航空发动机结构的

合集下载

航空发动机结构实训报告

航空发动机结构实训报告

一、实训目的本次实训旨在通过实际操作,使学生深入了解航空发动机的结构特点、工作原理及维修方法,提高学生的动手能力、分析问题和解决问题的能力,为今后从事航空发动机维修工作打下坚实基础。

二、实训内容1. 航空发动机概述(1)航空发动机的定义及分类航空发动机是飞行器的心脏,其主要作用是为飞行器提供推进力。

根据工作原理,航空发动机可分为喷气式发动机、涡轮螺旋桨发动机和活塞发动机等。

(2)航空发动机的发展历程从早期的活塞发动机到现在的涡扇发动机,航空发动机在性能、可靠性、燃油效率等方面取得了巨大进步。

2. 航空发动机结构分析(1)发动机总体结构航空发动机由进气系统、燃烧室、涡轮、压气机、尾喷管等部分组成。

进气系统负责吸入空气,燃烧室负责将空气与燃料混合燃烧,涡轮和压气机负责压缩和膨胀空气,尾喷管负责将高速气流排出,产生推力。

(2)主要部件结构1)进气道:进气道负责引导空气进入发动机,减少气流对发动机内部的影响。

2)压气机:压气机将吸入的空气压缩,提高空气密度,为燃烧提供必要条件。

3)燃烧室:燃烧室是发动机的核心部分,负责将压缩后的空气与燃料混合燃烧,产生高温高压气体。

4)涡轮:涡轮将燃烧产生的高温高压气体膨胀,驱动压气机和发动机其他部件。

5)尾喷管:尾喷管将高速气流排出,产生推力。

3. 航空发动机维修实训(1)发动机拆装实训1)拆装工具的使用在拆装发动机过程中,正确使用拆装工具至关重要。

实训中,学生需掌握各种拆装工具的使用方法,如扳手、钳子、螺丝刀等。

2)发动机拆装步骤发动机拆装步骤包括:拆卸进气道、压气机、燃烧室、涡轮、尾喷管等部件,检查各部件磨损情况,进行维修或更换。

(2)发动机故障诊断与排除1)故障诊断方法故障诊断是发动机维修的关键环节。

实训中,学生需掌握以下诊断方法:观察法、听觉法、振动法、温度法等。

2)故障排除根据故障诊断结果,采取相应的维修措施,如更换磨损部件、调整间隙、润滑等。

三、实训心得1. 提高动手能力通过本次实训,我掌握了航空发动机的拆装、维修等基本技能,提高了自己的动手能力。

航空发动机结构系统资料课件

航空发动机结构系统资料课件

附件系统的组成
燃油附件
包括燃油泵、燃油控制阀等, 用于控制燃油的供应和流量。
滑油附件
包括滑油泵、滑油滤清器等, 用于提供滑油润滑和冷却发动 机部件。
启动与点火附件
包括启动电机、点火装置等, 用于启动发动机和点火。
空气附件
包括空气泵、冷气瓶等,用于 提供压缩空气和控制发动机进
气。
附件系统的安装位置与连接方式
航空发动机的分类
总结词
根据不同的分类标准,航空发动机可以分为多种类型。
详细描述
根据用途不同,航空发动机可以分为活塞式发动机和喷气式发动机两大类。其中,喷气式发动机又可以分为涡轮 喷气发动机、涡轮风扇发动机、涡轮螺旋桨发动机和桨扇发动机等类型。此外,根据推进剂的不同,航空发动机 又可以分为火箭发动机和吸气式发动机等类型。
滑油压力调节器
调节滑油压力,确保滑油在正确的压 力下供给发动机。
空气系统附件
进气过滤器
过滤进入发动机的空气中的杂质,保证空气 清洁度。
涡轮增压器
利用发动机排气的能量对进气进行压缩,提 高发动机的进气压力和进气量。
压气机
将空气压缩后供给发动机,提高空气密度。
冷却空气系统
利用冷却空气降低发动机部件的温度,保证 发动机正常运转。
航空发动机的定义
总结词
航空发动机是用于驱动飞行器的动力装置,它能够将热能、化学能转化为机械能,为飞行器提供推力 。
详细描述
航空发动机是一种高度复杂、精密的热力机械,其工作原理是将空气吸入发动机后,经过压缩、燃烧 、膨胀等过程,产生高温、高压的燃气,再通过喷嘴将燃气以高速排出,产生推力,使飞行器前进。
PART 06
未来航空发动机结构附件 系统的发展趋势

航空发动机主要部件介绍

航空发动机主要部件介绍

航空发动机主要部件介绍航空发动机是飞机的心脏,是实现飞行动力的关键部件。

它由众多主要部件组成,每个部件都发挥着重要的作用。

本文将从气缸、涡轮、燃烧室和喷嘴等几个方面介绍航空发动机的主要部件。

气缸是航空发动机中的重要组成部分之一。

气缸是发动机的燃烧室,通过气缸内的活塞来完成燃烧过程。

气缸内的燃料与空气混合后,被点燃产生高温高压气体,推动活塞运动,从而驱动发动机的转子。

气缸的材料通常采用高强度、高温耐受性的合金材料,以确保发动机在高温高压环境下的正常工作。

接下来是涡轮,也是航空发动机的重要组成部分之一。

涡轮是由多个叶片组成的旋转机构,通过高温高压气体的冲击,驱动涡轮旋转。

涡轮旋转时,带动压气机和涡轮机等部件的转动,从而实现发动机的工作。

涡轮的材料通常采用耐高温、高强度的合金材料,以确保发动机在高温环境下的可靠运转。

燃烧室是航空发动机中的关键部件之一。

燃烧室是将燃料和空气混合并点燃的场所,产生高温高压气体,推动活塞运动。

燃烧室需要具备高温耐受性和良好的密封性,以防止燃气泄漏和热量损失。

燃烧室的结构通常采用复杂的冷却系统和热隔离材料,以确保燃烧室内部的温度在可控范围内。

喷嘴是航空发动机中的重要部件之一。

喷嘴主要负责将高温高压气体排出发动机,并产生推力。

喷嘴的结构通常采用可调节的喷嘴喉道,使喷出的气体能够以最佳角度和速度排出,从而提高发动机的效率和推力。

喷嘴的材料通常采用高温耐受性和耐腐蚀性较好的合金材料。

除了以上介绍的部件外,航空发动机还包括压气机、燃油系统、冷却系统和控制系统等。

压气机用于将空气压缩,提供给燃烧室进行燃烧。

燃油系统负责将燃料供给燃烧室,确保燃料的正常燃烧。

冷却系统用于降低发动机中各部件的温度,保证其正常工作。

控制系统则负责监控和控制发动机的运行,确保其安全可靠。

航空发动机的主要部件包括气缸、涡轮、燃烧室和喷嘴等。

这些部件密切配合,共同完成发动机的工作。

它们的设计和制造需要考虑到高温高压的环境和复杂的工作条件,以确保发动机的性能和可靠性。

航空发动机结构..

航空发动机结构..

典型军用涡扇发动机结构
EJ200涡扇发动机用于欧洲联合研制的90 年代战斗机EFA2000,为双转子加力式低涵 道比涡扇发动机,由三级风扇,五级高压压 气机、具有空气雾化喷嘴的环形蒸发燃烧室、 单级高低压涡轮、加力燃烧室和收敛-扩散式 可调喷口组成。整台发动机有5个支点,共用 两个滑油腔室,两个承力框架。
CFM56 发动机支承简图
两个转子支承于五个支点上,通过两个承 力框架将轴承负荷外传,是承力构件最少的 发动机。低压转子为0-2-1支承方案,高压转 子为1-0-1支承方案。高压转子后支点为中介 支点,支承在低压涡轮的后轴上,此种支承 方案的主要优点是结构简单,低压轴刚性好, 发动机性能保持好,重量轻,为许多军民用 发动机所采用 。
RB199发动机(装备狂风式战斗机)是军用 发动机中唯一采用三转子结构的发动机,由3 级风扇、3级中压压气机、6级高压压气机、 环形蒸发燃烧室、单级高、中压涡轮、2级低 压涡轮、加力燃烧室及可调收扩喷管等组成。 另外还装有反推力装置,以减小着陆时的滑 行距离。
RB199发动机结构图
RB199 三转子发动机支承方案简图
由于高压与中压转子长度相对较短,因此 均采用2支点支承方案,其中高压转子最短, 故采用1-0-1支承方案;在中压转子中,为缩 短2支点间距离,将3号支点置于中压压气机 之后,形成0-1-1支承方案。
Su-27的心脏А Л -31Ф 发动机
А Л -31Ф ,是由俄罗斯的“留里卡-土 星”航空航天发动机制造公司在1985年研制 的第四代单元体设计、推重比为8的涡轮风扇 发动机。该发动机有很高的可靠性及技术维 护性能。А Л -31Ф 发动机即使在今天,也是 世界上最好的航空发动机之一 。
EJ200 发动机结构图

航空发动机组成

航空发动机组成

航空发动机组成航空发动机是航空器的核心部件,它由许多不同的部件组成,本文将详细介绍航空发动机的组成部分。

1. 压气机(Compressor)压气机是发动机最重要的部分之一,它将大量的空气压缩,使其能够进入燃烧室进行燃烧,并提供发动机所需的能量。

压气机分为多级压缩机和单级压缩机两种,多级压缩机通常用于高涵道比发动机中。

2. 燃烧室(Combustion chamber)燃烧室是发动机的核心部分,燃烧室内的燃料和空气混合后进行燃烧,释放出能量,并将高温高压的燃气推向涡轮。

燃烧室的结构和设计非常重要,它必须能够承受高温高压的燃气冲击,并且不能泄漏燃气。

3. 涡轮(Turbine)涡轮是由燃烧室排放的高温高压燃气驱动的旋转部件,其主要作用是带动压气机和辅助系统。

涡轮组件由高温合金制成,以耐受高温高压燃气的腐蚀和热膨胀。

4. 喷嘴(Nozzle)喷嘴是将高温高压的燃气喷出并加速的部件,喷嘴的设计可以调节排出的燃气速度和方向,以提高发动机效率和推力。

5. 空气滤清器(Air filter)空气滤清器是防止杂质和颗粒进入发动机的部件,它非常重要,因为它可以减少发动机受损的可能性,同时保持发动机的效率。

6. 冷却系统(Cooling system)冷却系统主要是用于防止发动机过热,降温的部件。

发动机需要保持适当的温度,以防止过热和机件熔化。

冷却系统包括油冷却器、气冷器、水冷却器等不同类型的部件。

油系统主要是用于润滑发动机各个部件的部件,以减少磨损和摩擦,保持发动机运转顺畅。

油系统也可以帮助冷却发动机和清除发动机内的杂质和污垢。

燃油系统主要是提供发动机燃料,以支持燃烧室中的燃烧过程。

燃油系统包括供油系统、燃油过滤器、燃油控制阀等部件。

驱动系统是将发动机的动力传递给飞机的部件,这包括传动轴、耦合件、万向节等。

驱动系统必须能够承载发动机的高速旋转和飞机的复杂运动。

辅助系统是支持发动机正常运行的部件,这包括引气系统、启动系统、起飞和着陆制动系统等。

航空发动机分类及发动机结构

航空发动机分类及发动机结构

前外输出的涡轮轴发动机
• 燃气涡轮喷气发动机 (涡喷) – 工作原理:一定量的空气通过进气道以较小的流动损失顺利地引入压气机, 在压气机中高速旋转的叶片对空气作功压缩空气提高空气的压力, 高压空 气在燃烧室内与燃油混合燃烧将化学能转变为热能形成高温高压的燃气, 高温高压的燃气首先在涡轮内膨胀, 推动涡轮高速旋转输出功去带动压气 机, 然后, 燃气在喷管内继续膨胀加速燃气使燃气以较高的速度喷出,产生 推力。
– 外涵:流过外涵的空气通过高速旋转的风扇叶片对空气作功, 压缩空气, 提 高空气的压力和温度, 接着空气在通道内膨胀加速, 排入大气, 也产生反作 用推力。

总推力=内涵推力+外涵推力
– 与涡喷发动机一样,从工作后的温度不同涡扇发动机也分为冷端和热端两 部分。进气道,风扇,低压压气机,高压压气机属于冷端,而燃烧室,高压涡轮, 低压涡轮,喷管属于热端。
– 燃气发生器后的燃气可用能全部用来在喷管内继续膨胀, 加速燃气, 提高 燃气的速度, 使燃气以较高的速度喷出, 产生推力。
– 从工作后的温度不同可将发动机分为冷端和热端两部分。进气道,压气机 属于冷端,而燃烧室,涡轮,喷管属于热端。
– 与航空活塞发动机相比: 航空燃气涡轮喷气发动机既是热机又是推进器。 重量轻, 推力大, 推进效率高, • 在很大的飞行速度范围内, 发动机的推力随飞行速度的增加而增加。
的合力在发动机轴线方向的分立叫发动机推力。
发动机定义
• 发动机是将燃油燃烧释放出的热能转变为 机械能的装置。
• 动力装置包括:发动机,所必需的工作系 统,如燃油系统,滑油系统,起动点火系 统。还应有防冰系统,反推系统,指示系 统和外壳体等。
燃气涡轮发动机的分类
• 涡轮喷气发动机:单转子,双转子和三转子; • 涡轮螺旋桨发动机(用于支线飞机) ; • 涡轮风扇发动机(用于干线飞机) ; • 涡轮轴发动机(用于直升机) 。

航空发动机结构

航空发动机结构

燃烧过程
01
02
03
油气混合
燃油与压缩后的空气混合, 形成油气混合物。
燃烧反应
油气混合物在燃烧室内进 行燃烧反应,释放出大量 的热能和气体。
产生推力
燃烧产生的高温、高压气 体推动涡轮旋转,进而推 动飞机前进。
膨胀过程
燃气膨胀
01
燃烧后的高温、高压气体从燃烧室流出,进入涡轮后的扩压器。
降低压力
02
根据燃料类型,可分为燃油发动机和 燃气涡轮发动机。
根据用途,可分为民用发动机和军用 发动机。
根据工作原理,可分为活塞发动机和 喷气发动机。
02 发动机主要部件叶片对空气进 行压缩,为燃烧室提供高压空气。
压气机的效率直接影响到发动机的性 能和燃油消耗率,因此其设计和制造 要求非常高。
高强度材料
发动机中的转子、叶片等部 件需要承受高负荷,因此需 要使用高强度材料,如镍基 合金和钛合金等。
耐腐蚀材料
发动机在高温、高湿的环境 下工作,需要使用能够耐腐 蚀的材料,如不锈钢和镍基 合金等。
制造工艺流程
01
02
03
04
铸造工艺
用于制造发动机中的涡轮叶片 、导向叶片等部件,通过将熔 融金属倒入模具中冷却成型。
振动问题
如发动机振动过大,需要检查发动机的平衡性、轴承状况 、气动稳定性等,找出振动源并采取相应措施。
保养建议
严格按照制造商提供的维护手册进行保养
按照制造商提供的保养计划,定期进行保养和检查,不要错过任何重 要的维护项目。
使用高品质的油液和耗材
选择高品质的机油、燃油、滑油等油液和耗材,可以减少发动机的磨 损和故障风险。
压气机通常由多级转子组成,每一级 转子都有一定数量的叶片,通过旋转 将空气逐级压缩。

航空发动机的基本结构及其作用

航空发动机的基本结构及其作用

航空发动机的基本结构及其作用航空发动机,那可真是个神奇的玩意儿,就像是飞机的“心脏”,要是没了它,飞机就只能在地面上干瞪眼啦。

咱先说说航空发动机的基本结构。

这发动机啊,就像一个复杂又精巧的小世界。

进气道就像是发动机的“嘴巴”,大口大口地把空气吸进来。

这空气可重要啦,就像我们人呼吸的氧气一样。

进气道得把空气好好地整理一下,就像我们把杂乱的头发梳整齐,让空气能顺顺当当进入后面的部分。

有一次我给朋友讲这个,朋友说:“那这进气道要是堵住了,飞机不就像被捂住嘴的人,喘不过气啦?”我笑着回答:“没错,所以进气道得保持畅通无阻呢。

”压气机呢,就像是一个超级大力士,把吸进来的空气拼命压缩。

这空气被压得越来越小,压力越来越大,就像把棉花团使劲儿捏成一个硬邦邦的小球。

经过压气机这么一折腾,空气都变得“精神抖擞”啦,准备好去后面接受更大的挑战。

燃烧室就像一个大火炉,被压缩的空气和燃料在这里相遇,然后“轰”的一下,就像干柴遇到了烈火,剧烈地燃烧起来。

这燃烧产生的能量可大了,就像一群小火箭在里面喷发。

火焰在燃烧室里疯狂地舞蹈,释放出的能量推动着后面的部件转动。

涡轮就像是一个被能量驱动的风车,不过这个风车可厉害着呢。

高温高压的气体推动涡轮旋转,涡轮又带动前面的压气机等部件。

它们就像一群配合默契的小伙伴,一个动起来,其他的都跟着动。

而且涡轮得承受住高温高压,就像一个钢铁战士,在恶劣的环境下坚守岗位。

尾喷管就像发动机的“屁股”,但可别小瞧它。

它把燃烧后的气体以高速喷出去,就像火箭发射一样,产生强大的推力,推动飞机向前飞行。

这尾喷管就像一个超级加速器,让飞机能在天空中飞得又快又稳。

航空发动机这些结构啊,每个都有自己独特的作用,它们相互配合,才让飞机能在天空中翱翔。

就像一个篮球队,有负责投篮的,有负责传球的,有负责防守的,缺了谁都不行。

要是我们想更了解航空发动机呢,一是可以去科技馆看看航空发动机的模型,近距离观察一下它们的结构,说不定会有新的发现;二是可以在网上找一些关于航空发动机的科普视频,那些动画演示能让我们更清楚地看到发动机是怎么工作的,这样我们就能更好地领略这个神奇“心脏”的魅力啦。

典型航空涡扇发动机结构分析

典型航空涡扇发动机结构分析

典型航空涡扇发动机结构分析航空涡扇发动机是一种常见的航空发动机类型,广泛应用于商用飞机、军用飞机以及通用航空飞机等。

其结构包括前部压气机、燃烧室、涡轮与喷管等组成。

1.前部压气机:前部压气机是涡扇发动机的关键组成部分,它由多个级数的压气机叶片和其对应的压气机转子组成。

其主要功能是负责将空气吸入发动机,并增压送入燃烧室。

在前部压气机中,叶片通过转子的旋转运动将空气进行压缩,提高空气的密度。

这样,可以在后续的燃烧室中实现更高效的燃烧过程。

2.燃烧室:燃烧室是涡扇发动机的第二个重要组成部分,其主要功能是将经过压缩的空气与燃料混合并进行燃烧。

燃烧室通常由一个或多个环形的燃烧室组成,每个燃烧室内部设有喷嘴和火焰传播器。

当经过压缩的空气从压气机送入燃烧室后,燃料通过喷嘴喷入燃烧室中,与空气混合并燃烧。

在燃烧室内,燃烧产生的高温和高压气体通过火焰传播器迅速传递到涡轮。

3.涡轮:涡轮是涡扇发动机的另一个重要组成部分,其主要由高温高压气体推动运动。

涡轮包括高压涡轮和低压涡轮两部分。

高压涡轮由高温的燃气推动运动,通过连接在同一轴上的压气机转子来驱动前部压气机。

低压涡轮则由燃烧室内高温高压气体推动运动,通过连接在同一轴上的扇叶来产生推力。

4.喷管:喷管是涡扇发动机的最后一个关键结构,其主要功能是将由涡轮推进的高速气流转化为高速喷射喷流,并产生推力。

喷管由高压部和低压部组成,通过喷嘴将高速喷流推出,从而产生大量的推力。

喷管的设计通常考虑到优化燃油效率和降低噪音。

以上是典型航空涡扇发动机的结构分析。

由于涡扇发动机的结构复杂,还有其他的部件如起动机、油液系统、冷却系统和控制系统等,这些部件共同协作,确保涡扇发动机的正常运行和性能提升。

航空发动机结构 第二章 几种典型的发动机

航空发动机结构 第二章 几种典型的发动机

А Л -31Ф 发动机支承简图
АЛ-31Ф发动机转子支承方案,全机共有 六个支点,高压转子为1-0-1支承方案,低压 转子为1-2-1四支点支承方案,低压涡轮转子 与风扇转子间采用了传递扭矩、轴向力的柔
性联轴器,以解决低压转子工作不正常对高 压转子的影响。
2.3 典型的涡轮螺旋桨发动机
涡桨6发动机是单转子涡轮螺旋桨飞机,是 运8飞机的动力装置。由单转子轴流式压气机, 环形燃烧室等组成。结构图如下:
EJ200 发动机结构图
EJ200转子支承方案简图
第四代军用发动机—F119-PW-100
F119-PW-100发动机由3级风扇,6级高压压 气机,带气动喷嘴,浮壁式火焰筒的环形燃 烧室,单级高压涡轮与高压转向相反的单级 低压涡轮(对转涡轮),加力燃烧室与二维 喷管等组成。整台发动机分为:风扇、核心 机、低压涡轮、加力燃烧室、尾喷管和附件 传动机匣等6个单元体,另外还有附件等。
CFM56 发动机支承简图
两个转子支承于五个支点上,通过两个承
力框架将轴承负荷外传,是承力构件最少的 发动机。低压转子为0-2-1支承方案,高压转 子为1-0-1支承方案。高压转子后支点为中介 支点,支承在低压涡轮的后轴上,此种支承 方案的主要优点是结构简单,低压轴刚性好, 发动机性能保持好,重量轻,为许多军民用 发动机所采用 。
航空发动机结构
第二讲 几种典型的航空发动机
2.1几种典型的涡喷发动机
涡喷5发动机是典型的第一代涡轮喷气发动 机,主要结构特点是采用离心式压气机和分 管式燃烧室,是歼五,轰五型飞机的动力装 置。具体结构如下:
涡喷6发动机是歼六,强五飞机的动力装 置,涡喷六发动机是第二代涡轮喷气发动机。 主要结构特点是采用单转子轴流式压气机和 环管型燃烧室。

常用航空发动机的结构与原理

常用航空发动机的结构与原理

常用航空发动机的结构与原理展开全文一、活塞式航空发动机为航空器提供飞行动力的往复式内燃机称为活塞式发动机。

发动机带动空气螺旋桨等推进器旋转产生推进力。

活塞式发动机由汽缸、活塞以及把活塞的往复运动转变为曲轴旋转运动的曲柄连杆机构等主要部分组成。

曲柄连接着螺旋桨,螺旋桨随着曲柄转动而转动,曲轴则支承在轴承上。

汽缸上装有进气门和排气门" 进气门是控制空气和汽油的混合气进入的零件,汽油燃烧完以后有排气门排出。

活塞式航空发动机是一种四冲程、电嘴点火的汽油发动机。

曲轴转动两圈,每个活塞在汽缸内往复运动4次,每次称1个冲程。

4个冲程依次为吸气、压缩、膨胀(作功)和排气,合起来形成1 个定容加热循环。

从1903年第一架飞机升空到第二次世界大战末期,所有飞机都用活塞式航空发动机作为动力装置。

20 世纪40年代中期,在军用飞机和大型民用机上,燃气涡轮发动机逐步取代了活塞式航空发动机,但小功率活塞式航空发动机比燃气涡轮发动机经济,在轻型低速飞机上仍得到应用。

二、燃气涡轮发动机由压气机、燃烧室和燃气涡轮组成的发动机称为燃气涡轮发动机。

它的优点是重量轻、体积小和运行平稳,广泛用作飞机和直升机的动力装置。

核心机:在燃气涡轮发动机中,由压气机、燃烧室和驱动压气机的燃气涡轮组成发动机的核心机。

空气在压气机中被压缩后,在燃烧室中与喷入的燃油混合燃烧,生成高温高压燃气驱动燃气涡轮作高速旋转,将燃气的部分能量转变为涡轮功。

涡轮带动压气机不断吸进空气并进行压缩,使核心机连续工作。

从燃气涡轮排出的燃气仍具有很高的压力和温度,经膨胀后释放出能量(称为可用能量)用于推进。

核心机不断输出具有一定可用能量的燃气,因此又称燃气发生器。

现代燃气涡轮发动机压气机的增压比(压气机出口空气总压与进口总压之比)范围为4-28,消耗功率可高达数十兆瓦(几万马力)。

燃气涡轮前的温度可达1200-1700K。

压气机分为离心式和轴流式两类,前者增压比低、直径大,仅用于小功率发动机;后者流量大、增压比高,应用广泛。

航空发动机结构-PPT课件

航空发动机结构-PPT课件

EJ200 发动机结构图
EJ200转子支承方案简图
第四代军用发动机—F119-PW-100
F119-PW-100发动机由3级风扇,6级高压压 气机,带气动喷嘴,浮壁式火焰筒的环形燃 烧室,单级高压涡轮与高压转向相反的单级 低压涡轮(对转涡轮),加力燃烧室与二维 喷管等组成。整台发动机分为:风扇、核心 机、低压涡轮、加力燃烧室、尾喷管和附件 传动机匣等6个单元体,另外还有附件等。
CFM56 发动机支承简图
两个转子支承于五个支点上,通过两个承 力框架将轴承负荷外传,是承力构件最少的 发动机。低压转子为0-2-1支承方案,高压转 子为1-0-1支承方案。高压转子后支点为中介 支点,支承在低压涡轮的后轴上,此种支承 方案的主要优点是结构简单,低压轴刚性好, 发动机性能保持好,重量轻,为许多军民用 发动机所采用 。
RB199发动机(装备狂风式战斗机)是军用 发动机中唯一采用三转子结构的发动机,由3 级风扇、3级中压压气机、6级高压压气机、 环形蒸发燃烧室、单级高、中压涡轮、2级低 压涡轮、加力燃烧室及可调收扩喷管等组成。 另外还装有反推力装置,以减小着陆时的滑 行距离。
RB199发动机结构图
RB199 三转子发动机支承方案简图
由于高压与中压转子长度相对较短,因此 均采用2支点支承方案,其中高压转子最短, 故采用1-0-1支承方案;在中压转子中,为缩 短2支点间距离,将3号支点置于中压压气机 之后,形成0-1-1支承方案。
Su-27的心脏А Л -31Ф 发动机
А Л -31Ф ,是由俄罗斯的“留里卡-土 星”航空航天发动机制造公司在1985年研制 的第四代单元体设计、推重比为8的涡轮风扇 发动机。该发动机有很高的可靠性及技术维 护性能。А Л -31Ф 发动机即使在今天,也是 世界上最好的航空发动机之一 。

【李其汉】航空发动机结构完整性研究进展

【李其汉】航空发动机结构完整性研究进展

【李其汉】航空发动机结构完整性研究进展航空发动机结构完整性研究进展李其汉(北京航空航天⼤学能源与动⼒⼯程学院,北京100191)摘要:航空发动机结构完整性包含发动机结构的功能、强度、刚度、振动、疲劳、蠕变、寿命、损伤容限,以及发动机结构可靠性,对于满⾜发动机综合性能(如推重⽐)的要求和保证发动机的安全性与耐久性具有⾄关重要的意义。

系统地介绍了美、英、俄等国航空发动机结构完整性研究的进展和成就,重点介绍了美国《发动机结构完整性⼤纲》和相关研究计划的研究、形成和发展的演变过程,并指出了中国发动机结构完整性的研究现状和发展任务。

关键词:结构完整性;发动机结构完整性⼤纲;航空发动机;安全性;耐久性中图分类号:V231.9⽂献标识码:Adoi:10.13477/j.cnki.aeroengine.2014.05.001.Investigation Progress on Aeroengine Structural IntegrityLi Qi-han(School of Jet Propulsion,Beihang University,Beijing 100191,China )Abstract:Aeroengine structural integrity contains function,strength,stiffness,vibration,creep,fatigue,life,damage tolerance of engine structure and engine structural reliability.It is most important for meeting the requirments of engine integrated performance (such as the ratio between thrust and weight )and ensuring engine safety and durability.The investigation progress and accomplishments on aeroengine structural integrity in the United States,England and Russia were systematically introduced,with emphasis on the change process of the investigation,generation and development of the Engine Structural Integrity Program and relevant research program in the United States were introduced.Meanwhile,the investigation condition and future development in China were presented in this paper.Key words:structural integrity;engine structural integrity program(ENSIP);aeroengine;safety;durability航空发动机Aeroengine收稿⽇期:2013-12-12作者简介:李其汉(1938),男,教授,研究⽅向为航空发动机结构动⼒学;E-mail:liqihan@buaa.edu.cn。

航空发动机轴承结构

航空发动机轴承结构

航空发动机轴承结构
航空发动机轴承结构主要由外圈、内圈、滚动元件(如滚针、滚道球等)和保持器组成。

1. 外圈:外圈是轴承中的外部环形零件,主要用于容纳滚动元件和承受外部载荷。

2. 内圈:内圈是轴承中的内部环形零件,与外圈配合,在运转时与滚动元件一起转动。

3. 滚动元件:滚动元件是指轴承中能够滚动的圆柱或球形零件,主要用于承载外部载荷。

常见的滚动元件包括滚针、滚道球等。

4. 保持器:保持器是用于保持滚动元件的相对位置的零件,通常采用环形或笼形设计,能够稳定滚动元件并保持均匀分布。

航空发动机轴承结构设计需要考虑减小摩擦、降低能量损失、提高传动效率、减少振动和噪音等因素。

此外,由于航空发动机工作环境的极端条件,轴承结构还需要具备高温、高压、高速等特殊性能要求,提高其可靠性和耐用性。

航空发动机结构

航空发动机结构

桨扇由涡轮驱动,无涵 道外壳,装有减速器, 从这些来看它有一点象 螺旋桨;但是它的直径 比普通螺旋桨小,叶片 数目也多(一般有6-8 叶),叶片又薄又宽, 而且前缘后掠,这些又 有些类似于风扇叶片。
22:49
NPU--ZhaoMing
15
使用最广泛的燃气涡轮发动机:
• 加力的涡喷发动机 • 加力的涡扇发动机 燃气涡轮发动机的共同特点:
22:49
NPU--ZhaoMing
12
4、WZ发动机
主要部件:进气道、压气机、燃烧室、动力涡 轮、自由涡轮、尾喷管
特点:通常带有自由涡轮,而其他形式的涡轮 喷气发动机一般没有自由涡轮。
22:49
NPU--ZhaoMing
13
5 桨扇发动机
螺桨风扇发动机是一种介于涡扇发动机和涡桨 发动机之间的一种发动机形式。它既可看作带除去 外涵道的大涵道比涡扇发动机,又可看作高速先进 螺桨的涡桨发动机,因而兼有前者飞行速度高和后 者耗油率低的优点。目前正处于研究和实验阶段。
桨扇发动机的概念研 究始于70年代中期。80年 代后半期已完成地面和飞 行验证试验,基本达到预 期目标。由于航空公司的 综合经济因素和公众接受 心理等种种原因,桨扇发 动机尚未进入实用阶段。
22:49
NPU--ZhaoMing
14
桨扇发动机的关键部件是先进高速螺桨,它带有多个宽 弦、薄叶型的后掠桨叶,能在飞行马赫数0.8下保持较高的效 率,见图1-6。
22:49
NPU--ZhaoMing
19
燃气涡轮发动机的工作循环
22:49
NPU--ZhaoMing
20
压气机作用:
•用来提高进入发动机内的空气压力,供给发动机工 作时所需要的压缩空气。

航空发动机结构分析课程设计

航空发动机结构分析课程设计

航空发动机结构分析课程设计一、选题背景随着航空业的发展和现代空气动力学的不断进步,航空发动机的设计与研发变得越来越重要。

航空发动机是航空器的核心和动力机构,其设计有着关键性的作用。

发动机的结构分析是发动机设计的基础,对发动机功能的实现和性能的提升具有重要意义。

因此,本文将探讨航空发动机结构分析课程设计的相关内容。

二、研究内容1. 航空发动机结构概述航空发动机的结构是由多个组件组成的,包括气体压气机、燃烧室、涡轮机、喷管等组件。

这些组件相互配合、协同工作,实现了发动机功能的实现。

2. 发动机叶片的结构分析发动机叶片是发动机的关键组件,直接影响到发动机的性能和寿命。

本课程设计将分析叶片的结构和设计原理,探讨如何优化叶片设计,提高其耐久性和性能。

3. 发动机高温部件的结构分析航空发动机在工作过程中需要经受高温的考验,因此,发动机高温部件的结构分析十分重要。

本课程设计将针对高温部件的材料和结构进行分析,探讨如何在高温情况下保证这些部件的正常运行。

4. 航空发动机结构的优化设计发动机结构的优化设计是提高发动机性能和寿命的关键之一。

本课程设计将探讨如何在结构分析的基础上对发动机进行优化设计,对发动机的功率、效率、可靠性等方面进行改进。

三、参考文献1.杨景林, 唐善民. 航空发动机综合设计[M]. 北京: 科学出版社.2012.2.李兵. 航空发动机设计及其实践[M]. 北京: 北京航空航天大学出版社. 2013.3.徐乾元. 航空发动机原理[M]. 北京: 航空工业出版社. 2009.四、结论航空发动机结构分析课程设计是对发动机设计和研发的重要探讨,具有重要的理论和实际意义。

通过本次课程设计,可以更加深入地了解航空发动机的结构与原理,促进发动机设计和研发的进一步发展。

航空发动机结构-第二章几种典型的发动机

航空发动机结构-第二章几种典型的发动机

航空发动机结构-第二章几种典型的发动机在航空领域中,发动机是飞机的“心脏”,是飞机能够获得推进力和提供动力的关键组成部分。

发动机的结构和种类多种多样,下面将介绍几种典型的航空发动机。

1.活塞发动机活塞发动机是最早应用于飞机的内燃机,也是最常见的发动机类型之一、活塞发动机可分为直列式、对夹式和星型式等多种形式。

其原理是通过往复运动的活塞来吸入和压缩燃油和空气混合物,然后在燃烧室中点燃并释放能量,推动飞机前进。

活塞发动机结构简单,维护方便,但功率相对较低,适用于小型飞机。

2.涡轮发动机涡轮发动机是目前应用最广泛的一种航空发动机。

涡轮发动机分为涡轮螺旋桨发动机和喷气发动机两大类。

涡轮螺旋桨发动机是通过将燃油燃烧释放的热能转化为机械能,驱动传动系统旋转,带动螺旋桨旋翼,产生推力。

喷气发动机则是通过将压缩空气与燃料混合后点燃并喷出高速气流,产生后向推力。

涡轮发动机功率大,燃油效率高,适用于各种类型的飞机。

3.涡扇发动机涡扇发动机是喷气发动机的一种特殊形式,由于其具有较高的推力、较低的噪音和较好的燃油经济性,目前已成为商业航空领域中最主要的发动机类型。

涡扇发动机通过将前后两个涡轮连接在同一轴上,形成高压涡轮和低压涡轮,从而实现高效的推力产生。

涡扇发动机具有高推力、高燃油效率和低噪音等优点,适用于中长途商业飞机。

4.激光发动机激光发动机是一种高科技发动机,利用激光束对高温等离子体进行加热,产生推进力的原理。

激光发动机具有结构简单、燃料消耗少和推力大等优势,但目前仍处于实验阶段,尚未实现商业应用。

以上是几种典型的航空发动机,每种发动机都有其独特的优点和适用范围。

随着科技的进步和航空领域的发展,未来可能还会出现更多新型的发动机。

航空发动机结构_课件

航空发动机结构_课件
燃气涡轮发动机的共同特点:
• 获得高温高压燃气;
• 利用着部分燃气产生推力或机械功(在 尾喷管内继续膨胀,高速喷出产生推力; 或者在后续涡轮内继续膨胀获得机械功, 带动风扇、螺浆或其它装置)
15:55
NPU--ZhaoMing
16
核心发动机(燃气发生器):
发生燃气的部件,即压气机、燃烧室和涡 轮称为燃气发生器。由于它处于发动机的核心 部位,故又称为核心发动机。
15:55
NPU--ZhaoMing
28
轴流式压气机转子叶片榫头的型式 (1)销钉式榫头 结构简单、工艺简单;尺寸重量大,承载能力低 (2)燕尾形榫头 尺寸小、重量轻,承载能力强,加工方便,根部有 应力集中。 (3)枞树形榫头 尺寸重量小,承载能力最强。应力集中最严重,加 工精度高Ming
24
压气机的主要特点:从结构设计的角度来讲,转速高,每分 钟达数千或数万转(如JT8D-9发动机高、低压转速分别为 12250、8600r/min)。 转速高的优点:可以使压气机在尺寸小重量轻的条件下,得 到所需的性能(即给定的空气流量和增压比),满足发动机 性能设计的最基本要求。 转速高的缺点:在高转速条件下,转子零件及其连接处要承 受巨大的惯性力、气体力、扭矩和复杂的振动负荷。若零件 型面和传力方案设计不当,工作时就有破坏损坏的危险。若 转子零、组件的定心方案不妥,转子装配不当,平衡不好, 横向刚性不足,当压气机高转速工作时,转子就会发生剧烈 振动而影响发动机正常工作。
15:55
NPU--ZhaoMing
6
航空发动机分类:
在过去的一个航空百年里,人类所使用的
主要的航空发动机,可分为两大类:
1、活塞式发动机
•冷却方式(液冷式、气冷式)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生拉力。 发动机推力来自两个部分,一部分是由高速喷出的燃 气所产生的反作用力(10%),一部分涡轮带动螺浆 产生前进的拉力(90%)。
02:26
NPU--ZhaoMing
10
3、WS 主要部件:风扇、外涵道、内涵道(压气机、燃烧室、
涡轮),尾喷管 特点:发动机的推力是内外涵道气流反作用力的总和。 涵道比(流量比):外、内涵道空气流量之比。
• 对单转子发动机来讲,就是指压气机、主燃烧 室的带动压气机的涡轮;
• 对双转子发动机来讲,就是指高压压气机、主 燃烧室和高压涡轮。
以核心机为基础,增添不同类型的部件 就可以发展成不同类型的发动机。
02:26
NPU--ZhaoMing
16
燃气涡轮发动机的主要性能参数 推力 单位推力 推重比 单位迎面推力 单位燃油消耗率 增压比涡轮前燃气温度涵道比
02:26
NPU--ZhaoMing
8
1、WP 主要部件:进气装置、 压气机,燃烧室,燃气 涡轮,尾喷管,(加力燃 烧室) 特点: (1)涡轮只带动压气机 压缩空气。 (2)发动机的全部推力 来自高速喷出的燃气所 产生的反作用力。
02:26
NPU--ZhaoMing
9
2、WJ 主要部件:压气机,燃烧室,燃气涡轮,尾喷管,减速器 特点: 涡轮不仅带动压气机压缩空气,还带动螺浆产
费用占航空总费用的1/4。
02:26
NPU--ZhaoMing
3
军用发动机设计要求 A 性能要求,包括地面台架性能和空中飞行
性能(推力和耗油率)、起动性能、加减速性 能、引气量、功率提取和过载;
B 适用性要求,包括发动机在飞行包线内稳 定工作和油门杆使用不受限制,加力接通、切 断不受限制,飞行状态变化、极限机动状态等 时的发动机稳定工作;
02:26
NPU--ZhaoMing
5
航空发动机分类:
在过去的一个航空百年里,人类所使用的
主要的航空发动机,可分为两大类:
1、活塞式发动机
•冷却方式(液冷式、气冷式)。 •气缸排列方式(星形、V形、直列式、对列式、 X形)
2、空气喷气式发动机
•无压气机(冲压式发动机、脉动式发动机)。 •有压气机(涡轮喷气发动机、涡轮风扇发动机 、涡轮螺旋桨发动机、涡轮轴发动机、浆扇发
02:26
NPU--ZhaoMing
17
燃气涡轮发动机的基本机理---喷气推进原理: 喷气推进是牛顿第三定律(作用在物体上的每一
桨扇由涡轮驱动,无涵 道外壳,装有减速器, 从这些来看它有一点象 螺旋桨;但是它的直径 比普通螺旋桨小,叶片 数目也多(一般有6-8 叶),叶片又薄又宽, 而且前缘后掠,这些又 有些类似于风扇叶片。
02:26
NPU--ZhaoMing
14
使用最广泛的燃气涡轮发动机:
• 加力的涡喷发动机 • 加力的涡扇发动机 燃气涡轮发动机的共同特点:
C 结构和安装要求,包括安装节位置、外廓 尺寸、重量和重心位置;
02:26
NPU--ZhaoMing
4
D 可靠性要求 包括发动机寿命和工作循环、 发动机各状态连续工作时间和平均故障时间;
E 维修性要求,包括发动机外场可更换件的 更换时间、每飞行小时的平均维修工时和更换 发动机时间等;
F 其他要求,如满足飞机隐身要求的红外信 号和雷达反射特性以及飞行控制的矢量推力。
02:26
NPU--ZhaoMing
11
4、WZ发动机
主要部件:进气道、压气机、燃烧室、动力涡 轮、自由涡轮、尾喷管
特点:通常带有自由涡轮,而其他形式的涡轮 喷气发动机一般没有自由涡轮。
02:26
NPU--ZhaoMing
12
5 桨扇发动机
螺桨风扇发动机是一种介于涡扇发动机和涡桨 发动机之间的一种发动机形式。它既可看作带除去 外涵道的大涵道比涡扇发动机,又可看作高速先进 螺桨的涡桨发动机,因而兼有前者飞行速度高和后 者耗油率低的优点。目前正处于研究和实验阶段。
桨扇发动机的概念研 究始于70年代中期。80年 代后半期已完成地面和飞 行验证试验,基本达到预 期目标。由于航空公司的 综合经济因素和公众接受 心理等种种原因,桨扇发 动机尚未进入实用阶段。
02:26
NPU--ZhaoMing
13
桨扇发动机的关键部件是先进高速螺桨,它带有多个宽 弦、薄叶型的后掠桨叶,能在飞行马赫数0.8下保持较高的效 率,见图1-6。
动机)。
02:26
NPU--ZhaoMing
6
02:26
NPU--ZhaoMing
7
航空燃气涡轮发动机的基本类型
按照做功方式分五种基本类型
•涡轮喷气发动机(涡喷)(WP) •涡轮螺浆发动机(涡浆)(WJ) •涡轮风扇发动机(涡扇)(WS) •涡轮轴发动机(涡轴)(WZ) •螺浆风扇发动机(浆扇)(JS)
• 获得高温高压燃气; • 利用着部分燃气产生推力或机械功(在
尾喷管内继续膨胀,高速喷出产生推力; 或者在后续涡轮内继续膨胀获得机械功, 带动风扇、螺浆或其它装置)
02:26
NPU--ZhaoMing、燃烧室和涡 轮称为燃气发生器。由于它处于发动机的核心 部位,故又称为核心发动机。
航空发动机结构分析
目录
• 绪论 • 压气机 • 涡轮 • 燃烧室 • 尾喷管 • 总体结构 • 受力分析
02:26
NPU--ZhaoMing
西北工业大学
1
概论
发动机是飞机上的动力装置。自从人类尝试进行
有翼飞行器飞行以来,经历了无数次失败,只是在使 用了活塞式内燃机以后,才在20世纪初把第一架飞机 送上蓝天。
二战后,由于喷气发动机的迅速发展,活塞式发动 机逐渐被淘汰。
20世纪60年代,由于涡扇发动机的问世,大大降 低了耗油率,才有可能设计制造成大型喷气飞机,大 幅度提高载重量和航程。
燃气涡轮发动机大大提高了战斗机的性能,使其 飞行速度达到2倍以上的音速。直到现在还被广泛应 用于各种类型的飞机上。
02:26
NPU--ZhaoMing
2
航空发动机研究工作的特点
•技术难度大
一台发动机内有十几个部件和系统及数万个零件
研制一种新的发动机需要1万小时的整机试验和10万小
时的部件和系统试验。
•周期长
先进发动机的研制周期为9-15年,F119从1986年开始
到2005年投入使用,前后达19年。
•费用高
F119的研制费用超过20亿美元;发动机的研究和发展
相关文档
最新文档