Flac3d 实例分析教程
FLAC3D-实例命令流1
![FLAC3D-实例命令流1](https://img.taocdn.com/s3/m/3ee8213e81c758f5f71f6714.png)
第1部分命令流按照顺序进行2-1定义一个FISH函数newdef abcabc = 25 * 3 + 5Endprint abc2-2使用一个变量newdef abchh = 25abc = hh * 3 + 5EndPrint hhPrint abc2-3对变量和函数的理解newdef abchh = 25abc = hh * 3 + 5Endset abc=0 hh=0print hhprint abcprint hhnewdef abcabc = hh * 3 + 5endset hh=25print abcset abc=0 hh=0print hhprint abcprint hh2-4获取变量的历史记录newgen zone brick size 1 2 1model mohrprop shear=1e8 bulk=2e8 cohes=1e5 tens=1e10fix x y z range y -0.1 0.1apply yvel -1e-5 range y 1.9 2.1plot set rotation 0 0 45plot block groupdef get_adad1 = gp_near(0,2,0)ad2 = gp_near(1,2,0)ad3 = gp_near(0,2,1)ad4 = gp_near(1,2,1)endget_addef loadload=gp_yfunbal(ad1)+gp_yfunbal(ad2)+gp_yfunbal(ad3)+gp_yfunbal(ad4) endhist loadhist gp ydis 0,2,0step 1000plot his 1 vs -22-5用FISH函数计算体积模量和剪砌模量newdef derives_mod = y_mod / (2.0 * (1.0 + p_ratio))b_mod = y_mod / (3.0 * (1.0 - 2.0 * p_ratio))endset y_mod = 5e8 p_ratio = 0.25deriveprint b_modprint s_mod2-6 在FLAC输入中使用符号变量Newdef derives_mod = y_mod / (2.0 * (1.0 + p_ratio))b_mod = y_mod / (3.0 * (1.0 - 2.0 * p_ratio))endset y_mod = 5e8 p_ratio = 0.25derivegen zone brick size 2,2,2model elasticprop bulk=b_mod shear=s_modprint zone prop bulkprint zone prop shear2-7 控制循环Newdef xxxsum = 0prod = 1loop n (1,10)sum = sum + nprod = prod * nend_loopendxxxprint sum, prodnewgen zone brick p0 (0,0,0) p1 (-10,0,0) p2 (0,10,0) p3 (0,0,-10) model elasplot set rotation 0 0 45plot block groupdef installpnt = zone_headloop while pnt #nullz_depth = -z_zcen(pnt)y_mod = y_zero + cc * sqrt(z_depth)z_prop(pnt, ’shear’) = y_mod / (2.0*(1.0+p_ratio))z_prop(pnt, ’bulk’) = y_mod / (3.0*(1.0-2.0*p_ratio))pnt = zone_next(pnt)end_loopendset p_ratio=0.25 y_zero=1e7 cc=1e8install2-8 拆分命令行new ;example of a sum of many thingsdef long_sumtemp = v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10 long_sum = temp + v11 + v12 + v13 + v14 + v15end2-9 变量类型newdef haveoneaa = 2bb = 3.4cc = ’Have a nice day’dd = aa * bbee = cc + ’, old chap’endhaveoneprint fish2-10 IF条件语句newdef abcif xx > 0 thenabc = 1000elseabc = -1000end_ifendset xx = 10print abcset xx = 0print abc2-11 索单元自动生成newgen zone brick size 10 3 5plot set rotation 0 0 45plot block groupdef place_cablesloop n (1,5)z_d = float(n) - 0.5commandsel cable beg 0.0,1.5,z_d end 7.0,1.5,z_d nseg 7 end_commandend_loopendplace_cablesplot grid sel geom rednewgen zone brick size 10 3 5plot set rotation 15 0 60plot block groupmod mohrprop bulk 1e8 shear .3e8 fric 35prop coh 1e3 tens 1e3ini dens 1000set grav 0,0,-10fix x y z range z -.1 .1fix y range y -.1 .1fix y range y 2.9 3.1fix x range x -.1 .1fix x range x 9.9 10.1set largehist unbalsolvesave cab_str.savini xdis 0 ydis 0 zdis 0hist gp xdisp 0,1,5def place_cablesloop n (1,5)z_d = 5.5 - float(n)z_t = z_d + 0.5z_b = z_d - 0.5commandfree x range x -.1,.1 z z_b z_tsolvesel cable beg 0.0,0.5,z_d end 7.0,0.5,z_d nseg 7sel cable beg 0.0,1.5,z_d end 7.0,1.5,z_d nseg 7sel cable beg 0.0,2.5,z_d end 7.0,2.5,z_d nseg 7sel cable prop emod 2e10 ytension 1e8 xcarea 1.0 &gr_k 2e10 gr_coh 1e10 gr_per 1.0end_commandend_loopendplace_cablessave cab_end.savplot sketch sel cable force red2-12圆形隧道开挖模拟计算;建立模型gen zon radcyl p0 0 0 0 p1 6 0 0 p2 0 1 0 p3 0 0 6 &size 4 2 8 4 dim 3 3 3 3 rat 1 1 1 1.2 group outsiderockgen zone cshell p0 0 0 0 p1 3 0 0 p2 0 1 0 p3 0 0 3 &size 1 2 8 4 dim 2.7 2.7 2.7 2.7 rat 1 1 1 1 group concretliner fill group insiderock gen zon reflect dip 90 dd 90 orig 0 0 0gen zon reflect dip 0 dd 0 ori 0 0 0gen zon brick p0 0 0 6 p1 6 0 6 p2 0 1 6 p3 0 0 13 size 4 2 6 group outsiderock1 gen zon brick p0 0 0 -12 p1 6 0 -12 p2 0 1 -12 p3 0 0 -6 size 4 2 5 group outsiderock2 gen zon brick p0 6 0 0 p1 21 0 0 p2 6 1 0 p3 6 0 6 size 10 2 4 group outsiderock3 gen zon reflect dip 0 dd 0 orig 0 0 0 range group outsiderock3gen zon brick p0 6 0 6 p1 21 0 6 p2 6 1 6 p3 6 0 13 size 10 2 6 group outsiderock4gen zon brick p0 6 0 -12 p1 21 0 -12 p2 6 1 -12 p3 6 0 -6 size 10 2 5 group outsiderock5 gen zon reflect dip 90 dd 90 orig 0 0 0 range x -0.1 6.1 z 6.1 13.1gen zon reflect dip 90 dd 90 orig 0 0 0 range x -0.1 6.1 z -6.1 -12.1gen zon reflect dip 90 dd 90 orig 0 0 0 range x 6.1 21.1 z -12.1 13.1;绘制模型图plot block groupplot add axes red;plot set rotation 0 0 45 用于显示三维模型;设置重力set gravity 0 0 -10;给定边界条件fix z range z -12.01,-11.99fix x range x -21.01,-20.99fix x range x 20.99,21.01fix y range y -0.01 0.01fix y range y 0.99,1.01;求解自重应力场model mohrini density 1800 ;围岩的密度prop bulk=1.47e8 shear=5.6e7 fric=20 coh=5.0e4 tension=1.0e4 ;体积、剪切、摩擦角、凝聚力、抗拉强度set mech ratio=1e-4solvesave Gravsol.savplot cont zdisp outl onplot cont szz;毛洞开挖计算initial xdisp=0 ydisp=0 zdisp=0model null range group insiderock any group concretliner anyplot block groupplot add axes redset mech ratio=5e-4solvesave Kaiwsol.savplot cont zdispplot cont sdispplot cont szzplot cont xzz;模筑衬砌计算model elas range group concretliner anyplot block groupplot add axes redini density 2500 range group concretliner any ;衬砌混凝土的密度prop bulk=16.67e9,shear=12.5e9 range group concretliner any ;衬砌混凝土的体积弹模、剪切弹模set mech ratio=1e-4solvesave zhihusol.savplot cont zdispplot cont sdispplot cont szzplot cont xzz;完成计算分析(注:可编辑下载,若有不当之处,请指正,谢谢!)。
FLAC及FLAC3D基础与工程实例51-2
![FLAC及FLAC3D基础与工程实例51-2](https://img.taocdn.com/s3/m/05244f8750e79b89680203d8ce2f0066f5336421.png)
FLAC及FLAC3D基础与工程实例51-2FLAC及FLAC3D基础与工程实例51第1章FLAC、FLAC3D的功能与特性自R.W;数值模拟技术的优势在于有效延伸和扩展了分析人员的;本章重点:;?FLAC/FLAC3D 的主要特点;?FLAC/FLAC3D的不足之处;1.1FLAC/FLAC3D简介;FLAC (FastLagrangianAnaly;FLAC有二维和三维计算软件两个版本,即FLAC;1.2FLAC/FLAC3D的主要特点;F第1章FLAC、FLAC3D的功能与特性自R.W. Clough 1965年首次将有限元引入土石坝的稳定性分析以来,数值模拟技术在岩土工程领域获得了巨大的进步,并成功解决了许多重大工程问题。
特别是个人电脑的出现及其计算性能的不断提高,使得分析人员在室内进行岩土工程数值模拟成为可能,也使得数值模拟技术逐渐成为岩土工程研究和设计的主流方法之一。
数值模拟技术的优势在于有效延伸和扩展了分析人员的认知范围,为分析人员洞悉岩、土体内部的破坏机理提供了强有力的可视化手段。
因此,优秀的岩土工程数值模拟软件须在专业性、可视化及信息输出等方面做到相对完备,方能使分析人员专注于工程实际问题的研究、分析和解决。
FLAC 系列软件的出现,为岩土工程研究工作者提供了一款功能强大的数值模拟工具。
本章重点:FLAC/FLAC3D的主要特点FLAC/FLAC3D的不足之处1.1 FLAC/FLAC3D简介FLAC(Fast Lagrangian Analysis of Continua)是由Itasca公司研发推出的连续介质力学分析软件,是该公司旗下最知名的软件系统之一。
FLAC目前已在全球七十多个国家得到广泛应用,在国际土木工程(尤其是岩土工程)学术界和工业界享有盛誉。
FLAC有二维和三维计算软件两个版本,即FLAC2D(1984)和FLAC3D(1994)。
这里进行一下说明,本书在阐述软件系列时,以FLAC统一称谓FLAC2D和FLAC3D;分述FLAC2D和FLAC3D时,FLAC仅指代FLAC2D。
FLAC3D教程
![FLAC3D教程](https://img.taocdn.com/s3/m/64046b3900f69e3143323968011ca300a6c3f61d.png)
目录
• FLAC3D软件介绍 • FLAC3D基本操作 • 建模与网格划分 • 材料属性与边界条件设置 • 计算过程控制与结果输出 • FLAC3D在岩土工程中的应用实例
01 FLAC3D软件介 绍
软件背景及发展历程
FLAC3D的起源
FLAC3D是Fast Lagrangian Analysis of Continua in 3 Dimensions的简称, 起源于20世纪80年代,由Itasca Consulting Group, Inc.公司开发。
材料参数设置
针对所选材料类型,设置相应的 材料参数,如弹性模量、泊松比 、密度等。
材料本构模型
根据材料特性,选择合适的本构 模型,如摩尔-库伦模型、德鲁克 -普拉格模型等。
边界条件类型及设置方法
边界条件类型
FLAC3D支持多种边界条件类型,如位移边界、速度边界、应力 边界等。
边界条件设置方法
用户可以通过指定节点或面的位移、速度或应力值来设置边界条 件。
周期性边界条件
对于具有周期性的模型,可以设置周期性边界条件以模拟无限域 问题。
初始条件设置
初始应力场设置
根据地质资料或工程经验,设置模型的初始应力 场。
初始位移场设置
对于存在初始变形的模型,可以设置初始位移场 。
初始孔隙压力设置
对于涉及流体流动的模型,可以设置初始孔隙压 力。
05 计算过程控制与 结果输出
如果发现模型存在问题,需要及时进行修复。FLAC3D提供了多种修复 工具,如删除、修补、平滑等,可以帮助用户快速修复模型中的错误。
03
实例分析
通过具体案例展示模型检查和修复的过程和效果,帮助用户掌握相关技
flac3d实用教程
![flac3d实用教程](https://img.taocdn.com/s3/m/5c02fe9fb8f3f90f76c66137ee06eff9aef8491d.png)
高效的求解器
FLAC3D采用显式有限差分法,计算效率高, 能够处理大规模的计算问题。
安装步骤及注意事项
2. 解压安装包到指定目录。
1. 从官方网站下载 FLAC3D安装包。
安装步骤
01
03 02
安装步骤及注意事项
3. 运行安装程序,按照提示完成安装过程。
4. 安装完成后,启动FLAC3D软件。
安装步骤及注意事项
FLAC3D支持导入多种格式的外部几何模型,如STL、IGES等。通过导入功能,可以快速将复 杂几何体导入FLAC3D中进行后续分析。
利用内置工具创建简单几何体
对于简单的几何形状,如立方体、圆柱体等,可以直接使用FLAC3D内置的创建工具进行建 模。
布尔运算构建复杂模型
FLAC3D提供布尔运算功能,支持对多个几何体进行并集、交集、差集等操作,以构建更为 复杂的几何模型。
水文地质领域应用案例剖析
地下水渗流模拟
FLAC3D可以模拟地下水在复杂地 质条件下的渗流过程,为地下水 资源的开发和保护提供决策支持。
水库大坝渗流分析
利用FLAC3D对水库大坝进行渗流 分析,可以评估大坝的安全性和 稳定性,为水库运行管理提供科 学依据。
岩溶地区水文地质
模拟
FLAC3D可以模拟岩溶地区的水文 地质过程,包括岩溶发育、地下 水流动等,为岩溶地区的水资源 管理和工程建设提供参考。
它广泛应用于岩土工程、地质工程、水利工程 等领域,用于分析土壤、岩石和其他地质材料 的力学行为。
FLAC3D基于显式有限差分法,能够高效处理 大变形和非线性问题,特别适用于模拟地震、 滑坡、隧道开挖等复杂地质工程问题。
软件特点与优势
强大的后处理功能
软件提供了丰富的后处理工具,如等值线 图、矢量图、动画演示等,方便用户直观 地查看和分析计算结果。
flac3d教程
![flac3d教程](https://img.taocdn.com/s3/m/66a26c59a9114431b90d6c85ec3a87c240288aa3.png)
flac3d教程
FLAC3D是一种常用的三维有限差分软件,用于地质工程、岩土力学和地下空间开发等领域的数值模拟。
该软件具有强大的土体和岩体模拟能力,可以模拟地表沉降、岩石崩塌、地下水渗流等复杂地质现象。
使用FLAC3D进行模拟需要按照以下步骤进行操作:
1. 创建模型:首先要创建一个FLAC3D模型文件,可以通过几何建模软件或文本编辑器创建一个文本文件,并使用FLAC3D的特定语法定义模型的几何形状和参数。
2. 设定材料参数:在模型中定义岩土体的物理和力学参数,例如密度、弹性模量、摩擦角等。
这些参数将在模拟过程中用于计算岩土体的应力和变形。
3. 定义边界条件:为模型设置边界条件,如固支、自由表面、初始应力等。
这些边界条件将在模拟中约束模型的行为。
4. 施加荷载:根据实际情况为模型施加相应的荷载,例如施加地震力、垂直载荷等。
可以根据需要在模拟过程中改变或删除荷载。
5. 运行模拟:使用FLAC3D软件运行模拟,计算模型在荷载作用下的应力和变形响应。
模拟可以在软件界面中进行,也可以通过命令行方式进行。
6. 分析结果:模拟完成后,可以通过FLAC3D软件提供的各种功能和工具来分析模型的结果。
例如,绘制应力云图、位移云图、剪切云图等,以及输出模型的计算数据。
需要注意的是,在使用FLAC3D进行模拟时,应根据具体问题进行合理的模型设计和参数设定,并且进行准确的边界条件设置。
同时,还需要对模拟结果进行合理分析和解释,以得出有关工程或地质现象的结论。
FLAC3D快速入门及简单实例
![FLAC3D快速入门及简单实例](https://img.taocdn.com/s3/m/33efd79070fe910ef12d2af90242a8956becaacb.png)
FLAC3D快速⼊门及简单实例FLAC3D快速⼊门及简单实例李佳宇编LJY指南针教程前⾔FLAC及FLAC3D是由国际著名学者、英国皇家⼯程院院⼠、离散元的发明⼈Peter Cundall博⼠在70年代中期开始研究的,主要⾯对岩⼟⼯程的通⽤软件系统,⽬前已经在全球70多个国家得到⼴泛应⽤,在岩⼟⼯程学术界和⼯业界赢得了⼴泛的赞誉。
前国际岩⽯⼒学会主席 C.Fairhurst(1994)对FLAC程序的评价是:“现在它是国际上⼴泛应⽤的可靠程序。
”我从研⼆(2010年)开始接触FLAC3D,最初的原因是导师要求每⼀个⼈⾄少学会⼀个数值计算软件,⽽他嘴⾥每天念叨最多的就是FLAC,⾃⼰当时对数值计算⼀⽆所知,便答应⽼师要学会FLAC3D。
第⼀次打开软件界⾯,我⼼⾥就凉了⼤半截,⾯对着⼀个操作界⾯跟记事本⽆异的所谓“功能强⼤”的岩⼟⼯程专业软件,半点兴趣也提不起来。
年底,从项⽬⼯地回到学校准备论⽂开题,⽼师对我的开题报告⾮常不满意,当着全教研室师⽣的⾯,劈头盖脸⼤批⼀顿,第⼆天⼜找谈话。
在巨⼤的压⼒和强烈的⾃尊⼼驱使下,我硬着头⽪开始啃FLAC3D,⼀个半⽉之后,终于有了初步的计算结果,对⽼师有个交代,我也能回家过年了。
前⾯这⼀段过程可能是⼤多数FLAC3D初学者的必经阶段,或者是即将开始软件学习的⼈惧怕的事情。
毫⽆疑问,FLAC3D极其不友好的界⾯是阻碍初学者前进的很⼤障碍,当然还包括它是⼀个全英⽂的软件。
但是当你费尽周折的⾛进FLAC3D的世界,你就会发现它独特的魅⼒,⽐如简洁的界⾯,快捷的命令流操作,⾼效的计算⽅法,不易报错等等。
另外⼀个拿不上台⾯的优点就是它⾮常⼩巧,包括Manual在内⼀共才⼏⼗兆⼤⼩,⽽且已经被破解成绿⾊版,只要把它和命令流装进U盘,你就可以随便找⼀个⾝边功能最强⼤的电脑开始计算了,如果你有过ANSYS、ABAQUS等⼤型软件痛苦的安装经历,你便能毕业之后,本以为不⽤再接触数值计算,但⼯作需要使得我⼜⼀次开始与理解“绿⾊版”的含义,当然还请⼤家尊重知识产权,⽀持正版。
FLAC3D 实例命令流1
![FLAC3D 实例命令流1](https://img.taocdn.com/s3/m/799fab7749649b6648d747c4.png)
第1部分命令流按照顺序进行2-1定义一个FISH函数newdef abcabc = 25 * 3 + 5Endprint abc2-2使用一个变量newdef abchh = 25abc = hh * 3 + 5EndPrint hhPrint abc2-3对变量和函数的理解newdef abchh = 25abc = hh * 3 + 5Endset abc=0 hh=0print hhprint abcprint hhnewdef abcabc = hh * 3 + 5endset hh=25print abcset abc=0 hh=0print hhprint abcprint hh2-4获取变量的历史记录newgen zone brick size 1 2 1model mohrprop shear=1e8 bulk=2e8 cohes=1e5 tens=1e10fix x y z range y -0.1 0.1apply yvel -1e-5 range y 1.9 2.1plot set rotation 0 0 45plot block groupdef get_adad1 = gp_near(0,2,0)ad2 = gp_near(1,2,0)ad3 = gp_near(0,2,1)ad4 = gp_near(1,2,1)endget_addef loadload=gp_yfunbal(ad1)+gp_yfunbal(ad2)+gp_yfunbal(ad3)+gp_yfunbal(ad4) endhist loadhist gp ydis 0,2,0step 1000plot his 1 vs -22-5用FISH函数计算体积模量和剪砌模量newdef derives_mod = y_mod / (2.0 * (1.0 + p_ratio))b_mod = y_mod / (3.0 * (1.0 - 2.0 * p_ratio))endset y_mod = 5e8 p_ratio = 0.25deriveprint b_modprint s_mod2-6 在FLAC输入中使用符号变量Newdef derives_mod = y_mod / (2.0 * (1.0 + p_ratio))b_mod = y_mod / (3.0 * (1.0 - 2.0 * p_ratio))endset y_mod = 5e8 p_ratio = 0.25derivegen zone brick size 2,2,2model elasticprop bulk=b_mod shear=s_modprint zone prop bulkprint zone prop shear2-7 控制循环Newdef xxxsum = 0prod = 1loop n (1,10)sum = sum + nprod = prod * nend_loopendxxxprint sum, prodnewgen zone brick p0 (0,0,0) p1 (-10,0,0) p2 (0,10,0) p3 (0,0,-10) model elasplot set rotation 0 0 45plot block groupdef installpnt = zone_headloop while pnt #nullz_depth = -z_zcen(pnt)y_mod = y_zero + cc * sqrt(z_depth)z_prop(pnt, ’shear’) = y_mod / (2.0*(1.0+p_ratio))z_prop(pnt, ’bulk’) = y_mod / (3.0*(1.0-2.0*p_ratio))pnt = zone_next(pnt)end_loopendset p_ratio=0.25 y_zero=1e7 cc=1e8install2-8 拆分命令行new ;example of a sum of many thingsdef long_sumtemp = v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10long_sum = temp + v11 + v12 + v13 + v14 + v15end2-9 变量类型newdef haveoneaa = 2bb = 3.4cc = ’Have a nice day’dd = aa * bbee = cc + ’, old chap’endhaveoneprint fish2-10 IF条件语句newdef abcif xx > 0 thenabc = 1000elseabc = -1000end_ifendset xx = 10print abcset xx = 0print abc2-11 索单元自动生成newgen zone brick size 10 3 5plot set rotation 0 0 45plot block groupdef place_cablesloop n (1,5)z_d = float(n) - 0.5commandsel cable beg 0.0,1.5,z_d end 7.0,1.5,z_d nseg 7 end_commandend_loopendplace_cablesplot grid sel geom rednewgen zone brick size 10 3 5plot set rotation 15 0 60plot block groupmod mohrprop bulk 1e8 shear .3e8 fric 35prop coh 1e3 tens 1e3ini dens 1000set grav 0,0,-10fix x y z range z -.1 .1fix y range y -.1 .1fix y range y 2.9 3.1fix x range x -.1 .1fix x range x 9.9 10.1set largehist unbalsolvesave cab_str.savini xdis 0 ydis 0 zdis 0hist gp xdisp 0,1,5def place_cablesloop n (1,5)z_d = 5.5 - float(n)z_t = z_d + 0.5z_b = z_d - 0.5commandfree x range x -.1,.1 z z_b z_tsolvesel cable beg 0.0,0.5,z_d end 7.0,0.5,z_d nseg 7sel cable beg 0.0,1.5,z_d end 7.0,1.5,z_d nseg 7sel cable beg 0.0,2.5,z_d end 7.0,2.5,z_d nseg 7sel cable prop emod 2e10 ytension 1e8 xcarea 1.0 &gr_k 2e10 gr_coh 1e10 gr_per 1.0end_commandend_loopendplace_cablessave cab_end.savplot sketch sel cable force red2-12圆形隧道开挖模拟计算;建立模型gen zon radcyl p0 0 0 0 p1 6 0 0 p2 0 1 0 p3 0 0 6 &size 4 2 8 4 dim 3 3 3 3 rat 1 1 1 1.2 group outsiderockgen zone cshell p0 0 0 0 p1 3 0 0 p2 0 1 0 p3 0 0 3 &size 1 2 8 4 dim 2.7 2.7 2.7 2.7 rat 1 1 1 1 group concretliner fill group insiderockgen zon reflect dip 90 dd 90 orig 0 0 0gen zon reflect dip 0 dd 0 ori 0 0 0gen zon brick p0 0 0 6 p1 6 0 6 p2 0 1 6 p3 0 0 13 size 4 2 6 group outsiderock1gen zon brick p0 0 0 -12 p1 6 0 -12 p2 0 1 -12 p3 0 0 -6 size 4 2 5 groupoutsiderock2gen zon brick p0 6 0 0 p1 21 0 0 p2 6 1 0 p3 6 0 6 size 10 2 4 group outsiderock3gen zon reflect dip 0 dd 0 orig 0 0 0 range group outsiderock3gen zon brick p0 6 0 6 p1 21 0 6 p2 6 1 6 p3 6 0 13 size 10 2 6 group outsiderock4 gen zon brick p0 6 0 -12 p1 21 0 -12 p2 6 1 -12 p3 6 0 -6 size 10 2 5 group outsiderock5gen zon reflect dip 90 dd 90 orig 0 0 0 range x -0.1 6.1 z 6.1 13.1gen zon reflect dip 90 dd 90 orig 0 0 0 range x -0.1 6.1 z -6.1 -12.1gen zon reflect dip 90 dd 90 orig 0 0 0 range x 6.1 21.1 z -12.1 13.1;绘制模型图plot block groupplot add axes red;plot set rotation 0 0 45 用于显示三维模型;设置重力set gravity 0 0 -10;给定边界条件fix z range z -12.01,-11.99fix x range x -21.01,-20.99fix x range x 20.99,21.01fix y range y -0.01 0.01fix y range y 0.99,1.01;求解自重应力场model mohrini density 1800 ;围岩的密度prop bulk=1.47e8 shear=5.6e7 fric=20 coh=5.0e4 tension=1.0e4 ;体积、剪切、摩擦角、凝聚力、抗拉强度set mech ratio=1e-4solvesave Gravsol.savplot cont zdisp outl onplot cont szz;毛洞开挖计算initial xdisp=0 ydisp=0 zdisp=0model null range group insiderock any group concretliner anyplot block groupplot add axes redset mech ratio=5e-4solvesave Kaiwsol.savplot cont zdispplot cont sdispplot cont szzplot cont xzz;模筑衬砌计算model elas range group concretliner anyplot block groupplot add axes redini density 2500 range group concretliner any ;衬砌混凝土的密度prop bulk=16.67e9,shear=12.5e9 range group concretliner any ;衬砌混凝土的体积弹模、剪切弹模set mech ratio=1e-4solvesave zhihusol.savplot cont zdispplot cont sdispplot cont szzplot cont xzz;完成计算分析(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
Flac3D教学
![Flac3D教学](https://img.taocdn.com/s3/m/0675f8a3e109581b6bd97f19227916888486b92d.png)
本构模型选择
02
阐述Flac3D提供的多种本构模型,如弹性模型、弹塑性模型、
粘弹性模型等,并给出选择本构模型的一般原则和建议。
材料参数确定
03
探讨如何通过实验或经验确定材料参数,以及如何在Flac3D中
进行参数输入和调整。
10
03 建模与计算过程详解
2024/1/24
11
建立初始模型及参数设置
创建模型
B
C
对比实验数据与模拟结果
将实验数据与Flac3D模拟结果进行对比分 析,以验证模型的准确性和可靠性。
对比不同时间步的结果
对比同一模型在不同时间步的结果,以观察 模型的动态演化过程。
D
2024/1/24
18
05 工程案例实践与讨论
2024/1/24
19
岩土工程案例介绍
2024/1/24
案例一
深基坑开挖与支护
在Flac3D中,首先需定义模型的空间维度、尺寸及网格划分。
材料属性赋值
为模型各部分赋予相应的材料属性,如弹性模量、泊松比、密度 等。
初始条件设置
设定模型的初始应力、位移等条件。
2024/1/24
12
施加荷载与边界条件调整
01
02
03
荷载施加
根据实际问题,在模型上 施加相应的力、压力或位 移荷载。
通过实例分析,学习如何利用Flac3D解决岩土工程中的实际问题,如 边坡稳定性分析、基坑开挖模拟等。
5
学习方法与建议
1 2
理论学习与实践操作相结合
在学习过程中,既要注重理论知识的学习,也要 加强实践操作的训练,通过不断练习加深对软件 功能的理解和掌握。
多参考官方文档和教程
flac3d入门指南
![flac3d入门指南](https://img.taocdn.com/s3/m/2e64cf8b680203d8ce2f2480.png)
设置初始应力的弹塑性求解:
gen zon bri size 1 1 2 model mohr prop bulk 3e7 shear 1e7 c 10e3 f 15 ten 0 fix z ran z 0 fix x ran x 0 fix x ran x 1 fix y ran y 0 fix y ran y 1 ini dens 2000 ini szz -40e3 grad 0 0 20e3 ran z 0 2 ini syy -20e3 grad 0 0 10e3 ran z 0 2 ini sxx -20e3 grad 0 0 10e3 ran z 0 2 set grav 0 0 -10 solve
4、边界条件及初始条件
在FLAC3D中,包含多种边界条件,边界方位 可以任意变化,边界条件可以是速度边界、应力边 界,单元内部可以给定初始应力,节点可以给定初 始位移、速度等,还可以给定地下水位以计算有效 应力等。这众多的边界条件主要通过apply或fix命 令来进行设置。而初始条件则主要通过initial命令 来执行,对所提的这两个命令必须严格区分并了解 其差异。通常我们所计算的模型均采用力学边界, 初始条件也基本是初始地应力的输入,对此两种不 同的力,其设置存在差别,同时在计算过程中,该 二者的变化情况也各不相同。
对于这两种基本的 网格,其公共面上的 关键点的对应关系更 需校核好,否则将出 现杂乱错误的网格。
对此马蹄形隧道,其公 共面处,p0 — p0,p1—p3, p2—p2,p4—p5 , p8—p9,p10 —p11
对于对称的模型也可以采 用镜像命令:
gen zone reflect norm -1 0 0 & origin 0,0,0
对于任何形状的单元体, 其建立单元模型时关键
FLAC3D基本原理及简单实例
![FLAC3D基本原理及简单实例](https://img.taocdn.com/s3/m/2ef7b91e52d380eb62946daf.png)
cm / s 2
Bar/m
注: 1bar 106 dynes/ cm2 105 N / m2 105 Pa
1atm 1.013 bars 1.013105 Pa
FLAC3D基础知识
• 粘聚力:是指由分子引力引起的物体中相同组成的各部分倾向于聚合 在一起的一种力,对于岩石,粘聚力主要是由于岩石中相邻矿物颗粒 表面上的分子互相直接吸引而成,在宏观上,粘聚力只代表岩石抗剪 强度的一部分。一般来说,岩石在低应力时的粘聚力比较小,而高应 力作用时粘聚力较大。
FLAC3D基础知识 力学参数单位系统
国际单位 长度 密度 应力 压力 重力加速度 刚度 m kg / m3 N Pa m
103 kg / m3
m
106 kg / m3
cm
106 g / m3
KN KPa
MN MPa
Mdynes Bar
m / s2
Pa/m
m / s2
KPa/m
m / s2
MPa/m
3D
生成网格
执行变更
定义材料本构关系和 性质 定义边界、初始条件
计算结果保存及调用
图形绘制及结果输出
FLAC3D基础知识
指定材料模型
• 一旦完成了网格的生成,就必须给模型中的所有单元指定一种或者更 多的材料模型及相应的性质。这可以用两个命令MODEL和 PROPERTY来完成。FLAC中有十种内置的材料模型,一般只用三种 模型:MODEL null,MODEL elastic和MODEL mohr。 • MODEL null指的是从模型中去除的或开挖的材料; MODEL elastic 指的是各向同性弹性材料行为; MODEL mohr指的是摩尔-库伦塑性 行为。 • MODEL elastic和MODEL mohr需要通过PROPERTY命令指定材料的 性质,弹性模型需要的材料参数有: • (1)密度 • (2)体积模量 • (3)剪切模量
FLAC3D实例分析教程(2024)
![FLAC3D实例分析教程(2024)](https://img.taocdn.com/s3/m/49ee34526ad97f192279168884868762cbaebb60.png)
支持多种温度场建模方法,如有限元法、有限差分法等,可自定义温 度边界条件和初始条件。
热传导过程模拟
通过数值计算方法求解热传导方程,得到温度场中的温度分布和热流 密度等参数。
热应力计算
基于热弹性力学理论,计算由温度梯度引起的热应力和变形,以及温 度对岩土体力学性质的影响。
29
07
总结与展望
地下工程
软件可模拟地下洞室、巷道、地铁等地下 工程的开挖和支护过程,分析围岩稳定性 和支护结构受力情况。
基坑工程
软件可用于分析基坑开挖过程中的土压力 分布、支护结构变形和稳定性等问题。
2024/1/30
隧道工程
FLAC3D可应用于隧道工程的开挖、支护 和衬砌设计,评估隧道施工对周围岩体的 影响。
5
操作界面及基本设置
边界条件
设定模型的底部和侧面为固定边界, 顶部为自由边界;考虑地下水的影响 ,设置相应的孔隙水压力和渗透系数 。
2024/1/30
18
求解过程与结果分析
求解过程
采用FLAC3D内置的求解器进行计算,包括初始地应力平衡和后续加载过程。
结果分析
提取边坡的位移、应力、应变等计算结果,分析边坡的变形和破坏模式。
2024/1/30
操作界面
FLAC3D的操作界面包括菜单栏、工具栏、模型视图、属 性视图和输出窗口等部分,方便用户进行建模、分析和后 处理等操作。
基本设置
在使用FLAC3D前,需要进行一些基本设置,如选择单位 制、设置材料参数、定义边界条件等。这些设置将直接影 响模拟结果的准确性和可靠性。
建模流程
FLAC3D的建模流程包括建立几何模型、划分网格、定义 材料属性、施加边界条件和初始条件等步骤。用户可根据 实际需求选择合适的建模方法和工具。
FLAC及FLAC3D基础与工程实例51-3
![FLAC及FLAC3D基础与工程实例51-3](https://img.taocdn.com/s3/m/4069b38bbceb19e8b8f6bac8.png)
FLAC及FLAC3D基础与工程实例511.2.1FLAC/FLAC3D的使用特征;FLAC/FLAC3D的使用特征主要表现为:;?命令驱动模式;FLAC/FLAC3D有两种输入模式:①人机交互;FLAC/FLAC3D专为岩土工程力学分析开发,;FLAC/FLAC3D可以模拟多种结构形式,如岩;借助其强大的绘图功能,用户能绘制各种图形和表格;?开放性;FLAC/FLAC3D几乎是一个全开放的系统,1.2.1 FLAC/FLAC3D的使用特征FLAC/FLAC3D的使用特征主要表现为:? 命令驱动模式FLAC/FLAC3D有两种输入模式:① 人机交互模式,即从键盘输入各种命令控制软件的运行;② 命令驱动模式,即写成命令流文件,由文件来控制软件的运行。
其中,命令驱动模式为FLAC/FLAC3D的主要输入模式,尽管这种驱动方式对于简单问题的分析过于繁杂,对软件初学者而言相对较困难,但对于那些从事大型复杂工程问题分析而言,因涉及多次参数修改、命令调试,这种方式无疑是最有效、最经济的(当然,由于二维建模相对简单,照顾不少用户的使用习惯,在FLAC中也可以采用界面操作模式即GIIC模式进行分析计算)。
? 专一性FLAC/FLAC3D专为岩土工程力学分析开发,内置丰富的弹、塑性材料本构模型(其中FLAC内置11个,FLAC3D内置12个),有静力、动力、蠕变、渗流、温度5种计算模式,各种模式间可以相互耦合,以模拟各种复杂的工程力学行为。
FLAC/FLAC3D可以模拟多种结构形式,如岩体、土体或其它材料实体:梁、锚元、桩、壳以及人工结构,如支护、衬砌、锚索、岩栓、土工织物、摩擦桩、板桩等。
通过设置界面单元,可以模拟节理、断层或虚拟的物理边界等。
借助其强大的绘图功能,用户能绘制各种图形和表格。
用户可以通过绘制计算时步函数关系曲线来分析、判断体系何时达到平衡与破坏状态,并在瞬态计算或动态计算中进行量化监控,从而通过图形直观地进行各种分析。
FLAC3D实例分析教程
![FLAC3D实例分析教程](https://img.taocdn.com/s3/m/d927bb859fc3d5bbfd0a79563c1ec5da50e2d634.png)
FLAC3D实例分析教程假设我们要分析一个简单的边坡稳定性问题。
下面是具体的步骤:1.建立几何模型:首先,我们需要建立一个几何模型,包括边坡的形状和岩土层的属性。
在FLAC3D中,我们可以通过在网格上定义顶点和连线来创建边坡的形状。
然后,我们可以设置每个区域的岩土层属性,如密度、强度和摩擦角等。
确保模型的几何和岩土层属性与实际情况相符。
2.设定边界条件:接下来,我们需要设定边界条件,即模拟中的约束和加载条件。
在边坡稳定性问题中,我们可以设定边坡底部的约束条件,如水平位移和垂直位移。
此外,我们还可以为边坡施加水平和垂直方向的荷载,模拟边坡于不同加载条件下的行为。
3.运行模拟:在完成模型和边界条件的设置后,我们可以开始运行模拟。
FLAC3D使用多线程计算,能够利用多核处理器的能力来进行快速计算。
我们可以选择设置时间步长和计算精度等参数。
模拟运行完毕后,FLAC3D将输出边坡在不同加载条件下的应力、位移和变形等结果。
4.结果分析:最后,我们需要对模拟结果进行分析和解释。
FLAC3D 提供了丰富的结果显示和分析功能。
我们可以通过绘制曲线图、生成动画和查看计算网格等方式来可视化和分析结果。
根据模拟结果,我们可以评估边坡的稳定性,并提出针对性的建议和改进方案。
在实际应用中,我们还可以使用FLAC3D的其他高级功能来进一步分析和优化边坡设计。
例如,我们可以引入土体的非线性行为模型,模拟地下水流和渗流等复杂的工程问题。
此外,FLAC3D还支持参数化建模和优化分析,可以帮助工程师迅速评估不同方案的可行性和性能。
总结起来,FLAC3D是一个强大的岩土工程分析软件,可以用于解决各种实际问题。
通过学习和应用FLAC3D的基本使用方法和分析技巧,工程师可以更好地理解和评估岩土工程问题,为工程设计和施工提供有力支持。
FLAC3D实例分析教程2
![FLAC3D实例分析教程2](https://img.taocdn.com/s3/m/92d627997e192279168884868762caaedc33ba5f.png)
FLAC3D实例分析教程2FLAC3D实例分析教程2实例说明:在一个地下隧道工程中,我们需要分析围岩的稳定性。
隧道的尺寸为10mx6mx20m,围岩由砂岩组成,其物理特性如下:- 密度:2.5g/cm³-弹性模量:40GPa-泊松比:0.25我们将在FLAC3D中建立一个三维模型,并进行围岩的稳定性分析。
步骤1:建立模型在FLAC3D中,首先需要创建一个新的项目文件。
点击“File”-“New”-“Project”来创建一个新的项目文件,并保存为适当的文件名。
然后,点击“Grid”-“Generate”来生成一个新的网格。
在对话框中,输入隧道的尺寸,并选择合适的网格密度。
点击“Apply”来生成网格。
步骤2:定义围岩属性在FLAC3D中,可以通过定义不同的材料属性来模拟不同的岩石类型。
点击“Model”-“Material”-“New”来定义一个新的材料,并设置其物理特性。
在对话框中,输入材料的密度、弹性模量和泊松比。
点击“OK”来保存材料属性。
步骤3:生成围岩在FLAC3D中,可以通过定义不同的围岩属性来模拟围岩中的不同部分。
点击“Grid”-“Approval”来选择需要定义材料的单元,并在对话框中选择刚刚定义的材料。
点击“Apply”来应用材料属性。
步骤4:施加边界条件在FLAC3D中,可以通过定义不同的边界条件来模拟不同的荷载情况。
在本实例中,我们将施加一个围压荷载,并固定隧道的底部。
点击“Model”-“Boundary Condition”来定义边界条件。
在对话框中,选择围压荷载并输入荷载大小。
点击“Apply”来应用边界条件。
步骤5:运行模拟在FLAC3D中,可以通过点击“Model”-“Run”来运行模拟。
在运行模拟之前,可以选择运行的时间步长、计算方法和收敛准则。
点击“OK”来开始运行模拟。
步骤6:结果分析在FLAC3D中,可以通过查看不同的结果图来分析模拟结果。
点击“Post”-“Plot”来选择需要查看的结果图,并选择合适的结果类型。
Flac3d_实例分析教程
![Flac3d_实例分析教程](https://img.taocdn.com/s3/m/024a8fc32cc58bd63186bd2f.png)
cyc 15000 ;运行 15000 时步 print p_err ;输出函数 p_err
7
《FLAC 原理实例与应用指南》
FLAC3D
prop bulk 1e8 shear 0.3e8 ;模型的材料性质:体积模量1×108 剪切模量 0.3×108
prop fric 35 coh 1e3 tens 1e3
°
;摩擦角 35
粘聚力 1×103
抗拉强度1×103
; set global conditions
;设置全局参数
set grav 0,0,-9.81
resource可执行编码dlls安装数据文件六面体网格的数据文件参考命令的数据文件flac3d中的fish数据文件关于流体力学的相互作用的数据文件可选择属性的数据文件结构单元的数据文件理论和背景的数据文件用户指南的数据文件有关某些确定问题的实例的数据文件flac3d的资源文件manualsflac3d300
3
《FLAC 原理实例与应用指南》
FLAC3D
;暂停 step 1000 ;运算 1000 步 pause ;暂停 save t2.sav ;形成 sav 文件,并保存为 t2.sav
ret
3D
;放在批处理文件的最后,以返回 FLAC 的控制状态
4
《FLAC 原理实例与应用指南》
2
FLAC3D
图 2 :浅基础位移矢量图
2
;---------------------------------------------------------------------
flac3d入门指南
![flac3d入门指南](https://img.taocdn.com/s3/m/ad2d968f8ad63186bceb19e8b8f67c1cfbd6ee62.png)
多场耦合结果分析
理解多场耦合模拟的结果,并 能够进行准确的分析和解释。
提高计算效率的策略
选择合适的计算模型 根据问题的特点和需求,选择合适的计 算模型,避免不必要的复杂度和计算量。
优化计算参数设置 通过调整计算参数设置,如时间步长、 收敛准则等,提高计算效率和稳定性。
利用并行计算技术 利用FLAC3D支持的并行计算技术, 如MPI并行等,提高计算效率。
网格划分
对模型进行离散化,生成 有限元网格,可设置网格 密度和类型。
几何体素导入
支持从外部CAD软件导入 几何体素,方便快速建立 复杂模型。
材料属性设置
材料库
提供常用材料的属性参数,如弹性模量、泊松 比、密度等。
自定义材料
允许用户根据需要设置材料属性,包括非线性 材料和各向异性材料。
材料赋值
将定义好的材料属性赋值给模型中的各个部分。
ABCD
真实模拟
能够模拟复杂的材料本构关系、节理、断层等地 质结构,实现真实世界的准确模拟。
开放性
支持用户自定义本构模型、边界条件等,方便用 户进行二次开发和扩展。
安装步骤及注意事项
安装步骤
1
2
1. 下载FLAC3D安装包,并解压到指定目录。
3
2. 运行安装程序,按照提示完成安装过程。
安装步骤及注意事项
flac3d入门指南
目 录
• 软件介绍与安装 • 界面操作与基本功能 • 初级实例分析:简单模型模拟 • 中级实例分析:复杂模型模拟 • 高级功能应用与技巧 • 工程案例分析与实战演练
01 软件介绍与安装
FLAC3D概述
FLAC3D(Fast Lagrangian Analysis of Continua in 3 Dimensions)是一款用于模拟 三维连续介质力学行为的有限差分软件。
Flac3d实例分析教程
![Flac3d实例分析教程](https://img.taocdn.com/s3/m/130797ab970590c69ec3d5bbfd0a79563c1ed411.png)
建筑面积计算规则一、计算建筑面积的范围1.单层建筑物不论其高度如何,均按一层计算建筑面积。
其建筑面积按建筑物外墙勒脚以上结构的外围水平面积计算。
单层建筑物内设有部分楼层者,首层建筑面积已包括在单层建筑物内,二层及二层以上应计算建筑面积。
高低联跨的单层建筑物,需分别计算建筑面积时,应以结构外边线为界分别计算。
2.多层建筑物建筑面积,按各层建筑面积之和计算,其首层建筑面积按外墙勒脚以上结构的外围水平面积计算,二层及二层以上按外墙结构的外围水平面积计算。
3.同一建筑物如结构、层数不同时,应分别计算建筑面积。
4.地下室、半地下室、地下车间、仓库、商店、车站、地下指挥部等及相应的出入口建筑面积,按其上口外墙(不包括采光井、防潮层及其保护墙)外围水平面积计算。
5.建于坡地的建筑物利用吊脚空间设置架空层和深基础地下架空层设计加以利用时,其层高超过2.2m,按围护结构外围水平面积计算建筑面积。
6.穿过建筑物的通道,建筑物内的门厅、大厅,不论其高度如何均按一层建筑面积计算。
门厅、大厅内设有回廊时,按其自然层的水平投影面积计算建筑面积。
7.室内楼梯间、电梯井、提物井、垃圾道、管道井等均建筑物的自然层计算建筑面积。
8.书库、立体仓库设有结构层的,按结构层计算建筑面积,没有结构层的,按承重书架层或货架层计算建筑面积。
9.有围护结构的舞台灯光控制室,按其围护结构外围水平面积乘以层数计算建筑面积。
10.建筑物内设备管道层、技术层、贮藏室其层高超过2.2m时,应计算建筑面积。
11.有柱的雨蓬、车棚、货棚、站台等、按柱外围水平面积计算建筑面积;独立柱的雨蓬、单排柱的车棚、货棚、站台等,按其顶盖水平投影面积的一半计算建筑面积。
12.屋面上部有围护结构的楼梯间、水箱间、电梯机房等,按围护结构水平面积计算建筑面积。
13.建筑物外有围护结构的门斗、眺望间、观望电梯间、阳台、橱窗、挑廊、走廊等,按其围护结构外围水平面积计算建筑面积。
14.建筑物外有柱和顶盖走廊、檐廊,按柱外围水平面积计算建筑面积;有盖无柱的走廊、檐廊按其顶盖投影面积一半计算建筑面积。
流体与动态计算实例分析flac3d
![流体与动态计算实例分析flac3d](https://img.taocdn.com/s3/m/4d494a6ece84b9d528ea81c758f5f61fb7362826.png)
流体与动态计算实例分析flac3dnewconf dyn fluid;设置动态与流体算法set dyn off fluid off;关闭动态与流体算法;generate foundation and embankment grids and attach interfaces*;生成基础和堤坝网格并粘贴接触面' |gen zone bri p0 0,0,0 p1 40,0,0 p2 0,10,0 p3 0,0,10 size 20 5 5;基础gen zone bri p0 22,0,10 p1 40,0,10 p2 22,10,10 p3 22,0,20 size 9,5,5;堤坝;在z=10,x=15~22,y=0~10上生成接触面1interface 1 face range x 15.0 22.0 y 0.0 10.0 z 9.9 10.1;在x=22,z=10~21,y=0~10上生成接触面2interface 2 face range x 21.9 22.1 y 0.0 10.0 z 10.0 21.06;设置最大的边界长度为1.0interface 1 maxedge 1.0interface 2 maxedge 1.02; generate block wall 生成挡水墙gen zone bri p0 15,0.5,11 p1 21,0.5,11 p2 15,9.5,11 p3 15,0.5,20.9 siz 3 5 5;name groups and move block on to soil;命名群组并移动挡水墙到土壤上group block range x=16,22 y=0,10 z=10,20group 'soil embankment' range x=22,40 y=0,10 z=10,20group 'dense soil foundation' range x=0,40 y=0,10 z=0,10 ;挡墙沿x方向增加一个单位ini x add 1.0 range group block;挡墙沿z方向增加一个单位ini z add -1.0 range group block; assign models to groups;给群组设定计算模型model mohr range group block not;除挡墙外的群组为摩尔库仑模型,model elas range group block;挡墙为弹性;assign mechanical properties设置力学参数prop shear=1e8 bulk=2e8 cohes=1e10 range group 'soil embankment'prop shear=5e8 bulk=1e9 cohes=1e10 range group 'dense soil foundation'prop shear=9.15e9 bulk=10e9 range group blockini dens=2100 range group block;初始化质量密度ini dens=1800 range group block notinterface 1 prop coh=0 fric 60. dil 0. kn=1e8 ks=1e8 ten 0.;接触面参数interface 2 prop coh=0 fric 60. dil 0. kn=1e8 ks=1e8 ten 0.model fl_iso;各项同性流体模型,计算流体必须的; mechanical boundary and initial conditions物理边界和初始条件fix z range z=-.1 .1;固定z=0的面fix x range x=-.1 .1fix x range x=39.9 40.1;固定x=40的面fix y range y=-.1 .1fix y range y=9.9 10.1;初始应力,垂直应力为水平的2倍,在z方向有梯度变化ini szz -3.6e5 grad 0 0 1.8e4ini sxx -1.8e5 grad 0 0 0.9e4ini syy -1.8e5 grad 0 0 0.9e4set grav 0 0 -10;设置重力加速度;记录监测数据hist unbal;不平衡力hist gp zdisp 16,5,20;点(16,5,20)的z方向位移hist gp zdisp 30,5,20;求解solvesave block1.sav;保存pau;assign realistic strength properties设置现实的强度参数prop cohes=0 tens 0 fric 35 range group 'soil embankment' prop cohes=0 tens 0 fric 40 range group 'dense soil foundation'solvesave block1.sav;流体分析rest block1.sav;调用保存的文件;specify fluid properties设定流体参数prop perm=1e-8 poros=0.3ini fdens=1000;初始化流体密度ini fmod=2e3;流体的体积模量set fluid pcut on;设置流体进程,负压时自动变为0; assign water table设置水位water density 1000.;水的密度water table face 0 0 20 0 10 20 40 10 20 40 0 20 ;水平面由四个节点创建; block wall is impermeable挡墙不透水fix pp 0 range group block;挡墙区域内孔隙水压力为0;施加水压力apply nstress -1e5 range x=0,16 y=0,10 z=9.9,10.1;加在土坝上的apply nstress -2e5 grad 0,0,1e4 range x=15.9,16.1 y=0,10 z=10,20;挡墙上的z向梯度变化.;启动流体算法set fluid onsolvesave block2.sav;动态分析rest block2.savset dyn on;启动动态算法set large;大变形set dyn multi on;设置动态多步计算,有什么区别呢;turns multi-stepping on or off. Multi-stepping speeds up calculations in dynamic models which have a large;zone size or modulus contrast. Sub-stepping only works when dynamic mode is in operation (SET dyn on),;and is effective only when the grid is nonuniform or there is a contrast in material properties.;初始化速度,位移和状态ini xvel 0 yvel 0 zvel 0ini xdisp 0 ydisp 0 zdisp 0ini state 0;设置土中水的模量; set fluid modulus for water in soilsini fmod 250e6 range group block not;施加动态边界条件; apply dynamic boundary conditionsdef wavewave = ampl * sin (2.0*pi*freq*dytime)end;释放边界z=0free x y range z -.1 .1;施加动态条件apply xvel 1.0 hist wave ran z -.1 .1apply yvel 1.0 hist wave ran z -.1 .1apply ffset freq 10.0 ampl 0.5 ;设置频率和放大系数; dynamic histories 动态历史记录set dyn time 0hist resethist dytimehist gp xvel 20,10,0hist zone pp 19,5,5 ;记录点孔隙压力hist zone pp 30,5,5hist zone pp 30,5,15hist zone pp 19,5,9hist gp xdis 16,5,20set dyn damp local .125 ;设置动态本地衰减为.125 solve age 5.0 ;求解的动态计算时间save block3.sav ret。