磷酸铁锂项目可行性研究报告

磷酸铁锂项目可行性研究报告
磷酸铁锂项目可行性研究报告

磷酸铁锂项目

可行性研究报告

xxx投资公司

第一章概述

一、项目概况

(一)项目名称

磷酸铁锂项目

(二)项目选址

xx产业园区

项目建设区域以城市总体规划为依据,布局相对独立,便于集中开展科研、生产经营和管理活动,并且统筹考虑用地与城市发展的关系,与项目建设地的建成区有较方便的联系。

(三)项目用地规模

项目总用地面积14033.68平方米(折合约21.04亩)。

(四)项目用地控制指标

该工程规划建筑系数61.14%,建筑容积率1.34,建设区域绿化覆盖率5.22%,固定资产投资强度186.93万元/亩。

(五)土建工程指标

项目净用地面积14033.68平方米,建筑物基底占地面积8580.19平方米,总建筑面积18805.13平方米,其中:规划建设主体工程12227.71平方米,项目规划绿化面积981.05平方米。

(六)设备选型方案

项目计划购置设备共计46台(套),设备购置费1468.66万元。

(七)节能分析

1、项目年用电量514639.95千瓦时,折合63.25吨标准煤。

2、项目年总用水量4010.97立方米,折合0.34吨标准煤。

3、“磷酸铁锂项目投资建设项目”,年用电量514639.95千瓦时,年

总用水量4010.97立方米,项目年综合总耗能量(当量值)63.59吨标准煤/年。达产年综合节能量18.99吨标准煤/年,项目总节能率27.48%,能源

利用效果良好。

(八)环境保护

项目符合xx产业园区发展规划,符合xx产业园区产业结构调整规划

和国家的产业发展政策;对产生的各类污染物都采取了切实可行的治理措施,严格控制在国家规定的排放标准内,项目建设不会对区域生态环境产

生明显的影响。

(九)项目总投资及资金构成

项目预计总投资4697.35万元,其中:固定资产投资3933.01万元,

占项目总投资的83.73%;流动资金764.34万元,占项目总投资的16.27%。

(十)资金筹措

该项目现阶段投资均由企业自筹。

(十一)项目预期经济效益规划目标

预期达产年营业收入6084.00万元,总成本费用4798.43万元,税金

及附加77.41万元,利润总额1285.57万元,利税总额1540.30万元,税

后净利润964.18万元,达产年纳税总额576.12万元;达产年投资利润率27.37%,投资利税率32.79%,投资回报率20.53%,全部投资回收期6.37年,提供就业职位103个。

(十二)进度规划

本期工程项目建设期限规划12个月。

选派组织能力强、技术素质高、施工经验丰富、最优秀的工程技术人

员和施工队伍投入本项目施工。

二、项目评价

1、本期工程项目符合国家产业发展政策和规划要求,符合xx产业园

区及xx产业园区磷酸铁锂行业布局和结构调整政策;项目的建设对促进xx 产业园区磷酸铁锂产业结构、技术结构、组织结构、产品结构的调整优化

有着积极的推动意义。

2、xxx科技发展公司为适应国内外市场需求,拟建“磷酸铁锂项目”,本期工程项目的建设能够有力促进xx产业园区经济发展,为社会提供就业

职位103个,达产年纳税总额576.12万元,可以促进xx产业园区区域经

济的繁荣发展和社会稳定,为地方财政收入做出积极的贡献。

3、项目达产年投资利润率27.37%,投资利税率32.79%,全部投资回报率20.53%,全部投资回收期6.37年,固定资产投资回收期6.37年(含建设期),项目具有较强的盈利能力和抗风险能力。

健全境外投资风险防控体系。2017年6月,中央全面深化改革领导小组第36次会议审议通过了商务部等部门代拟的《关于改进境外企业和对外投资安全工作的若干意见》,提出要加强境外企业和对外投资安全保护完善对境外企业和对外投资的统计监测,加强监督管理,健全法律保护,加强国际安全合作,建立统一高效的境外企业和对外投资安全保护体系。

“十三五”时期,全球产业竞争格局正在发生重大调整,发达国家借“再工业化”争夺国际贸易竞争主导权,一些发展中国家和地区以更低的成本优势,成为接纳国际制造业转移的新阵地。我国制造业面临发达国家“回流”和发展中国家“分流”的双向挤压,全球范围内市场、资源、人才、技术和标准的竞争更加激烈,制造业发展的压力进一步加大。世界经济和贸易低迷、国际市场动荡对我国的影响逐步加深,与国内深层次结构性矛盾凸显形成叠加。

三、主要经济指标

主要经济指标一览表

第二章建设背景

一、项目建设背景

1、经过长期追赶的沉淀和积累,当今我国在相当一些领域与世界前沿科技的差距都处于历史最小时期,已经有能力并行跟进这一轮科技革命和产业变革,加速实现制造业转型升级和创新发展。《中国制造2025》始终贯穿一个主题,就是加快新一代信息通信技术与制造业的深度融合。与发达国家在工业3.0基础上迈向4.0不同,我国制造业还有相当一部分停留在3.0甚至2.0,只有部分领先行业可比肩4.0。实施《中国制造2025》,必须处理好2.0普及、3.0补课和4.0赶超的关系,强化工业基础能力,提高综合集成水平,以推广智能制造为切入点,培育新型生产方式,推动制造业数字化网络化智能化。

2、坚持产业集聚。集约集聚是战略性新兴产业发展的基本模式。要以科技创新为源头,加快打造战略性新兴产业发展策源地,提升产业集群持续发展能力和国际竞争力。以产业链和创新链协同发展为途径,培育新业态、新模式,发展特色产业集群,带动区域经济转型,形成创新经济集聚发展新格局。

二、必要性分析

1、推动高质量发展,要按照党的十九大的要求,重点抓好决胜全面建成小康社会的防范化解重大风险、精准脱贫和污染防治三大攻坚战。防范

化解重大风险,重点是防控金融风险。要服务于供给侧结构性改革这条主线,促进形成金融和实体经济、金融和房地产、金融体系内部的良性循环,使系统性风险得到有效防控;打好精准脱贫攻坚战,要瞄准特定贫困群众

精准帮扶,向深度贫困地区聚焦发力。

2、总体来看,“十二五”时期,中国经济初步进入“新常态”的发展

模式,是经济增长速度的“换挡期”,经济结构的重大“调整期”,经济

增长方式转变的“夯实期”。承接这一经济发展态势,“十三五”时期中

国经济发展全面进入“新常态”的发展轨道:经济增长中高速“相对稳定期”;经济结构调整的“深度调整期”;以创新驱动、绿色驱动增长为主

要特征的“新增长点培育期”;收入分配的“显著优化期”;以人口布局、经济发展和资环环境承载能力相适应格局的区域协调发展的“制度建设期

和基础夯实期”;以高效、包容、可持续发展为特征的新型城镇化发展的“升级期”;以创造价值为核心的“引进来”与“走出去”的综合战略,

迈向全球价值链中高端的“升值期”;以及全面提高对外开放水平、提高

参与全球治理能力的“升级期”。

第三章项目建设单位说明

一、项目承办单位基本情况

(一)公司名称

xxx投资公司

(二)公司简介

通过持续快速发展,公司经济规模和综合实力不断增长,企业贡献力和影响力大幅提升。本公司集研发、生产、销售为一体。公司拥有雄厚的技术力量,先进的生产设备以及完善、科学的管理体系。面对科技高速发展的二十一世纪,本公司不断创新,勇于开拓,以优质的产品、广泛的营销网络、优良的售后服务赢得了市场。产品不仅畅销国内,还出口全球几十个国家和地区,深受国内外用户的一致好评。

公司能源计量是企业实现科学管理的基础性工作,没有完善而准确的计量器具配置,就不能为企业能源消费的各个环节提供可靠的数据,能源计量工作也是评价一个企业管理水平的一项重要标志;项目承办单位依据ISO10012-1标准建立了完善的计量检测体系,并通过审核认证;随后又根据国家质检总局、国家发改委《关于加强能源计量工作的实施意见》以及xx省质监局《关于加强全省能源计量工作的通知》的文件精神,依据国家《用能单位能源计量器具配备和管理通则》(GB17176-2006)的要求配备了计量器具并实行量化管理;项目承办单位已经建立了“能源量化管理体

系”并通过了当地质量技术监督局组织的评审认证,该体系的建立,进一

步强化了项目承办单位对能源计量仪器(设备)的管理力度,实现了以量

化管理促节能,提高了能源计量数据的真实性、准确性,凭借着不断完善

的能源量化体系,实现了对各计量数据进行日统计、周分析、月汇总、年

总结,通过能源计量数据的有效采集、处理、分析、控制,真实反映了项

目承办单位能源消费的实际状态,为节能降耗、保护环境、提高企业的市

场竞争力,做出了积极的贡献,从而大大提高了项目承办单位的能源综合

管理水平。

公司以生产运行部、规划发展部等专业技术人员为主体,依托各单位

生产技术人员,组建了技术研发团队。研发团队现有核心技术骨干十余人,均有丰富的科研工作经验及实践经验。

二、公司经济效益分析

上一年度,xxx科技发展公司实现营业收入3692.80万元,同比增长33.92%(935.43万元)。其中,主营业业务磷酸铁锂生产及销售收入为3493.09万元,占营业总收入的94.59%。

上年度营收情况一览表

根据初步统计测算,公司实现利润总额828.64万元,较去年同期相比增长98.03万元,增长率13.42%;实现净利润621.48万元,较去年同期相比增长57.59万元,增长率10.21%。

上年度主要经济指标

第四章建设规划

一、产品规划

项目主要产品为磷酸铁锂,根据市场情况,预计年产值6084.00万元。

坚持把项目产品需求市场作为创业工作的出发点和落脚点,根据市场

的变化合理调整产品结构,真正做到市场需要什么产品就生产什么产品,

市场的热点在哪里,创新工作的着眼点就放在哪里;针对市场需求变化合

理确定项目产品生产方案,增加产品高附加值,能够满足人们对项目产品

的需求。

二、建设规模

(一)用地规模

该项目总征地面积14033.68平方米(折合约21.04亩),其中:净用

地面积14033.68平方米(红线范围折合约21.04亩)。项目规划总建筑面

积18805.13平方米,其中:规划建设主体工程12227.71平方米,计容建

筑面积18805.13平方米;预计建筑工程投资1651.65万元。

(二)设备购置

项目计划购置设备共计46台(套),设备购置费1468.66万元。

(三)产能规模

项目计划总投资4697.35万元;预计年实现营业收入6084.00万元。

第五章选址可行性研究

一、项目选址

该项目选址位于xx产业园区。

园区是市政府于1996年批准成立的市级经济园区,当时批准的建设用

地为6平方公里。围绕做大做强优势产业,改造提升传统产业,加快发展

战略性新兴产业和生产性服务业,突出扶大引强,实施龙头带动,引导产

业合理布局、错位发展,推进产业链整合与集群式发展。依托当地城市圈

发展,推进东进东接,力争到2020年,全市工业规模进一步壮大,产业结

构进一步优化,创新能力进一步增强,发展水平进一步提升。“十三五”

期间,全市规模总产值年均增速在11.3%以上,到2020年,规模工业总产

值达3500亿元,力争达到4000亿元。全市规模工业增加值年均增速在11%以上,到2020年,规模工业增加值力争达到1000亿元。

项目建设区域以城市总体规划为依据,布局相对独立,便于集中开展

科研、生产经营和管理活动,并且统筹考虑用地与城市发展的关系,与项

目建设地的建成区有较方便的联系。

项目建设所选区域交通运输条件十分便利,拥有集公路、铁路、航空

于一体的现代化交通运输网络,物流运输方便快捷,为投资项目原料进货、产品销售和对外交流等提供了多条便捷通道,对于项目实现既定目标十分

有利。

二、用地控制指标

投资项目占地税收产出率符合国土资源部发布的《工业项目建设用地控制指标》(国土资发【2008】24号)中规定的产品制造行业占地税收产出率≥150.00万元/公顷的规定;同时,满足项目建设地确定的“占地税收产出率≥150.00万元/公顷”的具体要求。

三、地总体要求

本期工程项目建设规划建筑系数61.14%,建筑容积率1.34,建设区域绿化覆盖率5.22%,固定资产投资强度186.93万元/亩。

土建工程投资一览表

四、节约用地措施

采用大跨度连跨厂房,方便生产设备的布置,提高厂房面积的利用率,有利于节约土地资源;原料及辅助材料仓库采用简易货架,提高了库房的

面积和空间利用率,从而有效地节约土地资源。

五、总图布置方案

1、同时考虑用地少、施工费用节约等要求,沿围墙、路边和可利用场

地种植花卉、树木、草坪及常绿植物,改善和美化生产环境。

场区道路布置满足安装、检修、运输和消防的要求,使货物运输顺畅,合理分散物流和人流,尽量避免或减少交叉,使主要人流、物流路线短捷、运输安全。

2、投资项目绿化的重点是场区周边、办公区及主要道路两侧的空地,

美化的重点是办公区,场区周边以高大乔木为主,办公区以绿色草坪、花

坛为主,道路两侧以观赏树木、绿篱、草坪为主,适当结合花坛和垂直绿化,起到环境保护与美观的作用,创造一个“环境优美、统一协调”的建

筑空间。

项目所在地供水水源来自项目建设地自来水厂,给水压力≥0.30Mpa,

供水能力充足,水质符合国家现行的生活饮用水卫生标准。

3、投资项目消防对象主要是厂房、库房、办公场地等;因此,室外消

防用水量按25.00L/S,火灾延续时间按2.00小时计,同一时间发生火灾次数按一次考虑;室内消防栓用水量15.00L/S,火灾延续时间按2.00小时计,室内外的消防栓均按规范间距要求布置。

电源设备选用隔爆型dⅡBT4级防爆电器,照明导线穿钢管敷设,其他

环境按一般建筑物设计;进入易燃易爆区域的各类电缆采用防火性能较高

的阻燃电缆;场内配电采用放射式配电方式,室外电缆直埋或电缆沟敷设,直埋埋深1.00米,过路及穿墙以钢管保护。

4、场外运输主要为原材料的供给以及产品的外运;产品的远距离运输

由汽车或铁路运输解决,项目建设地社会运输力量充足,可满足投资项目

场外远距离运输的需求。

卫生间均设排气扇,将湿气和臭气经排风机排至室外,通风换气次数

一定要大于10.00次/小时。

六、选址综合评价

投资项目建设地址及周边地区具有较强的生产配套与协作能力,项目

建设地工业种类齐全制造业发达,技术人员与高等级工程技术人力资源充足,项目配套及辅助材料均能找到合适的服务厂家,供应商分布在周边150.00公里的范围内,供货运输时间约在2.00小时之内,而且铁路、公路运输非常方便快捷。

第六章土建工程研究

一、建筑工程设计原则

建筑物平面设计以满足生产工艺要求为前提,力求生产流程布置合理,尽量做到人货分流,功能分区明确,符合《建筑设计防火规范》(GB50016)要求。

针对项目承办单位提出的“高标准、高质量、快进度”的要求,为了

达到这一共同的目标,投资项目在整个设计过程中,始终贯彻这一原则,

以“尊重自然、享受自然、爱护自然”为基点,全力提高员工的“学习力、创造力和凝聚力”,实现项目承办单位经济快速发展的奋斗目标。

二、土建工程设计年限及安全等级

根据《建筑抗震设计规范》(GB50011)的规定,投资项目建筑物结构

设计符合根据《建筑抗震设计规范》(GB50011)的规定,投资项目建筑物

结构设计符合Ⅷ度抗震设防的要求,基本地震加速度值为0.20g,设计地震分组为第一组,抗震设防类别为乙类,各建筑物均采取相应抗震构造设计。

三、建筑工程设计总体要求

该项目建筑设计及结构设计在满足生产工艺要求的前提下,尽量贯彻

工业厂房联合化、露天化、结构轻型化原则,并注意因地制宜。对采光通风、保温隔热、防火、防腐、抗震等均按国家现行规范、规程和规定执行,

铁锂电池与铅酸对比

铁锂电池与铅酸对比

磷酸铁锂电池和密封阀控式铅酸蓄电池的比较 一、产品性能比较和系统组成比较 磷酸铁锂电池和铅酸电池性能比较详见表4。 表4 磷酸铁锂电池和铅酸电池性能比较 电池性能 说明 磷酸铁锂电池 铅酸电池 单体电压 (V ) 3.2 2 重量比能量 (wh/kg ) 110~130 30~50 体积比能量 (wh/L ) 180~220 80~120 循环寿命 1C100%充放 ≥1000次 250~350次 高温性能 循环寿命变化 45℃为25℃时减半 35℃为25℃时减半 低温性能 -20℃容量保持率 50% 55% 自放电 常温搁置28天 4% 5% 充放电效率 >99% 80% 耐过充性能 一般 好 安全性 优 优 环保 无污染 污染 磷酸铁锂蓄电池与铅酸蓄电池在-48V 直流电源系统的组成比较如表5所示。 表1 磷酸铁锂电池组和铅酸电池组参数比较 组单体组单体组单体组单体浮充均充铅酸电池40~572448243.2 1.854.0 2.2556.4 2.35 1.13 1.18铁锂电池40~571651.2 3.243.2 2.755.2 3.4557.6 3.6 1.08 1.13铁锂电池 40~57 1548 3.243.2 2.88 54.0 3.6 56.4 3.76 1.13 1.18 电池设备工作范围只数 标称电压(V)电压比值放电终止电压(V)浮充电压(V) 均充电压(V) 资料显示: ? 充满电后4.0V 的磷酸铁锂蓄电池静置15分钟后回落到3.4V ,电池开 口电压3.4V 。 ? 单体工作电压为2.0V~4.2V 。 ? 在3.65V 以下可以充电性能稳定。 ? 单体电池放电时,3.0V 以下电压下降很快。 综合以上信息,建议48V 直流系统的蓄电池组只数选择16只的配置方案。 二、基站应用方案比较及投资比较 磷酸铁锂电池应用在基站中,主要考虑到不同放电率对该种电池放电容量的影响较小,以及耐受较宽的环境温度。以下将针对基站的功耗、后备时间进行电池容量选择的分析。

磷酸铁锂材料的制备方法

磷酸铁锂材料的制备方法主要有: (1)高温固相法:J.Barker等就磷酸盐正极材料申请了专利,主要采用固相合成法。以碳酸锂、氢氧化锂等为锂源,草酸亚铁、乙二酸亚铁,氧化铁和磷酸铁等为铁源,磷酸根主要来源于磷酸二氢铵等。典型的工艺流程为:将原料球磨干燥后,在马弗炉或管式炉内于惰性或者还原气氛中,以一定的升温加速加热到某一温度,反应一段时间后冷却。高温固相法的优点是工艺简单、易实现产业化,但产物粒径不易控制、分布不均匀,形貌也不规则,并且在合成过程中需要使用惰性气体保护。 (2)碳热还原法:这种方法是高温固相法的改进,直接以铁的高价氧化物如Fe 2O 3 、LiH 2 PO 4 和碳粉为原料,以化学计量比混合,在箱式烧结炉氩气气氛中于70 0℃烧结一段时间,之后自然冷却到室温。采用该方法做成的实验电池首次充放电容量为151mAh/g。该方法目前有少数几家企业在应用,由于该法的生产过程较为简单可控,且采用一次烧结,所以它为LiFePO 4 走向工业化提供了另一条途径。但该法制备的材料较传统的高温固相法容量表现和倍率性能方面偏低。 (3)水热合成法:S.F.Yang等用Na 2HPO 4 和FeCL 3 合成FePO 4 .2H 2 O,然后与CH 3 C OOLi通过水热法合成LiFePO 4 。与高温固相法比较,水热法合成的温度较低,约 150度~200度,反应时间也仅为固相反应的1/5左右,并且可以直接得到磷酸铁锂,不需要惰性气体,产物晶粒较小、物相均一等优点,尤其适合于高倍率放电领域,但该种合成方法容易在形成橄榄石结构中发生Fe错位现象,影响电化学性能,且水热法需要耐高温高压设备,工业化生产的困难要大一些。据称Pho stech的P 2 粉末便采用该类工艺生产。 (4)液相共沉淀法:该法原料分散均匀,前躯体可以在低温条件下合成。将Li OH加入到(NH 4) 2 Fe(SO 4 ) 3 .6H 2 O与H 3 PO 4 的混合溶液中,得到共沉淀物,过滤 洗涤后,在惰性气氛下进行热处理,可以得到LiFePO 4 。产物表现出较好的循环稳定性。日本企业采用这一技术路线,但因专利问题目前尚未大规模应用。(5)雾化热解法:雾化热解法主要用来合成前躯体。将原料和分散剂在高速搅拌下形成浆状物,然后在雾化干燥设备内进行热解反应,得到前躯体,灼烧后得到产品。 (6)氧化-还原法: 该法能得到电化学优良的纳米级的磷酸铁锂粉体,但其工艺很复杂,不能大量生产,只适合实验室研究。

(完整版)磷酸铁锂动力电池特性及应用(精)

磷酸铁锂动力电池特性及应用 自锂离子电池问世以来,围绕它的研究、开发工作一直不断地进行着,上世纪90年代末又开发出锂聚合物电池,2002年后则推出磷酸铁锂动力电池。 锂离子电池内部主要由正极、负极、电解质及隔膜组成。正、负极及电解质材料不同及工艺上的差异使电池有不同的性能,并且有不同的名称。目前市场上的锂离子电池正极材料主要是氧化钴锂(LiCoO2),另外还有少数采用氧化锰锂(LiMn2O4)及氧化镍锂(LiNiO2)作正极材料的锂离子电池,一般将后两种正极材料的锂离子电池称为“锂锰电池”及“锂镍电池”。新开发的磷酸铁锂动力电池是用磷酸铁锂(LiFePO4)材料作电池正极的锂离子电池,它是锂离子电池家族的新成员。 一般锂离子电池的电解质是液体的,后来开发出固态及凝胶型聚合物电解质,则称这种锂离子电池为锂聚合物电池,其性能优于液体电解质的锂离子电池。 磷酸铁锂电池的全名应是磷酸铁锂锂离子电池,这名字太长,简称为磷酸铁锂电池。由于它的性能特别适于作动力方面的应用,则在名称中加入“动力”两字,即磷酸铁锂动力电池。也有人把它称为“锂铁(LiFe)动力电池”。 采用LiFePO4材料作正极的意义 目前用作锂离子电池的正极材料主要有:LiCoO2、LiMn2O4、LiNiO2及LiFePO4。这些组成电池正极材料的金属元素中,钴(Co)最贵,并且存储量不多,镍(Ni)、锰(Mn)较便宜,而铁(Fe)最便宜。正极材料的价格也与这些金属的价格行情一致。因此,采用 LiFePO4正极材料做成的锂离子电池应是最便宜的。它的另一个特点是对环境无污染。 作为可充电电池的要求是:容量高、输出电压高、良好的充放电循环性能、输出电压稳定、能大电流充放电、电化学稳定性能、使用中安全(不会因过充电、过放电及短路等操作不当而引起燃烧或爆炸)、工作温度范围宽、无毒或少毒、对环境无污染。采用LiFePO4作正极的磷酸铁锂电池在这些性能要求上都不错,特别在大放电率放电(5~10C放电)、放电电压平稳上、安全上(不燃烧、不爆炸)、寿命上(循环次数)、对环境无污染上,它是最好的,是目前最好的大电流输出动力电池。 LiFePO4电池的结构与工作原理 LiFePO4电池的内部结构如图1所示。左边是橄榄石结构的LiFePO4作为电池的正极,由铝箔与电池正极连接,中间是聚合物的隔膜,它把正极与负极隔开,但锂离子Li+可以通过而电子e-不能通过,右边是由碳(石墨)组成的电

磷酸铁锂正极材料制备方法比较

磷酸铁锂正极材料制备方法比较 A.固相法 一.高温固相法 1.流程:传统的高温固相合成法一般以亚铁盐(草酸亚铁,醋酸铁,磷酸亚铁等),磷酸盐(磷酸氢二铵,磷酸二氢铵),锂盐(碳酸锂,氢氧化锂,醋酸锂及磷酸锂等)为原料,按LiFePO4分子式的原子比进行配料,在保护气氛(氮气、氩气或它们与氢气的混合气体)中一步、二步或三步加热,冷却后可得LiFePO4粉体材料。 例1:C.H.Mi等采用一:步加热法得到包覆碳的LiFePO4,其在30℃,0.1 C 倍率下的初始放电容量达到160 mAh·g-1;例2:S.S.Zhang等采用二步加热法,以FeC:2O4·2H2O和LiH2PO4为原料,在氮气保护下先于350~380℃加热5 h形成前驱体,再在800℃下进行高温热处理,成功制备了LiFePO4/C复合材料,产物在0.02 C倍率下的放电容量为159 mAh·g-1;例3:A.S.Andersson等采用三步加热法,将由:Li2CO3、FeC2O4·2H2O 和(NH4)2HPO4组成的前驱体先在真空电炉中于300℃下预热分解,再在氮气保护下先于450℃加热10 h,再于800℃烧结36 h,产物在放电电流密度为2.3 mA·g-1时放电,室温初始放电容量在136 mAh·g-1左右;例4:Padhi等以Li2CO3,Fe(CH3COO)2,NH4H2PO4为原料,采用二步法合成了LiFePO4正极材料,其首次放电容量达110 mA·h /g;T akahashi 等以LiOH·H2O, FeC2O4·2H2O,(NH4)2HPO4为原料,在675、725、800℃下,制备出具有不同放电性能的产品,结果表明,低温条件下合成的产品放电容量较大;例5:韩国的Ho Chul Shin、Ho Jang等以碳酸锂、草酸亚铁、磷酸二氢铵为原料,添加5wt%的乙炔黑为碳源、以At+5%H2为保护气氛,在700℃下煅烧合成10h,得到碳包覆的LiFePO4材料。经检测表明,用该工艺合成的LiFePO4制备的电池放电平台在3·4-3·5V之间,0·05C首次放电比容量为150mA·h/g;例6:高飞、唐致远等以醋酸锂、草酸亚铁、磷酸二氢铵为原料,聚乙烯醇为碳源。混料球磨所得粒径细小,分布的悬浊液。然后将悬浊液采用喷雾干燥的方法制得LiFePO4前驱体,再通过高温煅烧合成LiFePO4/C正极材料,首次放电比容量最为139·4mA·h/g,并具有良好的循环性能,经10C循环50次后,比容量仅下降0·15%;例7:赵新兵、周鑫等以氢氧化锂、磷酸铁、氟化锂为原料,,聚丙烯为碳源,先在500℃下预烧,再在700℃下煅烧合成具有F掺杂的LiFePO酒精为球磨介质4/C材料,电化学测试结果表明,LiFePO3·98F0·02/C 具有最佳放电特性,在1C倍率充放电下比容量为146mA·h/g。 2.优点:工艺简单、易实现产业化 3.缺点:颗粒不均匀;晶形无规则;粒径分布范围广;实验周期长;难以控制产物的批次稳定性;在烧结过程中需要耗费大量的惰性气体来防止亚铁离子的氧化;所生产的LiFePO4粉末导电性能不好,需要添加导电剂增强其导电性能 4.改性:添加导电剂(多用蔗糖,乙炔黑,聚乙烯醇,聚丙烯等碳源)增强其导电性能二.碳热还原法 1.流程:碳热还原法也是高温固相法中的一种,是比较容易工业化的合成方法,多数以氧化铁或磷酸铁做为铁源,配以磷酸二氢锂以及蔗糖等碳源,均匀混合后,在高温和氩气或氮气保护下焙烧,碳将三价铁还原为二价铁,也就是通过碳热还原法合成磷酸铁锂。 例1: 杨绍斌等以正磷酸铁为铁源,以葡萄糖、乙炔黑为碳源,采用碳热还原法合成橄榄石型磷酸铁锂。研究发现:双碳复合掺杂样品电性能最高为148.5 mAh/g,倍率放电性能仍具有优势,10 C时容量保持率为88.1%;例2:Mich等以分析纯的FePO4和LiOH为原料,聚丙烯为还原剂,合成的材料在0.1 C及0.5 C倍率下首次放电比容量分别为160 mAh/g 和146.5 mAh/g;例3:P.P.Prosini 等以(NH4)2Fe(SO4)2和NH4H2PO4为原料首先合成FePO4,然后用LiI还原Fe3+,并在还原性气氛下(Ar:H2=95:5)于550℃加热1 h后合成了最终样品,其在0.1C倍率下的室温

磷酸铁锂正极材料项目

磷酸铁锂正极材料项目 简述 磷酸铁锂是近年来发展较快的锂电池正极材料,其分子式LiMPO4,Lithium Iron Phosphate ,简称LFP正极材料,其结构为橄榄石型结构,有高稳定性,和目前锂材料最大的不同是不含钴等贵重元素,没有毒性,原料价格低且磷、锂、铁存在于地球的资源含量丰富,不会有供料问题。其工作电压适中(3.2V)、电容量大(170mAh/g)、高放电功率、可快速充电且循环寿命长,在高温与高热环境下的稳定性高。用作电池的磷酸铁锂材料一般颜色为灰白色,经过包裹碳后成为黑色粉末。 磷酸铁锂具有以下几个重要的优点: (1)高性价比,目前,一般国内磷酸铁锂的价格为每吨25万元,国外产品的价格约在30万元以上。我们产品的性能基本上同国内外的主流产品,材料成本和消耗成本(电源,燃料和人工费用)约在8-10万左右,利润率较好。 (2)磷酸铁锂的单位容量约为钴酸锂的75%,成本只相当于钴酸锂的三分之一左右,而且没有爆炸等危险,无毒性,电池循环寿命约是锂电池的4-5倍,高于锂电池8-10倍高放电功率(可瞬间产生大电流),加上同样能量密度下整体重

量,约较锂电池减少30-50%,其在动力电池市场上有更广阔的前景。 建设主要内容: 计划建设年产6000吨磷酸铁锂材料生产基地,项目占地100亩,总建筑面积9000平方米。建设研发中心、原料库、成品库、加工车间及办公区域。项目分两期建设,其中一期总投资1亿元,形成年产2000吨磷酸铁锂材料产能。二期总投资4亿元,达到年产6000吨产能水平。购置设备有实验合成用气氛反应炉及控制设备台、高温纤维加热炉、高能量密度介质搅拌磨、无污染型介质搅拌磨、真空干燥箱、混合机、X射线沉降粒度仪、电超声法纳米粒度仪、比表面吸附仪等,设备总价2500万元。 总投资 5亿元,其中企业自筹3.5亿元,国内银行贷款1.5亿元 经济效益分析 按年生产6000吨磷酸铁锂材料计算,销售收入6000*25万元,利润总额6亿元,实现利税4亿元。

磷酸铁锂正极材料制备方法比较

磷酸铁锂正极材料制备方法比较 A.固相法 一. 高温固相法 1.流程:传统的高温固相合成法一般以亚铁盐(草酸亚铁,醋酸铁,磷酸亚铁等) ,磷酸盐(磷酸氢二铵,磷酸二氢铵),锂盐(碳酸锂,氢氧化锂,醋酸锂及磷酸锂等)为原料,按LiFeP04分子式的原子比进行配料,在保护气氛(氮气、氩气或它们与氢气的混合气体)中一步、二步或三步加热,冷却后可得LiFeP04粉体材料。 例1: C.H.Mi等采用一:步加热法得到包覆碳的LiFeP04,其在30 C, 0.1 C 倍率下的初始放电容量达到160 mAh g-1 ;例2 : S.S.Zhang等采用二步加热法,以 FeC:2O4 2H2O和LiH2PO4为原料,在氮气保护下先于350~380 C加热5 h形成前驱体,再在800 C下进行高温热处理,成功制备了LiFePO4/C复合材料,产物在0.02 C倍率下的放 电容量为159 mAh g-1 ;例3 : A.S.Andersson等采用三步加热法,将由:Li2CO3、FeC2O4 2H2O 和(NH4)2HPO4组成的前驱体先在真空电炉中于300 C下预热分解,再在氮气保护下先于 450 C加热10 h,再于800 C烧结36 h,产物在放电电流密度为2.3 mA g-1时放电,室温初始放电容量在136 mAh g-1 左右;例4: Padhi 等以Li2CO3 , Fe(CH3COO)2 , NH4H2PO4 为原料,采用二步法合成了LiFePO4正极材料,其首次放电容量达110 mA h /g ; Takahashi 等以LiOH H2O, FeC2O4 2H2O , (NH4)2HPO4 为原料,在675、725、800 C下,制备出具有不同放电性能的产品,结果表明,低温条件下合成的产品放电容量较大;例5:韩国的Ho Chul Shin、Ho Jang等以碳酸锂、草酸亚铁、磷酸二氢铵为原料,添加5wt%的乙炔黑为碳源、以 At+5%H2为保护气氛,在700 C下煅烧合成10h,得到碳包覆的LiFePO4材料。经检测表明,用该工艺合成的LiFePO4制备的电池放电平台在3 4-3 5V之间,0 05C首次放电比容量为150mA h/g ;例 6 :高飞、唐致远等以醋酸锂、草酸亚铁、磷酸二氢铵为原料,聚乙烯醇为碳源。混料球磨所得粒径细小,分布的悬浊液。然后将悬浊液采用喷雾干燥的方法制得LiFePO4 前驱体,再通过高温煅烧合成LiFePO4/C正极材料,首次放电比容量最为139 4mA h/g,并具有良好的循环性能,经10C循环50次后,比容量仅下降0 15% ;例7:赵新兵、周鑫等以氢氧化锂、磷酸铁、氟化锂为原料,,聚丙烯为碳源,先在500 C下预烧,再在700 C下煅烧合成具有F掺杂的LiFePO酒精为球磨介质4/C材料,电化学测试结果表明,LiFePO3 98F0 02/C 具有最佳放电特性,在1C倍率充放电下比容量为146mA h/g。 2?优点:工艺简单、易实现产业化 3?缺点:颗粒不均匀;晶形无规则;粒径分布范围广;实验周期长;难以控制产物的批次 稳定性;在烧结过程中需要耗费大量的惰性气体来防止亚铁离子的氧化;所生产的LiFePO4 粉末导电性能不好,需要添加导电剂增强其导电性能 4?改性:添加导电剂(多用蔗糖,乙炔黑,聚乙烯醇,聚丙烯等碳源)增强其导电性能 二. 碳热还原法 1.流程:碳热还原法也是高温固相法中的一种,是比较容易工业化的合成方法,多数以氧化铁或磷酸铁做为铁源,配以磷酸二氢锂以及蔗糖等碳源,均匀混合后,在高温和氩气或氮气 保护下焙烧,碳将三价铁还原为二价铁,也就是通过碳热还原法合成磷酸铁锂。 例1:杨绍斌等以正磷酸铁为铁源,以葡萄糖、乙炔黑为碳源,采用碳热还原法合成橄榄石型磷酸铁锂。研究发现:双碳复合掺杂样品电性能最高为148.5 mAh/g,倍率放电性能仍具 有优势,10 C时容量保持率为88.1% ;例2 : Mich等以分析纯的FePO4和LiOH为原料,聚丙烯为还原剂,合成的材料在0.1 C及0.5 C倍率下首次放电比容量分别为160 mAh/g 和146.5 mAh/g ; 例3 : PP.Prosini 等以(NH4)2Fe(SO4)2和NH4H2PO4为原料首先合成FePO4,然后用LiI还原Fe3+,并在还原性气氛

磷酸铁锂电池

磷酸鐵鋰啟動電池 磷酸鐵鋰電池﹙以下簡稱為鋰鐵﹚,用於啟動電池的設計,在此首先了解一些問題,如下: 汽機車發電機電壓範圍 啟動瞬間電流大小及應用時間 電池瞬間啟動電流壽命 最低截止電壓 與鉛酸電池相對應成本比較(初期投入成本及使用帄均成本) 對車內電器的影響性 環保性 鋰鐵啟動電池使用方式鉛酸化 使用鋰鐵電池來設計車用電池,在坊間已經有數年之久,在這段開發時間,各個開發及銷售廠商如雨後春筍般的出現,但截至目前為止,鋰鐵啟動電池尚未成為市場上的主流,不論是機車類別會是汽車類別。 在開發此類產品時,每一位研究開發人員只要細心的了解比對鋰鐵電池與鉛酸電池的差異性,均會認為以鋰鐵高效率的放電C數及瞬間放電能力和低內阻的特性,均會擠下一般的鉛酸電池,成為汽機車類啟動電池的新寵兒,奈何發展至今卻尚未看到市場的佔有率的出現,更遑論是否有形成節能減碳的風潮。 “產品的規格是來自於需求,不論何時何地都有新產品規格誕生,因為來自於需求” 在設計啟動電池,我們會去注重瞬間的放電能力,在這裡每一位研究開發人員都會注意到這一個問題,一輛機車的瞬間啟動電流可能高達70A 以上,機車的c.c.數越大,其啟動電流越大,一輛2000c.c.的汽車瞬間啟動電流可以高達300A 以

上(每一車種其啟動電流不一,並端看車內電器使用多寡),每一次啟動時間範圍不一,因此在啟動電池設計上,我們必須了解一些問題,來輔助設計。 一般鉛酸電池分為極板、隔離板、電解液,其極板分為正極是二氧化鉛和負極為海綿狀鉛(絨狀鉛)等,隔離板可分為強化纖維、微孔橡膠、合成樹脂等,電解液一般為硫酸等;概分析組成結構,其正負極板放置在電解液中,其正負極輸出入端子直接連結到極板,如此一單元其電壓為2V,其容量大小取決於面積大小。其極板及極頭尺寸和極板連接極頭的尺寸均以10mm單位起跳,這些尺寸會影響到整體瞬間輸出電流承受能力,截面積越大,承受大功率輸出能力越大。 鋰鐵電池分為正負極材料、隔離膜、電解液,其正極材料磷酸鐵鋰粉使用銅做為傳導介質,負極材料石墨或碳使用鋁做為傳導介質,隔離膜以不織布或和紙為材料,電解液如高氯酸鋰有機溶劑;概分析組成結構,正極材料經過篩選、研磨、過濾後,塗佈在銅片上,負極材料經過篩選、研磨、過濾後,塗佈在鋁片上,正負極片分別碾壓過後,在兩極片之間放置一層隔離膜,重覆這些步驟,如此多層的架構組合成一個單元(Cell),端看其正負極片連接至極頭部份,需要極耳做為傳導介質,而這極耳的大小多寡取決了充放電電流大小及壽命,因此在啟動電池的設計上,會來挑選瞬間大放電C數來使用,這個數值越高對於啟動電池設計越有利,這部份數值與電池壽命有其相對關係,極耳越小,數量越少,在瞬間大放電C數上,雖也可承受,但使用次數一多,會造成極耳焦黑情形,甚至導致帽蓋裂開,因此在鋰鐵Cell的瞬間大放電C數壽命的要求是有其必要,如果可以,與Cell廠商討論其瞬間放電C數的次數壽命,這一個規格,往往在啟動電池設計上都會忽略。 一、汽機車發電機電壓範圍 車種皆不相同,一般汽車發電機電壓為12.5~14.5V左右(此輸出電壓並非一定,詳細規格可詢問廠商),當汽機車啟動時,一開始有電池供電,帶動啟動馬達,再由啟動馬達帶動引擎的發動,同時,車上發電機也跟隨著啟動,供應車內所有電器及分電盤使用,此時,電池從原本的供應電源狀態轉換成充電狀態,發電機有一調節器,這調節器會跟隨電器使用多寡及加油速度改變,直到調節器調節到最大時,電力仍供應不足,這才會有從電池供電情形(這部份情形大多出現在改車),在鉛酸電池與鋰鐵電池比較,前者內阻高,放電效率低,後者內阻低,放電效率高,因此一般汽機車啟動後,鋰鐵電池可以快速充電完畢,不浪費電力,因此可以減輕發電機的負載,造成省油的情形。

磷酸铁锂正极材料稳定性探讨

磷酸铁锂正极材料稳定性探讨 张世杰副总工程师 中国电子科技集团公司第十八研究所 目录 引言 磷酸铁锂正极材料产业现状分析 目前磷酸铁锂正极材料批产存在的主要质量问题 产生质量问题的主要原因分析 如何提高磷酸铁锂批次稳定性 讨论 1、引言 采用磷酸铁锂正极材料制备的锂离子电池与其他正极材料制备的锂离子电池比较具有三个突出的特点:一是电池安全性好,电池在过充电、过放电、短路、针刺等试验条件下安全;二是电池充放电循环寿命长且容量保持率高,能够循环2000次且容量仍能保持90%;三是电池倍率放电能力强,可以几十倍率放电。因此,磷酸铁锂正极材料被公认为是动力锂离子电池理想正极材料,也成为世人关注的“热点”。

锂离子电池制造商在使用国产磷酸铁锂正极材料试验和生产电池过程发现:国产磷酸铁锂正极材料与国际先进同类产品相比仍有较大差距、一部分磷酸铁锂供应商提供的材料存在不同程度的质量问题、批次产品之间存在质量不稳定等问题。为此,国产磷酸铁锂正极材料质量一致性又成为人们关注的“焦点”。 如何迅速解决磷酸铁锂正极材料生产中存在的关键技术问题、工艺技术问题和产品质量问题?如何提高磷酸铁锂批生产过程产品批次不稳定问题?更是从事磷酸铁锂正极材料技术研究、产品开发、中试和批生产技术攻关工作者所面临的一大“难点”。 本报告正是针对以上人们关心和关注的问题,结合实际工作中遇到的问题,浅谈一些粗浅的见解。 2、磷酸铁锂正极材料产业现状分析 国内已经形成了一批磷酸铁锂正极材料生产商,产业初具规模,并把产品投向市场,提供给锂离子电池制造商使用。但是,大家普遍感到:目前国内磷酸铁锂正极材料批量生产技术还存在突出的工艺稳定性问题。突出表现在: 一些大的锂离子电池制造商从磷酸铁锂材料平均粒径、电极加工性、电极压实密度、实际比容量、循环寿命、倍率放电、温度特性、安全性等方面对国内几个磷酸铁锂材料供应商和Valence等国外供应商所提供的材料进行了非常系统的试验评价,客观的试验数据表明:国内磷酸铁锂批产产品与Valence等国外供应商产品比较仍有较大差距; 表1: Valence公司产品与国产产品3个主要指标对比

锂离子电池及其制备方法

锂离子电池 锂离子电池是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。 锂离子电池容易与下面两种电池混淆: (1)锂电池:存在锂单质。 (2)锂离子聚合物电池:用多聚物取代液态有机溶剂。 锂离子电池组成部分: 钢壳/铝壳/圆柱/软包装系列: (1)正极——活性物质一般为锰酸锂或者钴酸锂,现在又出现了镍钴锰酸锂材料,电动自行车则用磷酸铁锂,导电集流体使用厚度10--20微米的电解铝箔 (2)隔膜——一种特殊的复合膜,可以让离子通过,但却是电子的绝缘体(3)负极——活性物质为石墨,或近似石墨结构的碳,导电集流体使用厚度7-15微米的电解铜箔 (4)有机电解液——溶解有六氟磷酸锂的碳酸酯类溶剂,聚合物的则使用凝胶状电解液 (5)电池外壳——分为钢壳(现在方型很少使用)、铝壳、镀镍铁壳(圆柱电池使用)、铝塑膜(软包装)等,还有电池的盖帽,也是电池的正负极引出端。 作用机理 锂系电池分为锂电池和锂离子电池。目前手机和笔记本电脑使用的都是锂离子电池,通常人们俗称其为锂电池,而真正的锂电池由于危险性大,很少应用于日常电子产品。 锂离子电池以碳素材料为负极,以含锂的化合物作正极,没有金属锂存在,只有锂离子,这就是锂离子电池。锂离子电池是指以锂离子嵌入化合物为正极材料电池的总称。锂离子电池的充放电过程,就是锂离子的嵌入和脱嵌过程。在锂离子的嵌入和脱嵌过程中,同时伴随着与锂离子等当

量电子的嵌入和脱嵌(习惯上正极用嵌入或脱嵌表示,而负极用插入或脱插表示)。在充放电过程中,锂离子在正、负极之间往返嵌入/脱嵌和插入/脱插,被形象地称为“摇椅电池”。 工作状态和效率 锂离子电池能量密度大,平均输出电压高。自放电小,好的电池,每月在2%以下(可恢复)。没有记忆效应。工作温度范围宽为-20℃~60℃。循环性能优越、可快速充放电、充电效率高达100%,而且输出功率大。使用寿命长。不含有毒有害物质,被称为绿色电池。 化学解析: 和所有化学电池一样,锂离子电池也由三个部分组成:正极、负极和电解质。电极材料都是锂离子可以嵌入(插入)/脱嵌(脱插)的。 正极 正极材料:如上文所述,可选的正极材料很多,目前商业化产品多采用钴酸锂。不同的正极材料对照 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。充电时:LiCoO2 → Li1-x CoO2 + xLi + xe 放电时:Li1-x CoO2 + xLi + xe →LiCoO2负极 负极材料:多采用石墨。新的研究发现钛酸盐可能是更好的材料。负极反应:放电时锂离子脱插,充电时锂离子插入。充电时:xLi + xe + 6C → LixC6 放电时:LixC6 → xLi + xe + 6C

磷酸铁锂概况

磷酸铁锂概况 1.1 磷酸铁锂的基本概况 磷酸铁锂英文名:LITHIUM IRON PHOSPHATE CARBON COATED;简称LFP; 分子式:LiFePO4; 分子量:157.76; CAS:15365-14-7; 磷酸铁锂(分子式LiFePO4,简称LFP),是锂离子电池的一种正极材料,其特点是原料价格低廉丰富,工作电压适中、电容量大、高放电功率、可快速充电且循环寿命长、稳定性高,自90年代被发现后,成为了引发了锂电池革命的新材料,是当前电池发展领域的前沿。 磷酸铁锂电极材料主要用于各种锂离子电池。采用磷酸铁锂作为锂离子电池正极材料的电池被称为磷酸铁锂电池,由于磷酸铁锂电池的众多优点,被广泛使用于各个领域。 目前全球已经有很多厂家开始了工业化生产磷酸铁锂,国外加拿大Phostech Lithium公司、美国Valence(威能)公司和A123(高博),国内天津斯特兰,北大先行等。世界各国正竞相实现产业化生产。 目前,国内的磷酸铁锂产业投资热正在兴起,其势头超过了其他任何国家。 1.2 磷酸铁锂性能特点 锂离子电池的性能主要取决于正负极材料,磷酸铁锂作为锂电池正极材料其安全性能与循环寿命是其它材料所无法相比的,这些也正是动力电池最重要的技术指标。1C充放循环寿命达2000次。单节电池过充电压30V不燃烧,穿刺不爆炸。磷酸铁锂正极材料做出大容量锂离子电池更易串联使用。以满足电动车频繁充放电的需要。具有无毒、无污染、安全性能好、原材料来源广泛、价格便宜,

寿命长等优点,是新一代锂离子电池的理想正极材料。 磷酸铁锂优势性能主要有: 1、比容量大,高效率输出,高能量密度。磷酸铁锂标准放电为2~5C、连续高电流放电可达10C,瞬间脉冲放电(10S)可达20C;理论比容量为170mAh/g,产品实际比容量可超过140 mAh/g(0.2C,25℃); 2、结构稳定、安全性能好。磷酸铁锂是目前最安全的锂离子电池正极材料;不含任何对人体有害的重金属元素;即使电池内部或外部受到伤害,电池不燃烧、不爆炸、安全性最好。 3、循环寿命长。经500次循环,其放电容量仍大于95%;实验室制备的磷酸铁锂单体电池在进行IC的循环测试时,循环寿命高达2000次。在100%DOD 条件下,可以充放电2000次以上;(原因:磷酸铁锂晶格稳定性好,锂离子的嵌入和脱出对晶格的影响不大,故而具有良好的可逆性。存在的不足是电子离子传到率差,不适宜大电流的充放电,在应用方面受阻。解决方法:在电极表面包覆导电材料、掺杂进行电极改性。) 4、资源丰富、成本低廉。磷酸铁锂原材料来源广泛、价格便宜。 5、充电性能好。磷酸铁锂正极材料的锂电池,可以使用大倍率充电,最快可在1小时内将电池充满。可快速充电,自放电少,无记忆效应。可大电流2C 快速充放电,在专用充电器下,1.5C充电40分钟内即可使电池充满,起动电流可达2C。过放电到零伏也无损坏,零电压存放7天后电池无泄漏,性能良好,容量为100%;存放30天后,无泄漏、性能良好,容量为98%;存放30天后的电池再做3次充放电循环,容量又恢复到100%。 6、工作温度范围宽广(-20℃~+75℃)。高温时性能良好:外部温度65℃时内部温度则高达95℃,电池放电结束时温度可达160℃,电池内部结构安全、完好。 磷酸铁锂性能缺点主要有: 1、导电性能差。目前在实际生产过程中通过在前驱体添加有机碳源和高价金属离子联合掺杂的办法来改善材料的导电性(A123、烟台卓能正采用这种方法),研究表明,磷酸铁锂的电导率提高了7个数量级,使磷酸铁锂具备了和钴

各种储能系统优缺点对比

史上最全储能系统优缺点梳理 谈到储能,人们很容易想到电池,但现有的电池技术很难满足电网级储能的要求。实际上,储能的市场潜力非常巨大,根据市场调研公司Pike Research 的预测,从2011年到2021年的10年间,将有1220亿美元投入到全球储能项目中来。而在大规模储能系统中,最为广泛应用的抽水蓄能和压缩空气储能等传统的储能方式也在经历不断改进和创新。今天,无所不能(caixinenergy)为大家推荐一篇文章,该文章分析了目前全球的储能技术以及其对电网的影响和作用。 现有的储能系统主要分为五类:机械储能、电气储能、电化学储能、热储能和化学储能。目前世界占比最高的是抽水蓄能,其总装机容量规模达到了127GW,占总储能容量的99%,其次是压缩空气储能,总装机容量为440MW,排名第三的是钠硫电池,总容量规模为316MW。 全球现有的储能系统 1、机械储能 机械储能主要包括抽水蓄能、压缩空气储能和飞轮储能等。 (1)抽水蓄能:将电网低谷时利用过剩电力作为液态能量媒体的水从地势低的水库抽到地势高的水库,电网峰荷时高地势水库中的水回流到下水库推动水轮机发电机发电,效率一般为75%左右,俗称进4出3,具有日调节能力,用于调峰和备用。 不足之处:选址困难,及其依赖地势;投资周期较大,损耗较高,包括抽蓄损耗+线路损耗;现阶段也受中国电价政策的制约,去年中国80%以上的抽蓄都晒太阳,去年八月发改委出了个关于抽蓄电价的政策,以后可能会好些,但肯定不是储能的发展趋势。 (2)压缩空气储能(CAES):压缩空气蓄能是利用电力系统负荷低谷时的剩余电量,由电动机带动空气压缩机,将空气压入作为储气室的密闭大容量地下洞

磷酸铁锂电池简介

磷酸铁锂电池简介 1.磷酸铁锂电池定义 磷酸铁锂电池是指用磷酸铁锂作为正极材料的锂离子电池。 2.磷酸铁锂正极材料 磷酸铁锂作为锂离子电池用正极材料具有良好的电化学性能,充放电平台十分平稳,充放电过程中结构稳定。同时,该材料无毒、无污染、安全性能好、可在高温环境下使用、原材料来源广泛等优点,是目前电池界竞相开发研究的热点。该材料具有发上图所示的晶体结构。工作电压范围:2.5~3.6V,平台约3.3V,比钴酸锂电池3.7V低一些。由于该材料导电性差,需往磷酸铁锂颗粒内部掺入导电碳材料或导电金属微粒,或者往磷酸铁锂颗粒表面包覆导电碳材料,提高材料的电子电导率;或掺杂金属离子来提高导电性。这样材料的密度低,做成电池的体积比容量低,只有180Wh/L(钴酸锂可做到400Wh/L 以上),在小电池领域,同样尺寸电池只有现有电池容量的一半不到。 3.磷酸铁锂的优点: (1)安全。磷酸铁锂的安全性能是目前所有的材料中最好的。绝不用担心爆炸。 (2)稳定性高。包括高温充电的容量稳定性,储存性能等。这是最大的优点。 (3)环保。整个生产过程清洁无毒。所有原料都无毒。不像钴是有

毒的物质。 (4)价格便宜。 4.磷酸铁锂的缺点: (1)导电性差,目前可通过添加C或其它导电剂得到解决。即:LiFePO4/C正极。 (2)振实密度较低。一般只能达到1.3-1.5,电池极片的面密度低,所以同样型号的电池容量更低。从消费便携电子产品上看,磷酸铁锂没有前途,在特定的电池领域使用较有优势,如动力电池。 (3)制造成本偏高,在电池生产上加工困难、倍率放电不稳定(需要特定的电池工艺配合,受工艺影响很大)。 (4)技术还未成熟。由于振实密度低,比表面积大,需要改变电池先行工艺。而且电解液也需重新开发适用的电解液体系,用现有的成熟电解液难发挥其性能。没有批量配套的保护线路和充电器,较难在现有的电子设备上发挥出其特性,需要一个整体的行业整合。 5.磷酸铁锂电池产业:优势分析 (1)磷酸铁锂产业符合政府产业政策的导向,各国都把储能电池和动力电池的发展放在国家战略层面高度,配套资金和政策支持的力度很大,中国在这方面有过之而不及,过去关注镍氢电池,现在则把目光更多的集中到磷酸铁锂电池上。 (2)LFP代表了电池未来发展的方向,随着技术成熟,甚至可能成为

关于磷酸铁锂电池的知识

关于磷酸铁锂电池的知识 导读:锂离子电池的正极材料主要有钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等。其中钴酸锂是目前绝大多数锂离子电池使用的正极材料。从材料的原理上讲,磷酸铁锂也是一种嵌入/脱嵌过程,这一原理与钴酸锂,锰酸锂完全相同。 磷酸铁锂电池,是指用磷酸铁锂作为正极材料的锂离子电池。锂离子电池的正极材料主要有钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等。其中钴酸锂是目前绝大多数锂离子电池使用的正极材料。从材料的原理上讲,磷酸铁锂也是一种嵌入/脱嵌过程,这一原理与钴酸锂,锰酸锂完全相同。 1.介绍 磷酸铁锂电池属于锂离子二次电池,一个主要用途是用作动力电池,相对NI-MH、Ni-Cd电池有很大优势。 磷酸铁锂电池充放电效率较高,倍率放电情况下充放电效率可达90%以上。而铅酸电池约为80%。 2.八大优势 安全性能的改善 磷酸铁锂晶体中的P-O键稳固,难以分解,即便在高温或过充时也不会像钴酸锂一样结构崩塌发热或是形成强氧化性物质,因此拥有良好的安全性。有报告指出,实际操作中针刺或短路实验中发现有小部分样品出现燃烧现象,但未出现一例爆炸事件,而过充实验中使用大大

超出自身放电电压数倍的高电压充电,发现依然有爆炸现象。虽然如此,其过充安全性较之普通液态电解液钴酸锂电池,已大有改善。寿命的改善 磷酸铁锂电池是指用磷酸铁锂作为正极材料的锂离子电池。 长寿命铅酸电池的循环寿命在300次左右,最高也就500次,而磷酸铁锂动力电池,循环寿命达到2000次以上,标准充电(5小时率)使用,可达到2000次。同质量的铅酸电池是“新半年、旧半年、维护维护又半年”,最多也就1~1.5年时间,而磷酸铁锂电池在同样条件下使用,理论寿命将达到7~8年。综合考虑,性能价格比理论上为铅酸电池的4倍以上。大电流放电可大电流2C快速充放电,在专用充电器下,1.5C 充电40分钟内即可使电池充满,起动电流可达2C,而铅酸电池无此性能。 高温性能好 磷酸铁锂电热峰值可达350℃-500℃而锰酸锂和钴酸锂只在200℃左右。工作温度范围宽广(-20C--+75C),有耐高温特性磷酸铁锂电热峰值可达350℃-500℃而锰酸锂和钴酸锂只在200℃左右。 大容量 具有比普通电池(铅酸等)更大的容量。5AH-1000AH(单体) 无记忆效应 可充电池在经常处于充满不放完的条件下工作,容量会迅速低于额定容量值,这种现象叫做记忆效应。像镍氢、镍镉电池存在记忆性,而

磷酸铁锂公司企业名录

磷酸铁锂公司企业名录 Document number:PBGCG-0857-BTDO-0089-PTT1998

1、深圳市比克电池有限公司 成立于2001年8月,美国纳斯达克上市公司,注册资本8260万美元,是一家集锂电池研发、生产、销售为一体的国家高新技术企业。比克工业园区坐落于深圳东部大鹏湾占地26万平方米,员工6000余人。 2、湖南杉杉新材料有限公司 是由宁波杉杉股份有限公司(占75%的股份)和中南大学(占25%的股份)联合创办。成立于2003年11月,锂离子电池正极材料制造商,是湖南省高新技术企业,专业致力于生产锂离子电池正极材料,以钴酸锂为主要产品,应用于便携式资讯设备如手机、笔记本电脑、移动DVD、数码相机、电动工具等领域,同时于2004年3月正式推出了锰酸锂,应用于电动交通工具等大型动力电源领域。 目前产品有钴酸锂、锰酸锂、镍钴二元系、镍钴锰三元系、磷酸铁锂等。 中国锂电池正极材料行业重点企业简介 二、中国宝安集团股份有限公司 三、厦门钨业股份有限公司 四、中信国安盟固利电源技术有限公司 五、石家庄市中洲实业总公司 六、湖南瑞翔新材料有限公司 七、宁波金和新材料有限公司 八、北京当升材料科技有限公司 九、北大先行科技产业有限公司

十、深圳市振华新材料股份有限公司 3、深圳市山木电池科技有限公司 1997年10月在广东省珠海市成立,是中国第一家专业生产可充电锂电池的厂家,2006年初,山木公司将工厂搬迁至深圳市横岗深坑村第三工业区厂B公司现主要有以下 1.圆柱电池事业部. 2.数码电池事业部. 3.动力电池事业部. 异型圆柱电池系列有直径07系,08. 10 .12 铁锂动力电车系列有400mah到10000mah等不同容量近10个规格品牌mottcell型号IFR26650 基本参数 电池类型锂电池电压有效期1年 技术参数 标准容量3000mAh充放电次数2000电池容量3000mah 开路电压快速充电电流3000mA快速充电时间1h 适用范围机车型:电动自行车电动轿车电动工具标准电压 适用温度范围-20;+60 ℃直径26*65mmmm贮存温度20度 最大连续工作电流6000mah标准充电电流1500mA标准充电时间2h 品牌mottcell型号IFR42120 基本参数 使用期5年额定容量10AH 技术参数标准电压直径42 mm充放电次数1500 标准充电时间2h标准充电电流5000mA标准容量10000mAh

浅析磷酸铁锂电池的优点及缺点

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/1411577717.html,)浅析磷酸铁锂电池的优点及缺点 磷酸铁锂电池的全名是磷酸铁锂锂离子电池,这名字太长,简称为磷酸铁锂电池。由于它的性能特别适于作动力方面的应用,则在名称中加入“动力”两字,即磷酸铁锂动力电池。也有人把它称为“锂铁(LiFe)动力电池。 一、工作原理 磷酸铁锂电池,是指用磷酸铁锂作为正极材料的锂离子电池。锂离子电池的正极材料主要有钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等。其中钴酸锂是目前绝大多数锂离子电池使用的正极材料。 二、意义 金属交易市场,钴(Co)最贵,并且存储量不多,镍(Ni)、锰(Mn)较便宜,而铁(Fe)存储量较多。正极材料的价格也与这些金属的价格行情一致。因此,采用LiFePO4正极材料做成的锂离子电池应是挺便宜的。它的另一个特点是对环境环保无污染。 作为充电电池的要求是:容量高、输出电压高、良好的充放电循环性能、输出电压稳定、能大电流充放电、电化学稳定性能、使用中安全(不会因过充电、过放电及短路等操作不当而引起燃烧或爆炸)、工作温度范围宽、无毒或少毒、对环境无污染。采用LiFePO4作正极的磷酸铁锂电池在这些性能要求上都不错,特别在大放电率放电(5~10C 放电)、放电电压平稳上、安全上(不燃烧、不爆炸)、寿命上(循环次数)、对环境无污染上,它是最好的,是目前最好的大电流输出动力电池。 三、结构与工作原理

LiFePO4作为电池的正极,由铝箔与电池正极连接,中间是聚合物的隔膜,它把正极与负极隔开,但锂离子Li可以通过而电子e-不能通过,右边是由碳(石墨)组成的电池负极,由铜箔与电池的负极连接。电池的上下端之间是电池的电解质,电池由金属外壳密闭封装。 LiFePO4电池在充电时,正极中的锂离子Li通过聚合物隔膜向负极迁移;在放电过程中,负极中的锂离子Li通过隔膜向正极迁移。锂离子电池就是因锂离子在充放电时来回迁移而命名的。 四、主要性能 LiFePO4电池的标称电压是3.2V、终止充电电压是3.6V、终止放电压是2.0V。由于各个生产厂家采用的正、负极材料、电解质材料的质量及工艺不同,其性能上会有些差异。例如同一种型号(同一种封装的标准电池),其电池的容量有较大差别(10%~20%)。 这里要说明的是,不同工厂生产的磷酸铁锂动力电池在各项性能参数上会有一些差别;另外,有一些电池性能未列入,如电池内阻、自放电率、充放电温度等。 磷酸铁锂动力电池的容量有较大差别,可以分成三类:小型的零点几到几毫安时、中型的几十毫安时、大型的几百毫安时。不同类型电池的同类参数也有一些差异。 五、过放电到零电压试验: 采用STL18650(1100mAh)的磷酸铁锂动力电池做过放电到零电压试验。试验条件:用0.5C充电率将1100mAh的STL18650电池充满,然后用1.0C放电率放电到电池电压为0C。再将放到0V的电池分两组:一组存放7天,另一组存放30天;存放到期后再用0.5C充电率充满,然后用1.0C放电。最后比较两种零电压存放期不同的差别。

硼掺杂磷酸铁锂正极材料提高倍率

Delivered by Publishing Technology to: University of New South Wales IP: 149.171.232.34 On: Wed, 27 Feb 2013 03:01:32 Copyright American Scientific Publishers RESEARCH ARTICLE Copyright?2013American Scienti?c Publishers All rights reserved Printed in the United States of America Journal of Nanoscience and Nanotechnology V ol.13,1535–1538,2013 Research on High Rate Capabilities B-Substituted LiFePO4 Fu Wang,Yun Zhang?,and Chao Chen College of Materials Science and Engineering,Sichuan University,Chengdu610064,P.R.China LiFePO4is currently recognized as one of the most promising electrode materials for large-scale application of lithium ion batteries.However,the limitation of rate capability is believed to be intrinsic to this family of compounds due to the existence of larger tetrahedral(PO4 3?unit and quasi-hexagonal close-packed oxygen array.This paper report here a systematic investigation of the enhancement of rate performance by partly substitution of light small triangle oxyanion,(BO3 3?, for the larger tetrahedral(PO4 3?units in LiFePO4.Cathode electrode materials LiFeB X P 1?X O4? , in which X=0 3 6and9,mol%,were synthesized by solid-state method.The as-synthesized products were characterized by X-Ray Diffraction(XRD),Scanning Electron Microscope(SEM)and Electrochemical Measurements.The results showed that6mol%of boron substitution had no effect on the structure of LiFePO4material,but signi?cantly improved its rate performance.The initial discharge capacity of the LiFeB0 06P0 94O4? sample was145.62mAh/g at0.1C,and the capacity retention ratios of81%at2C and76%at5C were obtained,demonstrating that a proper amount of boron substitution(lower than6mol%)could signi?cantly improve the rate performance of LiFePO4 cathode material. Keywords:LiFePO 4 ,High Rate Capability,Li-Ion Battery,Nano-Particles,Boron. 1.INTRODUCTION LiFePO4has recently received a great deal of attention owing to their advantages of competitive high theoreti- cal capacity,good cycle stability,excellent thermal stabil- ity and low toxicity,1–3aimed at utilizing it as a cathode material for large-scale application of lithium ion batter- ies,such as electric vehicle and hybrid electric vehicle. Moreover,its voltage,about3.5V versus lithium,is com- patible with the window of a solid-polymer Li-ion elec- trolyte.However,this kind of compound is a wide-gap semiconductor(3.7eV)and has an inherently extremely low electronic conductivity(~10?9S cm?1 at room tem-perature because of the existence of larger tetrahedral (PO4 3?units and quasi-hexagonal close-packed oxygen array.1Various material processing approaches have been adopted to overcome this drawback,including methods of carbon coating,4reducing particle size to nano level,5 6 and doping with super valence cations.7The aforemen- tioned methods for improving electronic conductivity and rate capability are not the most optimistic choice and have their intrinsic limitations:the shortcomings of carbon coat- ing including the lower content of active materials in the cathode material and no actual improvement in conductiv- ity for the core of LiFePO4particles.The preparation of ?Author to whom correspondence should be addressed.nano-sized particles with a uniform size distribution are extremely dif?cult for industrial scale production.And the quantity of Fe3+/Fe2+redox couples is reduced by super valence cations substitution. LiFeBO3,as a new potential cathode material with a theoretical capacity of220mAh/g which is much larger than that of LiFePO4,has been reported to have the actual speci?c capacity of over190mAh/g at1/20C.8In addi- tion,from the thermodynamic study performed in the case of LiFeBO3,the Fe3+/Fe2+reduction couple lies between 3.1V and2.9V(vs.Li/Li+ ,demonstrating an impor-tant inductive effect of BO3group,and the electrical con- ductivity of LiFeBO3is reported to be1 5×10?4S/cm,9 which is also much higher than that of LiFePO4.10Thus, it is believed that partly replacing the tetrahedral anion units,(PO4 3?,to plane triangle oxyanion,(BO3 3?,could be signi?cantly increasing the electronic conductivity of the LiFePO4particles because of the smaller and lighter (BO3 3?and the controlled off-stoichiometry of oxygen element formed. In this regard,we proposed a new method,partly sub- stitution of boron element for phosphorus element in LiFePO4,for improving the rate capability of the cathode material.We report here a systematic investigation of the enhancement of capacity at high rates of charge and dis- charge by partly substitution of light small plane triangle J.Nanosci.Nanotechnol.2013,Vol.13,No.21533-4880/2013/13/1535/004doi:10.1166/jnn.2013.59811535

相关文档
最新文档