因式分解教学设计)
人教版因式分解教学设计(精选8篇)
人教版因式分解教学设计(精选8篇)篇一:《因式分解》教学设计教学准备教学目标知识与能力1.了解多项式公因式的意义,初步会用提公因式法分解因式;2.通过找公因式,培养观察能力.过程与方法1.了解因式分解的概念,以及因式分解与整式乘法的关系;2.了解公因式概念和提取公因式的方法;会用提取公因式法分解因式.情感态度与价值观1.在探索提公因式法分解因式的过程中学会逆向思维,渗透化归的思想方法;2.培养观察、联想能力,进一步了解换元的思想方法;教学重难点重点:能观察出多项式的公因式,并根据分配律把公因式提出来.难点:识别多项式的公因式.教学过程一、新课导入请同学们想一想?993-99能被100整除吗?解法一:993-99=970299-99=970200解法二:993-99=99(992-1)=99(99+1)(99-1)=100×99×98=970200(1)已知:x=5, a-b=3,求ax2-bx2的值.(2)已知:a=101,b=99,求a2-b2的值.你能说说算得快的原因吗?解:(1) ax2-bx2=x2(a-b)=25×3=75.(2)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400二、新知探究1、做一做:计算下列各式:①3x(x-2)=__3x2-6x②m(a+b+c)= ma+mb+mc③(m+4)(m-4)=m2-16④(x-2)2=x2-4x+4⑤a(a+1)(a-1)=a3-a根据左面的算式填空:①3x2-6x=(_3x__)(_x-2__)②ma+mb+mc=(_m_)(a+b+c_)③m2-16=(_m+4)(m-4_)④x2-4x+4=(x-2)2⑤a3-a=(a)(a+1)(a-1)左边一组的变形是什么运算?右边的变形与这种运算有什么不同?右边变形的结果有什么共同的特点?总结:把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.整式乘法因式分解与整式乘法是互逆过程因式分解在am+bm=m(a+b)中, m叫做多项式各项的公因式.公因式:即每个单项式都含有的相同的因式.提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成乘积的形式.这种分解因式的方法叫做提公因式法.确定公因式的方法:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取多项式各项中都含有的相同的字母;(3)相同字母的指数取各项中最小的一个,即最低次幂.三、例题分析例1把12a4b3+16a2b3c2分解因式.解:12a4b3+16a2b3c2=4a2b3·3a2+4a2b3·4c2=4a2b3(3a2+4c2)提公因式后,另一个因式:①项数应与原多项式的项数一样;②不再含有公因式.例2 把2ac(b+2c)- (b+2c)分解因式.解:2ac(b+2c) -(b+2c)= (b+2c)(2ac-1)公因式可以是数字、字母,也可以是单项式,还可以是多项式.例3把-x3+x2-x分解因式.解:原式=-(x3-x2+x)=-x(x2-x+1)多项式的第一项是系数为负数的项,一般地,应提出负系数的公因式.但应注意,这时留在括号内的每一项的符号都要改变,且最后一项“-x”提出时,应留有一项“+1”,而不能错解为-x(x2-x).四、当堂训练1.(1)9x3y3-12x2y+18xy3中各项的公因式是 3xy_.(2)5x2-25x的公因式为 5x .(3)-2ab2+4a2b3的公因式为-2ab2.(4)多项式x2-1与(x-1)2的公因式是x-1.2.如果(x+y)(x2-xy+y2)-(x+y)xy有公因式(x+y),那么另外的因式是 (x-y)2课后小结1.分解因式把一个多项式分解成几个整式的积的形式,叫做分解因式,分解因式和整式乘法互为逆运算.2.确定公因式的方法一看系数二看字母三看指数3.提公因式法分解因式步骤(分两步)第一步找出公因式;第二步提公因式.4.用提公因式法分解因式应注意的问题(1)公因式要提尽;(2)其中一项全部提出时,这一项除以公因式时的商是1,这个1不能漏掉;(3)多项式的首项取正号.板书一、因式分解把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.二、提公因式法如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成乘积的形式.这种分解因式的方法叫做提公因式法.am+bm=m(a+b)二、例题分析例1、例2、例3、三、当堂训练篇二:《因式分解》教学设计一、内容和内容解析1.内容用因式分解法解一元二次方程.2.内容解析教材通过实际问题得到方程,让学生思考解决方程的方法除了之前所学习过的配方法和公式法以外,是否还有更简单的方法解方程,接着思考为什么用这种方法可以求出方程的解,从而引出本节课的教学内容.解一元二次方程的基本策略是降次,因式分解法将一个一元二次方程转化为两个一次式的.乘积为零,是解一些一元二次方程较为简便灵活的一种特殊方法.体现了降次的思想,这种思想在以后处理高次方程时也很重要.基于以上分析,确定出本节课的教学重点:会用因式分解法解特殊的一元二次方程.二、目标和目标解析1.教学目标(1)了解用因式分解法解一元二次方程的概念;会用因式分解法解一元二次方程;(2)学会观察方程特征,选用适当方法解决一元二次方程.2.目标解析(1)学生能理解因式分解法的概念,掌握因式分解法解一元二次方程的一般步骤,会利用因式分解求解特殊的一元二次方程;(2)学生通过对比一元二次方程的结构类型,选用适当的方法合理的解方程,增强解决问题的灵活性.三、教学问题诊断分析学生在此之前已经学过了用配方法和公式法求一元二次方程的解,然后通过实际问题,获得一个显然可以用“提取公因式法”而达到“降次”目的的方程,从而引出因式分解法解一元二次方程,体现了从简单的、特殊的问题出发,通过逐步推广而获得复杂的、一般的问题,符合学生的认知规律.在实际的教学中,学生在利用因式分解法解方程式往往会在因式分解上存在着一定的困难,从而不能将方程化成两个一次式乘积的形式.另外在面对一元二次方程时,缺乏对方程结构的观察,从而在方法的选择上欠佳,缺乏解决问题的灵活性,增加了计算的难度,降低了计算的准确性.为了突破这一难点,应带领学生认真观察方程的结构,对比方法的难易简便,从而选择合理的方法解决一元二次方程.本节课的难点:学会观察方程特征,选用适当方法解决一元二次方程.四、教学过程设计1.创设情景,引出问题问题一根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么物体经过xs离地面的高度(单位:m)为.根据上述规律,物体经过多少秒落回地面(结果保留小数点后两位)?师生活动:学生积极思考并尝试列方程,可有学生解释如何理解“落回地面”.【设计意图】学生首先要理解实际问题背景下代数式的意义,理解落回地面的意义就是高度为零,就是表示高度的代数式的值为零,从而列出方程.在阅读并尝试回答的过程中让他们感受在生活、生产中需要用到方程,从而激发学生的求知欲.2.观察感知,理解方法问题二如何求出方程的解呢?师生活动:学生从已有的知识出发,考虑用配方法和公式法解决问题,教师再一步引导学生观察方程的结构,学生进行深入的思考,努力发现因式分解法方法解方程.【设计意图】通过配方法和公式法的选择,更好地让学生对比感受因式分解法的简便,为本节课的教学内容做好知识上的铺垫和准备.问题三如果,则有什么结论?对于你解方程有什么启发吗?师生活动:学生很容易回答有或的结论.由此进一步思考如何将一元二次方程化为两个一次式的乘积.【设计意图】通过观察,引导学生进一步思考,发现用因式分解中提取公因式法解方程更加简便,从而学生会对方法的选择有一定的理解.问题四上述方法是是如何将一元二次方程降为一次的?师生活动:学生通过对解决问题过程的反思,体会到通过提取公因式将一元二次方程化为了两个一次式的乘积的形式,得到两个一元一次方程,教师注重引导学生观察方程在因式分解过程中的变化,在学生总结发言的过程中适当引导.【设计意图】让学生对比不同解法,不是用开平方降次,而是先因式分解,使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种节一元二次方程的方法叫做因式分解法.在反思小结的过程中,理解因式分解法的意义,从而引出本节课的教学内容.3.例题示范,灵活运用例解下列方程师生活动:提问:(1)如何求出方程(1)的解呢?说说你的方法.(2)对比解法,说说各种解法的特点.学生积极思考,积极回答问题,对比解法的不同.【设计意图】问题(1)的提出是开放式的,学生可能会回答将括号打开,然后利用配方法或公式法,也有些学生会观察到如果将当作一个整体,利用提取公因式的方法直接就化为两个一次式乘积为零的形式.通过问题(2)的思考讨论,让学生体会解法的利弊,注重观察方程自身的结构.师生活动:提问:(1)方程(2)与方程(1)对比,在结构上有什么不同?(2)谈谈方程(2)的解法.学生观察方程(2)与方程(1)的区别,用类比划归的思想解决问题.【设计意图】问题(2)的方程需要先进行移项,将方程化为右侧等于零的结构,然后得到一个平方差的结构,利用平方差公式将一元二次方程化为两个一次式的乘积为零的结构.4.巩固练习,学以致用完成教材P14练习1,2.【设计意图】巩固性练习,同时检验一元二次方程解法掌握情况.5.小结提升,深化理解问题五(1)因式分解法的一般步骤是什么?解下列方程1.【设计意图】利用提取公因式法解方程.2.【设计意图】利用平方差公式解方程.3.【设计意图】利用因式分解法不适合的方程可选择用公式法或配方法解决.4.【设计意图】选用适当的方法解方程.篇三:《因式分解》教学设计教学目标认知目标:(1)理解因式分解的概念和意义(2)认识因式分解与整式乘法的相互关系,相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
因式分解教案5篇
式分解教案5篇因式分解教案篇一教学目标:1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力。
2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法。
3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想。
教学重、难点:用提公因式法和公式法分解因式。
教具准备:多媒体课件(小黑板)教学方法:活动探究法教学过程:引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解。
什么叫因式分解?知识详解知识点1因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
(1)因式分解与整式乘法是相反方向的变形。
例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验。
怎样把一个多项式分解因式?知识点2提公因式法多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式。
ma+mb+mc二m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法。
例如:x2-x=x(x-l),8a2b-4ab+2a=2a(4ab-2b+1)。
探究交流下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x);(2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1);(4)xn(x2-x+1)=xn+2-xn+1+xn.典例剖析师生互动例1用提公因式法将下列各式因式分解。
(1)-x3z+x4y;(2)3x(a-b)+2y(b-a);分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形,再把b-a 化成-(a-b),然后再提取公因式。
初中数学因式分解教案
初中数学因式分解教案一、教学目标:1. 知识与技能:学生能够理解因式分解的概念,掌握提公因式法、公式法等基本的因式分解方法,并能够运用这些方法解决实际问题。
2. 过程与方法:通过观察、分析、归纳等数学活动,培养学生的逻辑思维能力和数学表达能力,提高学生解决数学问题的能力。
3. 情感态度价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学的价值和魅力。
二、教学重难点:1. 教学重点:掌握因式分解的基本方法,能够运用提公因式法、公式法等进行因式分解。
2. 教学难点:如何正确找出多项式各项的公因式,以及如何确定提公因式后的另外一个因式。
三、教学过程:1. 引入新课:通过复习多项式乘法,引导学生思考:如何将一个多项式化为几个整式的积的形式?从而引出因式分解的概念。
2. 探索新知:(1) 提公因式法:引导学生观察两个多项式的乘积,找出它们之间的公因式,并将公因式提出来。
例如,分解因式:x^2 - 4x + 4,我们可以先提出公因式x,得到x(x - 4),然后再利用平方差公式进行进一步分解。
(2) 公式法:引导学生掌握平方差公式和完全平方公式,并能够运用这两个公式进行因式分解。
例如,分解因式:x^2 - 9,我们可以利用平方差公式a^2 - b^2 = (a + b)(a - b)进行分解,得到(x + 3)(x - 3)。
3. 巩固练习:提供一些练习题,让学生运用所学的因式分解方法进行解答,巩固所学知识。
4. 课堂小结:总结本节课所学的因式分解方法,强调提公因式法和公式法在因式分解中的应用,以及正确找出多项式各项的公因式和确定提公因式后的另外一个因式的方法。
四、课后作业:1. 完成教材后的相关练习题。
2. 总结因式分解的方法和技巧,写一篇关于因式分解的心得体会。
通过以上教学设计,希望能够帮助学生掌握因式分解的基本方法,提高学生解决数学问题的能力,激发学生学习数学的兴趣。
因式分解教案(优秀4篇)
因式分解教案(优秀4篇)初二数学因式分解教案篇一1、lie动词,意为“躺”,过去式和过去分词分别为lay和lain,现在分词为lying。
I found he was lying on the ground.我发现他躺在地上。
【拓展】(1)lie有“位于”的意思。
A temple lies on the top of the mountain.一座寺庙位于山顶之上。
(2)lie作动词时,也可意为“撒谎”,过去式和过去分词是规则的,均为lied。
lie也可用作名词,意为“谎言”。
Don’t lie to me.不要向我撒谎。
The boy told a lie to me.这个男孩向我撒了谎。
(3)英语中,部分以-ie结尾的动词的-ing形式必须改ie为y再加-ing。
die → dying tie → tying lie → lying2、hopehope意为“希望”,用于表示有可能实现的愿望,其后可接不定式或宾语从句,但表达“希望别人做某事”时,则需用hope that从句。
I hope you can pass the exam.我希望你能通过考试。
【拓展】hope与wish的辨析:so hope+ to do sth.注意:没有hope sb. to do sth.的用法that从句表示很有可能实现的主观愿望for sth.sb. to do sth.能接sb.的复合结构wish+ sb. sth.能接双宾语to do sth.可与hope互换that从句用虚拟语气表示不太可能实现的愿望My mother wishes/hopes to find her lost watch swh..我妈妈希望在什么地方找到她丢失的手表。
I wish you to finish the work in time.我希望你及时完成这项工作。
3、adviceadvice是不可数名词,意为“意见、建议、劝告、忠告”,不能与不定冠词a连用。
2023年关于因式分解教案3篇
2023年关于因式分解教案3篇因式分解教案篇1教学目标:1、进一步巩固因式分解的概念;2、巩固因式分解常用的三种方法3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题5、体验应用知识解决问题的乐趣教学重点:灵活运用因式分解解决问题教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3教学过程:一、创设情景:若a=101,b=99,求a2-b2的值利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。
二、知识回顾1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)(1).x2-4y2=(x+2y)(x-2y)因式分解(2).2x(x-3y)=2x2-6xy整式乘法(3).(5a-1)2=25a2-10a+1整式乘法(4).x2+4x+4=(x+2)2因式分解(5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解(7).2πR+2πr=2π(R+r)因式分解2、.规律总结(教师讲解):分解因式与整式乘法是互逆过程.分解因式要注意以下几点:(1).分解的对象必须是多项式.(2).分解的结果一定是几个整式的乘积的形式.(3).要分解到不能分解为止.3、因式分解的方法提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1)公因式的概念;公因式的求法公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)24、强化训练教学引入师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。
现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:场景一:正方形折叠演示师:这就是我们得到的正方形。
下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。
沪科版数学七年级下册8.4《因式分解》教学设计3
沪科版数学七年级下册8.4《因式分解》教学设计3一. 教材分析《因式分解》是沪科版数学七年级下册8.4节的内容,本节课主要让学生掌握因式分解的基本方法和技巧。
教材通过实例引导学生探索、发现并总结因式分解的规律,使学生能够灵活运用各种方法进行因式分解。
教材内容由浅入深,循序渐进,让学生在解决实际问题的过程中,体会因式分解的意义和价值。
二. 学情分析学生在七年级上学期已经学习了整式的乘法,对基本的代数运算有一定的了解。
但因式分解较为抽象,需要学生具有一定的逻辑思维能力和探索精神。
通过前面的学习,大部分学生能掌握简单的因式分解,但遇到一些较复杂的题目时,可能会感到困惑。
因此,在教学过程中,要关注学生的学习需求,针对性地进行辅导。
三. 教学目标1.知识与技能:使学生掌握因式分解的基本方法,能够熟练地进行因式分解。
2.过程与方法:通过探索、发现和总结,培养学生逻辑思维能力和解决问题的能力。
3.情感态度与价值观:让学生体验到数学的乐趣,培养学生的自信心,激发学生学习数学的兴趣。
四. 教学重难点1.重点:因式分解的基本方法和技巧。
2.难点:如何引导学生发现并总结因式分解的规律,以及如何运用各种方法解决实际问题。
五. 教学方法1.情境教学法:通过设置实际问题,激发学生的学习兴趣,引导学生主动探索。
2.启发式教学法:在教学过程中,引导学生积极思考,发现并总结因式分解的规律。
3.小组合作学习:学生进行小组讨论,培养学生的团队协作能力和沟通能力。
六. 教学准备1.课件:制作精美的课件,展示因式分解的实例和规律。
2.练习题:准备一定数量的练习题,以便在课堂上进行操练和巩固。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用生活中的实际问题,引出因式分解的概念,激发学生的学习兴趣。
2.呈现(10分钟)通过多媒体课件,展示因式分解的实例,引导学生观察、分析并总结因式分解的规律。
3.操练(10分钟)让学生在课堂上进行练习,运用所学的因式分解方法解决实际问题。
因式分解(立方和差公式)教案
因式分解(立方和差公式)教案一、教学目标通过本节课的研究,学生将能够:1. 理解立方和差公式的概念和相关知识;2. 掌握如何应用立方和差公式进行因式分解;3. 进一步提高解决数学问题的思维能力和运算技巧。
二、教学内容本节课主要包括以下内容:1. 立方和差公式的定义和推导过程;2. 立方和差公式的应用实例;3. 练和讲解因式分解题目;4. 解答学生提出的问题。
三、教学步骤1. 导入:通过引入一个实际问题,激发学生对立方和差公式的兴趣和研究动机。
2. 知识讲解:简明扼要地介绍立方和差公式的定义和推导过程,并提供一些实例帮助学生理解和记忆。
3. 示例练:给出一些简单的立方和差公式的因式分解题目,引导学生运用所学知识进行解答。
4. 深化讲解:针对学生在练中出现的疑难问题,进行深入讲解和解答,帮助学生更好地掌握知识。
5. 练巩固:提供一些稍难一些的因式分解题目,让学生在课堂上进行练,并及时给予反馈和指导。
6. 总结回顾:对本节课的重点知识进行总结回顾,强调立方和差公式在因式分解中的重要性和应用价值。
7. 作业布置:布置一些相关的作业题目,帮助学生巩固和拓展所学知识。
四、教学资源1. 教材:根据学段选取适合的教材,准备相应教学内容;2. 课件:准备一些例题供学生参考,并辅助讲解;3. 黑板、粉笔、白板、白板笔等。
五、教学评价1. 课堂表现:观察学生的听讲、思考和参与情况,及时给予鼓励和指导。
2. 作业评定:批改学生的作业,评价其解题思路和答案的正确性。
3. 小组讨论:鼓励学生在小组内互相讨论、合作,提高研究效果。
六、延伸活动为了进一步拓展学生的知识面和能力,可以组织以下延伸活动:1. 设计一个立方和差公式的探究实验,让学生自己发现和探索其中的规律和特点;2. 组织一个因式分解竞赛,让学生在较高的压力下运用所学知识进行比拼和提高。
七、教学反思在教学过程中,我会及时观察学生的学习情况,根据实际情况对教学进度和教学方法进行调整,确保学生能够有效地掌握立方和差公式的因式分解方法。
因式分解教案 (优秀5篇)
因式分解教案(优秀5篇)因式分解教案篇一【教学目标】1、了解因式分解的概念和意义;2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
【教学重点、难点】重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。
【教学过程】㈠、情境导入看谁算得快:(抢答)(1)若a=101,b=99,则a2-b2=___________;(2)若a=99,b=-1,则a2-2ab+b2=____________;(3)若x=-3,则20x2+60x=____________。
㈡、探究新知1、请每题答得最快的同学谈思路,得出最佳解题方法。
(多媒体出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
2、观察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2,20x2+60x=20x(x+3),找出它们的特点。
(等式的左边是一个什么式子,右边又是什么形式?)3、类比小学学过的因数分解概念,得出因式分解概念。
(学生概括,老师补充。
)板书课题:§6.1 因式分解因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。
㈢、前进一步1、让学生继续观察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2,20x(x+3)= 20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?2、因式分解与整式乘法的关系:因式分解结合:a2-b2 (a+b)(a-b)整式乘法说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。
因式分解教学设计教案
长兴中学集备教学设计《因式分解》
(一)教学目标:
1、目标:
(1)、了解因式分解、公因式等概念;了解因式分解的作用。
(2)、理解因式分解和多项式乘法之间的互逆关系。
(3)、运用提公因式法、公式法等方法分解因式。
2、过程性目标:
(1)、让学生体会因式分解与多项式乘法之间的互逆关系,利用这种关系解答因式分解的问题。
(2)、让学生通过观察、分析、归纳分解因式的方法。
(二)教学重点、难点:
教学重点:因式分解的目的,因式分解的方法。
(学生习惯依葫芦画瓢,作题有时不理解题目要求,常常把分解因式的题做成多项式的乘法。
让学生理解因式分解的目的是很重要的。
讲讲因式分解的作用可以帮助学生理解因式分解的目的。
)
教学难点:因式分解的方法,特别是公式法。
(在以往的教学中发现,学生在使用公式法分解因式时不够灵活,易出错。
原因是不能理解公式中a、b是变量,可以变成其它的式子,单项式或多项式;两个公式只是两种计算规律。
学生的思维往往被公式中a、b这两个字母迷惑。
)
教学突破点:
1、强调因式分解的目的,强调因式分解与多项式乘法的互逆关系,要求学生使用这种互逆关系检验因式分解的结果。
2、用“规律”来解释“公式”,强调公式只是描述了一种运算规律;用符号来描述这种规律。
(三)教学过程:(共3课时,教学过程的内容就是学习卷的内容。
)
2006129。
第四章-因式分解(复习课)教学设计精选全文完整版
可编辑修改精选全文完整版
第四章因式分解(复习课)教学设计
【教学目标】
1.进一步理解因式分解的概念和意义,了解因式分解和整式乘法的关系——方向相反的恒等变形;
2.复习提公因式法、公式法因式分解的过程,会综合运用提公因式法、公式法分解因式;
【教学重点】综合运用提公因式法、公式法分解因式.
【教学难点】根据题目的结构特点,选择合理的方法进行因式分解.
【教学思路】情境导入→知识回顾→例题讲解→练习巩固→中考链接→小结→作业布置
【教学过程】
环节一:情境导入
环节三:例题讲解
1.本单元复习题。
因式分解集体备课
因式分解集体备课教案
一、教学目标
知识与技能:使学生掌握因式分解的基本概念和基本方法,能够进行简单的因式分解。
过程与方法:通过观察、归纳、演绎等方法,培养学生的数学思维能力。
情感态度与价值观:培养学生对数学的兴趣和爱好,培养其独立思考、勇于探索的精神。
二、教学内容与步骤
导入:通过复习整式的乘法,引出因式分解的概念。
讲解与示范:讲解因式分解的方法,如提公因式法、公式法等,并进行相应的例题示范。
学生实践:学生自己尝试进行因式分解,教师进行个别指导。
总结与归纳:总结因式分解的步骤和注意事项,强调因式分解与整式乘法的联系和区别。
作业与拓展:布置相关练习题,要求学生掌握基本的因式分解方法,同时鼓励他们尝试更高级的因式分解技巧。
三、教学方法与手段
教学方法:采用讲解与实践相结合的方法,注重学生的参与和体验。
教学手段:利用多媒体课件展示教学内容,同时结合板
书进行讲解和演示。
四、教学评价与反馈
课堂互动:通过提问、讨论等方式,了解学生对因式分解的掌握情况。
课后反馈:布置作业,要求学生完成相关练习题,并收集学生的反馈意见。
评价与调整:根据学生的反馈意见,对教学方法和手段进行调整,以提高教学效果。
五、教学反思与改进
总结本次集体备课的优点和不足之处。
探讨如何更好地激发学生的学习兴趣和提高他们的学习效果。
交流教学心得和经验,共同提高教学水平。
因式分解教学设计教案
因式分解教学设计教案一、教学目标:1. 知识目标:掌握因式分解的基本概念和方法;2. 能力目标:能够应用因式分解的方法解决实际问题;3. 情感目标:培养学生对数学的兴趣,提高自信心。
二、教学重点与难点:1. 教学重点:因式分解的方法与应用;2. 教学难点:因式分解的运用题。
三、教学资源:1. 教学用具:黑板、彩色粉笔、教材、练习册等;2. 多媒体设备:投影仪、电脑等。
四、教学过程:(一) 导入与承前启后1. 利用课前预习作业引入新课,复习相关知识点,激发学生学习兴趣。
2. 通过展示一个实际问题,引导学生思考如何利用因式分解解决这个问题。
(二) 概念讲解1. 通过教材内容,讲解因式分解的基本概念和运算规则。
2. 通过多媒体展示,演示因式分解的步骤和思路。
3. 举例说明因式分解的实际应用,并引导学生进行思考与讨论。
(三) 方法指导1. 分组讨论练习:将学生分成小组,每组选择一个因式分解的问题,并自主解答。
鼓励学生通过讨论、合作和互相辅导来解决问题。
2. 教师巡回指导:教师在小组讨论时巡回辅导,及时解答学生的疑问,并提供必要的帮助和指导。
(四) 运用练习1. 基础练习:通过练习册上的基础题目,巩固因式分解的基本方法。
2. 拓展练习:给予学生多样化的因式分解题目,培养解决问题的能力。
(五) 小结与展望1. 对本节课内容进行小结,强调重点和难点,提醒学生需要持续努力。
2. 展望下节课内容,预告即将进行的学习任务和要求。
五、教学反思:本节课采用了既有理论讲解,又有实例引导和练习的教学方法,能够全面提高学生的因式分解能力。
同时,通过小组合作讨论,可以培养学生的团队合作精神和解决问题的能力。
下一步,需要加强与学生的互动交流,通过实际操作和演练来提高他们的运用能力。
公式法因式分解教案设计三
公式法因式分解教案设计三篇7:公式法的说课稿今天我说课的内容是人教版九年级上册第22章《用公式法解一元二次方程》。
我主要从教材分析、教法分析、过程分析、板书设计四个方面对本节课作如下说明。
一、教材分析(一)教材的地位和作用“一元二次方程的解法”是初中代数的方程中的一个重要内容之一,是在学完一元一次方程、因式分解、数的开方、以及前三种因式分解法、直接开方法、配方法解一元二次方程的基础上,掌握用求根公式解一元二次方程,是配方法和开平方两个知识的综合运用和升华。
通过本节课的教学使学生明确配方法是解方程的通法,同时会根据题目选择合适的方法解一元二次方程。
一元二次方程的解法也是今后学习二次函数和一元二次不等式的基础。
(二)教学目标知识技能方面:理解一元二次方程求根公式的推导过程,会用公式法解一元二次方程。
数学思考方面:通过求根公式的推导过程进一步使学生熟练掌握配方法,培养学生数学推理的严密性和逻辑性以及由特殊到一般的数学思想。
解决问题方面:结合用公式法解一元二次方程的练习,培养学生快速准确的运算能力和运用公式解决实际问题的能力。
情感态度方面:让学生体验到所有的方程都可以用公式法解决,感受到公式的对称美、简洁美,渗透分类的思想;公式的引入培养学生寻求简便方法的探索精神和创新意识。
(三)教学重、难点重点:掌握用公式法解一元二次方程的一般步骤;会熟练用公式法解一元二次方程。
难点:理解求根公式的推导过程和判别式二、教学法分析教法:本节课采用引导发现式的自主探究式与交流讨论结合的方法;在教学中由旧知识引导探究一般化问题的形式展开,利用学生已有的知识、多交流、主动参与到教学活动中来。
学法:让学生学会善于观察、分析讨论和分类归纳的方法,提出问题后,鼓励学生通过分析、探索、尝试解决问题的方法,铜锁亲自尝试,使学生的思维能力得到培养。
三、过程分析本节课的教学设计成以下六个环节:复习导入――呈现问题――例题讲解――巩固练习,课时小结――布置作业。
因式分解教案 教学设计精选3篇
因式分解教案教学设计精选3篇因式分解教案:因式分解教材分析因式分解是进行代数式恒等变形的重要手段之一,因式分解是在学习整式四则运算的基础上进行的,它不仅仅在多项式的除法、简便运算中等有直接的应用,也为以后学习分式的约分与通分、解方程及三解函数式的恒等变形带给了必要的基础,因此学好因式分解对于代数知识的后续学习,具有相当重要的好处。
由于本节课后学习提取公因式法,运用公式法,分组分解法来进行因式分解,务必以理解因式分解的概念为前提,所以本节资料的重点是因式分解的概念。
由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对初一学生还比较生疏,理解起来有必须难度,再者本节还没涉及因式分解的具体方法,所以理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法是教学中的难点.教学目标认知目标:理解因式分解的概念和好处[由整理]认识因式分解与整式乘法的相互关系――相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
潜力目标:由学生自行探求解题途径,培养学生观察、分析、决定潜力和创新潜力,发展学生智能,深化学生逆向思维潜力和综合运用潜力。
情感目标:培养学生理解矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。
目标制定的思想1.目标具体化、明确化,从学生实际出发,具有针对性和可行性,同时便于上课操作,便于检测和及时反馈。
2.课堂教学体现潜力立意。
3.寓德育教育于教学之中。
教学方法1.采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习用心性。
2.把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑――感知――概括――运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难点,提高潜力。
3.在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式,鼓励学生充分地动脑、动口、动手,用心参与到教学中来,充分体现了学生的主动性原则。
有关因式分解教案四篇
有关因式分解教案四篇因式分解教案篇1教学目标:1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。
2、经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。
3、通过对公式的探究,深刻理解公式的应用,并会熟练应用公式解决问题。
4、通过探究平方差公式特点,学生根据公式自己取值设计问题,并根据公式自己解决问题的过程,让学生获得成功的体验,培养合作交流意识。
教学重点:应用平方差公式分解因式.教学难点:灵活应用公式和提公因式法分解因式,并理解因式分解的要求.教学过程:一、复习准备导入新课1、什么是因式分解?判断下列变形过程,哪个是因式分解?①(x+2)(x-2)= ②③2、我们已经学过的因式分解的方法有什么?将下列多项式分解因式。
x2+2xa2b-ab3、根据乘法公式进行计算:(1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=二、合作探究学习新知(一) 猜一猜:你能将下面的多项式分解因式吗?(1)= (2)= (3)=(二)想一想,议一议: 观察下面的公式:=(a+b)(a—b)(这个公式左边的多项式有什么特征:_____________________________________公式右边是_______________________________________________________ ___这个公式你能用语言来描述吗?_______________________________________(三)练一练:1、下列多项式能否用平方差公式来分解因式?为什么?①②③④2、你能把下列的数或式写成幂的形式吗?(1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2(四)做一做:例3 分解因式:(1) 4x2- 9 (2) (x+p)2- (x+q)2(五)试一试:例4 下面的式子你能用什么方法来分解因式呢?请你试一试。
因式分解教案
因式分解教案教学目标:1.学生能够理解因式分解的概念和方法。
2.学生能够独立完成简单的因式分解计算。
3.学生能够灵活运用因式分解解决实际问题。
教学重点:1.因式分解的基本概念和方法。
2.因式分解的应用。
教学难点:1.灵活运用因式分解解决实际问题。
教学准备:1.教师准备教材《数学7年级上册》、小黑板、彩色粉笔等。
2.学生准备教材、作业本。
教学过程:一、导入(5分钟)教师出示一个算式:2x+4,引导学生寻找其中的规律。
让学生发现“2”既是2x的系数,又是4的因数。
提问:“观察发现,4除以2等于2,2乘以2等于4,那么2x+4可以化简成什么样的式子呢?”让学生用自己的话进行回答。
1.引入因式分解的概念,解释因式、分解的概念。
板书公式“a(b+c)=ab+ac”并解释。
然后通过例题进行解释说明。
2.讲解因式分解的方法:提取公因式、分解差、分解和。
三、讲解并练习(20分钟)1.板书例题:12x+15、提问:“这里有没有可以提取的公因式呢?”学生回答后,引导学生进行计算,并给予表扬。
2.板书例题:16x-8、提问:“这里有没有可以提取的公因式呢?”学生回答后,引导学生进行计算,并给予表扬。
3.板书例题:5a+10b。
提问:“这里有没有可以提取的公因式呢?”学生回答后,引导学生进行计算,并给予表扬。
四、归纳总结(10分钟)让学生通过练习题进行总结,并列出因式分解的基本方法。
最后,教师给予肯定和鼓励。
五、巩固练习(15分钟)教师出示练习题,让学生独立完成并相互核对。
六、拓展延伸(10分钟)举一些实际问题,让学生用因式分解的方法解决。
七、课堂小结(5分钟)教师进行课堂小结,并与学生互动,检查学生的学习情况。
布置课后作业,要求学生完成相关作业题,并预告下一节课内容。
九、教学反思(2分钟)教师进行教学反思,总结本节课的教学过程,回顾教学的亮点和不足之处。
青岛版七下数学第12章因式分解教学设计教学设计
青岛版七下数学第12章因式分解教学设计教学设计一. 教材分析《青岛版七下数学第12章因式分解教学设计》是根据我国新课程标准编写的一本教材。
本章主要内容包括:因式分解的概念、提公因式法、公式法、十字相乘法等。
通过本章的学习,使学生掌握因式分解的方法和技巧,提高他们的数学解题能力。
二. 学情分析学生在学习本章内容前,已掌握了有理数、整式的乘法等基础知识,但对于因式分解的概念和方法还不够了解。
因此,在教学过程中,教师需要针对学生的实际情况,循序渐进地引导学生学习,使他们能够理解和掌握因式分解的方法。
三. 教学目标1.知识与技能目标:使学生掌握因式分解的概念和方法,能够运用提公因式法、公式法、十字相乘法等进行因式分解。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生发现问题、分析问题和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极进取的精神。
四. 教学重难点1.重点:因式分解的概念和方法。
2.难点:提公因式法、公式法、十字相乘法的运用。
五. 教学方法1.情境教学法:通过设置问题情境,激发学生的学习兴趣,引导学生主动参与课堂活动。
2.启发式教学法:教师提出问题,引导学生思考、讨论,培养学生的思维能力。
3.实践教学法:让学生通过动手操作、动脑思考,加深对因式分解方法的理解。
4.小组合作学习:学生分组讨论,共同完成任务,培养学生的合作意识。
六. 教学准备1.教学课件:制作课件,展示因式分解的方法和例子。
2.练习题:准备适量的练习题,巩固所学知识。
3.教学工具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用实例引入因式分解的概念,让学生初步了解因式分解的意义。
2.呈现(10分钟)展示因式分解的方法(提公因式法、公式法、十字相乘法),并通过例题讲解各个方法的应用。
3.操练(10分钟)让学生独立完成练习题,巩固因式分解的方法。
教师巡回指导,解答学生的问题。
因式分解教学设计教案
因式分解教学设计教案教案一:因式分解教学设计一、教学目标1. 知识目标:掌握因式分解的基本概念,理解因式分解的方法和步骤,能够应用因式分解解决实际问题。
2. 能力目标:培养学生分析问题、解决问题的能力,提高学生的逻辑思维和数学推理能力。
3. 情感目标:培养学生对数学的兴趣,激发他们积极参与数学学习的热情。
二、教学内容因式分解的基本概念,因式分解的方法和步骤,因式分解在实际问题中的应用。
三、教学重点1. 因式分解的基本概念理解。
2. 因式分解的方法和步骤掌握。
四、教学难点因式分解在实际问题中的应用。
五、教学过程1. 导入(5分钟)通过一个生活实例引入因式分解的概念,如给出一个数学表达式,让学生思考是否可以分解成两个因子相乘的形式,然后引导学生思考因式分解的意义和作用。
2. 概念讲解(15分钟)通过和学生互动,引导学生观察、总结因式分解的规律和特点,解释因式分解的概念和基本原理,并给出几个简单的例子进行说明。
3. 方法和步骤介绍(20分钟)详细介绍因式分解的方法和步骤,包括提取公因子、差平方公式、完全平方式、区分平方差式等,通过示例演示和讲解每种方法的具体步骤,并让学生进行类比和归纳。
4. 练习与巩固(30分钟)设计一系列练习题,让学生运用所学的方法和步骤进行因式分解,逐步提高他们的解题能力和技巧。
根据学生的水平和掌握情况,分为不同的难度级别,让学生自主选择并完成。
5. 实际应用(20分钟)介绍因式分解在实际生活中的应用,如扩展知识点到代数式的因式分解,以及应用因式分解解决实际问题,如面积、体积问题等。
引导学生将数学知识与现实问题相结合,培养学生灵活运用所学知识的能力。
6. 归纳总结(10分钟)让学生对本堂课学习的内容进行归纳总结,可以通过小组合作完成,也可以单独完成。
鼓励学生提出问题、交流讨论,梳理因式分解的重点和难点,加深对知识的理解。
七、教学拓展可以引导学生自主学习其他因式分解的应用,如因式分解在解方程、解不等式中的运用,通过拓展学习进一步提高学生的数学思维和解决问题的能力。
14.3因式分解方法(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“因式分解在实际数学问题中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了因式分解的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对因式分解方法的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
b)公式法的应用:学生需要记住平方差和完全平方公式,并能够灵活应用到具体的因式分解问题中。
-举例:学生在分解$x^2 - 2x + 1$时可能会忘记是完全平方公式$(a-b)^2 = a^2 - 2ab + b^2$的应用。
c)十字相乘法的步骤:学生需要掌握十字相乘法的详细步骤,包括如何找到乘积项和常数项。
在教学过程中,教师应针对以上重点和难点内容,采用适当的举例、图示、练习等方法,确保学生能够透彻理解和掌握因式分解的核心知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“14.3因式分解方法”这一章节。在开始之前,我想先问大家一个问题:“你们在数学学习中是否遇到过多项式难以简化的问题?”比如$x^2 + 2x + 1$,看起来复杂,但其实可以简化为$(x+1)^2$。这个问题与我们将要学习的因式分解密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索因式分解的奥秘。
《因式分解》说课稿7篇
《因式分解》说课稿7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如讲话致辞、报告体会、合同协议、策划方案、职业规划、规章制度、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, report experiences, contract agreements, planning plans, career planning, rules and regulations, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《因式分解》说课稿7篇下面是本店铺收集的《因式分解》说课稿7篇,供大家参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解教学设计
一、背景介绍
因式分解是代数式中的重要内容,它与前一章整式和后一章分式联系极为密切。
因式分解的教学是在整式四则运算的基础上进行的,因式分解方法的理论依据就是多项式乘法的逆变形。
它不仅在多项式的除法、简便运算中有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三角函数式的恒等变形提供了必要的基础。
因此,学好因式分解对于代数知识的后续学习,具有相当重要的意义。
二、教学设计
【教学内容分析】
因式分解的概念是把一个多项式化成几个整式的积的形式,它是因式分解方法的理论基础,也是本章中一个重要概念。
教材在引入中是结合剪纸拼图来阐述这一概念的,也可以与小学数学里因数分解的概念类比予以说明。
在教学时对因式分解这一概念不宜要求学生一次彻底了解,应该在讲授因式分解的三种基本方法时,结合具体例题的分解过程和分解结果,说明这一概念的意义,以达到逐步了解这一概念的教学目的。
【教学目标】
1、认知目标:(1)理解因式分解的概念和意义
(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
2、能力目标:由学生自行探求解题途径,培养学生观察、分析、判断能力和创新能力,发展学生智能,深化学生逆向思维能力和综合运用能力。
3、情感目标:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。
【教学重点、难点】
重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。
【教学准备】
实物投影仪、多媒体辅助教学。
【教学过程】
㈠、情境导入
看谁算得快:(抢答)
(1)若a=101,b=99,则a2-b2=___________;
(2)若a=99,b=-1,则a2-2ab+b2=____________;
(3)若x=-3,则20x2+60x=____________。
【初一年级学生活波好动,好表现,争强好胜。
情境导入借助抢答的方式进行,引进竞争机制,可以使学生在参与的过程中提高兴趣,并增强竞争意识和探究欲望。
】
㈡、探究新知
1、请每题答得最快的同学谈思路,得出最佳解题方法。
(多媒体出示答案)
(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b)2=(99+1)2 =10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
【“与其拉马喝水,不如让它口渴”。
探索最佳解题方法的过程,就是学生“口渴”
的地方。
由此引起学生的求知欲。
】
2、观察:a2-b2=(a+b)(a-b) ,
a2-2ab+b2 = (a-b)2 ,
20x2+60x=20x(x+3),找出它们的特点。
(等式的左边是一个什么式子,右边又是什么形式?)
【利用教师的主导作用,把学生的无意识的观察转变为有意识的观察,同时教师应鼓励学生大胆描述自己的观察结果,并及时予以肯定。
】
3、类比小学学过的因数分解概念,得出因式分解概念。
(学生概括,老师补充。
)
【让学生自己概括出所感知的知识内容,有利于学生在实践中感悟知识的生成过程,培养学生的语言表达能力。
】
板书课题:§6.1 因式分解
因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。
㈢、前进一步
1、让学生继续观察:
2、(a+b)(a-b)= a2-b2,(a-b)2=a2-2ab+b2,20x(x+3)=20x2+60x,它们
是什么运算?与因式分解有何关系?它们有何联系与区别?
(要注意让学生区分因式分解与整式乘法的区别,防止学生出现在进行因式分解当中,半路又做乘法的错误。
)
【注重数学知识间的联系,给学生提供探索与交流的空间,让学生经历数学知识的生成过程,由学生发现整式乘法与因式分解的相互关系,培养学生观察、分析问题的能力和逆向思维能力及创新能力。
】
3、因式分解与整式乘法的关系:
因式分解
结合:a2-b2=========(a+b)(a-b)
整式乘法
说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。
结论:因式分解与整式乘法的相互关系——相反变形。
(多媒体展示学生得出的成果)
㈣、巩固新知
1、下列代数式变形中,哪些是因式分解?哪些不是?为什么?
(1)x2-3x+1=x(x-3)+1 ;
(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn;
(4)4x2-4x+1=(2x-1)2;
(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x;
(7)k2++2=(k+)2;
(8)18a3bc=3a2b·6ac。
【针对学生易犯的错误,制造认知冲突,让学生充分暴露错误,然后通过分析、讨论,达到理解的效果。
】
2、你能写出整式相乘(其中至少一个是多项式)的两个例子,并由此得到相应的两个多项式的因式分解吗?把结果与你的同伴交流。
【学生出题热情、积极性高,因初一学生好表现,因而能激发学生学习兴趣,激活学生的思维。
】
㈤、应用解释
例检验下列因式分解是否正确:
(1)x2y-xy2=xy(x-y);
(2)2x2-1=(2x+1)(2x-1);
(3)x2+3x+2=(x+1)(x+2).
分析:检验因式分解是否正确,只要看等式右边几个整式相乘的积与右边的多项式是否相等。
练习计算下列各题,并说明你的算法:(请学生板演)
(1)872+87×13
(2)1012-992
㈥、思维拓展
1.若x2+mx-n能分解成(x-2)(x-5),则m= ,n=
2.机动题:(填空)x2-8x+m=(x-4)( ),且m=
【进一步拓展学生在数学领域内的视野,增强学生对数学的兴趣,使学生从小热衷于数学的学习和探索。
通过机动题,了解学生对概念的熟练程度和思维的灵敏性、深刻性、广阔性及探研创造能力,及时评价,及时矫正。
】㈦、课堂回顾
今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。
【课堂小结交给学生,让学生总结本节课中概念的发现过程,运用概念分析问题的过程,养成学生学习——总结——学习的良好习惯。
唯有总结反思,才能控制思维操作,才能促进理解,提高认知水平,从而促进数学观点的形成和发展,更好地进行知识建构,实现良性循环。
】
㈧、布置作业
教科书第153的作业题。
【设计思想】
叶圣陶先生曾说过课堂教学的最高艺术是看学生,而不是看教师,看学生能否在课堂中焕发生命的活力。
因此本教学是按“投疑——感知——概括——巩固、应用和拓展”的叙述模式呈现教学内容的,这种呈现方式符合七年级学生的认知规律和学习规律,使学生从被动的学习到主动探索和发现的转化中感受到学习与探索的乐趣。
本堂课先采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性,再把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,使学生能顺利地掌握重点,突破难点,提高能力。
并在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式的教学方法,鼓励学生充分地动脑、动口、动手,积极参与到教学中来,充分体现了学生的主动性
原则。
并改变了传统的言传身教的方式,恰当地运用了现代教育技术,展现了一个平等、互动的民主课堂。