电磁感应中的各种题型(习题,答案)

合集下载

(完整版)电磁感应综合练习题(基本题型,含答案)

(完整版)电磁感应综合练习题(基本题型,含答案)

电磁感应综合练习题(基本题型)一、选择题: 1.下面说法正确的是( )A .自感电动势总是阻碍电路中原来电流增加B .自感电动势总是阻碍电路中原来电流变化C .电路中的电流越大,自感电动势越大D .电路中的电流变化量越大,自感电动势越大【答案】B2.如图9-1所示,M 1N 1与M 2N 2是位于同一水平面内的两条平行金属导轨,导轨间距为L 磁感应强度为B 的匀强磁场与导轨所 在平面垂直,ab 与ef 为两根金属杆,与导轨垂直且可在导轨上滑 动,金属杆ab 上有一伏特表,除伏特表外,其他部分电阻可以不计,则下列说法正确的是 ( ) A .若ab 固定ef 以速度v 滑动时,伏特表读数为BLvB .若ab 固定ef 以速度v 滑动时,ef 两点间电压为零C .当两杆以相同的速度v 同向滑动时,伏特表读数为零D .当两杆以相同的速度v 同向滑动时,伏特表读数为2BLv【答案】AC3.如图9-2所示,匀强磁场存在于虚线框内,矩形线圈竖直下落。

如果线圈中受到的磁场力总小于其重力,则它在1、2、3、4位置 时的加速度关系为 ( ) A .a 1>a 2>a 3>a 4 B .a 1 = a 2 = a 3 = a 4C .a 1 = a 2>a 3>a 4D .a 4 = a 2>a 3>a 1【答案】C4.如图9-3所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行,当电键S 接通一瞬间,两铜环的运动情况是( ) A .同时向两侧推开 B .同时向螺线管靠拢C .一个被推开,一个被吸引,但因电源正负极未知,无法具体判断D .同时被推开或同时向螺线管靠拢,但因电源正负极未知,无法具体判断 【答案】 A图9-2图9-3图9-4图9-15.如图9-4所示,在U形金属架上串入一电容器,金属棒ab在金属架上无摩擦地以速度v向右运动一段距离后突然断开开关,并使ab停在金属架上,停止后,ab不再受外力作用。

电磁感应练习50题

电磁感应练习50题

电磁感应练习50题(含答案)1、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m,长为2d,d=0.5m,上半段d导轨光滑,下半段d导轨的动摩擦因素为μ=,导轨平面与水平面的夹角为θ=30°.匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直.质量为m=0.2kg的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3Ω,导体棒的电阻为r=1Ω,其他部分的电阻均不计,重力加速度取g=10m/s2,求:(1)导体棒到达轨道底端时的速度大小;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q;(3)整个运动过程中,电阻R产生的焦耳热Q.答案分析:(1)研究导体棒在粗糙轨道上匀速运动过程,受力平衡,根据平衡条件即可求解速度大小.(2)进入粗糙导轨前,由法拉第电磁感应定律、欧姆定律和电量公式结合求解电量.(3)导体棒在滑动时摩擦生热为Q f=2μmgdcosθ,再根据能量守恒定律求解电阻产生的焦耳热Q.解答:解:(1)导体棒在粗糙轨道上受力平衡:由 mgsin θ=μmgcos θ+BIL得:I=0.5A由BLv=I(R+r)代入数据得:v=2m/s(2)进入粗糙导轨前,导体棒中的平均电动势为: ==导体棒中的平均电流为: ==所以,通过导体棒的电量为:q=△t==0.125C(3)由能量守恒定律得:2mgdsin θ=Q电+μmgdcos θ+mv2得回路中产生的焦耳热为:Q电=0.35J所以,电阻R上产生的焦耳热为:Q=Q电=0.2625J答:(1)导体棒到达轨道底端时的速度大小是2m/s;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q是0.35C;(3)整个运动过程中,电阻R产生的焦耳热Q是0.2625J.点评:本题实质是力学的共点力平衡与电磁感应的综合,都要求正确分析受力情况,运用平衡条件列方程,关键要正确推导出安培力与速度的关系式,分析出能量是怎样转化的.2、如图所示,两平行金属导轨间的距离L=0.40m,金属导轨所在的平面与水平面夹角θ=37º,在导轨所在平面内,分布着磁感应强度B=0.50T、方向垂直于导轨所在平面的匀强磁场。

(完整版)电磁感应综合练习题(基本题型,含答案)

(完整版)电磁感应综合练习题(基本题型,含答案)

电磁感应综合练习题(基本题型)一、选择题: 1.下面说法正确的是( )A .自感电动势总是阻碍电路中原来电流增加B .自感电动势总是阻碍电路中原来电流变化C .电路中的电流越大,自感电动势越大D .电路中的电流变化量越大,自感电动势越大【答案】B2.如图9-1所示,M 1N 1与M 2N 2是位于同一水平面内的两条平行金属导轨,导轨间距为L 磁感应强度为B 的匀强磁场与导轨所 在平面垂直,ab 与ef 为两根金属杆,与导轨垂直且可在导轨上滑 动,金属杆ab 上有一伏特表,除伏特表外,其他部分电阻可以不计,则下列说法正确的是 ( ) A .若ab 固定ef 以速度v 滑动时,伏特表读数为BLvB .若ab 固定ef 以速度v 滑动时,ef 两点间电压为零C .当两杆以相同的速度v 同向滑动时,伏特表读数为零D .当两杆以相同的速度v 同向滑动时,伏特表读数为2BLv【答案】AC3.如图9-2所示,匀强磁场存在于虚线框内,矩形线圈竖直下落。

如果线圈中受到的磁场力总小于其重力,则它在1、2、3、4位置 时的加速度关系为 ( ) A .a 1>a 2>a 3>a 4 B .a 1 = a 2 = a 3 = a 4C .a 1 = a 2>a 3>a 4D .a 4 = a 2>a 3>a 1【答案】C4.如图9-3所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行,当电键S 接通一瞬间,两铜环的运动情况是( ) A .同时向两侧推开 B .同时向螺线管靠拢C .一个被推开,一个被吸引,但因电源正负极未知,无法具体判断D .同时被推开或同时向螺线管靠拢,但因电源正负极未知,无法具体判断 【答案】 A图9-2图9-3图9-4图9-15.如图9-4所示,在U形金属架上串入一电容器,金属棒ab在金属架上无摩擦地以速度v向右运动一段距离后突然断开开关,并使ab停在金属架上,停止后,ab不再受外力作用。

磁感应习题与解答

磁感应习题与解答

磁感应习题与解答一、选择题1. 半径为a 的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ,当把线圈转动使其法向与B 的夹角为α=60︒时,线圈中已通过的电量与线圈面积及转动时间的关系是:(A) 与线圈面积成正比,与时间无关. (B) 与线圈面积成正比,与时间成正比. (C) 与线圈面积成反比,与时间无关. (D) 与线圈面积成反比,与时间成正比.2. 如图3.1所示,一导体棒ab 在均匀磁场中沿金属导轨向右作匀加速运动,磁场方向垂直导轨所在平面. 若导轨电阻忽略不计,并设铁芯磁导率常数,则达到稳定后电容器的M 极板上(A) 带有一定量的正电荷. (B) 带有一定量的负电荷. (C) 带有越来越多的正电荷. (D) 带有越来越多的负电荷.3. 已知圆环式螺线管的自感系数为L . 若将该螺线管锯成两个半环式的螺线管,则两个半环螺线管的自感系数(A) 都等于L /2. (B) 都小于L /2. (C) 都大于L /2.(D) 一个大于L /2,一个小于L /2.4. 真空中两根很长的相距为2a 的平行直导线与电源组成闭合回路如图3.2所示. 已知导线中的电流为I ,则在两导线正中间某点P 处的磁能密度为NMa图3.1I(A) 200)2(1aIπμμ.(B) 200)2(21aIπμμ.(C) 200)(21a Iπμμ.(D) 0 .5. 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是 (A)线圈绕自身直径轴转动,轴与磁场方向平行. (B)线圈绕自身直径轴转动,轴与磁场方向垂直. (C)线圈平面垂直于磁场并沿垂直磁场方向平移. (D)线圈平面平行于磁场并沿垂直磁场方向平移.二、填空题1.在磁感强度为的磁场中,以速率v垂直切割磁力线运动的一长度为L的金属杆,相当于____________,它的电动势ε=____________,产生此电动势的非静电力是___________.2. 半径为a 的无限长密绕螺线管,单位长度上的匝数为n,通以交变电流i =Imsin ωt,则围在管外的同轴圆形回路(半径为r )上的感生电动势为 .三、证明题:证明:自感系数为L的线圈通有电流I0时,线圈内贮存的磁能为LI 02/2.练习三 电磁感应习题答案一.选择题:1.A 2.B 3.B 4.C 5.B二.填空题: 1. 一个电源; vBl; 洛伦兹力 2.-mnpa 2wIcoswt 三.证明题:dt LdI I I i /,0-=→εε大小为过程中从线圈中作功为电源反抗L ε221LILIdI Idt A tI i m⎰⎰==-=ε221,LIW m =此能量全部转变为磁能由能量守恒可知典型例题1. 图.1中三条曲线分别表示简谐振动中的位移x , 速度v ,加速度a ,下面哪个说法是正确的?(D)(A) 曲线3, 1, 2分别表示x , v , a 曲线 (B) 曲线2, 1, 3分别表示x , v , a 曲线(C) 曲线1, 3, 2分别表示x , v , a 曲线(D) 曲线1, 2, 3分别表示x , v , a 曲线2. 用余弦函数描述一简谐振子的振动,-时间(v -t )关系曲线如图2位为 (A)(A) π / 6 (B) π / 3 (C) π / 2 (D) 2π / 3 3. 一质点作简谐振动,振动方程为cos()x t ωϕ=+,当时间t =T / 2(T 为周期)时,质点的速度为 (B) (A)sin A ωϕ- (B)sin A ωϕ(C)cos A ωϕ- (D)co s A ωϕ4. 用余弦函数描述一简谐振动,已知振幅为A ,周期为T ,初位相/3ϕπ=-,则振动曲线为图3中哪一图? (A)x ,v ,a图1-5. 用40N 的力拉一轻弹簧,可使其伸长20cm ,此弹簧下应挂 2.0 kg 的物体,才能使弹簧振子作简谐振动的周期 T =0.2πs 。

高一物理电磁感应现象练习题及答案

高一物理电磁感应现象练习题及答案

高一物理电磁感应现象练习题及答案练习题一:1. 一根导线以速度v穿过磁感应强度为B的均匀磁场,导线长度为L,角度θ为导线与磁场方向的夹角。

求导线在时间Δt内所受到的感应电动势。

答案:感应电动势E = B * v * L * sinθ2. 一根导线以速度v进入磁感应强度为B的均匀磁场,导线的长度为L。

当导线完全进入磁场后,突然停止不动。

求此过程中导线两端之间的电势差。

答案:电势差V = B * v * L3. 一个长度为L的导线以速度v匀速通过磁感应强度为B的均匀磁场,当导线通过时间Δt后,磁场方向突然发生改变。

求导线两端之间产生的感应电动势。

答案:感应电动势E = 2 * B * v * L4. 一根长度为L的导线以速度v与磁感应强度为B的均匀磁场垂直相交,导线所受到的感应电动势大小为E,如果将导线切成长度为L/2的两段导线,两段导线所受感应电动势的大小分别是多少?答案:每段导线所受感应电动势的大小都是E练习题二:1. 一台电动机的转子有60个磁极,额定转速为3000转/分钟。

求转子在额定转速下的转子导线所受的感应电动势大小。

答案:转子导线所受感应电动势的大小为ω * Magnetic Flux,其中ω为角速度,Magnetic Flux为磁通量。

转速为3000转/分钟,转速ω =2π * 3000 / 60。

由于转子有60个磁极,每转所经过的磁通量为60 * Magnetic Flux。

因此,转子导线所受感应电动势的大小为60 * 2π * 3000 / 60 * Magnetic Flux。

2. 一根长度为L的导线以角速度ω绕通过导线轴线的磁感应强度为B的磁场旋转。

求导线两端之间的电势差大小。

答案:电势差V = B * ω * L3. 一根输电线路的电阻为R,长度为L,电流为I。

如果在电力系统中,磁感应强度为B的磁场垂直于导线方向,求输电线路两端之间的感应电动势。

答案:感应电动势E = B * L * I4. 一块矩形线圈有N匝,每匝的边长为a和b,磁通量为Φ,求矩形线圈所受到的感应电动势。

初三电磁感应练习题及答案

初三电磁感应练习题及答案

初三电磁感应练习题及答案练习题1:1. 一个导线以2.0m/s的速度从一个均匀磁场中通过,磁感应强度为0.4T,导线长度为0.5m。

求导线所受的感应电动势大小。

2. 一个长度为3.0m的导线以10m/s的速度垂直通过一个磁感应强度为1.5T的磁场,求导线两端之间的感应电势差。

3. 一个矩形导线框架的长边长度为2.0m,短边长度为0.5m,框架的整体电阻为6.0Ω。

当磁感应强度为0.8T时,框架被拉动,导线切割磁力线的速度恒定为3.0m/s。

求在导线上出现的电动势大小。

答案:1. 感应电动势的大小与磁感应强度、导线长度和导线在磁场中的速度有关。

根据公式E = B*d*l*v,其中B为磁感应强度,d为导线长度,l为导线在磁场中的速度,v为导线长度。

将已知值代入计算,得到E = 0.4T * 0.5m * 2.0m/s = 0.4V。

故导线所受的感应电动势大小为0.4V。

2. 感应电势差的大小取决于磁感应强度、导线长度和导线在磁场中的速度之积。

根据公式∆V = B*l*v,其中B为磁感应强度,l为导线长度,v为导线在磁场中的速度。

将已知值代入计算,得到∆V = 1.5T * 3.0m * 10m/s = 45V。

导线两端之间的感应电势差为45V。

3. 在导线上出现的电动势大小取决于磁感应强度、导线长度、导线在磁场中的速度和导线的电阻之积。

根据公式E = B*d*l*v/R,其中B为磁感应强度,d为导线长度,l为导线在磁场中的速度,R为导线的电阻。

将已知值代入计算,得到E = 0.8T * 3.0m * 2.0m * 0.5m/s / 6.0Ω = 0.8V。

在导线上出现的电动势大小为0.8V。

练习题2:1. 一个磁感应强度为0.5T的磁场垂直于一个半径为0.2m的圆环,圆环的电阻为2.0Ω。

圆环以5rad/s的角速度绕垂直磁场线旋转,求圆环上出现的感应电动势大小。

2. 一个长度为4.0m的直导线绕过一个半径为2.0m的圆形电感线圈,电感线圈中有100个匝。

初中电磁感应专题练习(含详细答案)

初中电磁感应专题练习(含详细答案)

初中电磁感应专题练习(含详细答案)
一、选择题
1. 一个导线在磁场中匀速向右移动,感应电动势的方向如何?
A. 由左向右
B. 由右向左
C. 没有感应电动势
D. 无法确定
答案:B
2. 带电粒子在磁场中匀速运动,运动轨迹如何?
A. 直线运动
B. 圆形运动
C. 抛物线运动
D. 双曲线运动
答案:B
二、计算题
1. 一个弯曲的导线长为10cm,导线中有一个电流I=2A,若在
导线处有一个磁感应强度为B=3T的磁场,求电动势的大小为多少?
解答:
$\mathcal{E}=Blv=\frac{1}{2}Blv=\frac{1}{2}Blsin\theta=\frac{1}{2} \times 3 \times 0.1 \times 2=\frac{3}{20}$V。

三、简答题
1. 什么是电磁感应?
电磁感应是指导体中的电子受到磁场的作用从而在导体两端产
生的电动势。

2. 什么是法拉第电磁感应定律?
法拉第电磁感应定律指出,当导体中的磁力线发生变化时,沿
着导体的任意闭合回路中就会产生感应电动势,其大小与磁通量的
变化率成正比,方向满足楞次定律。

3. 什么是楞次定律?
楞次定律指出,当导体内有感应电流时,该电流所发出的磁场的方向是这样的,即它所引起的磁通量的变化总是阻碍引起这种变化的原因。

4. 什么情况下会产生感应电流?
当导体在磁场中发生运动或被磁场线穿过而发生变化时,就会在导体中产生感应电流。

电磁感应习题答案

电磁感应习题答案

电磁感应一、选择题1、将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则 ( D )A.铜环中有感应电动势,木环中无感应电动势B.铜环中感应电动势大,木环中感应电动势小C.铜环中感应电动势小,木环中感应电动势大D.两环中感应电动势相等2、面积为S 和2S 的两线圈A ,B 。

通过相同的电流I ,线圈A 的电流所产生的通过线圈B 的磁通用面积为S 和2S 的两圆线圈A ,B 。

通过相同的电流I ,线圈A 的电流所产生的通过线圈B 的磁通用Φ21表示,线圈B 的电流所产生的通过线圈A 的磁通用Φ12表示,则应该有:(A )Φ12 = 2Φ21 . (B )Φ12 =Φ21/2 .(C )Φ12 = Φ21. (D )Φ12 <Φ21 . [ C ] 3 如图所示,导线AB 在均匀磁场中作下列四种运动, (1)垂直于磁场作平动;(2)绕固定端A 作垂直于磁场转动; (3)绕其中心点O 作垂直于磁场转动;(4)绕通过中心点O 的水平轴作平行于磁场的转动。

关于导线AB 的感应电动势哪个结论是错误的? ( B )(A)(1)有感应电动势,A 端为高电势; (B)(2)有感应电动势,B 端为高电势; (C)(3)无感应电动势; (D)(4)无感应电动势。

二、填空题4、如图,aob 为一折成∠形的金属导线(aO=Ob=L ),位于XOY 平面中;磁感强度为B 的匀强磁场垂直于XOY 平面。

当aob 以速度 沿X 轴正向运动时,导线上a 、b 两点间电势差U ab = sin BLv ;当aob(1) (2) (3) (4)以速度 沿Y 轴正向运动时,a 、b 两点中是 a 点电势高。

5、 半径为a 的无限长密绕螺线管,单位长度上的匝数为n ,螺线管导线中通过交变电流t I i sin 0 ,则围在管外的同轴圆形回路(半径为r )上的感生电动势为 -t cos I a n 020 (V)6、感应电场是由 变化的磁场产生的,它的电场线是 闭合曲线 。

电磁感应习题(有答案)

电磁感应习题(有答案)

大学物理6丫头5《大学物理AI 》作业 No.11 电磁感应班级 ________________ 学号 ______________ 姓名 ____________ 成绩 ___________一、选择题:(注意:题目中可能有一个或几个正确答案) 1.一块铜板放在磁感应强度正在增大的磁场中时,铜板中出现涡流(感应电流),则涡流将: (A)加速铜板中磁场的增加 (B)减缓铜板中磁场的增加(C)对磁场不起作用 (D)使铜板中磁场反向[ B ] 解:根据愣次定律,感应电流的磁场总是力图阻碍原磁场的变化。

故选B2.一无限长直导体薄板宽度为l ,板面与Z 轴垂直,板的长度方向沿Y 轴,板的两侧与一个伏特计相接,如图。

整个系统放在磁感应强度为B的均匀磁场中,B的方向沿Z 轴正方向,如果伏特计与导体平板均以速度v向Y 轴正方向移动,则伏特计指示的电压值为(A) 0 (B)vBl 21(C) vBl (D) vBl 2[ A ]解:在伏特计与导体平板运动过程中,dc ab εε=,整个回路0=∑ε,0=i ,所以伏特计指示0=V 。

故选A3.两根无限长平行直导线载有大小相等方向相反的电流I ,I 以tId d 的变化率增长,一矩形线圈位于导线平面内(如图),则: (A)线圈中无感应电流。

(B)线圈中感应电流为顺时针方向。

(C)线圈中感应电流为逆时针方向。

(D)线圈中感应电流方向不确定。

[ B ]解:0d d >t I ,在回路产生的垂直于纸面向外的磁场⊗增强,根据愣次定律,回路中产生的电流为顺时针,用以反抗原来磁通量的变化。

故选B4.在一通有电流I 的无限长直导线所在平面内,有一半经为r ,电阻为R 的导线环,环中心距直导线为a ,如图所示,且r a >>。

当aIroabcVdYBZlI直导线的电流被切断后,沿着导线环流过的电量约为:(A))11(220ra a R Ir +-πμ(B)a ra R Ir +ln20πμ (C)aRIr 220μ (D)rRIa 220μ[ C ]解:直导线切断电流的过程中,在导线环中有感应电动势大小:td d Φ=ε 感应电流为:tR Ri d d 1Φ==ε则沿导线环流过的电量为 ∆Φ=⋅Φ==⎰⎰Rt t R t i q 1d d d 1daRIr R r a I R S B 212120200μππμ=⋅⋅=⋅∆≈故选C5.如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的边长为l 。

高中物理电磁感应经典题型精选(附有答案)

高中物理电磁感应经典题型精选(附有答案)

高中物理电磁感应经典题型精选*注意事项:1、填写答题卡的内容用2B铅笔填写2、提前5分钟收取答题卡一、选择题1.如图所示,金属矩形线框abcd用细线悬挂在U形磁铁中央,磁铁可绕OO′轴缓慢转动(从上向下看是逆时针转动),则当磁铁转动时,从上往下看,线框abcd的运动情况是()A.顺时针转动 B.逆时针转动 C.向外平动D.向里平动2.(多选)下列说法正确的是( )A.电容的定义式表明:电容C与电量Q成正比,与电压U成反比B.负电荷在电场中电势越高的地方具有的电势能越多C.电动势由电源中非静电力的特性决定,跟电源的体积无关,也跟外电路无关D.用硅钢片做变压器铁芯是为减小涡流3.右图为日光灯的结构示意图,若按图示的电路连接,关于日光灯发光的情况,下列说法正确的是A.S1接通,S2、S3断开,日光灯就能正常发光B.S1 、S2接通,S3断开,日光灯就能正常发光C.S3断开,接通S1、S2后,再断开S2,日光灯就能正常发光D.S1、S2、S3接通,日光灯就能正常发光4.如图所示,两匀强磁场的磁感应强度和大小相等、方向相反。

金属圆环的直径与两磁场的边界重合。

下列变化会在环中产生顺时针方向感应电流的是()A同时增大减小B. 同时减小增大C. 同时以相同的变化率增大和D. 同时以相同的变化率减小和5.如图所示,矩形闭合线圈abcd竖直放置,OO′是它的对称轴,通电直导线AB 与OO′平行,且AB、OO′所在平面与线圈平面垂直。

若要在线圈中产生abcda 方向的感应电流,可行的做法是A.AB中电流I逐渐增大B.AB中电流I先增大后减小C.AB正对OO′,逐渐靠近线圈D.线圈绕OO′轴逆时针转动90°(俯视)6. 如图所示,两相同灯泡A1、A2,A1与一理想二极管D连接,线圈L的直流电阻不计.下列说法正确的是()A.闭合开关S后,A1会逐渐变亮B.闭合开关S稳定后,A1、A2亮度相同C.断开S的瞬间,A1会逐渐熄灭D.断开S的瞬间,a点的电势比b点低7.在如图所示的电路中,a、b为两个完全相同的灯泡,L为自感线圈,E为电源,S为开关.关于两灯泡点亮和熄灭的先后次序,下列说法正确的是( )A.合上开关,a先亮,b后亮;断开开关,a、b同时熄灭B.合上开关,b先亮,a后亮;断开开关,a先熄灭,b后熄灭C.合上开关,b先亮,a后亮;断开开关,a、b同时熄灭D.合上开关,a、b同时亮;断开开关,b先熄灭,a后熄灭8.如图所示,虚线两侧的磁感应强度大小均为B,方向相反,电阻为R的导线弯成顶角为90°,半径为r的两个扇形组成的回路,O为圆心,整个回路可绕O 点转动。

(完整版)电磁感应中的各种题型(习题,答案)

(完整版)电磁感应中的各种题型(习题,答案)

电磁感应中的各种题型一.电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等1.“双杆”向相反方向做匀速运动:当两杆分别向相反方向运动时,相当于两个电池正向串联。

[例1] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。

已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。

(1)求作用于每条金属细杆的拉力的大小。

(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。

2.“双杆”同向运动,但一杆加速另一杆减速:当两杆分别沿相同方向运动时,相当于两个电池反向串联。

[例2] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。

导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。

两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。

在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。

设两导体棒均可沿导轨无摩擦地滑行。

开始时,棒cd静止,棒ab有指向棒cd 的初速度v0。

若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少。

(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?3. “双杆”中两杆都做同方向上的加速运动。

:“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。

[例3](2003年全国理综卷)如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。

导轨间的距离l=0.20m。

电磁感应典型题目(含答案)

电磁感应典型题目(含答案)

电磁感应的典型计算1 如图所示,一与水平面夹角为θ=37°的倾斜平行金属导轨,两导轨足够长且相距L=0.2m,另外两根水平金属杆MN和PQ的质量均为m=0.01kg,可沿导轨无摩擦地滑动,MN杆和PQ杆的电阻均为R=0.2Ω(倾斜金属导轨电阻不计),MN杆被两个垂直于导轨的绝缘立柱挡住,整个装置处于匀强磁场内,磁场方向垂直于导轨平面向上,磁感应强度B=1.0T.PQ杆在恒定拉力F作用下由静止开始向上加速运动,拉力F垂直PQ杆沿导轨平面向上,当运动位移x=0.1 m时PQ杆达到最大速度,此时MN杆对绝缘立柱的压力恰好为零(g取10m/s2,sin 37°=0.6 ,cos 37°=0.8).求:(1) PQ杆的最大速度v m, (2)当PQ杆加速度时,MN杆对立柱的压力;(3)PQ杆由静止到最大速度过程中回路产生的焦耳热Q.解:(1)PQ达到最大速度时,关于电动势为:E m=BLv m,感应电流为:I m=REm2,根据MN杆受力分析可得:mg sinθ=BI m L,联立解得:v m=22sin2LBRmg=0.6m/s;(2)当PQ的加速度a=2 m/s2 时,对PQ根据牛顿第二定律可得:F-mg sinθ-BIL=ma,对MN根据共点力的平衡可得:BIL+F N-mg sinθ=0,PQ达到最大速度时,有:F-mg sinθ-BI m L=0,联立解得:F N=0.02N,根据牛顿第三定律可得对立柱的压力F N=0.02N;(3)PQ由静止到最大速度的过程中,根据功能关系可得:F x =221mmv+mgx sinθ+Q,解得:Q=4.2×10-3 J.答:(1)PQ杆的最大速度为0.6m/s;(2)当PQ杆加速度a=2m/s2时,MN杆对立柱的压力为0.02N (3)PQ杆由静止到最大速度回路产生的焦耳热为4.2×10-3 J.2 如图所示,平行金属导轨与水平面间夹角均为θ=37°,导轨间距为lm,电阻不计,导轨足够长.两根金属棒 ab 和a′b′的质量都是0.2kg,电阻都是1Ω,与导轨垂直放置且接触良好,金属棒a′b′和导轨之间的动摩擦因数为0.5,设金属棒a′b′受到的最大静摩擦力等于滑动摩擦力.金属棒ab和导轨无摩擦,导轨平面PMKO处存在着垂直轨道平面向上的匀强磁场,导轨平面PMNQ处存在着沿轨道平面向上的匀强磁场,磁感应强度B的大小相同.用外力让a′b′固定不动,将金属棒ab由静止释放,当ab下滑速度达到稳定时,整个回路消耗的电功率为18W.求:(1)ab 棒达到的最大速度;(2)ab棒下落了 30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足什么条件?( g=10m/s2,sin37°=0.6,cos37°=0.8 )解:(1)ab 棒达到最大速度时做匀速运动,其重力功率等于整个回路消耗的电功率,则有:mg sinθ•v m=P电,则得:ab棒的最大速度为:v m==m/s=15m/s;由P电==,得:B==T=0.4T(2)根据能量守恒得:mgh=Q+则得:Q=mgh-=0.2×10×30J-×0.2×152 =37.5 J(3)将a′b′固定解除,为确保a′b′始终保持静止,则对于a′b′垂直于斜面方向有:N=mg cos37°+BIL,平行于斜面方向有:mg sin37°≤f m=μN解得:I ≥2A对于ab棒:E=I•2R,E=BLv,则得:v=≥m/s=10m/s故ab的速度应满足的条件是:10m/s≤v≤15m/s答:(1)ab 棒达到的最大速度是15m/s;(2)ab棒下落了30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q是37.5J;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足的条件是10m/s≤v≤15m/s3 如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为L,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度为B,方向垂直斜面向上.将甲乙两电阻阻值相同、质量均为m的相同金属杆如图放置在导轨上,甲金属杆处在磁场的上边界,甲乙相距L.静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨向下的外力F,使甲金属杆在运动过程中始终做沿导轨向下的匀加速直线运动,加速度大小g sinθ,乙金属杆刚进入磁场时,发现乙金属杆作匀速运动.(1)求乙刚进入磁场时的速度(2)甲乙的电阻R为多少;(3)乙刚释放时t=0,写出从开始释放到乙金属杆离开磁场,外力F随时间t的变化关系;(4 )若从开始释放到乙金属杆离开磁场,乙金属杆中共产生热量Q,试求此过程中外力F对甲做的功.解:⑴在乙尚未进入磁场中的过程中,甲、乙的加速度相同,设乙刚进入磁场时的速度v乙刚进入磁场时,对乙由根据平衡条件得(2)设乙从释放到刚进入磁场过程中做匀加速直线运动所需要的时间为设乙从进入磁场过程至刚离开磁场的过程中做匀速直线运动所需要的时间为设乙离开磁场时,甲的速度设甲从开始释放至乙离开磁场的过程中的位移为x根据能量转化和守恒定律得:4 如图所示,倾斜角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接。

电磁感应常考题型及解析

电磁感应常考题型及解析

电磁感应经典题型及解析1.(多选)如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ 、MN ,MN 的左边有一如图所示的闭合电路,当PQ 在一外力的作用下运动时,MN 向右运动,则PQ 所做的运动可能是( )A .向右加速运动B .向左加速运动C .向右减速运动D .向左减速运动解析:选BC.MN 向右运动,说明MN 受到向右的安培力,因为ab 在MN 处的磁场垂直纸面向里――→左手定则MN 中的感应电流由M →N ――→安培定则L 1中感应电流的磁场方向向上――→楞次定律⎩⎪⎨⎪⎧L 2中磁场方向向上减弱L 2中磁场方向向下增强.若L 2中磁场方向向上减弱――→安培定则PQ 中电流为Q →P 且减小――→右手定则向右减速运动;若L 2中磁场方向向下增强――→安培定则PQ 中电流为P →Q 且增大――→右手定则向左加速运动.2.如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN 垂直于导轨放置,质量为0.2 kg ,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T .将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6)( )A .2.5 m/s 1 WB .5 m/s 1 WC.7.5 m/s9 W D.15 m/s9 W解析:选B.小灯泡稳定发光说明棒做匀速直线运动.此时:F安=B2l2vR总,对棒满足:mg sin θ-μmg cos θ-B2l2vR棒+R灯=0因为R灯=R棒则:P灯=P棒再依据功能关系:mg sin θ·v-μmg cos θ·v=P灯+P棒联立解得v=5 m/s,P灯=1 W,所以B项正确.3.(1)如图甲所示,两根足够长的平行导轨,间距L =0.3 m ,在导轨间有垂直纸面向里的匀强磁场,磁感应强度B 1=0.5 T .一根直金属杆MN 以v =2 m/s 的速度向右匀速运动,杆MN 始终与导轨垂直且接触良好.杆MN 的电阻r 1=1 Ω,导轨的电阻可忽略.求杆MN 中产生的感应电动势E 1.(2)如图乙所示,一个匝数n =100的圆形线圈,面积S 1=0.4 m 2,电阻r 2=1 Ω.在线圈中存在面积S 2=0.3 m 2垂直线圈平面(指向纸外)的匀强磁场区域,磁感应强度B 2随时间t 变化的关系如图丙所示.求圆形线圈中产生的感应电动势E 2.(3)有一个R =2 Ω的电阻,将其两端a 、b 分别与图甲中的导轨和图乙中的圆形线圈相连接,b 端接地.试判断以上两种情况中,哪种情况a 端的电势较高?求这种情况中a 端的电势φa .解析:(1)杆MN 做切割磁感线的运动,E 1=B 1L v 产生的感应电动势E 1=0.3 V .(2)穿过圆形线圈的磁通量发生变化,E 2=n ΔB 2Δt S 2 产生的感应电动势E 2=4.5 V .(3)当电阻R 与题图甲中的导轨相连接时,a 端的电势较高 通过电阻R 的电流I =E 1R +r 1电阻R 两端的电势差φa -φb =IR a 端的电势φa =IR =0.2 V .答案:(1)0.3 V (2)4.5 V (3)与图甲中的导轨相连接a 端电势高 φa =0.2 V4.[2016·全国卷Ⅱ] 如图1-所示,水平面(纸面)内间距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上.t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.t 0时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求:(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.图1-24.[答案] (1)Blt 0⎝⎛⎭⎫F m -μg (2)B 2l 2t 0m[解析] (1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得 ma =F -μmg ①设金属杆到达磁场左边界时的速度为v ,由运动学公式有v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为 E =Bl v ③ 联立①②③式可得 E =Blt 0⎝⎛⎭⎫Fm -μg ④ (2)设金属杆在磁场区域中匀速运动时,金属杆中的电流为I ,根据欧姆定律 I =ER⑤ 式中R 为电阻的阻值.金属杆所受的安培力为 f =BIl ⑥因金属杆做匀速运动,由牛顿运动定律得 F -μmg -f =0 ⑦联立④⑤⑥⑦式得 R =B 2l 2t 0m⑧5.(2017·北京东城期末)如图所示,两根足够长平行金属导轨MN 、PQ 固定在倾角θ=37°的绝缘斜面上,顶部接有一阻值R =3 Ω的定值电阻,下端开口,轨道间距L =1 m .整个装置处于磁感应强度B =2 T 的匀强磁场中,磁场方向垂直斜面向上.质量m =1 kg 的金属棒ab 置于导轨上,ab 在导轨之间的电阻r =1 Ω,电路中其余电阻不计.金属棒ab 由静止释放后沿导轨运动时始终垂直于导轨,且与导轨接触良好.不计空气阻力影响.已知金属棒ab 与导轨间动摩擦因数μ=0.5,sin 37°=0.6,cos 37°=0.8,取g =10 m/s 2.(1)求金属棒ab 沿导轨向下运动的最大速度v m ;(2)求金属棒ab 沿导轨向下运动过程中,电阻R 上的最大电功率P R ; (3)若从金属棒ab 开始运动至达到最大速度过程中,电阻R 上产生的焦耳热总共为1.5 J ,求流过电阻R 的总电荷量q .解析:(1)金属棒由静止释放后,沿斜面做变加速运动,加速度不断减小,当加速度为零时有最大速度v m .由牛顿第二定律得mg sin θ-μmg cos θ-F 安=0 F 安=BIL ,I =BL v mR +r,解得v m =2.0 m/s (2)金属棒以最大速度v m 匀速运动时,电阻R 上的电功率最大,此时P R =I 2R ,解得P R =3 W(3)设金属棒从开始运动至达到最大速度过程中,沿导轨下滑距离为x ,由能量守恒定律得mgx sin θ=μmgx cos θ+Q R +Q r +12m v 2m根据焦耳定律Q RQ r =Rr,解得x=2.0 m根据q=IΔt,I=E R+rE=ΔΦΔt=BLxΔt,解得q=1.0 C答案:(1)2 m/s(2)3 W(3)1.0 C5.(2017·四川资阳诊断)如图所示,无限长金属导轨EF、PQ固定在倾角为θ=53°的光滑绝缘斜面上,轨道间距L=1 m,底部接入一阻值为R=0.4 Ω的定值电阻,上端开口.垂直斜面向上的匀强磁场的磁感应强度B=2 T.一质量为m =0.5 kg的金属棒ab与导轨接触良好,ab与导轨间的动摩擦因数μ=0.2,ab连入导轨间的电阻r=0.1 Ω,电路中其余电阻不计.现用一质量为M=2.86 kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连.由静止释放M,当M下落高度h=2.0 m时,ab开始匀速运动(运动中ab始终垂直导轨,并接触良好).不计空气阻力,sin 53°=0.8,cos 53°=0.6,取g=10 m/s2.求:(1)ab棒沿斜面向上运动的最大速度v m;(2)ab棒从开始运动到匀速运动的这段时间内电阻R上产生的焦耳热Q R和流过电阻R的总电荷量q.解析:(1)由题意知,由静止释放M后,ab棒在绳拉力T、重力mg、安培力F和导轨支持力N及摩擦力f共同作用下沿导轨向上做加速度逐渐减小的加速运动直至匀速运动,当达到最大速度时,由平衡条件有T-mg sin θ-F-f=0N-mg cos θ=0,T=Mg又f=μNab棒所受的安培力F=BIL回路中的感应电流I=BL v mR+r联立以上各式,代入数据解得最大速度v m=3.0 m/s(2)由能量守恒定律知,系统的总能量守恒,即系统减少的重力势能等于系统增加的动能、焦耳热及由于摩擦产生的内能之和,有Mgh-mgh sin θ=12(M+m)v2m+Q+fh电阻R产生的焦耳热Q R=RR+rQ根据法拉第电磁感应定律和闭合电路欧姆定律有流过电阻R的总电荷量q=IΔt电流的平均值I=E R+r感应电动势的平均值E=ΔΦΔt磁通量的变化量ΔΦ=B·(Lh)联立以上各式,代入数据解得Q R=26.30 J,q=8 C.答案:(1)3.0 m/s(2)26.30 J8 C6. 如图所示,N=50匝的矩形线圈abcd,ab边长l1=20 cm,ad边长l2=25cm ,放在磁感应强度B =0.4 T 的匀强磁场中,外力使线圈绕垂直于磁感线且通过线圈中线的OO ′轴以n =3 000 r/min 的转速匀速转动,线圈电阻r =1 Ω,外电路电阻R =9 Ω,t =0时线圈平面与磁感线平行,ab 边正转出纸外、cd 边转入纸里.求:(1)t =0时感应电流的方向; (2)感应电动势的瞬时值表达式; (3)线圈转一圈外力做的功;(4)从图示位置转过90°的过程中流过电阻R 的电荷量. 解析:(1)根据右手定则,线圈感应电流方向为adcba . (2)线圈的角速度 ω=2πn =100π rad/s图示位置的感应电动势最大,其大小为 E m =NBl 1l 2ω代入数据得E m =314 V 感应电动势的瞬时值表达式 e =E m cos ωt =314cos(100πt ) V . (3)电动势的有效值E =E m2线圈匀速转动的周期 T =2πω=0.02 s线圈匀速转动一圈,外力做功大小等于电功的大小,即。

电磁感应应用题(含答案)

电磁感应应用题(含答案)

电磁感应应用题(含答案)题目一一个导线长为3m,电流为5A,位于磁场中。

如果该导线所受的磁感应强度为0.8T,求该导线上的电磁感应强度大小。

解答根据电磁感应定律,电磁感应强度的大小可以通过以下公式计算:\[\text{{电磁感应强度大小}} = \text{{导线长度}} \times \text{{电流大小}} \times \text{{磁感应强度}}\]将已知数据代入公式,可得:\[\text{{电磁感应强度大小}} = 3 \, \text{{m}} \times 5 \, \text{{A}} \times 0.8 \, \text{{T}}\]计算结果为2.4T。

题目二一个面积为0.5平方米的线圈,每个回路的匝数为100,位于磁场中。

当该线圈的磁感应强度为0.6T时,求线圈内的磁通量。

解答根据磁通量的定义,磁通量可以通过以下公式计算:\[\text{{磁通量}} = \text{{磁感应强度}} \times \text{{面积}}\times \text{{匝数}}\]将已知数据代入公式,可得:\[\text{{磁通量}} = 0.6 \, \text{{T}} \times 0.5 \, \text{{平方米}} \times 100\]计算结果为30Wb。

题目三一个磁感应强度为0.4T的匀强磁场,以45°的角度斜射到一个平面回路上。

如果回路的面积为0.2平方米,求回路内的磁通量。

解答由于匀强磁场斜射到平面回路上,只有垂直于磁感应强度方向的分量会影响磁通量,因此需要先计算垂直于磁感应强度方向的面积。

垂直于磁感应强度方向的面积可以通过以下公式计算:\[\text{{垂直面积}} = \text{{回路面积}} \times \sin(\text{{角度}}) \]将已知数据代入公式,可得:\[\text{{垂直面积}} = 0.2 \, \text{{平方米}} \times \sin(45°)\]计算结果为0.2平方米。

新编《电磁感应》精选练习题(含答案)

新编《电磁感应》精选练习题(含答案)

新编《电磁感应》精选练习题(含答案)1、选择题:1.正确答案为(D)。

2.正确答案为(D)。

3.正确答案为(B)。

4.正确答案为(B)。

5.正确答案为(A)。

6.正确答案为(D)。

7.正确答案为(A)。

2、文章改写:本文是一篇电磁感应单元测试题。

在选择题部分,需要根据题目要求选择正确答案。

其中包括关于线圈中磁通量变化、自感现象、金属棒的旋转、匀强磁场中的固定金属框架和导体棒等问题。

在每个问题中,需要根据问题描述和图示来判断正确答案。

对于第一题,正确答案是(D),即线圈中磁通量变化越快,线圈中产生的感应电动势越大。

第二题的正确答案是(D),即对于同一线圈,当电流变化较快时,线圈中的自感电动势电较大。

第三题的正确答案是(B),即金属棒内电场强度等于零。

第四题的正确答案是(B),即在导体棒ef还未脱离框架前,电路中的磁通量保持不变。

第五题的正确答案是(A),即刚一闭合S2,A灯就立即亮,而B灯则延迟一段时间才亮。

第六题的正确答案是(D),即无法判断线圈中的感应电流方向,也无法判断线圈所受磁场力的方向。

最后一题的正确答案是(A),即在拉出正方形多匝线圈的过程中,拉力做功的功率与线圈匝数成正比。

本文需要读者根据问题描述和图示来判断正确答案。

在文章改写时,需要修正问题描述和图示的格式错误,同时删除明显有问题的段落,并进行小幅度的改写。

和L2同时达到最亮,断开时同时灭D.接通时L1和L2都不亮,断开时也都不灭8、在斜面上,金属棒沿着导轨匀速上滑,且上升一定高度。

根据能量守恒定律,作用于金属棒上的各力的合力所做的功等于mgh与电阻R上发出的焦耳热之和。

其中,作用于金属棒上的合力包括恒力F和安培力的合力。

9、一电子以初速度v沿金属板平行方向飞入XXX极板间,若突然发现电子向M板偏转,则可能是电键S由闭合到断开瞬间。

10、磁带录音机既可用作录音,也可用作放音。

其主要的部件为可匀速行进的磁带和绕有线圈的磁头。

不论是录音或放音过程,磁带或磁隙软铁会存在磁化现象。

电磁感应练习题及

电磁感应练习题及

电磁感应练习题及解答电磁感应练习题及解答电磁感应是物理学中的一个重要概念,涉及到电磁场的变化过程中电场和磁场相互作用产生的现象。

它在日常生活和科学研究中都有广泛的应用。

下面是一些电磁感应练习题及解答,供大家进行练习。

1. 一根长导线以速度v从北向南方向通过均匀磁场B,该导线的两端分别连接一个电阻为R的电灯泡。

求当导线通过磁场过程中,电灯泡亮起的时间。

解答:根据法拉第电磁感应定律,导线通过磁场时产生感应电动势,导致电流流过电灯泡。

所以,在导线通过磁场期间,电灯泡会一直亮起。

因此,电灯泡亮起的时间等于导线通过磁场的时间。

2. 一个长方形线圈的边长为a和b,放置在匀强磁场B中,使得长方形线圈的法线与磁场方向垂直。

求长方形线圈在匀强磁场中的磁通量。

解答:根据法拉第电磁感应定律,在匀强磁场中,线圈的磁通量可以通过以下公式计算:Φ = B * A * cosθ,其中B表示磁场强度,A表示线圈的面积,θ表示磁场方向与线圈法线方向之间的夹角。

由于线圈的法线与磁场方向垂直,θ为0,所以磁通量Φ = B * A。

3. 在一个闭合导线中有一个直径为d的圆环,该圆环的电阻为R。

当一个恒定的磁场B垂直于圆环平面时,求圆环上感应的电动势。

解答:根据法拉第电磁感应定律,当磁场的变化导致一个闭合回路中的磁通量发生改变时,会在回路中产生感应电动势。

在这个问题中,磁场是恒定的,所以不会产生感应电动势。

4. 一个导线带有电流I,在该导线旁边有另一条导线,它们平行。

第二条导线的长度为L,并且距离第一条导线的距离为d。

求第二条导线中感应的电动势。

解答:当电流从第一条导线中流过时,会在周围产生磁场。

第二条导线因为位于磁场中,所以会感受到这个磁场产生的磁通量的改变。

根据法拉第电磁感应定律,第二条导线中的感应电动势可以通过以下公式计算:ε = -dΦ/dt,其中Φ表示磁通量的变化率。

在这个问题中,需要计算第二条导线中的磁通量的变化率,并由此得出感应电动势。

电磁感应基础知识试题题库(有答案)

电磁感应基础知识试题题库(有答案)

电磁感应基础知识试题题库(有答案)一、选择题1.下列与电磁感应有关的四幅图中说法正确的是()A.甲图,变化的磁场激发出感生电场,自由电荷在感生电场的作用下定向移动,从而形成感应电流B.乙图,磁块在没有裂缝的铝管中由静止开始下落做的是自由落体运动C.丙图,是麦克斯韦验证了电磁波存在的实验装置D.丁图,断开开关的瞬间,因原线圈中没有电流,所以副线圈中也没有电流【答案】A【知识点】电磁感应的发现及产生感应电流的条件;涡流、电磁阻尼、电磁驱动;电磁场与电磁波的产生;电磁感应现象中的感生电场2.如图所示,A、B两闭合线圈用同样的导线绕成,A有10匝,B有20匝,两线圈半径之比为2∶1。

均匀磁场只分布在B线圈内,当磁场随时间均匀增强时()A.A中无感应电流B.B中无感应电流C.A中磁通量总是等于B中磁通量D.A中磁通量总是大于B中磁通量【答案】C【知识点】电磁感应的发现及产生感应电流的条件;磁通量3.如图所示,闭合线圈平面与条形磁铁的轴线垂直,现保持条形磁铁不动,使线圈由A位置沿轴线移动到B位置。

在此过程中()A.穿过线圈的磁通量将增大,线圈中有感应电流B.穿过线圈的磁通量将减小,线圈中有感应电流C.穿过线圈的磁通量先减小,后增大,线圈中无感应电流D.穿过线圈的磁通量先增大,后减小,线圈中无感应电流【答案】B【知识点】电磁感应的发现及产生感应电流的条件4.关于电磁场和电磁波,下列说法正确的是()A.麦克斯韦首先预言了电磁波的存在并通过实验进行了证实B.变化的电场周围一定产生变化的磁场,变化的磁场周围也一定产生变化的电场C.电磁波波长越长,其能量子的能量越小D.闭合导线的一部分在磁场中运动一定会产生感应电流【答案】C【知识点】电磁感应的发现及产生感应电流的条件;电磁场与电磁波的产生5.如图所示,OO′是矩形导线框abcd的对称轴,线框左半部分处于垂直纸面向外的匀强磁场中。

下列说法正确的是()A.将线框abcd向右匀减速平移,线框中产生的感应电流方向为abcdaB.将线框abcd向纸面外平移,线框中产生的感应电流方向为abcdaC.将线框abcd以ad为轴向外转动60°,线框中产生的感应电流方向为adcbaD.将线框abcd以OO′为轴ad向里转动,线框中产生的感应电流方向为adcba【答案】D【知识点】电磁感应的发现及产生感应电流的条件;楞次定律【解析】【解答】A.根据楞次定律可知,线框中产生的感应电流方向为adcba,故A错误;B.穿过线圈的磁通量保持不变,线框中不会产生感应电流,故B错误;C.穿过线圈的磁通量保持不变,线框中不会产生感应电流,故C错误;D.将线框abcd以OO′为轴ad向里转动,穿过线圈的磁通量向外减小,根据楞次定律可知,线框中产生的感应电流方向为adcba,故D正确。

(完整版)电磁感应练习题及答案

(完整版)电磁感应练习题及答案

《电磁感应》练习题高二级_______班姓名______________ _______________号1.B 2. A 3. A4.B 5. BCD6.CD7. D8. C一.选择题1.下面说法正确的是()A.自感电动势总是阻碍电路中原来电流增加B.自感电动势总是阻碍电路中原来电流变化. C.电路中的电流越大,自感电动势越大D.电路中的电流变化量越大,自感电动势越大2. 如图所示,一个矩形线圈与通有相同大小电流的平行直导线在同一平面,而且处在两导线的中央,则( A )A.两电流方向相同时,穿过线圈的磁通量为零B.两电流方向相反时,穿过线圈的磁通量为零C.两电流同向和反向时,穿过线圈的磁通量大小相等D.因两电流产生的磁场不均匀,因此不能判断穿过线圈的磁通量是否为零3. 一矩形线圈在匀强磁场中向右做加速运动如图所示, 设磁场足够大, 下面说法正确的是( A )A. 线圈中无感应电流, 有感应电动势B .线圈中有感应电流, 也有感应电动势C. 线圈中无感应电流, 无感应电动势D. 无法判断4.如图所示,AB为固定的通电直导线,闭合导线框P与AB在同一平面内。

当P远离AB做匀速运动时,它受到AB的作用力为( B )A.零B.引力,且逐步变小C.引力,且大小不变D.斥力,且逐步变小5. 长0.1m的直导线在B=1T的匀强磁场中,以10m/s的速度运动,导线中产生的感应电动势:( )A.一定是1V B.可能是0.5V C.可能为零D.最大值为1V6.如图所示,在一根软铁棒上绕有一个线圈,a、b是线圈的两端,a、b分别与平行导轨M、N相连,有匀强磁场与导轨面垂直,一根导体棒横放在两导轨上,要使a点的电势均比b点的电势高,则导体棒在两根平行的导轨上应该(BCD )A.向左加速滑动B.向左减速滑动C.向右加速滑动D.向右减速滑动7.关于感应电动势,下列说法正确的是()A.穿过闭合电路的磁感强度越大,感应电动势就越大B.穿过闭合电路的磁通量越大,感应电动势就越大C.穿过闭合电路的磁通量的变化量越大,其感应电动势就越大D.穿过闭合电路的磁通量变化的越快,其感应电动势就越大4题5题8.恒定的匀强磁场中有一圆形的闭合导体线圈,线圈平面垂直于磁场方向,要使线圈中能产生感应电流,线圈在磁场中应做 ( ) A .线圈沿自身所在的平面做匀速运动 B .线圈沿自身所在的平面做匀加速运动 C .线圈绕任意一条直径转动 D .线圈沿磁场方向平动9.将一磁铁缓慢或迅速地插到闭和线圈中的同一位置,两次发生变化的物理量不同的是( )A 、磁通量的变化量B 、磁通量的变化率C 、感应电流的电流强度D 、消耗的机械功率10.如图所示,一长直导线在纸面内,导线一侧有一矩形线圈,且线圈一边M 与通电导线平行,要使线圈中产生感应电流,下列方法可行的是( ) A 、保持M 边与导线平行线圈向左移动 B 、保持M 边与导线平行线圈向右移动C 、线圈不动,导线中电流减弱D 、线圈不动,导线中电流增强E 、线圈绕M 边转动 F11. 如图所示,将一线圈放在一匀强磁场中,线圈平面平行于磁感线,则线圈中有感应电流产生的是( )A 、当线圈做平行于磁感线的运动B 、当线圈做垂直于磁感线的平行运动C 、当线圈绕M 边转动D 、当线圈绕N 边转动12.如图所示,虚线所围的区域内有一匀强磁场,闭和线圈从静止开始运动,此时如果使磁场对线圈下边的磁场力方向向下,那么线圈应( ) A 、向右平动 B 、向左平动 C 、以M 边为轴转动D 、以上都不对13.竖直放置的金属框架处于水平的匀强磁场中,如图所示,一长直金属棒AB 可沿框自由运动,当AB 由静止开始下滑一段时间后合上S ,则AB 将做( )A 、 匀速运动B 、加速运动C 、减速运动D 、无法判定14.如图所示,边长为h 的矩形线框从初始位置由静止开始下落,进入一水平的匀强磁场,且磁场方向与线框平面垂直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应中的各种题型一.电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等1.“双杆”向相反方向做匀速运动:当两杆分别向相反方向运动时,相当于两个电池正向串联。

[例1] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。

已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。

(1)求作用于每条金属细杆的拉力的大小。

(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。

2.“双杆”同向运动,但一杆加速另一杆减速:当两杆分别沿相同方向运动时,相当于两个电池反向串联。

[例2] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。

导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。

两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。

在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。

设两导体棒均可沿导轨无摩擦地滑行。

开始时,棒cd静止,棒ab有指向棒cd 的初速度v0。

若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少。

(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?3. “双杆”中两杆都做同方向上的加速运动。

:“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。

[例3](2003年全国理综卷)如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。

导轨间的距离l=0.20m。

两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。

在t=0时刻,两杆都处于静止状态。

现有一与导轨平行、大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。

经过t=5.0s,金属杆甲的加速度为a=1.37m/s2,问此时两金属杆的速度各为多少?4.“双杆”在不等宽导轨上同向运动。

“双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。

[例4](2004年全国理综卷)图中a1b1c1d1和a2b2c2d2为在同一竖直平面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直于导轨所在平面(纸面)向里。

导轨的a1b1段与a2b2段是竖直的,距离为l1;c1d1段与c2d2段也是竖直的,距离为l2。

x1 y1与x2 y2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m1和m2,它们都垂直于导轨并与导轨保持光滑接触。

两杆与导轨构成的回路的总电阻为R。

F为作用于金属杆x1y1上的竖直向上的恒力。

已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。

二.电磁感应中的一个重要推论——安培力的冲量公式感应电流通过直导线时,直导线在磁场中要受到安培力的作用,当导线与磁场垂直时,安培力的大小为F=BLI。

在时间△t 内安培力的冲量,式中q是通过导体截面的电量。

利用该公式解答问题十分简便,下面举例说明这一点。

[例5] 如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L的区域内,有一个边长为a(a<L)的正方形闭合线圈以初速v0垂直磁场边界滑过磁场后速度变为v(v<v0)那么()A. 完全进入磁场中时线圈的速度大于(v0+v)/2B. 安全进入磁场中时线圈的速度等于(v0+v)/2C. 完全进入磁场中时线圈的速度小于(v0+v)/2D. 以上情况A、B均有可能,而C 是不可能的[例6] 光滑U型金属框架宽为L,足够长,其上放一质量为m的金属棒ab,左端连接有一电容为C的电容器,现给棒一个初速v0,使棒始终垂直框架并沿框架运动,如图所示。

求导体棒的最终速度。

三.电磁感应中电流方向问题[例7](06广东物理卷)如图所示,用一根长为L 质量不计的细杆与一个上弧长为,下弧长为的金属线框的中点联结并悬挂于O 点,悬点正下方存在一个上弧长为、下弧长为的方向垂直纸面向里的匀强磁场,且<<先将线框拉开到如图所示位置,松手后让线框进入磁场,忽略空气阻力和摩擦。

下列说法正确的是()A. 金属线框进入磁场时感应电流的方向为:a→b→c→d→aB. 金属线框离开磁场时感应电流的方向为:a→d→c→b→aC. 金属线框dc边进入磁场与ab边离开磁场的速度大小总是相等D. 金属线框最终将在磁场内做简谐运动[例7.1] 如图所示,接有灯泡L的平行金属导轨水平放置在匀强磁场中,一导体杆与两导轨良好接触并做往复运动,其运动情况与弹簧振子做简谐运动的情况相同。

图中O位置对应于弹簧振子的平衡位置,P、Q两位置对应于弹簧振子的最大位移处。

若两导轨的电阻不计,则()A. 杆由O到P的过程中,电路中电流变大B. 杆由P到Q的过程中,电路中电流一直变大C. 杆通过O处时,电路中电流方向将发生改变D. 杆通过O处时,电路中电流最大四.电磁感应中的多级感应问题[例8] 如图所示,ab、cd金属棒均处于匀强磁场中,cd 原静止,当ab向右运动时,cd如何运动(导体电阻不计)()A. 若ab向右匀速运动,cd静止;B. 若ab向右匀加速运动,cd向右运动;C. 若ab向右匀减速运动,cd向左运动[例8.1]:在匀强磁场中放一电阻不计的平行金属导轨,导轨跟大线圈相接,如图所示导轨上放一根导线ab,磁力线垂直于导轨所在平面。

欲使所包围的小闭合线圈产生顺时针方向的感应电流,则导线的运动可能是()A. 向右运动B. 加速向右运动C. 减速向右运动D. 加速向左运动五.电磁感应中的动力学问题[例9](2005年上海)如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1m,导轨平面与水平面成θ=370角,下端连接阻值为R的电阻。

匀强磁场的方向与导轨平面垂直。

质量为0.2kg、电阻不计的导体棒放在两导轨上,棒与导轨垂直并且接触良好,它们间的动摩擦因数为0.25。

(1)金属棒沿导轨由静止开始下滑时的加速度大小。

(2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8W,求该速度的大小。

(3)在上问中,若R=2Ω,金属棒中电流方向由a到b,求磁感应强度的大小与方向。

(g=10m/s2,sin370=0.6,cos370=0.8)[例9.1]:(06重庆卷)两根相距为L的足够长的金属直角导轨如题下图所示放置,它们各有一边在同一水平面内,另一边垂直于水平面。

质量均为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数为μ,导轨电阻不计,回路总电阻为2R。

整个装置处于磁感应强度大小为B,方向竖直向上的匀强磁场中。

当ab杆在平行于水平导轨的拉力F作用下以速度V1沿导轨匀速运动时,cd杆也正好以速率向下V2匀速运动。

重力加速度为g。

以下说法正确的是()A.ab杆所受拉力F的大小为μmg +B.B. cd杆所受摩擦力为零C.回路中的电流强度为D.D. μ与V1大小的关系为μ=六。

电磁感应中的电路问题[例10] 如图所示,在磁感强度为的匀强磁场中有一半径为的金属圆环。

已知构成圆环的电线电阻为,以O 为轴可以在圆环上滑动的金属棒电阻为,电阻。

如果棒以某一角速度匀速转动时,电阻的电功率最小值为,那么棒匀速转动的角速度应该多大?(其它电阻不计)答案:[例1]解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为:E1=E2=Bdv由闭合电路的欧姆定律,回路中的电流强度大小为:因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F1=F2=IBd。

由以上各式并代入数据得N(2)设两金属杆之间增加的距离为△L,则两金属杆共产生的热量为,代入数据得Q=1.28×10-2J。

[例2] 解析:ab棒向cd棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流。

ab棒受到与运动方向相反的安培力作用作减速运动,cd棒则在安培力作用下作加速运动。

在ab棒的速度大于cd棒的速度时,回路总有感应电流,ab棒继续减速,cd棒继续加速。

两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v作匀速运动。

(1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,有根据能量守恒,整个过程中产生的总热量(2)设ab棒的速度变为初速度的3/4时,cd棒的速度为v1,则由动量守恒可知:此时回路中的感应电动势和感应电流分别为:,此时棒所受的安培力:,所以棒的加速度为由以上各式,可得。

[例3]解析:设任一时刻t两金属杆甲、乙之间的距离为x,速度分别为v1和v2,经过很短的时间△t,杆甲移动距离v1△t,杆乙移动距离v2△t,回路面积改变由法拉第电磁感应定律,回路中的感应电动势,回路中的电流,杆甲的运动方程。

由于作用于杆甲和杆乙的安培力总是大小相等,方向相反,所以两杆的动量时为0)等于外力F的冲量。

联立以上各式解得,代入数据得点评:题中感应电动势的计算也可以直接利用导体切割磁感线时产生的感应电动势公式和右手定则求解:设甲、乙速度分别为v1和v2,两杆切割磁感线产生的感应电动势分别为E1=Blv1 ,E2=Blv2 由右手定则知两电动势方向相反,故总电动势为E=E2―E1=Bl(v2-v1)。

分析甲、乙两杆的运动,还可以求出甲、乙两杆的最大速度差:开始时,金属杆甲在恒力F作用下做加速运动,回路中产生感应电流,金属杆乙在安培力作用下也将做加速运动,但此时甲的加速度肯定大于乙的加速度,因此甲、乙的速度差将增大。

根据法拉第电磁感应定律,感应电流将增大,同时甲、乙两杆所受安培力增大,导致乙的加速度增大,甲的加速度减小。

但只要a甲>a乙,甲、乙的速度差就会继续增大,所以当甲、乙两杆的加速度相等时,速度差最大。

此后,甲、乙两杆做加速度相等的匀加速直线运动。

设金属杆甲、乙的共同加速度为a,回路中感应电流最大值Im。

对系统和乙杆分别应用牛顿第二定律有:F=2ma;BLIm=ma。

由闭合电路欧姆定律有E=2ImR,而由以上各式可解得[例4]解析:设杆向上的速度为v,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少。

由法拉第电磁感应定律,回路中的感应电动势的大小①回路中的电流②电流沿顺时针方向。

相关文档
最新文档