做a的立方根,记作:.计算即可.【详解】原式=2;原式;原式;原式;故答案为:2,,,.【点睛】本题主要考查了平方根,算术平方根以及立方根,熟记相关定义是解答本题的关键.13.若将三个数,,表示在数轴上,其中一个数被墨迹覆盖(如图所示),则这个被覆盖的数是______.【分析】根据被覆盖的数的范围求出被开方数的范围,然后即可得解.【详解】设被覆盖的数是,根据图形可得,∴,∴三个数,,中符合范围的是.故答案为:.【点睛】本题考查了实数与数轴的关系,根据数轴确定出被覆盖的数的取值范围是解题的关键.14.若一个正数的平方根是2a+1和﹣a+2,则a=_____,这个正数是_____.【答案】 -3 25【分析】根据已知得出方程2a+1﹣a+2=0,求出即可.【详解】解:∵一个正数的平方根是2a+1和﹣a+2,∴2a+1﹣a+2=0,解得:a=﹣3,即这个正数是[2×(﹣3)+1]2=25,故答案为:﹣3;25.【点睛】本题考查了对平方根的应用,注意:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.15.计算:=___.【答案】3【分析】原式利用绝对值的代数意义,以及二次根式性质化简即可得到结果.【详解】解:∵>0,<0,﹣2<0,∴原式=﹣()+|﹣2|=﹣2+3-+2=3,故答案为:3.【点睛】本题考查了绝对值的化简,二次根式的性质,准确掌握性质是解题的关键.16.比较大小:____;____;____;____.【答案】 <, <, >, >【分析】根据实数的比较大小,将根指数不同的根式化为与之相等的同根式比较,利用放缩法比较,利用中间过渡法比较,利用有理数化为根式形式比较.【详解】解:∵,,8<9,∴_<_;∵,即,∴_<___;∵,,∴,∴__>__;∵7=,_>__.故答案为<;<;>;>.【点睛】本题考查实数的大小比较,掌握实数的比较方法,化为同次根式,比较被开方数大小,放缩法比较大小,中间过渡法比较是解题关键.17.若与互为相反数,则________.【答案】2.【分析】根据相反数的概念列式,根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】解:由题意得:,则:a−1=0,b+1=0,解得:a=1,b=−1,则1+1=2,故答案为:2.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.若2+的小数部分为a,5-的小数部分为b,则a+b的值为______.【答案】1【分析】估算确定出a与b的值,即可求出所求.【详解】解:∵4<6<9,∴2<<3,即4<2+<5,2<5-<3,则a=2+-4,b=5--2,则a+b=2+-4+5--2=1.故答案为1.【点睛】本题考查有理数的大小,弄清估算的方法是解本题的关键.19.已知的立方根是3,的算术平方根是4,c是的整数部分,则的平方根为___________.【答案】±4【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.【详解】∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c是的整数部分,∴c=3,∴∴的平方根是±4.故答案为:±4.【点睛】本题主要考查的知识点是立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值,解题关键是读懂题意,掌握解答顺序,正确计算即可.20.已知,若,则______;________;_________;若,则_______.【答案】 214000 214【分析】根据平方根、算术平方根、立方根的概念依次求解即可.【详解】解:∵,且,∴,∵,∴,∵,∴,∵且,∴,故答案为:214000,±0.1463,-0.1289,214.【点睛】本题考查了平方根、算术平方根、立方根的概念等,属于基础题,熟练掌握其定义是解决本类题的关键.三、解答题:21.把下列各数分别填入相应的集合中:-(-230),,0,-0.99,1.31,5,,3.14246792…,-.(1)整数集合:{…}(2)非正数集合:{…}(3)正有理数集合:{…}(4)无理数集合:{…}【答案】(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【分析】根据整数、非负数、有理数、无理数的定义判断可得答案.【详解】解:根据整数、非负数、有理数、无理数的定义可得:(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【点睛】本题主要考查整数、非负数、有理数、无理数的定义.22.求下列各式的值:(1);(2);(3);(4).【答案】(1);(2);(3)0.4;(4)0.3【分析】根据平方根和立方根的定义,即可求解.【详解】解:(1);(2);(3);(4).【点睛】本题主要考查了平方根和立方根的定义,熟练掌握一般地,如果一个数的平方等于,则称是的一个平方根,记作:;如果一个数的立方等于,则称是的一个立方根,记作:是解题的关键.23.比较下列各组数的大小:(1)与6;(2)与;(3)与.【答案】(1);(2);(3)【分析】(1)直接化简二次根式进而比较得出答案;(2)直接估算无理数的取值范围进而比较即可;(3)直接估算无理数的取值范围进而比较即可.【详解】解:(1)∵,∴;(2)∵,∴;(3)∵,∴,∵,∴,∴.【点睛】本题主要考查了实数比较大小,正确估算无理数取值范围是解题关键.24.计算:(1)(2)【答案】(1)(2)9【分析】(1)根据绝对值的意义去绝对值,然后合并即可;(2)先进行开方运算,然后进行加法运算.【详解】解:(1)原式==2-4;(2)原式=-(-2)+5+2=2+5+2=9.25.求下列各式中的x:(1);(2)(3);(4).【答案】(1);(2);(3)或;(4)【分析】(1)先移项,系数化为1,再根据平方根定义进行解答.(2)由得=,再根据立方根定义即可解答.(3)由得:,再开平方后解一元一次方程即可.(4)由得:,再开平方后解一元一次方程即可.【详解】(1)移项得:,系数化为1:,∵,∴.(2)由得:,∵,∴,解得:.(3)由得:,∴或,解得:或.(4)由得:,,∴或,解得:.【点睛】本题考查平方根、立方根的意义,等式的性质,掌握等式的性质和平方根、立方根的求法是正确计算的前提.26.已知的平方根是,的算术平方根是4,求的平方根.【答案】【分析】根据平方根和算术平方根的定义即可求出和的值,进而求出a和b的值,将a和b的值代入即可求解.【详解】解:∵的平方根是,的算术平方根是4,∴=9,=16,∴a=4,b=-1把a=4,b=-1代入得:3×4-4×(-1)=16,∴的平方根为:.【点睛】本题主要考查了算术平方根和平方根,熟练掌握算术平方根和平方根的定义是解题的关键.注意:一个正数有两个平方根,它们互为相反数.27.已知M是m+3的算术平方根,N是n﹣2的立方根.求(n﹣m)2008.【答案】【分析】由M是m+3的算术平方根,N是n﹣2的立方根,建立方程组:,解方程组可得答案.【详解】解:M是m+3的算术平方根,N是n﹣2的立方根.即:解得:,【点睛】本题考查的是算术平方根,立方根的含义,二元一次方程组的解法,乘方符号的确定,掌握以上知识是解题的关键.28.观察下列各式,并用所得出的规律解决问题:(1),,,……,,,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2)已知,,则_____;______.(3),,,……小数点的变化规律是_______________________.(4)已知,,则______.【答案】(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(1),,,……,,,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.故答案为:两;右;一;(2)已知,,则;;故答案为:12.25;0.3873;(3),,,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵,,∴,∴,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.。

人教版七年级下册数学第六章实数 测试题及答案

人教版七年级下册数学第六章实数 测试题及答案

人教版七年级下册数学第六章实数测试题及答案人教版七年级数学下册第六章实数一、单选题1.下列说法正确的是()A。

真命题的逆命题都是真命题B。

无限小数都是无理数C。

0.720精确到了百分位D。

16的算术平方根是22.(-9)²的平方根是x,6根是y,则x+y的值为()A。

3B。

7C。

3或7D。

1或73.3(-1)²的立方根是()A。

-1B。

1C。

-4D。

44.若在数轴上画出表示下列各数的点,则与原点距离最近的点是()A。

-1B。

-1/2C。

3/2D。

25.若a=2,则a的值为()A。

2B。

±2C。

4D。

±46.下列计算中,错误的是()A。

30.125=0.5B。

3-273=-644C。

33/31=1/82D。

-3/8²=-125/577.下列说法正确的是()A。

实数分为正实数和负实数B。

3/2是有理数C。

0.9是有理数D。

30.01是无理数8.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a²的算术平方根是a;④(π-4)²的算术平方根是π-4;⑤算术平方根不可能是负数。

其中,不正确的有() A。

2个B。

3个C。

4个D。

5个9.一个正方体的水晶砖,体积为100 cm³,它的棱长大约在()A。

4 cm~5 cm之间B。

5 cm~6 cm之间C。

6 cm~7 cm之间D。

7 cm~8 cm之间10.计算-4-|-3|的结果是()A。

-1B。

-5C。

1D。

5二、填空题11.已知(x-1)³=64,则x的值为4.12.若式子1/(x-1)有意义,则化简|1-x|+|x+2|=3.13.若a与b互为相反数,则它们的立方根的和是0.14.若3x+3y=0,则x与y关系是x=-y。

15.平方等于1/64的数是1/8.16.-27的立方根是-3.三、解答题17.1) 33+53=36;2) |1-2|+|3-2|=2.18.1) (x+1)²=16,解得x=3或x=-5;2) 3(x+2)²=27,解得x=1或x=-5.19.1) 16+3-27-1=-9;2) (-2)²+|2-1|-(2-1)=1.20.a²-b²-(a-b)²=2ab,所以a=3,b=2,代入得9/16.21.1) x=±11/3;2) x=2.22.对于实数a,规定用符号$\lfloor a \rfloor$表示不大于a 的最大整数,称$\lfloor a \rfloor$为a的根整数,例如:$\lfloor 9 \rfloor = 3$,$\lfloor 10 \rfloor = 3$。

2023年七年级数学下学期第6章《实数》测试卷及答案解析

2023年七年级数学下学期第6章《实数》测试卷及答案解析

中选择出若干个数,使它们的和大于 3,那么至少要选几个数?
26.已知实数 x,y 满足关系式
|y2﹣1|=0.
(1)求 x,y 的值;
, ,如果从 㐮
第 2 页 共 13 页
(2)判断
是有理数还是无理数?并说明理由.
27.将下列各数填入相应的集合内.
﹣7,0.32, ,0, , , ,π,0.1010010001…
A.1
B.﹣1
C.i
D.﹣i
二.填空题(共 10 小题)
11.若一个正数的两个平方根分别为 4+a 和 3﹣2a,则这个正数为

第 1 页 共 13 页
12.已知 㐮 44.89, 㐮 t 14.19,则 㐮t

13.已知实数 x、y 满足|y |
0,则 yx=

14.已知 4a+1 的算术平方根是 3,则 a﹣10 的立方根是
①有理数集合{
…}
②无理数集合{
…}
③负实数集合{
…}.
28.阅读下列材料并解决有关问题.
我们知道,|x|
<㐮 㐮 㐮 .现在我们可以用这一结论来化简含有绝对值的代数式,如
>㐮
化简代数式|x+1|+|x﹣2|时,可令 x+1=0 和 x﹣2=0,分别求得 x=﹣1,x=2(称﹣1,2
分别为|x+1|与|x﹣2|的零点值).在实数范围内,零点值 x=﹣1 和 x=2 可将全体实数分成
第 3 页 共 13 页




4




度.
30.(1)用“<““>“或“=“填空:

人教版初中七年级数学下册第六单元《实数》测试题(含答案解析)

人教版初中七年级数学下册第六单元《实数》测试题(含答案解析)

一、选择题1.下列各数中,无理数有( )3.14125,8,127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个D解析:D【分析】 直接根据无理数的定义直接判断得出即可.【详解】解:无理数有8,π,2.32232223共3个. 故选D .【点睛】本题考查了无理数的定义,正确把握无理数的定义:无限不循环小数是无理数进而得出是解题关键.2.64的算术平方根是( )A .8B .±8C .22D .22± C解析:C【分析】先化简64,再求算术平方根即可.【详解】64=8, 8的算术平方根是22,即64的算术平方根是22.故选择:C .【点睛】本题考查一个数的算术平方根的算术平方根,掌握求算式的平方根,一定要把算式化简得到结果后再求是解题关键.3.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+ B解析:B【分析】根据是数的运算,A 点表示的数加两个圆周,可得B 点,根据数轴上的点与实数一一对应,可得B 点表示的数.【详解】解:A 点表示的数加两个圆周,可得B 点,所以,21π-,故选:B .【点睛】本题考查了实数与数轴,直径为1个单位长度的圆从A 点沿数轴向右滚动,A 点表示的数加两个圆周.4.已知n 是正整数,并且n -1<3+<n ,则n 的值为( )A .7B .8C .9D .10C 解析:C【分析】根据实数的大小关系比较,得到5<6,从而得到n 的值.【详解】解:∵<5<6,∴8<<9,∴n =9.故选:C .【点睛】5.下列选项中,属于无理数的是( )A .πB .227-CD .0A 解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A.π是无理数; B.227-是分数,属于有理数;是整数,属于有理数;D.0是整数,属于有理数.故选:A .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,2,0.8080080008…(每两个8之间依次多1个0)等形式.6.若53a=-,则a在()A.3-和2-之间B.2-和1-之间C.1-和0之间D.0和1之间C解析:C【分析】依据被开方数越大对应的算术平方根越大可求得5的大致范围,然后可得到问题的答案.【详解】解:∵4<5<9,∴2<5<3.∴-1<5-3<0.故选:C.【点睛】本题考查了估算无理数的大小,求得5的大致范围是解题的关键.7.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第(n﹣2)个数是()(用含n的代数式表示)A21n-D24n- Bn-C23n-B22解析:B【分析】观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n-1行的数据的个数,再加上n-2得到所求数的被开方数,然后写出算术平方根即可.【详解】解:前(n﹣1)行的数据的个数为2+4+6+…+2(n﹣1)=n(n﹣1),所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数的被开方数是n(n﹣1)+n﹣2=n2﹣2,所以,第n(n是整数,且n≥3)行从左到右数第n﹣222n-.故选:B.【点睛】本题考查了算术平方根,观察数据排列规律,确定出前(n-1)行的数据的个数是解题的关键.8.已知:m、n为两个连续的整数,且5<<,以下判断正确的是()m nA 4B .3m =C 0.236D .9m n += A解析:A【分析】根据无理数的估算、实数的运算即可得.【详解】 459<<,<<23<<,22,则选项C 错误;∴)224-=A 正确;又m 、n 为两个连续的整数,且m n <<,2,3m n ==∴,则选项B 错误;235m n ∴+=+=,则选项D 错误;故选:A .【点睛】本题考查了无理数的估算、实数的运算,熟练掌握无理数的估算方法是解题关键.9. )A .5和6B .6和7C .7和8D .8和9A 解析:A【分析】【详解】解:∵∴56,∴在两个相邻整数5和6之间.故选:A .【点睛】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.10.1的值在( )A .5~6之间B .6~7之间C .7~8之间D .8~9之间B解析:B【分析】的取值即可得到答案.【详解】由题意得78<<,617∴<<,1介于6~7之间.故选B .【点睛】二、填空题11.已知1,25x a y a =-=-.(1)已知x 的算术平方根为3,求a 的值;(2)如果x y ,都是同一个数的平方根,求这个数.(1)a=-8;(2)1或9【分析】(1)根据平方运算可得(1-a )的值求解可得答案;(2)根据题意可知相等或互为相反数列式求解可得a 的值根据平方运算可得答案【详解】解:(1)∵x 的算术平方根是3∴解析:(1)a=-8;(2)1或9.【分析】(1)根据平方运算,可得(1-a )的值,求解可得答案;(2)根据题意可知x y ,相等或互为相反数,列式求解可得a 的值,根据平方运算,可得答案.【详解】解:(1)∵x 的算术平方根是3,∴1-a=9,∴a=-8;(2)x ,y 都是同一个数的平方根,∴1-a=2a-5或1-a+(2a-5)=0,解得a=2,或a=4,当a=2时,(1-a )=(1-2)2=1,当a=4时,(1-a )=(1-4)2=9,答:这个数是1或9.【点睛】本题考查了平方根和算术平方根,注意第(2)问符合条件的答案有两个,小心漏解. 12.对于有理数,a b ,我们规定*a b b ab =-(1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.(1)3;(2)【分析】(1)由新定义的运算法则进行计算即可得到答案;(2)由新定义列出方程解方程即可得到答案【详解】解:∵∴;(2)由题意则∵∴解得:【点睛】本题考查了一元一次方程新定义的运算法则解析:(1)3;(2)1x =.【分析】(1)由新定义的运算法则进行计算,即可得到答案;(2)由新定义列出方程,解方程即可得到答案.【详解】解:∵*a b b ab =-,∴(2)*11(2)1123-=--⨯=+=;(2)由题意,则∵(2)*36x -=,∴(2)*333(2)6x x -=--=,解得:1x =.【点睛】本题考查了一元一次方程,新定义的运算法则,解题的关键是掌握运算法则进行解题. 13.求x 的值:(1)2(3)40x +-=(2)33(21)240x ++=(1)或;(2)【分析】(1)整理后利用平方根的定义得到然后解两个一元一次方程即可;(2)整理后利用立方根的定义得到然后解一元一次方程即可【详解】(1)移项得:∴∴或;(2)整理得:∴∴【点睛】本题解析:(1)1x =-或5x =-;(2)32x =-. 【分析】(1)整理后,利用平方根的定义得到32x +=±,然后解两个一元一次方程即可; (2)整理后,利用立方根的定义得到212x +=-,然后解一元一次方程即可.【详解】(1)2(3)40x +-=, 移项得:2(3)4x +=,∴32x +=±,∴1x =-或5x =-;(2)33(21)240x ++=, 整理得:3(21)8x +=-,∴212x +=-, ∴32x =-. 【点睛】 本题考查了立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.这就是说,如果x 3=a ,那么x 叫做a 的立方根.也考查了平方根.14.对两数a ,b 规定一种新运算:2a b ab ⊗=,例如:2422416⊗=⨯⨯=,若不论x 取何值时,总有a x x ⊗=,则a =______.【分析】将转化为2ax=x 来解答【详解】解:∵可转化为:2ax=x 即∵不论x 取何值都成立∴解得:故答案为:【点睛】本题考查实数的运算正确理解题目中的新运算是解题的关键 解析:12【分析】将a x x ⊗=,转化为2ax=x 来解答.【详解】解:∵a x x ⊗=可转化为:2ax=x ,即()210a x -=,∵不论x 取何值,()210a x -=都成立,∴210a -=, 解得:12a =, 故答案为:12. 【点睛】本题考查实数的运算,正确理解题目中的新运算是解题的关键.15.把下列各数填在相应的集合里:4,3.5,0,3π,5-4,10%,2-3,2016,﹣2.030030003…(每两个3之间依次多一个0)正分数集合{ …}负有理数集合{ …}非负整数集合{ …}无理数集合{ …}.510;;402016;﹣2030030003…(每两个3之间依次多一个0)【分析】根据实数的分类即可求出答案【详解】解析:5,10%;52,43--;4,0,2016;3π,﹣2.030030003…(每两个3之间依次多一个0)【分析】根据实数的分类即可求出答案.【详解】16.在实数的原有运算法则中,我们补充新运算法则“*”如下:当a≥b 时,a*b=b 2,当a<b时,a*b=a ,则当时,()()1*-3*=x x x ______【分析】根据题中所给的运算法则进行求解即可;【详解】∵当a≥b 时a*b=当a <b 时a*b=a ∴当x=时1*=13*=2∴(1*)-(3*)=故答案为:【点睛】本题是新定义的问题解决此类问题的关键是按2【分析】根据题中所给的运算法则进行求解即可;【详解】∵当a≥b 时,a*b=2b ,当a <b 时,a*b=a∴ 当=1,=2,∴)2,2.【点睛】本题是新定义的问题,解决此类问题的关键是按题中的规定去运算即可;17.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.或【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4※(-2)=;(-1)※1=(-1)※1※m=2※m=36当时原式可化为解得:;解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-;11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.18.若30a +=,则+a b 的立方根是______.-1【分析】根据绝对值和二次根式的非负性求出ab 的值计算即可;【详解】∵∴∴∴∴的立方根-1故答案是-1【点睛】本题主要考查了代数式求值结合绝对值二次根式的非负性立方根的性质计算是解题的关键解析:-1【分析】根据绝对值和二次根式的非负性求出a ,b 的值计算即可;【详解】∵30a ++=,∴30a +=,20b -=,∴3a =-,2b =, ∴321a b +=-+=-,∴+a b 的立方根-1. 故答案是-1.【点睛】本题主要考查了代数式求值,结合绝对值、二次根式的非负性、立方根的性质计算是解题的关键.19_____;16的平方根为_____;()34-的立方根是_____.【分析】分别根据算术平方根相反数平方根和立方根的概念直接计算即可求解【详解】解:=所以的相反数是;16的平方根为;的立方根是故答案为:;±4;-4【点睛】本题考查了算术平方根平方根和立方根的概念进行解析:- 4± 4-【分析】分别根据算术平方根、相反数、平方根和立方根的概念直接计算即可求解.【详解】-;16的平方根为4±;()34-的立方根是4-.故答案为:—±4;-4【点睛】本题考查了算术平方根、平方根和立方根的概念进行求解即可.注意一个正数有两个平方根,它们互为相反数,正的平方根即为它的算术平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.20.已知3y =,则y x 的平方根是____.±3【分析】根据二次根式的非负性和平方根的定义即可求出【详解】∵二次根式的被开方数是非负数∴且∴∴y=3∴yx=32=9∴yx 的平方根是±3故答案是:±3【点睛】本题主要考查了二次根式非负性和平方根解析:±3【分析】根据二次根式的非负性和平方根的定义即可求出.【详解】∵二次根式的被开方数是非负数∴20x -≥且20x -≥∴=2x∴y=3∴y x =32=9∴y x 的平方根是±3故答案是:±3.【点睛】本题主要考查了二次根式非负性和平方根知识点,准确理解记住它们的基本性质是解题关键.三、解答题21.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数.解析:(1)8888;(2)1134 .【分析】(1)根据进步数的定义分别求出四位正整数中的最大“进步数”与最小“进步数”即可得解; (2)根据进步数的定义可以推得所求数为1114、1124、1134、1144中的某一个,再根据这个四位正整数能被7整除逐一对4个数进行验证可以得解 .【详解】解:(1)由进步数的定义可知四位正整数中最大的“进步数”应该是9999,又最高位不能为0,所以四位正整数中的千位最小为0,所以四位正整数中最小的“进步数”应该是1111,∴9999-1111=8888,∴四位正整数中的最大的“进步数”与最小的“进步数”的差为8888;(2)由已知可得所求数的千位为1,十位为1-4中的某个数字,∴所求数为1114、1124、1134、1144中的某一个,∵这个四位正整数能被7整除,∴由1114=159×7+1,1124=160×7+4,1134=162×7,1144=163×7+3可知所求数为1134 .【点睛】本题考查新定义下的实数规律探索,由材料归纳出新定义并应用于具体问题求解是解题关键.22.(1)求x 的值:2490x -=;(2)计算:()2325227+-- 解析:(1)32x =或32x =-;(2)4 【分析】 (1)利用开方要根的概念求出x 的值即可;(2)根据实数混合运算的法则进行计算即可.【详解】解:(1)294x = 32x =或3-2x = (2)原式=5+2﹣3=4.【点睛】 本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.23.计算:()23143282--⨯-⨯-() 解析:【分析】 利用实数的混合运算法则计算得出答案.【详解】解:原式=4+9⨯12-(2)2⎡⎤⨯-⎢⎥⎣⎦=4+9⨯[]2+1=4+9⨯3=4+27=31.【点睛】本题主要考查了实数的运算,正确化简各数是解题的关键.24.如图,数轴上点A ,B ,C 所对应的实数分别为a ,b ,c ,试化简()323|-|b a c a b -++.解析:2a-c【分析】根据数轴得到a<b<0<c ,由此得到a-c<0,a+b<0,依此化简各式,再合并同类项即可.【详解】由数轴得a<b<0<c ,∴a-c<0,a+b<0,∴|-|a c =-b-(c-a )+(a+b)=-b-c+a+a+b=2a-c.【点睛】此题考查数轴上的点表示数,利用数轴比较数的大小,绝对值的性质,立方根的化简,整式的加减法计算法则,解题的关键是依据数轴确定各式子的符号由此化简各式. 25.计算题.(1)12(7)6(22)-+----(2)2122⨯(33(2)(4)-⨯- (4)13248243⎛⎫-⨯-+- ⎪⎝⎭ 解析:(1)-3(2)-1(3)2(4)-20【分析】(1)先去括号在进行加减运算.(2)先进行平方和开方,在进行乘法和减法的运算.(3)先进行开方和平方,在由左至右进行除法和乘法的运算.(4)首先去括号内的绝对值,在进行括号内的分式加减,最后相乘.【详解】(1)12(7)6(22)-+----=127622---+=3-(2)2122⨯ 1=432⨯- =1-(33(2)(4)-⨯-=4(8)(4)÷-⨯-1=(-)(4)2⨯- =2 (4)13248()243-⨯-+-4354812=-⨯ 20=-【点睛】考察有理数的混合运算,掌握运算法则的顺序是解答本题的关键.26.计算:(12(2)22(2)8x -=解析:(1)1;(2)124,0x x ==【分析】(1)实数的混合运算,利用算术平方根和立方根的概念逐个进行化简计算; (2)直接用平方根的概念求解.【详解】解:(12=4(2)23----=4+223--=1(2)22(2)8x -=2(2)4x -=22x -=±22x =±∴124,0x x ==.【点睛】本题考查实数的混合运算及利用平方根解方程,掌握相关概念和性质正确计算是解题关键.27.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯ 解析:10102021【分析】利用裂项法计算即可.【详解】 原式1111111233520192021⎛⎫=⨯-+-+⋯+- ⎪⎝⎭22021 ⎪⎝⎭1202022021=⨯ 10102021=. 【点睛】 本题考查了利用裂项法进行分数的加法计算,熟练掌握裂项法是解题的关键. 28.把下列各数填在相应的横线上1.4,2020,,32-,0.31,0π-,1.3030030003…(每相邻两个3之间0的个数依次加1)(1)整数:______(2)分数:______(3)无理数:______解析:(1)2020,02)1.4,32-,0.31;(3),π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【分析】根据实数的分类进行填空即可.【详解】,(1)整数:2020,0(2)分数:1.4,32-,0.31(3)无理数:π-,1.3030030003…(每相邻两个3之间0的个数依次加1)故答案为:2020,0 1.4,32-,0.31;π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【点睛】本题考查了实数的分类,掌握实数的分类是解题的关键.。

人教版七年级下册数学第六章-实数含答案(附答案)

人教版七年级下册数学第六章-实数含答案(附答案)

人教版七年级下册数学第六章实数含答案一、单选题(共15题,共计45分)1、8的立方根等于()A. 2B.-2C.±2D.2、的算术平方根是()A. B. C.± D.3、下列实数是无理数的是A. B. C. D.4、估计的值在()A.0到1之间B.1到2之间C.2到3之间D.3至4之间5、下列说法正确的是()A.a的平方根是±B.a的立方根是C. 的平方根是0.1 D.6、下列等式正确是A. B. C. D.7、下列实数中的无理数是()A.1B.0C.D.π8、下列各数中,无理数的个数有()0,,,,2π,3.7878878887…(两个7之间依次多一个8),A.2个B.3个C.4个D.5个9、由图可知,a、b、c的大小关系为()A.a < b < cB.a < c <bC.c < a <bD.c < b < a10、给出四个实数﹣2,0,0.5,,其中无理数是()A.﹣2B.0C.0.5D.11、实数π,,﹣3. ,,中,无理数有()个.A.1B.2C.3D.412、下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个B.3个&nbsp;C.4个D.5个13、下列说法正确的是()A. =±3B. 的立方根是2C.D.的算术平方根是214、在实数范围内,下列判断正确的是()A.若|a|=|b|,则a=bB.若|a|=()2,则a=bC.若a>b,则a 2>b 2D.若= ,则a=b15、如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是()A.点AB.点BC.点CD.点D二、填空题(共10题,共计30分)16、实数a、b在数轴上的位置如图所示,则化简|a+2b|﹣|a﹣b|的结果为________.17、设的小数部分为b,那么(4+b)b的值是________.18、比较下列实数的大小(在横线填上>、<或=)①2 ________ 3 ;② ________ ;③﹣________﹣.19、16的平方根是________,算术平方根是________.20、如果实数a、b在数轴上的位置如图所示,那么化简=________.21、若x3=﹣,则x=________.22、若=0.7160,=1.542,则=________,=________.23、比较大小:________1(填“ ”“ ”或“ ”)24、若|x|=3,y2=4,且x>y,则x﹣y=________.25、计算:(+π)0﹣2|1﹣sin30°|+()﹣1=________ .三、解答题(共6题,共计25分)26、已知的立方根是2,的算术平方根是4,的整数部分是,求的值.27、将下列各数填入相应的集合内:,1.010010001,,0,,…(相邻的两个2之间的3一次增加1个),.有理数集合{ …}无理数集合{ …}28、在数轴上作出表示的点.29、已知2a-1的平方根是±3,3a+b-9的立方根是2,c是的整数部分,求a+b+c的平方根.30、计算:9×(﹣)+ +|﹣3|参考答案一、单选题(共15题,共计45分)1、A2、B3、C4、A5、B6、D7、D8、B9、C10、D11、B12、B13、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、28、29、30、。

七年级数学下册第六章【实数】测试卷(含答案)

七年级数学下册第六章【实数】测试卷(含答案)

一、选择题1.若2x -+|y+1|=0,则x+y 的值为( ) A .-3B .3C .-1D .12.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( ) A .2B .4C .8D .63.若23a =-,2b =--,()332c =--,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >>4.下列说法中,正确的是 ( ) A .64的平方根是8 B .16的平方根是4和-4 C .()23-没有平方根D .4的平方根是2和-25.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 136.下列实数中,属于无理数的是( ) A .3.14B .227C 4D .π7.下列命题中真命题的个数( )①无理数包括正无理数、零和负无理数;②经过直线外一点有且只有一条直线与已知直线平行;③和为180°的两个角互为邻补角;49的算术平方根是7;⑤有理数和数轴上的点一一对应;⑥垂直于同一条直线的两条直线互相平行. A .4B .3C .2D .1 8.下列实数是无理数的是( ) A . 5.1- B .0C .1D .π9.在3223.14,0.4,0.001,23,, 5.12112111227π-+--……中,无理数的个数为 ( ) A .5B .2C .3D .410.估计30的值在哪两个整数之间( ) A .5和6B .6和7C .7和8D .8和911.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n二、填空题12.已知1,25x a y a =-=-.(1)已知x 的算术平方根为3,求a 的值; (2)如果x y ,都是同一个数的平方根,求这个数. 13.已知一个正数m 的平方根为2n +1和4﹣3n . (1)求m 的值;(2)|a ﹣3|b ++(c ﹣n )2=0,a +b +c 的立方根是多少? 14.已知2x +1的算术平方根是0,y =4,z 是﹣27的立方根,求2x +y +z 的平方根.15.定义一种新运算,观察下列式子:212122128=⨯+⨯⨯=★; 2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★;()()213132133-=-⨯+⨯-⨯=★;;(1)计算:()32-★的值; (2)猜想:a b =★________; (3)若12162a +=-★,求a 的值. 16.对于有理数a ,b ,定义一种新运算“”,规定ab a b a b =++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简a b ;②当ab ac =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明.17.|2|π-=________. 18.计算:(1)7|2|--(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭19.求下列各式中x 的值. (1)2(1)2x +=;(2)329203x +=. 20.计算:(1()23-.(2)()21183⎤⎛⎫-⨯-⎥ ⎪⎝⎭⎥⎦.21.比较大小:_______-2.(填“>”“=”或“<”)三、解答题22.定义一种新运算;观察下列各式;131437=⨯+= ()3134111-=⨯-=5454424=⨯+=()4344313-=⨯-=(1)请你想一想:a b = ;(2)若ab ,那么ab ba (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.23.求下列x 的值.(1) 27x 3=-8 (2) (3x -1)2=9 24.求下列各式中x 的值 (1)()328x -= (2)21(3)753x -=25.(1)解方程组;25342x y x y -=⎧⎨+=⎩(2)解不等式组:352(2)22x x x x -≥-⎧⎪⎨>-⎪⎩①②,并写出它的所有整数解.(3)解方程:2(x 2)100-=(4)计算:20172(1)|7|(----一、选择题1.下列各式计算正确的是()A.31-=-1 B.38= ±2 C.4= ±2 D.±9=3 2.在实数3-,-3.14,0,π,364中,无理数有()A.1个B.2个C.3个D.4个3.下列说法中错误的有()①实数和数轴上的点是一一对应的;②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±,用式子表示是497=±.A.0个B.1个C.2个D.3个4.下列实数中,是无理数的为()A.3.14 B.13C.5D.95.在实数﹣34,0,9,215中,是无理数的是()A.﹣34B.0 C.9D.21 56.在下列各数中是无理数的有()0.111-,4,5,3π,3.1415926,2.010101(相邻两个0之间有1个1),76.01020304050607,32.A.3个B.4个C.5个D.6个7.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第(n﹣2)个数是()(用含n的代数式表示)A21n-B22n-C23n-D24n-8.30)A.5和6 B.6和7 C.7和8 D.8和99.若将2-,7,11分别表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A .2-B .7C .11D .无法确定10.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±911.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭B .()239-=C 42=±D .()515-=-二、填空题12.进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n 个则称为n 进制,现在最常用的是十进制,通常使用10个阿拉伯数字0—9作为基数,特点是满十进1,对于任意一个(210)n n ≤≤进制表示的数通常使用n 个阿拉伯数字()01--n 作为基数,特点是逢n 进一,我们可以通过下列方式把它转化为十进制.例如:五进制数 ()252342535469=⨯+⨯+=,则()523469=,七进制数()271361737676=⨯+⨯+=(1)请将以下两个数转化为十进制:()5333= ,(746)= .(2)若一个正数可以用7进制表示为()7abc ,也可用五进制表示为()5cba ,求出这个数并用十进制表示.13.对于有理数,a b ,我们规定*a b b ab =- (1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.14.已知1x -的算术平方根是3,24x y ++的立方根也是3,求23x y -的值. 15.“*”是规定的一种运算法则:a*b=a 2-3b . (1)求2*5的值为 ;(2)若(-3)*x=6,求x 的值;16.把下列各数的序号填入相应的括号内①-3,②π,,④-3.14,,⑥0,⑦227,⑧-1,⑨1.3,⑩1.8080080008…(两个“8”之间依次多一个“0”). 整数集合{ …},负分数集合{ …}, 正有理数集合{ …}, 无理数集合{ …}. 17.(1)计算:|3|-.(2)求下列各式中x 的值: ③22536x =; ④3(1)64x --=.18.实数2-,227,π-中属于无理数的是________.19.已知5的整数部分为a ,5-b ,则2ab b +=_________. 20.观察下列二次根式的规律求值:1S =2S =3S =… 则20202020S =_______.21_____;16的平方根为_____;()34-的立方根是_____.三、解答题22.计算:2(3)2--23.求下列各式中x 的值.(1)4(x ﹣3)2=9; (2)(x +10)3+125=0.24.先化简,再求值:()222233a ab a ab ⎛⎫--- ⎪⎝⎭,其中|2|a + 25.计算. (1)()113122⎛⎫⎛⎫---++ ⎪ ⎪⎝⎭⎝⎭;(2)()328--一、选择题1.下列说法中错误的有( ) ①实数和数轴上的点是一一对应的; ②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0; ④49的平方根是7±,用式子表示是497=±. A .0个B .1个C .2个D .3个2.下列命题是真命题的是( ) A .两个无理数的和仍是无理数 B .有理数与数轴上的点一一对应 C .垂线段最短D .如果两个实数的绝对值相等,那么这两个实数相等 3.下列实数中,是无理数的为( ) A .3.14B .13C .5D .94.在一列数:1a ,2a ,3a ,…,n a 中,1=7a ,2=1a 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这列数中的第2020个数是( ) A .1B .3C .7D .95.如果32.37≈1.333,323.7≈2.872,那么32370约等于( ) A .287.2B .28.72C .13.33D .133.36.85-的整数部分是( ) A .4 B .5C .6D .77.下列实数31,7π-,3.14,38,27,0.2-,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( ) A .5个B .4个C .3个D .2个8.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n9.64的平方根为( ) A .8B .8-C .22D .22±10.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( ) A .7个B .6个C .5个D .4个11.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n二、填空题12.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9. 问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, . (2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.13.把下列各数填在相应的横线上 1.4,2020,2-,32-,0.31,038-π-,1.3030030003…(每相邻两个3之间0的个数依次加1) (1)整数:______ (2)分数:______ (3)无理数:______14.2(3.14)|2|ππ--=________. 15.若|2|0x x y -++=,则12xy -=_____.16.计算:38642-+--. 17.我们知道2 1.414≈,于是我们说:“2的整数部分为1,小数部分则可记为21-”.则:(1)21+的整数部分是__________,小数部分可以表示为__________;(2)已知32+的小数部分是a ,73-的小数部分为b ,那么a b +=__________; (3)已知11的在整数部分为x ,11的小数部分为y ,求1(11)x y --的平方根. 18.比较大小:312-___________12 19.如果3x -+(y +2)2=0,那么xy 的值为___________.20.25的平方根是______;34-的相反数是_____,1-12π的绝对值是 __. 21.任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,31⎡⎤=⎣⎦,现对72进行如下操作:72→72⎡⎤⎣⎦=8→82⎡⎤=⎣⎦→2⎡⎤⎣⎦=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________.三、解答题22.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-,38,0,13-,4-23.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.24.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab ⊕=--.求()23-⊕的值.25.1=,31a b +-的平方根是±2,C 的整数部分,求-+b a c 的平方根.。

(必考题)初中七年级数学下册第六单元《实数》经典习题(含答案解析)

(必考题)初中七年级数学下册第六单元《实数》经典习题(含答案解析)

一、选择题1.a,小数部分为b,则a-b的值为()A.6-B6C.8D8A解析:A【分析】先根据无理数的估算求出a、b的值,由此即可得.【详解】<<,91516<<,<<34∴==,a b3,3)∴-=-=,336a b故选:A.【点睛】本题考查了无理数的估算,熟练掌握估算方法是解题关键.2.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是()A.2 B.4 C.6 D.8D解析:D【分析】根据规律可得底数为8的幂的个位数字依次为8,4,2,6,以4个为周期,个位数字相加为0. 2017除以4余数是1,故得到和的个位数字是8.【详解】解:2017÷4=504…1,循环了504次,还有1个个位数字为8,所以81+82+83+84+…+82017的和的个位数字是504×0+8=8.故选:D.【点睛】本题主要考查了数字的变化类,尾数的特征,得到底数为8的幂的个位数字的循环规律是解决本题的突破点.3.下列命题是真命题的是()A.两个无理数的和仍是无理数B.有理数与数轴上的点一一对应C.垂线段最短D.如果两个实数的绝对值相等,那么这两个实数相等C解析:C【分析】根据实数的定义和运算法则、绝对值的意义进行分析.【详解】A 、两个无理数的和可能是有理数,例如:2+(-2),故错误;B 、实数与数轴上的点一一对应,故错误;C 、垂线段最短,正确;D 、如果两个实数的绝对值相等,那么这两个实数相等或互为相反数;故选:C.【点睛】本题考查实数的定义和运算法则、绝对值的意义等,熟练掌握基础知识是关键. 4.如图,数轴上表示实数5的点可能是( )A .点PB .点QC .点RD .点S B 解析:B【分析】5【详解】∵253<<,∴5Q .故选:B .【点睛】5 5.在一列数:1a ,2a ,3a ,…,n a 中,1=7a ,2=1a 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这列数中的第2020个数是( )A .1B .3C .7D .9C解析:C【分析】根据题意可以写出这列数的前几个数,从而可以发现数字的变化特点,进而可以得到这一列数中的第2020个数.【详解】解:由题意可得:a 1=7,a 2=1,a 3=7,a 4=7,a 5=9,a 6=3,a 7=7,a 8=1,…,∵2020÷6=336…4,∴这一列数中的第2020个数是7.故选:C .【点睛】本题考查数字的变化类、尾数特征,解答本题的关键是明确题意,发现数字的变化的特点,求出相应的数据.6.若“!”是一种运算符号,且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,则计算2015!2014!正确的是( ) A .2015B .2014C .20152014D .2015×2014A解析:A【分析】根据题意列出实数混合运算的式子,进而可得出结论;【详解】∵ 1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1⋅⋅⋅⋅⋅⋅,∴ 可得规律为:()()12!321n n n n =⨯-⨯-⨯⋅⋅⋅⨯⨯⨯, ∴2015!2014!=201520142013120152014201320121⨯⨯⨯⋅⋅⋅⨯=⨯⨯⨯⋅⋅⋅⨯ , 故选:A .【点睛】 本题考查了实数的混合运算,熟知实数混合运算的法则是解答此题的关键.7.在 1.4144-,,227,3π,2,0.3•,2.121112*********...中,无理数的个数( )A .1B .2C .3D .4D 解析:D【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】 1.4144-,有限小数,是有理数,不是无理数;227,分数,是有理数,不是无理数; 0.3•,无限循环小数,是有理数,不是无理数;2-, 3π,23-, 2.121112*********...是无理数,共4个, 故选:D .【点睛】本题主要考查了无理数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.在下列实数3,0.31,3π,27-,9,12-,38,1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( ) A .1B .2C .3D .4C 解析:C【分析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,据此逐一判断即可得.【详解】解∵93=,382=,∴在所列的8个数中,无理数有3,3π,1.212 212 221…(每两个1之间依次多一个2)这3个,故选:C .【点睛】 本题主要考查的是无理数的概念,熟练掌握无理数的三种类型是解题的关键. 9.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A 21n -B 22n -C 23n -D 24n - B解析:B【分析】 观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n-1行的数据的个数,再加上n-2得到所求数的被开方数,然后写出算术平方根即可.【详解】解:前(n ﹣1)行的数据的个数为2+4+6+…+2(n ﹣1)=n (n ﹣1),所以,第n (n 是整数,且n ≥3)行从左到右数第n ﹣2个数的被开方数是n (n ﹣1)+n ﹣2=n 2﹣2,所以,第n (n 是整数,且n ≥3)行从左到右数第n ﹣2.故选:B .【点睛】本题考查了算术平方根,观察数据排列规律,确定出前(n-1)行的数据的个数是解题的关键.10.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭ B .()239-= C 2=± D .()515-=- B 解析:B【分析】 根据有理数的乘方以及算术平方根的意义即可求出答案.【详解】解:A.211525⎛⎫-= ⎪⎝⎭,所以,选项A 运算错误,不符合题意; B.()239-=,正确,符合题意;2=,所以,选项C 运算错误,不符合题意;D.()511-=-,所以,选项D 运算错误,不符合题意;故选:B .【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则. 二、填空题11.已知(2m ﹣1)2=9,(n+1)3=27.求出2m+n 的算术平方根.0或【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3然后再解方程即可;最后分别代入计算即可【详解】解:(2m-1)2=92m-1=±=±32m-1=3或2m-1解析:0.【分析】第一个方程依据平方根的定义求解即可;第二个方程依据立方根的定义可求得n+1=3,然后再解方程即可;最后分别代入计算即可.【详解】解:(2m-1)2=9,,2m-1=3或2m-1=-3,∴m=-1或m=2,(n+1)3=27,n+1=3,∴n=2,当m=-1,n=2时,2m+n=-2+2=0,∴2m+n 的算术平方根是0;当m=2,n=2时,2m+n=4+2=6,∴2m+n ;故2m+n 的算术平方根是0.【点睛】此题考查了立方根与平方根的定义,此题难度不大,注意掌握方程思想的应用,不要丢解.12.定义一种新运算,观察下列式子:212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;(1)计算:()32-★的值;(2)猜想:a b =★________;(3)若12162a +=-★,求a 的值.(1);(2);(3)【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法求解即可;(3)利用规定的运算方法得到方程再进一步解方程即可【详解】解:(1)∵;;;;;∴;(2)由解析:(1)0;(2)22ab ab +;(3)5a =-【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法求解即可;(3)利用规定的运算方法得到方程,再进一步解方程即可.【详解】解:(1)∵212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;∴()()()232322320-=⨯-+⨯⨯-=★;(2)由(1)可得:22a b ab ab =+★.故答案为:22ab ab +.(3)2111222216222a a a +++=⨯+⨯⨯=-★, 解得:5a =-.【点睛】此题考查有理数的混合运算以及解一元一次方程,理解运算方法是解决问题的关键. 13.求下列各式中x 的值(1)()328x -=(2)21(3)753x -=(1);(2)或【分析】(1)利用立方根的定义得到然后解一次方程即可;(2)先变形为然后利用平方根的定义得到的值【详解】(1)∵∴∴;(2)整理得:∴或∴或【点睛】本题考查了解一元一次方程平方根和立解析:(1)4x =;(2)18x =或12x =-.【分析】(1)利用立方根的定义得到22x -=,然后解一次方程即可;(2)先变形为()23225x -=,然后利用平方根的定义得到x 的值.【详解】(1)∵()328x -=,∴22x -=,∴4x =;(2)21(3)753x -=,整理得:()23225x -=,∴315x -=或315x -=-,∴18x =或12x =-.【点睛】本题考查了解一元一次方程,平方根和立方根,熟练掌握各自的定义是解本题的关键. 14.对于有理数a ,b ,定义一种新运算“”,规定a b a b a b =++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简ab ; ②当a b ac =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明.(1)6;(2)①;②不一定理由见解析【分析】(1)根据新定义可得然后按有理数的运算法则计算即可;(2)①首先根据数轴可得 然后根据新定义可得去掉绝对值符号之后按整式加减运算法则化简即可;②举反例:解析:(1)6;(2)①2b -;②不一定,理由见解析.【分析】(1)根据新定义可得()()()232323-=+-+--☉,然后按有理数的运算法则计算即可;(2)①首先根据数轴可得0a b +<,0a b -> ,然后根据新定义可得a b a b a b =++-☉,去掉绝对值符号之后按整式加减运算法则化简即可;②举反例:当5a =-,4b =,3c =时,a b a c =☉☉成立;【详解】(1)()23-☉()()2323=+-+--15=-+15=+6=; (2)①从a ,b 在数轴上的位置可得0a b +<,0a b -> ,()()2a b a b a b a b a b a b b ∴==++-=-++-=-;②不一定有b c =或者b c =-,举反例如下,当5a =-,4b =,3c =时,10ab a b a b =++-=☉,10ac a c a c =++-=☉, 此时a b a c =☉☉成立,但b c ≠且b c ≠-.【点睛】本题考查新定义运算,解答的关键是根据新定义,转化成有理数的运算,整式的运算. 15.对两数a ,b 规定一种新运算:2a b ab ⊗=,例如:2422416⊗=⨯⨯=,若不论x 取何值时,总有a x x ⊗=,则a =______.【分析】将转化为2ax=x 来解答【详解】解:∵可转化为:2ax=x 即∵不论x 取何值都成立∴解得:故答案为:【点睛】本题考查实数的运算正确理解题目中的新运算是解题的关键解析:12【分析】将a x x ⊗=,转化为2ax=x 来解答.【详解】解:∵a x x ⊗=可转化为:2ax=x ,即()210a x -=,∵不论x 取何值,()210a x -=都成立,∴210a -=,解得:12a =, 故答案为:12. 【点睛】 本题考查实数的运算,正确理解题目中的新运算是解题的关键.16.比较3、4 _______________.(用“<”连接)3<<4;【分析】先估算出的范围即可求出答案【详解】∵∴故答案为:【点睛】本题考查了估算无理数的大小能估算出的大小是解此题的关键解析:34;【分析】【详解】 ∵3=4= ∴34<<.故答案为:34<<.【点睛】17.下列实数0, 23,,π,0.1010010001其中无理数共有___个.2【分析】根据无理数的定义解答即可【详解】解:实数中无理数有实数π共2个故答案为:2【点睛】本题考查了无理数的定义其中初中范围内学习的无理数有:π2π等;开方开不尽的数;以解析:2【分析】根据无理数的定义解答即可.【详解】解:实数0,23,π,0.1010010001π共2个, 故答案为:2.【点睛】 本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.18.设a ,b a b <<,是,则a b =____.9【分析】求出的范围求出ab 的值代入求出即可【详解】∵2<<3∴a =2b =3∴ba =32=9故答案为:9【点睛】本题考查了估算无理数的大小的应用关键是求出ab 的值解析:9【分析】a 、b 的值,代入求出即可.【详解】∵23,∴a =2,b =3,∴b a =32=9.故答案为:9.【点睛】本题考查了估算无理数的大小的应用,关键是求出a 、b 的值.19.已知有理数1a ≠,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--,如果13a =-,2a 是1a 的差倒数,4a 是3a 的差倒数,4a 是5a 的差倒数…依此类推,那么的12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-值是______.【分析】根据题意可以写出这列数的前几项从而可以发现数字的变化规律从而可以求得所求式子的值【详解】∵∴……∴每三个数一个循环∵∴则+--3-3-++3=-3-++3故答案为:【点晴】本题考查数字的变化 解析:1312. 【分析】 根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.【详解】∵13a =-,∴()211134a ==--,3441131a ,443131a ,()511134a ==--, …… ∴1a ,2n a a ⋅⋅⋅每三个数一个循环,∵202036731÷=⋅⋅⋅,∴202013a a ==-,则12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-143343=--+++14-43-3 -3-14+43+3 =-3-14+43+3 1312=. 故答案为:1312. 【点晴】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值.20.若30a +=,则+a b 的立方根是______.-1【分析】根据绝对值和二次根式的非负性求出ab 的值计算即可;【详解】∵∴∴∴∴的立方根-1故答案是-1【点睛】本题主要考查了代数式求值结合绝对值二次根式的非负性立方根的性质计算是解题的关键解析:-1【分析】根据绝对值和二次根式的非负性求出a ,b 的值计算即可;【详解】∵30a ++=,∴30a +=,20b -=,∴3a =-,2b =, ∴321a b +=-+=-, ∴+a b 的立方根-1.故答案是-1.【点睛】本题主要考查了代数式求值,结合绝对值、二次根式的非负性、立方根的性质计算是解题的关键.三、解答题21.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:π“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如23<<,是因为<;根据上述信息,回答下列问题:(1___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______;(3)10+10a b <则a b +=______;(43x y =+,其中x 是整数,且01y <<,请求x y -的相反数.解析:(1)33;(2)21;21a -;(3)23;(47.【分析】(1)先找到91316<<,可找到34<< (2)根据因为2122a <<,即可找出a 的整数部分与小数部分(3)找到12<<在哪两个整数之间,再加10即可.(4)先确定56<<,找到233<<,由01y <<,x 是整数,即可确定x=2,5,再求7x y -=,即可求出【详解】(1)91316<< ∴34<<33故答案为:33;(2)因为2122a <<,故则a 的整数部分是21,a 的小数部分可以表示为21a -. 故答案为:21;21a -;(3)因为12<<, ∴10110102+<+<+,即111012<+<,所以=11a ,=12b ,故23a b +=,故答案为:23;(4)5306<<,23033<<,∵01y <<,x 是整数,∴x=2, ∴325-=,∴)257x y -=-=,∴x y -7.【点睛】本题考查的是无理数的整数部分与小数部分,掌握估值法确定无理数的范围,即无限不循环小数知识的拓展延伸,理解题意,按照题目所给的表示方法去解答是关键.22.进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n 个则称为n 进制,现在最常用的是十进制,通常使用10个阿拉伯数字0—9作为基数,特点是满十进1,对于任意一个(210)n n ≤≤进制表示的数通常使用n 个阿拉伯数字()01--n 作为基数,特点是逢n 进一,我们可以通过下列方式把它转化为十进制.例如:五进制数 ()252342535469=⨯+⨯+=,则()523469=,七进制数()271361737676=⨯+⨯+=(1)请将以下两个数转化为十进制:()5333= ,(746)= .(2)若一个正数可以用7进制表示为()7abc ,也可用五进制表示为()5cba ,求出这个数并用十进制表示.解析:(1)93,34;(2)这个数用十进制表示为51或102.【分析】(1)根据进制的规则列式计算即可;(2)根据题意列得227755a b c c b a ++=++,化简成24a+b=12c ,根据a 、b 、c 的取值范围分别将a 从1开始取值验证,即可得到答案.【详解】(1)()253333535393=⨯+⨯+=,7(46)47634=⨯+=,故答案为:93,34;(2)根据题意得:227755a b c c b a ++=++,∴24a+b=12c , ∴212b c a =+, ∵a 、b 、c 均为整数,且04b ≤≤,∴b=0,c=2a ,∵04a <≤,04c <≤,∴12a c =⎧⎨=⎩或24a c =⎧⎨=⎩, ∵27(102)170251=⨯++=,27(204)2704102=⨯++=.∴这个数用十进制表示为51或102.【点睛】此题考查新定义运算,有理数的混合运算,列代数式,正确理解题意是解题的关键. 23.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-的点,并比较它们的大小.解析:(1)2,2-;(2)①见解析;②见解析, 350.5-+<-【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,再把N 点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a ,∵a 2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b ,∴b 2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为-3+5,看图可知,表示-0.5的N 点在M 点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.24.定义一种新运算,观察下列式子:212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;(1)计算:()32-★的值;(2)猜想:a b =★________;(3)若12162a +=-★,求a 的值. 解析:(1)0;(2)22ab ab +;(3)5a =-【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法求解即可;(3)利用规定的运算方法得到方程,再进一步解方程即可.【详解】解:(1)∵212122128=⨯+⨯⨯=★;2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;;∴()()()232322320-=⨯-+⨯⨯-=★;(2)由(1)可得:22a b ab ab =+★.故答案为:22ab ab +.(3)2111222216222a a a +++=⨯+⨯⨯=-★, 解得:5a =-.【点睛】此题考查有理数的混合运算以及解一元一次方程,理解运算方法是解决问题的关键. 25.求下列x 的值.(1) 27x 3=-8 (2) (3x -1)2=9解析:(1)x =23-;(2)x =43或x =23- 【分析】(1)利用立方根的定义求解;(2)利用平方根的定义求解.【详解】(1)解:3827x =,23x =; (2)解:313x -=±,34x =或32x =-, 43x =或23x =-. 【点睛】本题考查解方程,熟练掌握立方根、平方根的定义是关键.26.对于有理数a ,b ,定义一种新运算“”,规定a b a b a b =++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简ab ; ②当ab ac =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明. 解析:(1)6;(2)①2b -;②不一定,理由见解析.【分析】(1)根据新定义可得()()()232323-=+-+--☉,然后按有理数的运算法则计算即可; (2)①首先根据数轴可得0a b +<,0a b -> ,然后根据新定义可得a b a b a b =++-☉,去掉绝对值符号之后按整式加减运算法则化简即可; ②举反例:当5a =-,4b =,3c =时,a b a c =☉☉成立;【详解】(1)()23-☉()()2323=+-+--15=-+15=+6=; (2)①从a ,b 在数轴上的位置可得0a b +<,0a b -> ,()()2a b a b a b a b a b a b b ∴==++-=-++-=-;②不一定有b c =或者b c =-,举反例如下,当5a =-,4b =,3c =时,10ab a b a b =++-=☉,10ac a c a c =++-=☉, 此时a b a c =☉☉成立,但b c ≠且b c ≠-.【点睛】本题考查新定义运算,解答的关键是根据新定义,转化成有理数的运算,整式的运算. 27.计算:(1238127(5)--(2)03(0)8|32|π--+(3)解方程:4x 2﹣9=0.解析:(1)-8;(2)13)x =±32. 【分析】 (1)利用算数平方根、立方根及二次根式性质计算即可;(2)利用零指数幂、立方根及绝对值的代数意义进行化简即可; (3)方程变形后,利用开方运算即可求解.【详解】解:(1)原式=()935358÷--=--=-;(2)原式=1221-+-=(3)方程变形得:294x =,开方得:32x =±. 【点睛】本题考察实数的运算,熟练掌握运算法则是解题的关键. 28.求满足下列条件的x 的值:(1)3(3)27x +=-; (2)2(1)218x -+=.解析:(1)6x =-;(2)3x =-或5【分析】(1)根据立方根,即可解答;(2)根据平方根,即可解答.【详解】解:(1)3(3)27x +=-33x +=-6x =-;(2)2(1)218x -+=2(1)16x -=14x -=±∴3x =-或5.【点睛】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.。

七年级数学(下)第六章《实数——实数》练习题含答案

七年级数学(下)第六章《实数——实数》练习题含答案

七年级数学(下)第六章《实数——实数》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,是有理数的是A.0.9B.–3C.πD.1 3【答案】D【解析】A、0.9=910=31010,是无理数,故此选项错误;B、–3是无理数,故此选项错误;C、π是无理数,故此选项错误;D、13是有理数,故此选项正确.故选D.2.下列说法中错误的是A.数轴上的点与实数一一对应B.实数中没有最小的数C.a、b为实数,若a<b,则a<bD.a、b为实数,若a<b,则3a<3b【答案】C3.实数a、b在数轴上的位置如图所示,则下列各式表示正确的是A.b–a<0 B.1–a>0C.b–1>0 D.–1–b<0【答案】A【解析】由题意,可得b<–1<1<a,则b–a<0,1–a<0,b–1<0,–1–b>0.故选A.4.如图,数轴上点P表示的数可能是A2B5C10D15【答案】B24591015 251015B.5.在实数0,–2,15A.0 B.–2C.1 D5【答案】B【解析】∵0,–2,15–5–2;故选B.6.若m14n,且m、n为连续正整数,则n2–m2的值为A.5 B.7C.9 D.11【答案】B【解析】∵m14n,且m、n为连续正整数,∴m=3,n=4,则原式=7,故选B.+的值为7.|63||26A.5 B.526-C.1 D.61【答案】C【解析】原式=3–6+6–2=1.故选C.8.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1,现对72进行如下操作:72[72]=8[8]=2[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行3次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是A.82 B.182C.255 D.282【答案】C二、填空题:请将答案填在题中横线上.95__________16__________.【答案】5 25516,4的平方根是±2162.故答案为:5;±2.10.已知:n24n n的最小值为__________.【答案】624n6n,则6n是完全平方数,∴正整数n的最小值是6,故答案为:6.11.比较大小–2__________–3>”、“<”或“=”填空).【答案】<【解析】–2=50–348,5048,∴–2<–3,故答案为:<.12.用“※”定义新运算:对于任意实数a 、b ,都有a ※b =2a 2+B .例如3※4=2×32+4=22※2=__________. 【答案】8※2=2×3+2=6+2=8.故答案为:8.13.计算:|+.【解析】|+14.计算:|2.【答案】3【解析】|2–2+5. 故答案为:3.三、解答题:解答应写出文字说明、证明过程或演算步骤.15.计算:(1)–14–2|(2)4(x +1)2=25【解析】(1)原式=–1–2–3+2=–4 (2)方程整理得:(x +1)2=254, 开方得:x +1=±52, 解得:x =1.5或x =–3.5.16.把下列各数填在相应的大括号内:20%,0,3π,3.14,–23,–0.55,8,–2,–0.5252252225…(每两个5之间依次增加1个2). (1)正数集合:{__________…}; (2)非负整数集合:{__________…}; (3)无理数集合:{__________…}; (4)负分数集合:{__________…}. 【解析】(1)正数集合:{20%,3π,3.14,8…};(2)非负整数集合:{8,0…};(3)无理数集合:{3π,–0.525225……}; (4)负分数集合:{–23,–0.55…}.故答案为:(1)20%,3π,3.14,8;(2)8,0;(3)3π,–0.525225…;(4)–23,–0.55.17.如图:观察实数a 、b 在数轴上的位置,(1)a __________0,b __________0,a –b __________0(请选择<,>,=填写). (2)化简:2a –2b –2()a b -.18.(1)计算并化简(结果保留根号)①|1–2|=__________; ②23|=__________; ③34|=__________; ④45(2)计算(结果保留根号):233445……20172018|.【解析】(1)①|12|=2–1;②2332;③3443④4554; 21324354.(2)原式324354+……2018201720182.。

七年级数学下册第六章实数练习题及答案解析

七年级数学下册第六章实数练习题及答案解析

( 1)2 2 3 4 七年级数学下册第六章实数练习题及答案解析1.下列四个数中的负数是() A . ﹣22 B . C . (﹣2)2 D . |﹣2|答案:A 知识点:实数.解析:根据小于的数是负数,可得到答案.本题考查了实数,先化简,再比较数的大小.2.下列实数中,是有理数的为( ) A . B . C . π D . 0答案:D 知识点:实数.解析:根据有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数进行判断即可.3.给 出 四 个 数 0,﹣11 ,﹣ , 7 11 ,其中为无理数的是( ) A . 0 B . ﹣ 7 C . ﹣ 答案:C 知识点:无理数.解析:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.4.下面说法:①无理数是无限小数,无限小数就是无理数;②无理数包括正无理数、0、负无理数;③带根号的数都是无理数;④无理数是开不尽方的数.其中正确的个数是 ( A )A. 0B. 2C. 3D. 45.在,3.33, ,﹣2 ,0,0.454455444555…,﹣,127, 中,无理数的个数有( B ) A .2 个 B .3 个C .4 个D .5 个6.下列说法正确的是( D ) 3 A .实数分为正实数和负实数 B .是有理数 C 3是有理数D 3 0.01 是无理数 7.在下列各数中;0;3π;3 27 ;22 ;1.1010010001…,无理数的个数是( ) A . 5 B . 4 C . 3 D .2 7 答案:C 知识点:无理数.解析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判 定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及 像 0.1010010001…,等有这样规律的数.22 8.在下列实数中:0,,﹣3.1415, , ,0.343343334…无理数有( ) 7 A. 1 个B . 2 个C . 3 个D . 4 个答案:B 知识点:无理数.解析:根据无理数是无限不循环小数,可得答案.本题考查了无理数,无理数是无 限不循环小数,有理数是有限小数或无限循环小数.9.在实数 0, 3 1 ,﹣3 ,1.020020002, ,﹣π中,无理数有( )个. 2 7B. 1 个B . 2 个C . 3 个D . 4 个答案:C 知识点:无理数.解析:根据无理数是无限不循环小数,可得答案.本题考查了无理数,无理数是无限 不循环小数,有理数是有限小数或无限循环小数.10.下列说法:①0 是绝对值最小的有理数;②无限小数是无理数;③数轴上原点两侧的数互为相反数;④a,0, 都是单项式;⑤﹣3x 2y+4x ﹣1 是关于 x ,y 的三次三项式,常数项是﹣1.其中正确的个数有( A )2 4 2 D . 4 0.9 8 2.5 43 42 3 3 3 31 A .2 个 B .3 个 C .4 个 D .5 个11.如图,在数轴上表示实数 15的点可能是( C )A .点 PB .点 QC .点 MD .点 N31 题图34 题图 12.下列说法正确的是( D )3A .实数分为正实数和负实数B . 是有理数C . 3 是有理数D . 是无理数 113.在实数 , 2 2 π , 中,分数的个数是( B ) A .0 B .1 C .2 D .3 214.如图,数轴上 A 、B 两点表示的数分别为 和 5.1,则 A 、B 两点之间表示整数的点共有( C ) A .6 个 B .5 个 C .4 个D .3 个 15.关于“ 10”,下面说法不正确的是( A )A .它是数轴上离原点 10个单位长度的点表示的数B .它是一个无理数C .若 a < 10<a +1,则整数 a 为 3D .它表示面积为 10 的正方形的边长3 16. 下列实数-7.5, 15,4, -27,-π, 81 中,有 a 个整数,b 个无理数,求 a -b 的平方根和立方根. 3解: 由题意得 a=3,b =2.∴ a -b =1. ∴ a -b 的平方根为±1, a -b 的立方根为 1.17.把下列各数分别填在相应的集合中:- 1 , 3 16 , π , ,3.14159265, - | - | ,-4.2 1 ,1.103030030003…. 6 3(1)有理数集合:{…};(2)无理数集合:{ …}; (3)正实数集合:{…}:(4)负实数集合:{…}. 解:(1)有理数集合:{ - , 6 ,3.14159265, - | - | ,-4.2 1 ,…} (2) 无理数集合:{ 3 16 , π,1.103030030003…,…} 3 (3) 正实数集合:{ 3 16 , π , 3 (4) 负实数集合:{ - 1 , - | - 6,3.14159265,1.103030030003…,…} | ,-4.2 1 ,…} 18.已知 a 、b 都是有理数,且(-1)a + 2b = + 3 ,求 a +b 的平方根.解:∵ ( -1)a + 2b = + 3 ,∴ 3a - a + 2b = 3 + 3 . ∵ a 、b 都是有理数, ∴ 3a = ,-a +2b =3. 解得 a =1,b =2.∴ a +b =3. ∴ a +b 的平方根是± 0.9 30.01 2 64 25 64 25 64 25 3 3。

人教七年级下册数学第六章实数测试卷(含答案)

人教七年级下册数学第六章实数测试卷(含答案)

第六章 实数 测试卷满分:120分 考试时间:120分钟一、选择题(每小题3分,共30分)1.给出四个数0,3,2,-1,其中最大的数是( )A.0B.3C.2D.-1 2.若n 是有理数,则n 的值可以是( ) A.-1 B.2.5 C.8 D.9 3.下列各组数中,互为相反数的是( )A.-3与3B.3-与-31C.3-与-3D.3与()23-4.下列运算正确的是( )A.473=- B.()552-=-C.77-2-= D.39±=5.已知一个数的平方是16,则这个数的立方是( ) A.8 B.64 C.8或-8 D.64或-646.已知(x-4)2=19,x 的值为a 或b ,且a >b ,则下列结论中正确的是( ) A.a 是19的算术平方根 B.b 是19的平方根 C.a-4是19的算术平方根 D.b+4是19的平方根7.若a =3,b =2--,c =()332--,则a 、b 、c 的大小关系是( ) A.a<b<c B.b<a<c C.b<c<a D. c<b<a8.在如图所示的数轴上,表示无理数m 的点在A ,B 之间,则数m 不可能是( )A.10B.7C.6D.59.如图,一块“Z”字形的铁片,每个角都是直角,且AB =BC =EF =GF =1,CD =DE =GH =AH =3.现将铁片裁剪并拼接成一个和它面积相等的正方形,则正方形的边长是A.3B.4C.8D.10 10如图,某计算器中有三个按键,以下是这三个按键的功能:①:将荧幕显示的数变成它的算术平方根 ②:将荧幕显示的数变成它的倒数 ③:将荧幕显示的数变成它的平方小明输入一个数据后,按照以下步骤操作,依次按照从第1步到第3步循环按键 输入若一开始输入的数据为10.则第2019步之后,显示的结果是( ) A.10 B.100 C.0.01 D.0.1 二、填空题(每小题3分,共24分)11.3的算术平方根是 ,-64的立方根为 。

七年级数学下册《第六章 实数》单元检测卷(附带答案)

七年级数学下册《第六章 实数》单元检测卷(附带答案)

七年级数学下册《第六章 实数》单元检测卷(附带答案)一、选择题(每题3分,共30分)1.9的平方根是( ) A.3 B.-3C.±3D.不存在 2.38=( )A.2B.-2C.±2D.不存在3.下列说法正确的是( ) A.-0.064的立方根是0.4 B.-9的平方根是±3 C.16316D.0.01的立方根是0.0000014.若a 3=-27,则a 的倒数是( )A .3B .-3C.13D .-135.面积为8的正方形的边长在( )5. ,且,则的值为( )A .B .C .1D .1或6. 已知x ,y ,则y x 的立方根是( )AB .-2C .-8D .±27.下列命题中正确的是( )①0.027的立方根是0.3 不可能是负数 ③如果a 是b 的立方根,那么ab≥0 ④一个数的平方根与其立方根相同,则这个数是1. A .①③ B .②④ C .①④ D .③④8.一个数的算术平方根等于这个数的立方根,那么这个数是( )A.1B.0或1C.0D. ±19.下列实数317 -π 3.14159 8 327 12中无理数有( )A.2个B.3个C.4个D.5个10.如图,数轴上A ,B 两点对应的实数分别是1和3,若AB=BC ,则点C 所对应的实数是( )A.231B.13+C.23D.231二、填空题(每题3分,共24分) 11.4是_____的算术平方根.2316,27a b ==-||a b a b -=-+a b 1-7-7-()2320x y -+=363a12.25的算术平方根是_______.13.若一个正数的两个不同的平方根分别是2a﹣1和﹣a+2,则这个正数是.14.若a<0,化简=.15.已知10+的整数部分是x,小数部分是y,求x﹣y的相反数.16.已知x,y都是实数,且y=x-3+3-x+4,则y x=________.17.点A在数轴上和表示1的点相距6个单位长度,则点A表示的数为________.18.若两个连续整数x,y满足x<5+1<y,则x+y的值是________.三、解答题(满分46分,19题6分,20、21、22、23、24题每题8分)19.(6分)计算:(1)|-2|+3-8-(-1)2017(2)9-(-6)2-3-27.20.(8分)求下列各式中x的值.(1)(x-3)2-4=21 (2)27(x+1)3+8=0.21.(本题8分)已知与互为相反数,求的平方根.22.你能找出规律吗?(1)计算:9×16=________,9×16=________ 25×36=________,25×36=________.(2)请按找到的规律计算:5×125 ②123×935.(3)已知a=2,b=10,用含a,b的式子表示40.23.如图,用两个面积为28cm的小正方形纸片剪拼成一个大的正方形.(1)大正方形的边长是________cm(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为214cm的长方形纸片,使它的长宽之比为2:1,若能,求出这个长方形纸片的长和宽,若不能,请说明理由.24.已知:31a+的立方根是2-,21b-的算术平方根3,c43(1)求,,a b c的值(2)求922a b c-+的平方根.参考答案一.填空题题号12345678910答案C B C D B C A B A A二.选择题11.【答案】16【解析】试题解析:∵42=16∴4是16的算术平方根12.【答案】513.【解答】解:∵一个正数的两个平方根分别是2a﹣1与﹣a+2∴2a﹣1﹣a+2=0解得:a=﹣1故2a﹣1=﹣3则这个正数是:(﹣3)2=9故答案为:914.【答案】1﹣a15.【答案】16.【答案】6417.【答案】1-6或1+6点拨:数轴上到某个点距离为a(a>0)个单位长度的点有两个.注意运用数形结合思想,利用数轴帮助分析.18.【答案】7点拨:∵2<5<3,∴3<5+1<4.∵x<5+1<y,且x,y为两个连续整数,∴x=3,y=4.∴x+y=3+4=7.三.解答题19.【答案】解:(1)原式=2-2+1=1.(4分)(2)原式=3-6+3=0.(8分)20.【答案】解:(1)移项得(x-3)2=25,∴x-3=5或x-3=-5,∴x=8或-2.(5分)(2)移项整理得(x+1)3=-827,∴x+1=-23,∴x=-53.(10分)21.【答案】解:根据相反数的定义可知:解得:a=-8,b=364的平方根是:22.【答案】解:(1)12 12 30 30(2)①原式=5×125=625=25②原式=53×485=16=4(3)40=2×2×10=2×2×10=a2b.23.【答案】(1)4 (2)不能,理由见解析.【解析】(1)根据已知正方形的面积求出大正方形的边长即可(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可.解:(1)两个正方形面积之和为:2×8=16(cm2)∴拼成的大正方形的面积=16(cm 2) ∴大正方形的边长是4cm 故答案为:4(2)设长方形纸片的长为2xcm ,宽为xcm 则2x •x =14 解得:7x =2x 7>4∴不存在长宽之比为2:1且面积为214cm 的长方形纸片. 24.【答案】(1)3,5,6a b c =-== (2)其平方根为4± 【解析】(1)根据立方根,算术平方根,无理数的估算即可求出,,a b c 的值 (2)将(1)题求出的值代入922a b c -+,求出值之后再求出平方根. 解:(1)由题得318,219a b +=--= 3,5a b ∴=-= 364349<6437∴<6c ∴=3,5,6a b c ∴=-==(2)当3,5,6a b c =-==时()99223561622a b c -+=⨯--+⨯=∴其平方根为164±±。

人教版数学七年级下册第6章《实数》综合测评(附答案)

人教版数学七年级下册第6章《实数》综合测评(附答案)

人教版版七年级下册第6章《实数》综合测评满分120分检测时间100分钟班级________姓名________座号______成绩________一.选择题(共10小题,满分30分)1.下列各数中最小的是()A.0B.1C.﹣D.﹣π2.在,3.1415926,(π﹣2)0,﹣3,,﹣,0这些数中,无理数有()A.2个B.3个C.4个D.5个3.已知,则的值是()A.1B.2C.3D.44.下列说法不正确的是()A.﹣2是负数B.﹣2是负数,也是有理数C.﹣2是负数,是有理数,但不是实数D.﹣2是负数,是有理数,也是实数5.实数m、n在数轴上的位置如图所示,化简|n﹣m|﹣m的结果为()A.n﹣2m B.﹣n﹣2m C.n D.﹣n6.如果≈1.333,≈2.872,那么约等于()A.28.72B.0.2872C.13.33D.0.1333 7.利用教材中的计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5B.2.6C.2.8D.2.98.设a,b,c为不为零的实数,那么的不同的取值共有()A.6种B.5种C.4种D.3种9.如图,某计算器中有、、三个按键,以下是这三个按键的功能.①:将荧幕显示的数变成它的算术平方根;②:将荧幕显示的数变成它的倒数;③:将荧幕显示的数变成它的平方.小明输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键.若一开始输入的数据为10,那么第2018步之后,显示的结果是()A.B.100C.0.01D.0.110.已知min{,x2,x}表示取三个数中最小的那个数,例如:当x=9,min{,x2,x}=min{,92,9}=3﹒当min{,x2,x}=时,则x的值为()A.B.C.D.二.填空题(共6小题,满分24分)11.5的平方根是,算术平方根是.12.若的平方根为±3,则a=.13.正方形的面积为5m2,则它的周长为m.14.﹣3的相反数是.15.一次数学游戏活动时,有7个同学藏在大木牌后面,男同学的木牌前写的是正数,女同学的木牌前写的是负数,7个木牌如下所示,则男生有人.16.我们规定:相等的实数看作同一个实数.有下列六种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③每个有理数都可以用数轴上唯一的点来表示;④数轴上每一个点都表示唯一一个实数;⑤没有最大的负实数,但有最小的正实数;⑥没有最大的正整数,但有最小的正整数.其中说法错误的有(注:填写出所有错误说法的编号)三.解答题(共8小题,满分66分)17.(6分)计算:18.(6分)已知一个正数的平方根为2a﹣1和﹣a+2,求这个正数.19.(8分)求下列各式中的x.(1)3x2﹣12=0(2)(x﹣1)3=﹣6420.(8分)把下列各数填入表示它所在的数集的大括号:﹣2.4,π,2.008,﹣,﹣0.,0,﹣10,﹣1.1010010001….整数集合:{ };负分数集合:{ };正数集合:{ };无理数集合:{ }.21.(8分)有一张面积为256cm2的正方形贺卡,另有一个长方形信封,长宽之比为3:2,面积为420cm2,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.22.(10分)某地气象资料表明:某地雷雨持续的时间t(h)可以用下面的公式来估计:,其中d(km)是雷雨区域的直径.(1)雷雨区域的直径为8km,那么这场雷雨大约能持续多长时间?(2)如果一场雷雨持续了2h,那么这场雷雨区域的直径大约是多少?23.(10分)观察下表后回答问题:a0.00010.011100100000.01x1y100(1)表格中x=,y=;(2)由上表你发现什么规律?;(3)根据你发现的规律填空:①已知≈1.732,则≈,≈;②已知=0.056,则=.24.(10分)课堂上,老师出了一道题,比较与的大小.小明的解法如下:解:﹣==,因为42=16<19,所以>4,所以﹣4>0.所以>0,所以>,我们把这种比较大小的方法称为作差法.(1)根据上述材料填空(在横线上填“>”“=”或“<”):①若a﹣b>0,则a b;②若a﹣b=0,则a b;③若a﹣b<0,则a b.(2)利用上述方法比较实数与的大小.参考答案一.选择题(共10小题)1.【解答】解:﹣π<﹣<0<1.则最小的数是﹣π.故选:D.2.【解答】解:无理数有,,共2个,故选:A.3.【解答】解:∵,∴1﹣a=﹣8,a=9,∴==3,故选:C.4.【解答】解:A、﹣2小于零,是负数,故A正确;B、﹣2小于零是负数,是整数,也是有理数,故B正确;C、﹣2小于零是负数,是整数,也是有理数,有理数属于实数,故C错误;D、﹣2小于零是负数,是整数,也是有理数,有理数属于实数,故D正确.故选:C.5.【解答】解:由实数m、n在数轴上的位置可知,n﹣m<0,所以|n﹣m|﹣m=m﹣n﹣m=﹣n,故选:D.6.【解答】解:∵≈1.333,∴=≈1.333×10=13.33.故选:C.7.【解答】解:∵≈2.646,∴与最接近的是2.6,故选:B.8.【解答】解:①当a>0,b>0,c>0时,原式=1+1+1=3;②当a>0,b>0,c<0时,原式=1+1﹣1=1;③当a>0,b<0,c>0时,原式=1﹣1+1=1;④当a>0,b<0,c<0时,原式=1﹣1﹣1=﹣1;⑤当a<0,b>0,c>0时,原式=﹣1+1+1=1;⑥当a<0,b>0,c<0时,原式=﹣1+1﹣1=﹣1;⑦当a<0,b<0,c>0时,原式=﹣1﹣1+1=﹣1;⑧当a<0,b<0,c<0时,原式=﹣1﹣1﹣1=﹣3.∴的不同的取值共有4种.故选:C.9.【解答】解:根据题意得:102=100,=0.01,=0.1;0.12=0.01,=100,=10;…∵2018=6×336+2,∴按了第2018下后荧幕显示的数是0.01.故选:C.10.【解答】解:当=时,x=,x<,不合题意;当x2=时,x=±,当x=﹣时,x<x2,不合题意;当x=时,=,x2<x <,符合题意;当x=时,x2=,x2<x,不合题意,故选:C.二.填空题(共6小题)11.【解答】解:5的平方根是±,算术平方根是.12.【解答】解:∵的平方根为±3,∴=9,解得:a=81,故答案为:8113.【解答】解:设正方形的边长为xm,则x2=5,所以x=或x=﹣(舍),即正方形的边长为m,所以周长为4cm故答案为:4.14.【解答】解:﹣3的相反数是3﹣,故答案为:3﹣.15.【解答】解:∵=,=1,﹣(﹣3.5)=3.5∴正数有:,,,﹣(﹣3.5)四个,∵男同学的木牌前写的是正数,∴有4个男同学,故答案为4.16.【解答】解:①数轴上有无数多个表示无理数的点是正确的;②带根号的数不一定是无理数是正确的,如=2;③每个有理数都可以用数轴上唯一的点来表示是正确的;④数轴上每一个点都表示唯一一个实数是正确的;⑤没有最大的负实数,也没有最小的正实数,原来的说法错误;⑥没有最大的正整数,有最小的正整数,原来的说法正确.故答案为:⑤.三.解答题(共8小题)17.【解答】解:原式==.18.【解答】解:∵一个正数的平方根为2a﹣1和﹣a+2,∴2a﹣1﹣a+2=0,解得:a=﹣1,则2a﹣1=﹣3,故这个正数是:(﹣3)2=9.19.【解答】解:(1)3x2﹣12=0,3x2=12,x2=4,x=±2;∴x1=2,x2=﹣2.(2)(x﹣1)3=﹣64,x﹣1=﹣4,x=﹣3.20.【解答】解:整数集合:{0,﹣10,…};负分数集合:{﹣2.4,﹣,﹣0.,…};正数集合:{π,2.008,…};无理数集合{π,﹣1.1010010001…,…}.21.【解答】解:放不进去;理由:正方形贺卡面积为256cm2,∴贺卡边长为16cm,∵长方形信封,长宽之比为3:2,面积为420cm2,∴信封长3cm,宽为2cm,∵3>16,∴放不进去.22.【解答】解:(1)根据,其中d=8(km),∴t2=,∵t>0,∴t=(h),答:这场雷雨大约能持续h;(2)根据,其中t=2h,∴d2=3600,∵d>0,∴d=60(km),答:这场雷雨区域的直径大约是60km.23.【解答】解:(1)x=0.1,y=10;故答案为:0.1,10;(2)规律是:被开方数的小数点向左或向右每移动两位开方后所得的结果相应的也向左或向右移动1位;故答案为:被开方数的小数点向左或向右每移动两位开方后所得的结果相应的也向左或向右移动1位;①=17.32,=0.1732,故答案为:17.32,0.1732;②=560,故答案为:560.24.【解答】解:(1)①若a﹣b>0,则a>b;②若a﹣b=0,则a=b;③若a﹣b<0,则a<b.故答案为:>,=,<;(2)﹣===,∵192=361>198,∴19>,∴19﹣>0.∴>0,∴>.。

人教版数学七年级下册:第六章《实数》测试题及答案(期末考好题精选)

人教版数学七年级下册:第六章《实数》测试题及答案(期末考好题精选)

第6章实数期末一、选择题1. 下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个D.3个2.如图,在数轴上标注了四段范围,则表示的点落在()A.段①B.段②C.段③D.段④3.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20 B.x20=2 C.x±20=20 D.x3=±204.已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b5.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是16.下列结论正确的是()A.B.C.D.①无理数一定是无限不循环小数②算术平方根最小的数是零③﹣6是(﹣6)2的一个算术平方根④﹣=其中正确的是()A.①②③B.②③④C.①②④D.①③④8.比较2,,的大小,正确的是()A.B.2C.2D.<29.下列命题中:①有理数是有限小数;②有限小数是有理数;③无理数都是无限小数;④无限小数都是无理数.正确的是()A.①②B.①③C.②③D.③④10.下列说法:①﹣2是4的平方根;②16的平方根是4;③﹣125的平方根是15;④0.25的算术平方根是0.5;⑤的立方根是±;⑥的平方根是9,其中正确的说法是()A.1个B.2个C.3个D.4个二、填空题11.若a=b2﹣3,且a的算术平方根为1,则b的值是.12.已知a,b是正整数,若+是不大于2的整数,则满足条件的有序数对(a,b)为.13.已知实数m满足+=,则m=.14.已知≈2.078,≈20.78,则y=.15.若的值在两个整数a与a+1之间,则a=.16.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的面积和为cm2.17.若一个实数的算术平方根等于它的立方根,则这个数是.18.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是.三、解答题19.已知x是的整数部分,y是的小数部分,求x(﹣y)的值.20.计算:(1)+×﹣÷(2)3+|﹣3|﹣(﹣3)2﹣(﹣1)21.请用下表中的数据填空:x2525.125.225.325.425.525.625.725.825.926x 2625630.01635.04640.09645.16650.25655.36660.49665.64670.81676(1)655.36的平方根是.(2)=.22.设的小数部分为a,的倒数为b,求a+b2的值.23.已知+|y﹣2|=0,且与互为相反数,求yz﹣x的平方根.24.小明和小华做游戏,游戏规则如下:(1)每人每次抽取四张卡片,如果抽到白色卡片,那么加上卡片上的数或算式;如果抽到底板带点的卡片,那么减去卡片上的数或算式.(2)比较两人所抽的4张卡片的计算结果,结果大者为胜者.请你通过计算判断谁为胜者?25.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若与互为相反数,求1﹣的值.参考答案及解析一、选择题1. 下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个D.3个【解答】解:∵负数没有平方根,一个正数有两个平方根,0只有一个平方根是0,∴①错误;∵一个正数有两个平方根,它们互为相反数,而一个正数的算术平方根只有一个,∴②错误;∵一个负数有一个负的立方根,∴③错误;即正确的个数是0个,故选A.2.如图,在数轴上标注了四段范围,则表示的点落在()A.段①B.段②C.段③D.段④【解答】解:∵≈1.414,∴2≈2.828,∴2.8<2<2.9,故选:C.3.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20 B.x20=2 C.x±20=20 D.x3=±20【解答】解:根据题意,可知x20=2,能得出.故选B.A.a>b>c B.c>b>a C.b>a>c D.a>c>b【解答】解:∵a==,b==,c==,且<<,∴>>,即a>b>c,故选A.5.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是1【解答】解:A、27的立方根是3,故选项错误;B、的平方根是±2,故选项错误;C、9的算术平方根是3,故选项正确;D、立方根等于平方根的数是1和0,故选项错误.故选C.6.下列结论正确的是()A.B.C.D.【解答】解:A.因为,故本选项正确;B.因为=3,故本选项错误;C.因为,故本选项错误;D.因为,故本选项错误;故选A.7.有下列说法②算术平方根最小的数是零③﹣6是(﹣6)2的一个算术平方根④﹣=其中正确的是()A.①②③B.②③④C.①②④D.①③④【解答】解:①无理数一定是无限不循环小数,正确;②算术平方根最小的数是零,正确;③﹣6是(﹣6)2的一个平方根,故错误;④﹣=,正确;其中正确的是:①②④.故选:C.8.比较2,,的大小,正确的是()A.B.2C.2D.<2【解答】解:∵2=,∴2;∵,∴,∴<.故选:A.9.下列命题中:①有理数是有限小数;③无理数都是无限小数;④无限小数都是无理数.正确的是()A.①②B.①③C.②③D.③④【解答】解:①有理数不一定是有限小数,整数也是有理数,故说法错误,②有限小数是有理数,故说法正确;③无理数都是无限小数,故说法正确;④无限小数都不一定是无理数,其中无限循环小数为有理数,故说法错误.故选C.10.下列说法:①﹣2是4的平方根;②16的平方根是4;③﹣125的平方根是15;④0.25的算术平方根是0.5;⑤的立方根是±;⑥的平方根是9,其中正确的说法是()A.1个B.2个C.3个D.4个【解答】解:①﹣2是4的平方根,正确;②16的平方根是±4,故错误;③﹣125的平方根是﹣5,故错误;④0.25的算术平方根是0.5,正确;⑤的立方根是,故错误;⑥=9,9的平方根是±3,故错误;其中正确的说法是:①④,共2个,故选:B.二、填空题11.若a=b2﹣3,且a的算术平方根为1,则b的值是.【解答】解:∵1的算术平方根是1,∴a=1.∴b2﹣3=1,即b2=4.∴b=±2.故答案为:±2.12.已知a,b是正整数,若+是不大于2的整数,则满足条件的有序数对(a,b)为.【解答】解:∵+是整数,∴a=7,b=10或a=28,b=40,因为当a=7,b=10时,原式=2是整数;当a=28,b=40时,原式=1是整数;即满足条件的有序数对(a,b)为(7,10)或(28,40),故答案为:(7,10)或(28,40).13.已知实数m满足+=,则m=.【解答】解:因为实数m满足+=,可得:m﹣2+=m,可得:m﹣3=4,解得:m=7,故答案为:714.已知≈2.078,≈20.78,则y=.【解答】解:∵≈2.078,≈20.78,∴y=8996,故答案为:8996.15.若的值在两个整数a与a+1之间,则a=.【解答】解:∵的值在两个整数a与a+1之间,4<<5,∴5<<6,∴a=5.故答案为:5.16.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的面积和为cm2.【解答】解:∵两个小正方形的面积分别是6cm2和2cm2,∴两个正方形的边长分别为和,∴两个矩形的长是,宽是,∴两个长方形的面积和=2××=4cm2.故答案为:4.17.若一个实数的算术平方根等于它的立方根,则这个数是.【解答】解:1的算术平方根是1,1额立方根是1,0的算术平方根是0,0的立方根是0,即算术平方根等于立方根的数只有1和0,故答案为:0和1.18.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是.【解答】解:设A点表示x,∵B点表示的数是1,C点表示的数是,且AB=BC,∴1﹣x=﹣1.解得:x=2﹣故答案为:2﹣.三、解答题19.已知x是的整数部分,y是的小数部分,求x(﹣y)的值.【解答】解:∵3<<4,∴的整数部分x=3,小数部分y=﹣3,∴﹣y=3,∴x(﹣y)=3×3=9.20.计算:(1)+×﹣÷(2)3+|﹣3|﹣(﹣3)2﹣(﹣1)【解答】解:(1)+×﹣÷=9+4﹣×(﹣)=13+=14;(2)3+|﹣3|﹣(﹣3)2﹣(﹣1)=3+3﹣﹣18﹣2+=3﹣17.21.请用下表中的数据填空:x2525.125.225.325.425.525.625.725.825.926x 2625630.01635.04640.09645.16650.25655.36660.49665.64670.81676(1)655.36的平方根是.(2)=.(3)<<.【解答】解:(1)∵由表可知,=25.6,∴655.36的平方根是±25.6.故答案为:±25.6;(2)∵=25.9,∴=25.9.故答案为:25.9;(3)∵=25.2,=25.3,∴25.2<<25.3.故答案为:25.2;25.3.22.设的小数部分为a,的倒数为b,求a+b2的值.【解答】解:∵的小数部分为a,∴a=﹣1,∵的倒数为b,∴b=,∴a+b2=﹣1+()2=﹣.23.已知+|y﹣2|=0,且与互为相反数,求yz﹣x的平方根.【解答】解:∵+|y﹣2|=0,∴x+1=0,y﹣2=0,∴x=﹣1,y=2.∵且与互为相反数,∴1﹣2z+3z﹣5=0,解得z=4.∴yz﹣x=2×4﹣(﹣1)=9,∴yz﹣x的平方根是±3.24.小明和小华做游戏,游戏规则如下:(1)每人每次抽取四张卡片,如果抽到白色卡片,那么加上卡片上的数或算式;如果抽到底板带点的卡片,那么减去卡片上的数或算式.(2)比较两人所抽的4张卡片的计算结果,结果大者为胜者.请你通过计算判断谁为胜者?【解答】解:(1)小明抽到卡片的计算结果:﹣﹣+=3﹣﹣2+=;小华抽到卡片的计算结果:﹣3+﹣=2﹣+3﹣=,(2)∵<,∴小华获胜.25.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若与互为相反数,求1﹣的值.【解答】解:(1)∵2+(﹣2)=0,而且23=8,(﹣2)3=﹣8,有8﹣8=0,∴结论成立;∴即“若两个数的立方根互为相反数,则这两个数也互为相反数.”是成立的.(2)由(1)验证的结果知,1﹣2x+3x﹣5=0,∴x=4,∴1﹣=1﹣2=﹣1.。

七年级数学(下)第六章《实数》单元测试题含答案

七年级数学(下)第六章《实数》单元测试题含答案
11. 的平方根是, 的算术平方根是.
12.比较大小: (填“>”“<”“=”).
13.已知 + ,那么 .
14.在 中,________是无理数.
15. 的立方根的平方是________.
16.若 的平方根为 ,则 .
17._____和_______统称为实数.
18.若 、 互为相反数, 、 互为负倒数,则 =_______.
因为 ,所以 的算术平方根为
因为 所以 平方根为
因为 ,所以 的算术平方根为
23.解:因为 ,所以 的立方根是 .
因为 所以 的立方根是 .
因为 ,所以 的立方根是 .
因为 ,所以 的立方根是 .
24.解:因为 ,所以源自,即 ,所以 .故 ,
从而 ,所以 ,
所以 .
25.解:可知 ,由于 ,
所以 .
C.如果一个数有立方根,则它必有平方根
D.不为0的任何数的立方根,都与这个数本身的符号同号
8.下列各式成立的是( )
A. B. C. D.
9.在实数 , , , , 中,无理数有( )
A.1个 B.2个 C.3个 D.4个
10.在-3,- ,-1,0这四个实数中,最大的是()
A. B. C. D.
二、填空题(每小题3分,共24分)
4.当 时, 的值为( )
A. B. C. D.
5.下列关于数的说法正确的是()
A.有理数都是有限小数
B.无限小数都是无理数
C.无理数都是无限小数
D.有限小数是无理数
6.与数轴上的点具有一一对应关系的数是()
A.实数B.有理数C.无理数D.整数
7.下列说法正确的是( )
A.负数没有立方根

人教版初中七年级数学下册第六单元《实数》测试卷(含答案解析)

人教版初中七年级数学下册第六单元《实数》测试卷(含答案解析)

一、选择题1.在实数:20192020,π,9,3,2π,38,0.36,0.3737737773…(相邻两个3之间7的个数逐次加1),52-,49中,无理数的个数为( ) A .4 B .5 C .6 D .7 2.下列各数中,无理数有( )3.14125,8,127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个 3.在实数3-,-3.14,0,π,364中,无理数有( )A .1个B .2个C .3个D .4个 4.实数a ,b 在数轴上的位置如图所示,那么化简33a b a b ++-+的结果为( )A .2a -B .22b a -C .0D .2b5.下列说法中,正确的是( )A .无理数包括正无理数、零和负无理数B .无限小数都是无理数C .无理数都是无限不循环小数D .无理数加上无理数一定还是无理数6.下列命题中,①81的平方根是9;16±2;③−0.003没有立方根;④−64的立方根为±4;5 )A .1B .2C .3D .47.下列命题是真命题的是( )A .两个无理数的和仍是无理数B .有理数与数轴上的点一一对应C .垂线段最短D .如果两个实数的绝对值相等,那么这两个实数相等8.下列实数3223640.010*******;;; (相邻两个1之依次多一个0);52,其中无理数有( )A .2个B .3个C .4个D .5个 9.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+ 10.已知n 是正整数,并且n -1<326+<n ,则n 的值为( )A .7B .8C .9D .1011.下列选项中,属于无理数的是( )A .πB .227-C 4D .012. 5.713457.134,则571.34的平方根约为( ) A .239.03 B .±75.587 C .23.903 D .±23.903 13.关于x 的多项式32711159x mx x --+与多项式22257x nx --相加后不含x 的二次和一次项,则()mn n -+平方根为( )A .3B .3-C .3±D .3±14.下列有关叙述错误的是( )A 2B 2是2的平方根C .122<<D .22是分数 15.下列各组数中都是无理数的为( )A .0.07,23,π;B .0.7•,π2;C 26,π;D .0.1010101……101,π3二、填空题16.计算:(1)132322⎛⎫⨯-⨯- ⎪⎝⎭(2)2291|121232⎛⎫-+-⨯- ⎪⎝⎭ 17.对于有理数,a b ,我们规定*a b b ab =-(1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.18.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.19.(223228432--20.若一个正数的平方根是3m +和215m -,n 的立方根是2-,则2n m -+的算术平方根是______.21.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 22.若|2|30a b -+-=,则a b +=_________. 23.实数2-,2,227,π-,327-中属于无理数的是________. 24.计算: (1)()2325273-+-.(2)()2411893⎡⎤⎛⎫--⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 25.定义运算“@”的运算法则为:x@y=xy 4+,则2@6 =____.26.观察下面一列数:-1,2,-3,4,-5,6,-7……,将这列数排成下图形式.按照此规律排下去,那么第_________行从坐标数第_________个数是-2019.三、解答题27.阅读下列信息材料信息1:因为尤理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来比如:2π、等,而常用的“……”或者“≈”的表示方法都不够百分百准确;信息2:2.5的整数部分是2,小数部分是0.5,可以看成2.52-得来的;信息3:任何一个无理数,都可以夹在两个相邻的整数之间,如253<<,是因为459<<;根据上述信息,回答下列问题:(1)13的整数部分是___________,小数部分是______________;(2)若2122a <<,则a 的整数部分是___________;小数部分可以表示为_______; (3)103+也是夹在相邻两个整数之间的,可以表示为103a b <+<则a b +=______;(4)若303x y -=+,其中x 是整数,且01y <<,请求x y -的相反数. 28.阅读下列材料,并回答问题:我们把单位“”平均分成若干份,表示其中一份的数叫“单位分数”.单位分数又叫埃及分数,在很早以前,埃及人就研究如何把一个单位分数表示成两个或几个单位分数的和或差.今天我们来研究如何拆分一个单位分数.请观察下列各式:111162323==-⨯;1111123434==-⨯, 1111204545==-⨯,1111305656==-⨯. (1)由此可推测156= ; (2)请用简便方法计算:11111612203042++++; (3)请你猜想出拆分一个单位分数的一般规律,并用含字母m 的等式表示出来(m 表示正整数);(4)仔细观察下面的式子,并用(3)中的规律计算:()()()()()()121231312x x x x x x -+------29.计算:(1)132322⎛⎫⨯-⨯- ⎪⎝⎭(2)2291|11232⎛⎫-+-⨯- ⎪⎝⎭ 30.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯。

人教版七年级下册数学第六章实数-测试题含答案

人教版七年级下册数学第六章实数-测试题含答案

人教版数学七年级下册第六章《实数》测试卷一、单选题1.下列说法错误的是()A .5是25的算术平方根B .1是1的一个平方根C .(-4)2的平方根是-4D .0的平方根与算术平方根都是02)A .9B .±9C .±3D .33.14的算术平方根是()A .12±B .12-C .12D .1164的值约为()A .3.049B .3.050C .3.051D .3.0525.若a 是(﹣3)2()A .﹣3BC 或﹣D .3或﹣36.在22π72-,六个数中,无理数的个数为()A .4B .3C .2D .17.正方形ABCD 在数轴上的位置如图所示,点D、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A .点CB .点DC .点AD .点B8.已知﹣2,估计m 的值所在的范围是()A .0<m<1B .1<m<2C .2<m<3D .3<m<49.的相反数是()A .2-B .22C .D .10.判断下列说法错误的是()A .2是8的立方根B .±4是64的立方根C .-13是-127的立方根D .(-4)3的立方根是-4二、填空题11.若a 2=(-3)2,则a=________。

12________.13=-7,则a =______.14______15.在实数220,-π13,0.1010010001…(相邻两个1之间依次多一个0)中,有理数的个数为B ,无理数的个数为A ,则A -B =_____.16.若两个连续整数a、b 满足a b <<,则a b +的值为________三、解答题17.若|a|=4,b =34,求a -b +c 的值18.如果一个正数m 的两个平方根分别是2a -3和a -9,求2m -2的值.19.(1)(3x+2)2=16(2)12(2x﹣1)3=﹣4.20.求下列各式的值:;21.阅读材料.点M,N在数轴上分别表示数m和n,我们把m,n之差的绝对值叫做点M,N之间的距离,即MN=|m﹣n|.如图,在数轴上,点A,B,O,C,D的位置如图所示,则DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.(1)OA=,BD=;(2)|1﹣(﹣4)|表示哪两点的距离?(3)点P为数轴上一点,其表示的数为x,用含有x的式子表示BP=,当BP=4时,x=;当|x﹣3|+|x+2|的值最小时,x的取值范围是.22.将一个体积为0.216m3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.参考答案1.C【解析】一个正数的平方根有两个,是成对出现的.【详解】(-4)22.D【解析】根据算术平方根的定义求解.【详解】,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.3.故选:D .【点睛】考核知识点:算术平方根.理解定义是关键.3.C【解析】分析:根据算术平方根的概念即可求出答案.本题解析:∵211()24=,∴14的算术平方根为12+,故选C.4.B【解析】首先根据数的开方的运算方法,然后根据四舍五入法,把结果精确到0.001即可,求出≈3.050.故选B .5.C【解析】分析:由于a 是(﹣3)2的平方根,则根据平方根的定义即可求得a 的值,进而求得代数式的值.详解:∵a 是(﹣3)2的平方根,∴a =±3,.故选C .点睛:本题主要考查了平方根的定义,容易出现的错误是误认为平方根是﹣3.6.B【解析】【分析】根据无理数的概念解答即可.【详解】π2,是无理数.故选B .【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.B【解析】【分析】由题意可知转一周后,A 、B 、C 、D 分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A ,2所对应的点是B ,3对应的点是C ,4对应的点是D ,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D ,故答案选B .【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.8.B【解析】分析:根据被开方数越大算术平方根越大,不等式的性质,可得答案.,得:3<4,3﹣2﹣2<4﹣2,即1<m <2.故选B .点睛:本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<<4是解题的关键.9.D【解析】【分析】根据相反数的定义,即可解答.【详解】,故选D.【点睛】本题考查了实数的性质,解决本题的关键是熟记实数的性质.10.B【解析】根据立方根的意义,由23=8,可知2是8的立方根,故正确;根据43=64,可知64的立方根为4,故不正确;根据(﹣13)3=﹣127,可知﹣13是﹣127的立方根,故正确;根据立方根的意义,可知(﹣4)3的立方根是﹣4,故正确.故选:B.点睛:此题主要考查了立方根,解题关键是明确一个数的立方等于a,那么这个数就是a的立方根,由此判断即可.11.±3【解析】【分析】利用a2=(-3)2求得a2的值,再求a的平方根即可.【详解】a2=(-3)2=9,a=±3,故答案为:±3【点睛】本题考查了平方根的概念.关键是两边平方,根据平方根的意义求解.12【解析】【分析】,再求出3的算术平方根即可.【详解】,3.【点睛】本题考查算术平方根的概念和求法,正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.13.-343【解析】解:∵3(7)343-=-,∴a =-343.故答案为-343.14.0【解析】【分析】原式各项利用立方根定义计算后,利用有理数减法法则计算即可得到结果.【详解】原式=0.3﹣0.2﹣0.1=0.故答案为0.【点睛】本题考查了立方根,熟练掌握立方根的定义是解答本题的关键.15.-1【解析】【分析】根据无理数、有理数的定义即可得出A 、B 的值,进而得出结论.2,﹣π,0.1010010001…(相邻两个1之间多一个0)是无理数,故A =3.013,是有理数,故B =4,∴A -B =3-4=-1.故答案为:-1.【点睛】本题考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.16.5【解析】【分析】,求出a 、b 的值,即可求出答案.【详解】∵23,∴a =2,b =3,∴a +b =5.故答案为5.【点睛】本题考查了估算无理数的大小的应用,.17.17或9.【解析】【分析】根据绝对值的性质,可得a ,根据实数的运算,可得答案.【详解】a 4=,得a 4=或a 4=-,4c 16==,,当a 4=时a b c 431617-+=-+=,当a 4=-时a b c 43169-+=--+=.故a b c -+的值为17或9.本题考查了实数的性质,利用绝对值的性质得出a 的值是解题关键.18.48【解析】【分析】根据一个正数的两个平方根互为相反数求出a 的值,利用平方根和平方的关系求出m,再求出2m-2的值.【详解】解:∵一个正数的两个平方根分别是2a-3和a-9,∴(2a-3)+(a-9)=0,解得a=4,∴这个正数为(2a-3)2=52=25,∴2m-2=2×25-2=48;故答案为48.【点睛】本题考查平方根.19.(1)x 1=23,x 2=﹣2;(2)x=﹣12.【解析】【分析】运用开平方、开立方的方法解方程即可.【详解】(1)(3x +2)2=16;开平方得:3x +2=±4,移项得:3x =﹣2±4,解得:x 123=,x 2=﹣2.(2)312142x -=-().两边乘2得:(2x ﹣1)3=﹣8,开立方得:2x ﹣1=﹣2,移项得:2x =﹣1,解得:x 12=-.【点睛】本题考查了立方根和平方根,解题的关键是根据开方的方法求解.20.(1)-10;(2)4;(3)-1.【解析】【分析】利用立方根定义计算即可得到结果.【详解】(1)原式=﹣10;(2)原式=﹣(﹣4)=4;(3)原式=﹣9+8=-1.【点睛】本题考查了立方根,熟练掌握立方根的定义是解答本题的关键.21.(1)4,5;(2)点A与点C间的距离;(3)|x+2|;2或﹣6;﹣2≤x≤3.【解析】【分析】(1)根据两点间的距离公式解答;(2)根据两点间的距离的几何意义解答;(3)根据两点间的距离公式填空.【详解】(1)BD=|﹣2﹣3|=5;(2)数轴上表示数x和数﹣3两点之间的距离可表示为|x+3|;(3)当x<﹣1时,有﹣x+3﹣x﹣1=6,解得:x=﹣2;当﹣1≤x≤3时,有﹣x+3+x+1=4≠6,舍去;当x>3时,有x﹣3+x+1=6,解得:x=4.(4)当x=1时,|x+1|+|x﹣1|+|x﹣3|有最小值,此最小值是4.故答案为5,|x+3|,﹣2或4.4,1.【点睛】本题考查了绝对值,实数与数轴,解题的关键是了解两点间的距离公式和两点间距离的几何意义.22.每个小立方体铝块的表面积为0.54m2.【解析】试题分析:设小立方体的棱长是xm,得出方程8x3=0.216,求出x的值即可.试题解析:解:设小立方体的棱长是xcm,根据题意得:8x3=0.216,解得:x=0.3则每个小立方体铝块的表面积是6×(0.3)2=0.54(m2),答:每个小立方体铝块的表面积是0.54m2.点睛:本题考查了立方根的应用,关键是能根据题意得出方程.。

七年级数学(下)第六章《实数——有序数对》练习题含答案

七年级数学(下)第六章《实数——有序数对》练习题含答案

七年级数学(下)第六章《实数——有序数对》练习题1.根据下列表述,能确定具体位置是A.某电影院2排B.金寨南路C.北偏东45°D.东经168°,北纬15°【答案】D故选D.2.某班级第4组第5排位置可以用数对(4,5)表示,则数对(2,3)表示的位置是A.第3组第2排B.第3组第1排C.第2组第3排D.第2组第2排【答案】C【解析】某班级第4组第5排位置可以用数对(4,5)表示,则数对(2,3)表示的位置是第2组第3排,所以C选项是正确的. 故选C.3.为了维护我国的海洋权益,我海军在海战演习中,欲确定每艘战舰的位置,需要知道每艘战舰相对我方潜艇的A.距离B.方位角C.距离和方位角D.以上都不对【答案】C【解析】由于在一个平面内要表示清楚一个点的位置,要有两个数据,故选C.4.课间操时,小聪、小慧、小敏的位置如图所示,小聪对小慧说,如果我的位置用(1,1)表示,小敏的位置用(7,7)表示,那么你的位置可以表示成A.(5,4)B.(4,4)C.(3,4)D.(4,3)【答案】B【解析】如图,小慧的位置可表示为(4,4).故选B.5.下列关于有序数对的说法正确的是A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,–2)与(–2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置【答案】C故选C.二、填空题:请将答案填在题中横线上.6.确定平面内某一点的位置一般需要____________个数据.【答案】2【解析】确定平面内某一点的位置一般需要两个数据——横坐标和纵坐标.故答案:2.7.如果将一张“13排10号”的电影票记为(13,10),那么“3排8号”的电影票应记为____________,(10,13)表示的电影票是____________.【答案】(3,8);10排13号故答案为:(3,8),10排13号.8.用有序数对(2,9)表示某住户住2单元9号房,请问(3,11)表示住户住____________单元____________号房.【答案】3;11【解析】用有序数对(2,9)表示某住户住2单元9号房,所以(3,11)表示住户住3单元11号房.故答案为:3;11.9.某校为每个学生编号,设定末尾用1表示男生,用2表示女生.如果1808132表示“2018年入学的8班13号同学,是位女生”,那么2018年入学的10班37号男生的编号是____________.【答案】1810371【解析】2018年入学的10班37号男生的编号是:1810371.故答案为:1810371.10.下列说法中:①座位是4排2号;②某城市在东经118°,北纬29°;③某校在昌荣大道229号;④甲地距乙地2km,其中能确定位置的有____________个.【答案】3【解析】①座位是4排2号;②某城市在东经118°,北纬29°;③某校在昌荣大道229号;可以准确的表示出位置,而④甲地距乙地2km却不能确定甲地在乙地什么方向上距乙2km,所以不能确定位置,所以能确定位置的有3个.故答案为:3.三、解答题:解答应写出文字说明、证明过程或演算步骤.11.如下图所示,A的位置为(2,6),小明从A出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格【解析】如下图所示,可知小明与小刚相距3个格.12.如下图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?【解析】有6种走法分别为:①(2,4)→(3,4)→(4,4)→(4,3)→(4,2);②(2,4)→(3,4)→(3,3)→(4,3)→(4,2);③(2,4)→(3,4)→(3,3)→(3,2)→(4,2);④(2,4)→(2,3)→(3,3)→(4,3)→(4,2);⑤(2,4)→(2,3)→(3,3)→(3,2)→(4,2);⑥(2,4)→(2,3)→(2,2)→(3,2)→(4,2).13.在平面内用有序数对可表示物体的位置,你还能用其他类似的方法来表示物体的位置吗?请结合图形说明.3,45,因此平面内不同的点【解析】如图所示,画一条水平的射线OA,则点B的位置可以表示为()可以用这样的有序数对进行表示.14.某电视台用如下图所示的图象描绘了一周之内日平均温度的变化情况:(1)这一周哪一天的日平均温度最低?大约是多少度?哪一天的平均温度最高?大约是多少度?你能用有序数对分别表示它们吗?(2)14、15、16日的日平均温度有什么关系?(3)说一说这一周日平均温度是怎样变化的.(3)这一周日平均温度从28℃升至36℃,然后降至33℃,又升至35℃,持续3天,17日降至30℃.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档