纳米材料及其在工程塑料改性中的应用探讨

纳米材料及其在工程塑料改性中的应用探讨
纳米材料及其在工程塑料改性中的应用探讨

纳米材料及其在工程塑料改性中的应用探讨

关键词:纳米材料工程塑料改性

一、概述

纳米材料是“纳米级结构材料”的简称,指的是结构单元的粒径介于1nm~100nm之间的材料类型。纳米材料尺寸极小,与电子的相干长度相当,易发生强相干并引发自组织,因此材料性质通常发生变化。此外,由于纳米材料的尺度与光的波长大致相当,且比表面积较大可引发特殊效应,因此纳米材料会表现出多种特性,包括熔点特性、光学特性、导热导电特性等,这些特性的存在改变了物质以整体状态存在时所表现出的各种性质。

二、纳米材料的特性

1.小尺寸效应

非晶态的纳米材料其颗粒粒径小,其尺寸与德布罗意波长及超导态的相干长度大致相当,有些颗粒粒径甚至小于光波波长,此时,晶体原有的周期性的边界条件便会被打破而发生变化,因此,纳米材料会发生显著的小尺寸效应,其光性、电磁性质、热学性质及力学性质等随即发生不同程度的变化。发生了小尺寸效应的纳米材料所具备的特殊物理化学性质在材料改进中可得到广泛应用,如在聚合物的性质改良中,讲纳米材料添加入其中,则聚合物原有的力学特性可以得到相应的改善,同时,由于纳米材料自身所具备的特殊性质可与聚合物之间发生一定反应,因此还可以激发聚合物产生多种新型的性质,材料性能得到全面提高。

纳米技术在高分子材料改性中的应用

纳米技术在高分子材料改性中的应用 (南通大学化学化工学院高分子材料与工程132 朱梦成1308052064 ) [摘要] 纳米材料及其技术是随着科技发展而形成的新型应用技术。纳米材料的研究是从金属粉末、陶瓷等领域开始的,现已在微电子、冶金、化工、电子、国防、核技术、航天、医学和生物工程等领域得到广泛的应用。近年来将纳米材料分散于聚合物中以提高高分子材料性能的研究也日益活跃,并取得了许多可观的成果。 [关键词] 纳米技术;高分子材料;改性;应用 1纳米粒子的特性及其对纳米复合材料的性能影响 1.1纳米粒子的特性 纳米粒子按成分分可以是金属,也可以是非金属,包括无机物和有机高分子等;按相结构分可以是单相,也可以是多相;根据原子排列的对称性和有序程度,有晶态、非晶态、准晶态。由于颗粒尺寸进入纳米量级后,其结构与常规材料相比发生了很大的变化,使其在催化、光电、磁性、热、力学等方面表现出许多奇异的物理和化学性能,具有许多重要的应用价值。 1.1.1表面与界面效应 纳米微粒比表面积大,位于表面的原子占相当大的比例,表面能高。由于表面原子缺少邻近配位的原子和具有高的表面能,使得表面原子具有很大的化学活性,从而使纳米粒子表现出强烈的表面效应。利用纳米材料的这种特点,能与某些大分子发生键合作用,提高分子间的键合力,从而使添加纳米材料的复合材料的强度、韧性大幅度提高。 1.1.2小尺寸效应 当超细微粒的尺寸与传导电子的德布罗意波长相当或更小时,晶体周期性的边界条件将被破坏,导致其磁性、光吸收、热、化学活性、催化性及熔点等发生变化。如银的熔点为900℃,而纳米银粉的熔点仅为100℃(一般纳米材料的熔点为其原来块体材料的30%~50%)。应用于高分子材料改性,利用纳米材料的高流动性和小尺寸效应,可使纳米复合材料的延展性提高,摩擦系数减小,材料表面光洁度

聚丙烯塑料的改性及应用

聚丙烯塑料的改性及应用 1、聚丙烯在合成树脂生产中占据重要地位,发展极为迅速 聚丙烯是五大通用合成树脂中的一个重要品种,在国内外的发展均十分迅速。在全球塑料用五大合成树脂中,聚丙烯的产量占有1/4左右的份额,预计2006年世界五大通用合成树脂的总产能将达到1亿9千万吨,其中聚丙烯4878万吨,占总产能的25.6%[1]。而我国2004年聚丙烯树脂产量为474.88万吨,进口291.4万吨,出口1.53万吨,其表观消费量为764.7万吨,占当年全国五大通用树脂表观消费量总和2954万吨的25.9%。预计到2010年我国聚丙烯树脂的表观消费量将增加至1080万吨,较2004年增长40%以上。表1列出近期投产和正在建设的聚丙烯装置的地点和产能。 表1 近期投产和在建聚丙烯装置

在已宣布的新增产能中,中石化253万吨/年,中石油135万吨/年,而且大多数项目的产能都在30万吨以上,达到世界级规模。这些装置全部投产后,中石化的聚丙烯产能将超过巴赛尔公司,跃居全球榜首,中石油也将列位前五名之列,届时中国将成为生产聚丙烯树脂全球产能最大的国家。 另据报道,我国聚丙烯树脂的产量1995年仅为107.35万吨,到2005年达到522.95万吨,平均年递增38.7%,同期表观消费量也从212.92万吨增至823万吨,平均年递增28.7%,成为全球聚丙烯消费增长最快的国家[2]。 1 聚丙烯基本知识 1.1 树脂与塑料的定义和分类 树脂(Resin):高分子材料亦称高分子聚合物,分为天然高分子材料和合成高分子材料。在合成高分子材料中按塑料、橡胶、纤维三大用途分为合成树脂、合成橡胶和合成纤维三大类,其中用于塑料的合成树脂所占的比例最大,约占合成材料总量的2/3以上。 塑料(Plastics):以合成树脂为主要成分,添加有适量的填料、助剂、颜料,而且在加工过程中能流动成型的材料。 热塑性塑料(ThermoPlastics):能在特定温度范围内反复软化和冷却硬化的塑料。 热固性塑料(Thermosetting Plastics):在第一次成型之后,成为不熔、不溶性物料的塑料。

工程塑料改性技术秘笈

工程塑料改性技术秘笈

工程塑料改性技术秘笈 第一笈聚对苯二甲酸丁二醇酯 PBT 1.环保阻燃非增强特点:环保阻燃、低析出性、高加工流动性 2.环保阻燃非增强特点:环保型、未增强、阻燃、不析出、流动性好 3. PBT/PC合金特点:玻纤增强、环保、阻燃。良好的加工性能,优良的力学性能和阻燃性能 4. 环保阻燃30%增强特点:环保阻燃、低析出性、玻纤增强 5. 环保阻燃30%增强特点:环保型、玻纤增强、阻燃、不析出、增韧 6. 环保阻燃增强高CTI 特点:矿物、玻纤填充,阻燃,防翘曲,高电性能,表面光滑 7. 环保阻燃增强高长期耐热特点:环保型、玻纤增强、阻燃、流动性好、优异的高温长期使用性能 第二笈聚对苯二甲酸乙二醇酯 PET 3.30%增强特点:玻纤增强、非阻燃、机械强度高、抗蠕变性 4.阻燃30%增强特点:环保阻燃增强、机械强度高、抗蠕变性、尺寸稳定性高 5.阻燃40%增强特点:阻燃增强、机械强度高、抗蠕变性、尺寸稳定性高 6.环保阻燃30%增强特点:环保型、阻燃增强、机械强度高、抗蠕变性 7.环保阻燃30%增强特点:环保型、高阻燃、高流动性、机械强度高、耐高温焊锡 第三笈 PA6 8.超韧尼龙:环保型,优异的低温韧性增强尼龙 9.高阻燃非增强 10.10-30%增强高阻燃尼龙 11.高尺寸稳定性30%填充阻燃尼龙 12.5-25%矿物填充、阻燃改进、无卤无磷阻燃、高环保型,电性能优异 13. 第四笈 PA66 14.高阻燃非增强 15.10-30%增强高阻燃尼龙 16.10-30%环保增强高阻燃尼龙 17.高尺寸稳定性30%填充阻燃尼龙

18.5-25%矿物填充、阻燃改进、无卤无磷阻燃、高环保型,电性能优异 19.红磷型阻燃增强 第五笈 PPO 20.未增强PPO 21.阻燃增强型 22.环保阻燃增强型 23.PPO/PA合金 24.第六笈 PPS 25.环保型矿物、玻纤增强阻燃 26.玻纤增强 第七笈 27.PBT、PET、PA6、PA66、PPO母料 第七笈 PC 28.PC改性方向: 29.耐候型 30.光高反射 31.难燃型 32.汽车用 33.光散射型 34.低异向性 35.等方向型 36.高难燃型 37.耐磨耗型 38.碳纤维增强型 39.EMI型 40.PC/ABS改性方向 41.防静电型 42.高流动型 43.高刚型

粉体表面改性复习要点(精简版)

第2章 纳米粉体的分散 1.粉体分散的三个阶段(名词解释) 润湿 是将粉体缓慢加入混合体系形成的漩涡,使吸附在粉体表面的空气或其它杂质被液体取代的过程。 ?解团聚 是指通过机械或超声等方法,使较大粒径的聚集体分散为较小颗粒。 ?稳定化 是指保证粉体颗粒在液体中保持长期的均匀分散 2.常用的分散剂种类 (1)表面活性剂 空间位阻效应 (2)小分子量无机电解质或无机聚合物 吸附--提高颗粒表面电势 (3)聚合物类(应用最多) 空间位阻效应、静电效应 (4)偶联剂类 3.聚电解质(名词解释) 是指在高分子链上带有羧基或磺酸基等可离解基团的水溶性高分子 4.对不同pH 值下PAA 在ZrO 2表面的吸附构型进行分析。 图.不同pH 值下PAA 在ZrO 2 表 面的吸附构型 a.当pH<4时,PAA 几乎不解离,以线团方式存在于固液界面上,吸附层很薄,几乎无位阻作用 δ δδ

b.随pH值增加,链节间静电斥力使其伸展开 c.ZrO2表面电荷减小直至由正变负,PAA的负电荷量增加,其间斥力增加, 使得PAA链更加伸展,可在较远范围提供静电位阻作用 5.用聚电解质分散剂分散纳米粉体时,影响浆料稳定性的各种因素有哪些? 1、聚电解质的分子量 当聚电解质分子量过小,在粉体表面的吸附较弱,吸附层也较薄,影响位阻作用的发挥。 分子量过大,易发生桥连或空位絮凝,使团聚加重,粘度增加。 2、分散剂用量 适宜的分散剂用量才可以使分散体系稳定。 用量过低,粉体表面产生不同带电区域,相邻颗粒因静电引力发生吸引,导致絮凝。 用量过高,离子强度过高,压缩双电层,减小静电斥力;同时,还易发生桥连或空缺絮凝,稳定性下降。 3、温度 研究表明,为了获得较好的分散效果(以最低粘度为衡量标准),随温度的升高,所需分散剂的用量随之增加 6.结合下图,分析煅烧为什么能够改善纳米Si3N4粉体的分散性? 煅烧改善纳米Si3N4粉体的可分散性 ?此前提到,球磨可有效降低粉体的粒度。但球磨过程可能造成分散介质与粉体发生化学反应。 ?以乙醇为介质球磨Si3N4粉体时,表面的Si-OH可能与乙醇反应生成酯。 ?酯基的生成对粉体的分散性影响很大: a、酯基是疏水基团 b、屏蔽负电荷,影响分散剂的吸附 ?采取煅烧去除酯基,可改善其分散性 第3章纳米粉体表面改性(功能化) 1.表面改性有哪些重要应用? 改善纳米粉体的润湿和附着特性。 改善纳米粉体在基体中的分散行为,提高其催化性能。 改善粉体与基体的界面结合能等。 2.纳米粉体的表面改性方法? 气相沉积法 机械球磨法 高能量法

纳米材料改性水性聚氨酯的研究进展

纳米材料改性水性聚氨酯的研究进展 综述了纳米材料改性水性聚氨酯几种常用方法的特点和研究进展,指出了纳米材料改性水性聚氨酯存在的问题。 标签:水性聚氨酯(WPU);纳米材料;方法;改性 1 前言 近年来,随着人们环保意识的增强,水性聚氨酯(WPU)受到越来越多学者的关注。WPU是以水为分散介质的二元胶态体系,具有不污染环境、VOC(有机挥发物)排放量低、机械性能优良和易改性等优点,使其在胶粘剂、涂料、皮革涂饰、造纸和油墨等行业中得到广泛应用[1~4]。但在制备WPU过程中由于引入亲水基团(如-OH、-COOH等),因此存在固含量低,耐水性、耐热性和耐老化性差等缺陷,从而限制了其应用范围。 纳米材料具有小尺寸效应、表面效应、量子尺寸效应及宏观量子隧道效应等特殊性质,为各种材料的改性开辟了崭新的途径。通过纳米材料改性的WPU,其成膜性、耐水性和耐磨性等性能均得到显著提高[5]。 2 纳米材料改性WPU的方法 2.1 共混法 共混法即纳米粒子在WPU中直接分散。首先是合成各种形态的纳米粒子,再通过机械混合的方法将纳米粒子加入到WPU中。但在该方法中,由于纳米粒子颗粒比表面积大,极易团聚。为防止纳米粒子团聚,科研工作者对纳米材料进行表面改性来提高其分散性,改善聚合物表面结构以提高其相容性。 李莉[6]等利用接枝改性后的纳米SiO2和TiO2与WPU共混,制备了纳米材料改性水性WPU乳液。研究发现,纳米粒子在乳液中分散均匀,无团聚现象;改性后的WPU乳液力学性能比未改性前得到改善和提高;当纳米粒子添加量为0.5%时,WPU乳液的力学性能最佳,吸水性降低了70%,添加的纳米粒子对波长290~400 nm的紫外光有吸收。 李文倩[7]等采用硅烷偶联剂(KH560)对纳米SiO2溶胶进行表面改性,然后将其与WPU共混制备出了WPU/SiO2复合乳液,考查了改性纳米溶胶含量对复合乳液及其涂膜性能的影响。结果表明,当纳米SiO2/KH560物质的量比为6:1时,改性后的纳米SiO2溶胶的粒径最小且分布较均一。KH560的加入使纳米SiO2粒子更均匀地分散在聚氨酯乳液中,且SiO2粒子与聚氨酯乳液之间存在一定键合作用,使涂层的耐热性得到显著增强。当改性SiO2溶胶添加量为5%~10%时,涂膜的硬度、耐磨性、耐划伤性、耐水性等性能明显提高。

ABS塑料配方成分分析,塑料改性技术

ABS塑料配方成分分析,塑料改性技术导读:本文详细介绍了ABS塑料的研究背景,理论基础,参考配方等,本文中的配方数据经过修改,如需更详细资料,可咨询我们的技术工程师。 禾川化学引进尖端配方解剖技术,致力于ABS塑料成分分析,配方还原,研发外包服务,为ABS塑料相关企业提供一整套配方技术解决方案。 一、ABS树脂的介绍 丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile-butadiene-Styrene copolymers,简称ABS)是一种应用广泛的工程塑料,在汽车保险杠、手机以及电脑外壳等制品上应用广泛。大部分ABS无毒,略透水蒸气但不透水,吸水率低,抗冲击性极好,冲击强度在低温下也不会快速下降,大多数ABS的拉伸性能在35.2~46.2Mpa,特殊品种可达63.3Mpa,屈服伸长率为2~4%,在负荷为14.1Mpa、温度为50℃条件下压缩24h,其尺寸变化在0.2~1.7%之内,半硬质和硬质ABS的弯曲强度约为28.1Mpa和63.3~70Mpa。ABS耐磨性很好,摩擦系数很低,不能作为自润滑材料,但可作为中转速轴承材料。因品种不同其抗蠕变性能不同,但总体而言升温时抗蠕变应力不会迅速下降。ABS电性能稳定,受温度、湿度影响较小;水、无机盐、酸、碱类对其性能影响较小,在醛、酮、酯、盐酸中会溶解或形成乳浊液,不溶于大部分醇和烃,但在烃中会软化或溶胀。在加工中,ABS的加工性由剪切速率调节,而并非温度。成分中的丁二烯橡胶相提供塑料以强韧性,聚苯乙烯相提供塑料以电气性、成型性和透明性。 禾川化学技术团队具有丰富的分析研发经验,经过多年的技术积累,可以运用尖端的科学仪器、完善的标准图谱库、强大原材料库,彻底解决众多化工企业生产研发过程中遇到的难题,利用其八大服务优势,最终实现企业产品性能改进

纳米粒子表面与界面改性

纳米粒子表面改性 摘要:本文介绍了纳米粒子的表面改性原理,对几种纳米粒子ZnO纳米粒子、Fe3O4纳米粒子、SiO2纳米粒子的表面改性方法进行了总结。 关键字:纳米材料;表面改性剂;改性机理 1 前言 在制备纳米材料的过程中,由于纳米粒子比表面积大,表面能高,纳米粒子很容易团聚;另一方面,纳米粒子与表面能比较低的基体的亲和性差,二者在相互混合时不能相溶,导致界面出现空隙,存在相分离现象。只有对纳米粒子在材料中的团聚问题解决得好,纳米粒子的特殊效应才会在材料中得到很好的体现,最终使材料的力学、光学、热学等方面的性能都有较大的提高[1]。 所谓纳米粒子的表面改性就是让纳米粒子表面与表面改性剂发生作用,以改善纳米粒子表面的可润湿性,增强纳米粒子在介质中的界面形容性,使纳米粒子容易在有机化合物或是水中分散。选用特殊的表面改性剂可以使纳米粒子获得特殊的性质。 2 表面改性剂 表面改性剂可以是无机化合物,比如通常采用Al2O3,SiO2,ZnO作为改性剂对纳米TiO2进行表面改性。经过处理后的锐钛矿型TiO2具有较强的紫外吸收能力,可安全地应用到化妆品、造纸、涂料等领域。用氟化物改性α-Al2O3,可制得分散均匀、平均粒径<50nm的氧化铝粉。 也可以是有机化合物,特别是聚合物。实际上有机化合物是主要的纳米粒子改性剂。上面提到在溶胶-凝胶法制备纳米SiO2过程中,用聚合物为表面活性剂对粒子进行改性的过程。实际上,聚合物对纳米粒子表面改性就是以聚合物网络稳定纳米粒子。在聚合物网络中引入羧基盐、磺酸盐等,经硫化氢气流处理成硫化物纳米粒子,粒径平均仅几个纳米,受聚合物网络的立体保护作用,提高了纳米粒子的稳定性,实现了纳米粒子特殊性质的微观调控,聚合物优异的光学性质及易加加工性,为纳米粒子的成型加工提供了良好的载体。

纳米材料

聚丙烯/无机纳米复合材料研究进展* 摘要少量纳米粒子可同时实现对聚丙烯(PP)基体的增强增韧并对其力学性能、结晶性能、抗老化及抗菌等性能均会产生一定的影响。用无机纳米粒子改性PP 可制备综合性能优异的聚丙烯/无机纳米复合材料, 是目前复合材料领域研究的热点。综述了无机纳米粒子改性聚丙烯的最新研究进展, 在介绍PP 纳米复合材料体系和制备方法的基础上重点对PP 纳米复合材料的微观结构、力学性能, 结晶和抗老化等性能进行了综述。研究表明少量纳米粒子可大幅度提升基体材料的综合性能, 但目前许多文献报道的表面改性和制备技术仍没有解决纳米团聚的难题, 特别是要实现工业生产则纳米粒子在PP 基体中的分散性尚需进一步改善。 关键词无机纳米粒子聚丙烯纳米复合材料 Latest Resear ch Development of Polypropylene/Inorganic Nanocomposites Abstract Small amount of nanoparticles can reinforce and toughen polypropylene (PP) and have much effect on the machanical properties, crystallization behavior, anti-aging and antibacterial properties of PP matrix. High performances andmultifunctional PP/inorganic nanocomposites can be prepared by modification of PP with nanoparticles, which is a new generation composite and has attached great interests. The newest developments, preparations, machanical properties, morphology, crystallization and anti-aging properties of PP/inorganic nanocomposites are summarized and discussed in this paper. Research results indicate that low loading of inorganic nanoparticles may lead to tremendous increase of comprehensive properties, but the surface-modification and preparation methods reported in many articles do not resolve the aggregation ofnanoparticles. The dispersion of nanoparticles in PP matrix needs to be improved

纳米二氧化钛表面改性

第31卷第2期 唐山师范学院学报 2009年3月 Vol.31 No.2 Journal of Tangshan Teachers College Mar. 2009 ────────── 基金项目:河北省科学研究与发展计划项目(07215107) 收稿日期:2008-04-19 作者简介:刘立华(1969-),女,河北唐山人,硕士,唐山师范学院化学系副教授,研究方向为纳米复合材料制备和应用。 -31- 纳米二氧化钛表面改性 刘立华,刘会媛,张相平 (唐山师范学院 化学系,河北 唐山 063000) 摘 要:对纳米二氧化钛进行表面改性处理是钛白粉工业生产中必不可少的关键步骤,处理的方法和包覆的程度直接影响产品的应用范围。阐述了纳米二氧化钛的表面改性原理和化学表面改性的两种方法──无机包膜改性和有机包膜改性。无机包膜改性包括铝包膜改性、硅包膜改性、铁包膜改性和硅铝复合包膜改性;有机包膜改性主要是醇类化合物和羧酸类化合物对纳米二氧化钛的包覆改性。 关键词:二氧化钛;表面改性;纳米 中图分类号: O 621.4 文献标识码:A 文章编号:1009-9115(2009)02-0031-03 Surface Modification of Nano-Sized Titania LIU Li-hua, LIU Hui-yuan, ZHANG Xiang-pin (Department of Chemistry, Tangshan Teachers College, Hebei Tangshan 063000, China) Abstract: Surface modification of nano-sized titania is one of the key steps in commercial production of titania and it can directly effecte the application fields of titania powder. The principles of modification of nanoscale titania were introduced in this article. Coating a film of organic or inorganic compound on its surface which is two means of surface modification is reviewd in the paper. Inorganic surface modification includes surface modification with Aluminium, surface modification with silicon surface modification with iron and composite surface modification with silicon and aluminium. Organic surface modifications were mainly interpreted by the alcohol compounds and carboxylic acid compounds coating on the surface of titania. Key words: titania; surface modification; nano 纳米二氧化钛因具有光催化活性好、毒性低、稳定、价廉、易于回收等优势而倍受人们的关注。特别是随着环境污染的日益严重,纳米二氧化钛以其高效的光催化降解污染物的能力而成为当前最为活跃的研究热点之一[1]。纳米二氧化钛这种独特的性能主要取决于其粒度的大小。一般来说,粒径越小,比表面积越大,其光催化活性也就越高。 由于纳米二氧化钛表面极强的活性,使得它们很容易团聚,这大大降低了纳米二氧化钛的实际应用效果,同时由于纳米二氧化钛表面亲水疏油,在有机高分子树脂中难以均匀分散,界面上会出现空隙,当空气中的水分进入空隙中就会引起界面处高聚物的降解、脆化、导致材料性能下降。为了充分利用二氧化钛的优良性能,在表面包覆一层无机物或有机物膜对其进行表面改性。 1 表面改性原理 由溶胶稳定性的DLVO 理论可知,纳米级的二氧化钛细粉,单位面积的超额吉布斯自由能升高,表面张力变大,促使二氧化钛发生团聚,此时ζ电位比较高。若要使团聚体重新分散,首先应使表面充分润湿。判断固体能否在液体中润湿以及润湿程度的标准一般有两种。一是根据润湿热的大小,可以用润湿热来比较二氧化钛粉末在不同溶剂中的润湿程度。二氧化钛在水中的润湿程度比较好。实际上,在把二氧化钛粉末中加入水以后,由于颗粒外表面附着的空气与水的置换作用,使细小颗粒的润湿速度较慢。为了加大润湿程度,可以加入少量表面活性剂以降低其表面张力,提高润湿性。通常使用的表面活性剂有三乙醇胺、硅酸盐、烷基萘磺酸等。二是根据接触角的大小判断。二

增韧改性POE 在塑料中的应用与发展前景

增韧改性POE 在塑料中的应用与发展前景 POE是美国DuPont Dow 化学公司于1994年采用限定几何构型茂金属催化剂技术推出的乙烯/ 辛烯共聚物。POE 单体辛烯的质量分数在20 %~30 %之间,商品名为Engage ,其中聚乙烯链结晶区起物理交联点的作用,一定量辛烯的引入降低了聚乙烯链的结晶度,形成了呈现橡胶弹性的无定型区,其分子结构可人为地进行控制。POE 独特的分子结构决定了其综合性能优异,其弹性卓越、流动性良好、机械性能高、耐腐蚀性、透气性、电性能优异以及突出的耐低温性和耐热、耐臭氧、耐紫外线和耐水性,使其在通用和工程塑料的增韧和抗低温的改性中倍受关注。 1 POE 对通用塑料的改性 POE 对通用塑料的改性主要是研究其作为增韧剂改性刚性通用塑料,提高刚性通用塑料的韧性。 1. 1 PE/ POE 体系 近年来,木塑复合材料因其成本低、质量轻、机械性能好等优点受到普遍关注。但热塑性塑料在填充木粉后复合材料变脆,限制了木塑复合材料的应用和推广。李兰杰等采用废木粉填充高密度聚乙烯( HDPE) 制备木塑复合材料,并用茂金属聚乙烯(mPE SP1520) 和POE 分别对复合材料进行改性。在两者用量小于12 份时,两者的增韧效果相差不大; 但在用量大于12 份以后,用POE 增韧的复合材料的冲击强度和断裂伸长率增加十分迅速,而用mPE SP1520 时增加幅度比较平缓;用POE 改性能得到较好的增韧效果,扩大了材料的应用范围。 M J O C Guimaraes等研究了HDPE 与POE 共混物的力学性能和热性能,热分析结果表明HDPE 和POE 有一定的相互作用;材料的拉伸强度和断裂伸长率得到了提高,当POE 质量分数不小于5 %时,材料在室温下超韧。 POE 改性PE 制备的发泡材料具有良好的弹性和强度,可用于制作粘合胶带。将30 份含离子结构的PE 和6. 5 份偶氮二甲酰胺加入到100 份质量分数为30 %的POE 和70 %的1845 烯2辛烯(质量分数小于20 %) 聚合物]组成的混合物中,挤出成片材,辐射交联,在250 ℃下发泡,所得1 mm 厚的泡沫片材具有良好的韧性;横、纵方向的弯曲强度分别为30. 2 MPa 和24. 3 MPa。 1. 2 聚丙烯(PP) / POE 体系 众所周知,作为大宗的通用塑料品种, PP 存在低温韧性差和缺口敏感性大的缺点,因此,为了改善PP 性能上的不足,弹性体增韧改性一直被视为最有效的途径。虽然三元乙丙胶( EPDM) 对PP 有良好的增韧效果,但目前EPDM 价格高,商品原料多为块状,碎胶有一定困难,流动性也不太理想;同时由于EPDM 本身有颜色,产品很难获得色彩鲜艳的外观。POE 的问世,使其在用于PP 的增韧改性方面具有传统弹性体无法比拟的优势。POE 增韧PP 不仅可以克服EPDM 增韧PP 的不足,而且还赋予PP 更高的冲击性能、高透明性、高的热稳定、高性能/ 价格比等特点。 张金柱研究指出,POE 对PP 有更好的增韧作用,在相同的条件下混炼和注塑的样品,无论PP 的熔融流动速率(MFR) 如何变化,其低温( - 30 ℃)冲击能均是POE > EPDM > EPR (二元乙丙橡胶) ,特别是当使用高MFR ( ≥20) 的PP 时, EP2DM 改性的PP 均已变脆,而POE 改性的PP 仍保持相当的韧性。这样避免了以前增韧剂使用高流动性材料时降低体系韧性的缺陷,从而在生产上可使用高流动性PP 体系,可以缩短成型周期,降低生产成本。 商品化的POE 本身呈颗粒状,可以直接加入到颗粒状PP 等其它材料中实行改性。因此POE比EPDM 加工操作上更为简便,这样可大大降低生产成本[6 ] 。 Da Silvi研究了PP/ POE 共混体系并与PP/ EPDM 共混体系进行了比较。结果表明,两种共混体系具有相似的结晶行为,其力学性能相似,但PP/ POE 共混物具有更低的转矩,加工性能较好。 冯予星、郭红革等研究了PP/ POE 共混体系的相态结构、增韧机理以及共混体系的力学性能。研究结果表明,在相同条件下, POE 加入量比EPDM 少, POE 用量为20 份时就可使PP获得高的低温冲击强度,减少了因加入弹性体而引起的刚性和强度损失。在PP/ POE 共混体系中, POE 在PP 连续相中形成均匀的“海2岛”结构; POE 对PP 改性符合银纹剪切机理,可有效提高PP 的常温、低温冲击强度。通过PP 与弹性体交联的方法可以得到热塑性硫化胶( TPV) , TPV 在实际生产中有很高的应用价值。 Fritz 等将POE 接枝乙烯基硅烷并分散于PP 中,共混物经水解水交联得到TPV ;所得TPV 易于加工成制品,并具有优秀的表面性能。制品具有高断裂强度和断裂伸长率,宽范围的邵氏硬度,非常低的雾度,使用了POE 而无、气味,可以广泛应用于汽车领域。 1. 3 聚苯乙烯(PS) / POE 体系 PS 由于质硬性脆、耐热性差,因此其应用仍受到限制。为改进其缺点,人们采用共聚或共混等方法开发了一系列聚苯乙烯系改性树脂,如苯乙烯与橡胶进行接枝共聚合制得了耐高冲聚苯乙烯( HIPS) 树脂,虽然引入橡胶后提高了聚苯乙烯树脂的抗冲击性能,但却丧失了透明性。而POE具有良好的透明性和柔软性,苯乙烯基树脂/ POE复合材料则可用于食品容器和包装材料等对产品外观要求严格的领域。用POE 改性苯乙烯基树脂提高其冲击强度和表观性能,经共混、造粒、注射成型,样品具有良好的抗冲击性能,可用于制备电气制品。

常用工程塑料耐热温度

常用工程塑料耐热温度 通常耐热塑料的选用原则: 1.考虑耐热性高低 a.满足耐热性即可,不要选择太高,太高会造成成本的提高; b.尽可能选用通用塑料改性。耐热类塑料大都属于特种塑料类, 其价格都很高;而通用类塑料的价格都比较低; c.尽可能选用耐热改性幅度大的通用塑料。 2.考虑耐热环境因素 a.瞬时耐热性和长期耐热性; b.干式耐热或湿式耐热; c.耐介质腐蚀性; d.有氧耐热或无氧耐热; e.有载耐热和无载耐热. 大家一定对上面的温度觉得奇怪,怎么PA PBT料的热变形温度那么低呢?其实PA PBT如果不进行耐热改性,其耐热性能是很差的.下面具体介绍一些塑料经耐热改性后的耐热性能对比例子. 一.塑料的填充耐热改性: 在所有填料中,除有机料外,大部分无机矿物填料都可明显提高塑料的耐热温度.常用的耐热填料有: 碳酸钙滑石粉硅灰石云母锻烧陶土铝矾土及石棉等.且填料的粒度越小,改性效果越好. a.xx填料:

PA6填充5%纳米蒙脱土,其热变形温度可由70度提高到150度 PA6填充10%纳米海泡石,其热变形温度可由70度提高到160度 PA6填充5%合成云母,其热变形温度可由70度提高到145度 b.常规填料: PBT填充30%滑石粉,其热变形温度可由55度提高到150度 PBT填充30%云母,其热变形温度可由55度提高到162度 二.塑料的增强耐热改性 用增强改性的方法提高塑料的耐热性效果比填充还好,常用的耐热纤维主要有: 石棉纤维玻璃纤维碳纤维晶须聚 1.结晶型树脂经30%玻璃纤维增强耐热改性. PBT的热变形温度由66度提高到210度. PET的热变形温度由98度提高到238度. PP的热变形温度由102度提高到149度. HDPE的热变形温度由49度提高到127度. PA6的热变形温度由70度提高到215度. PA66的热变形温度由71度提高到255度. POM的热变形温度由110度提高到163度. PEEK的热变形温度由230度提高到310度. 2.非结晶树脂经30%玻璃纤维增强耐热改性. PS的热变形温度由93度提高到104度.

PET工程塑料的改性应用

PET工程塑料的改性应用 工程塑料是指可以作为工程材料代替金属结构部件使用的塑料,长期使用温度为100-150℃的为通用工程塑料。PET工程塑料是五大通用工程塑料之一,在汽车、电子、电器、机械等行业中有着广泛的应用。 电子元件、家电部件、汽车塑料配件等对所用的工程塑料的耐热性和阻燃性有着严格的要求,因而往往需要对PET工程塑料进行改性。 改性PET工程塑料的种类 PET工程塑料常见的改性方法有增强改性、阻燃改性等。 PET增强级:力学性能优异、尺寸稳定性好、高耐热、表面光泽好、颜色稳定性好,主要应用于汽车空调出风口、烘箱把手、轴承、家电外壳等,牌号有PET1200,PET1300,PET1210M,PET1305M等。 PET增强阻燃级:阻燃性(有卤&无卤)优异、高RTI、易着色、符合ROHS、UL认证,主要应用于变压器骨架、连接器、开关等电子电器零件,牌号有FRPET1300,PETFR2300等。 PET合金:合金增强、合金增强阻燃、合金玻纤增强,主要应用于汽车门把手、保险杠、运动器材等,牌号有PET/PBT G8230,PET/PBT FR8230,PET/PC 4600,PET/PC G4620。 具有RTI155℃UL黄卡认证的增强阻燃PET材料:RTI 155℃UL黄卡认证对材料的高温性能以及长期热稳定性要求非常高,而且测试周期长、成本高昂,所以国内改性高分子的RTI认证还处于初级阶段。而在2013年,聚赛龙的高RTI增强阻燃PET就率先通过了认证并得到了市场广泛的认可。 PET工程塑料的应用 在家电领域,PET工程塑料主要应用于灯头、豆浆机底座、直发器、IH方煲线圈盘、电熨斗外壳、气炸锅等。 在汽车领域,PET工程塑料主要应用于门把手、雾灯支架、反射镜、放热孔、发热线圈、空调出风口等。 聚赛龙PET工程塑料应用一览表:

无机纳米材料表面改性的研究进展

无机纳米材料表面改性的研究进展 姓名:孙震 学号:9901090094 班级:粉冶工程试验班0901

无机纳米材料表面改性的研究进展 摘要:团聚是纳米粉体材料中首先要解决的问题,而表面改性是有效解决此问题的一种方法。本文介绍了纳米表面改性材料的一些基本方法,并介绍了国内外改性材料的一些实例,并对表面改性的前景作出了展望。 纳米粉体是指线度处于1~100nm之间的粒子聚合体, 包括金属、金属氧化物、非金属氧化物和其他各种各类的化合物。与普通纳米粉体相比, 纳米粉体的特异结构使其具有小尺寸效应、量子尺寸效应、表面效应及宏观量子隧道效应, 因而在催化、磁性材料、医学、生物工程、精细陶瓷、化妆品等众多领域显示出广泛的应用前景, 被誉为面向21世纪的高功能材料, 成为各国竞相开发的热点。近年来随着粉体制备技术的发展, 人们已经成功制备出各种纳米粉体, 制备方法多种多样, 如化学气相沉积法、等离子体法、物理气相沉积法、沉淀法、微乳液法、溶胶一凝胶法、高能球磨法等, 并且许多己经实现了工业化。我国现在已能生产铁、钻、镍、镁、银、铜、铝等金属纳米粉, 二氧化硅、二氧化铁、二氧化错、三氧化二铝、氧化钙、氧化锌等氧化物粉末, 以及碳化硅、氮化硅等陶瓷粉末川。但制备出纳米粉体还只是第一步, 最艰巨的一步是针对不同使用介质、不同使用场合的表面改性和处理。因为纳米粉体粒径小、比表面积和表面能极大极易团聚而不能发挥纳米粉体的优异特性, 纳米粉体团聚已经给粉体技术及相关工业领 域带来了很大的麻烦, 是其应用中首要解决的问题川。另 外, 纳米粉体与介质的不相容性导致界面出现空隙, 存在相分离现象, 所以必须对纳米粉体进行表面处理。 1纳米粉体团聚的原因 由于纳米粒子所具有的特殊的表面结构, 所以在粒子间存在着有别于常规粒子(颗粒)间的作用能,即纳米作用能(F n )。定性地讲, 这种纳米作用能就是纳米粒子的表面因缺少邻近配位的原子, 具有很高的活性, 而使纳米粒子彼此团聚的内在属性, 其物理意义应是单位比表面积纳米粒子具有的吸附力。它是纳米粒子几个方面吸附的总和: 纳米粒子间氢键、静电作用产生的吸附; 纳米粒子间

纳米四氧化三铁的制备与表面改性.doc11

纳米四氧化三铁的制备与表面改性 化学与材料科学系09级应用化学1班刘立君李淑媛 摘要:由于纳米Fe3O4在光学、电学、热学、磁学、力学等方面独特的性质,对它的研究越来越多,且在各个领域的应用也越来越广泛,因此本文详细介绍了纳米四氧化三铁的各种制备方法,对其制备工艺的优缺点、应用前景、产品性能进行了详细的比较;并综述了纳米四氧化三铁的表面改性的方法,如有机改性、无机改性、偶联改性、小分子改性、大分子改性等改性手法,以及表面改性后各种纳米Fe3O4的特征与用途前景。 关键词纳米Fe3O4 综述表面改性 1引言 四氧化三铁的性质:四氧化三铁在常温常压状态下是一种具有强磁性的黑色粉末状晶体,潮湿状态的四氧化三铁在空气中容易氧化成三氧化二铁,二价铁离子被氧化成三价铁离子。四氧化三铁具有强磁性,四氧化三铁固体具有优良的导电性。因为在磁铁矿中,由于Fe2 +与Fe3 +在八面体位置上基本上是无序排列的,电子可在铁的两种氧化态间迅速发生转移,所以四氧化三铁固体具有优良的导电性能。X 射线研究表明,四氧化三铁是铁( III) 酸盐,即Fe2 +( Fe3 +O2 -2)2,称为“偏铁酸亚铁”,化学式为Fe( FeO2)2。在四氧化三铁里,铁显两种价态,所以常常将四氧化三铁看成是由FeO 与Fe2O3组成的化合物,也可表示为FeO·Fe2O3,但不能说是FeO 与Fe2O3组成的混合物,它属于纯净物。常见的天然磁铁矿中主要成分是四氧化三铁的晶

体。 磁性纳米粒子的性质:纳米材料指颗粒尺寸在1-100nm间的粒子,及由其聚集而成的纳米固体材料,具有小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等,使得其与同组成的材料相比,显示独特的光学、电学、热学、磁学、力学及化学性质。当磁性纳米材料的尺寸减小到纳米尺度时,尺寸和形状这两个关键参数强烈影响着其磁性能,使磁性纳米粒子呈现超顺磁性,高矫顽力,低居里温度和高磁化率,同时,磁性纳米粒子具有以下几方面的特性:第一,磁性纳米粒子具有可控性的粒径(从几纳米到几十纳米),小于或相当于细胞(10-100nm),病毒(20-450nm),蛋白质(5-50nm),基因(Znm宽10-100nm 长)的尺度,这表明磁性纳米粒子能够接近我们所感兴趣的生物实体.事实上,它们可以被生物分子修饰后连接到生物实体上,由此提供了一种可控的标一记方法;第二,磁性纳米粒子的磁性遵从库仑定律,能够通过外加磁场加以控制;第三,磁性纳米粒子能够对磁场的周期性变化产生响应,从激励场获得能量,由此微粒能够被加热,从而可用于热疗,传输大量的热能到靶区,如肿瘤;第四,磁性纳米粒子可从尿液及大便中排泄,其中经肾脏排出较多,肠道排出较少。这也使其在工业、电子信息、生物医药等领域都有着特殊的应用。常用的磁性纳米材料有金属合金及其金属氧化物,由于镍、钴等存在毒性,在生物、医药等方面受到严格的限制,而铁的氧化物(Fe3O4,γ一Fe2O3)因其低毒(LD50约2000mg/kg体重,远远高于目前临床应用剂量)、易得等特点被广泛推用。

纳米材料改性硅胶的研究进展

纳米材料改性硅橡胶的研究进展 摘要:综述了近年来纳米蒙脱土改性硅橡胶、纳米Si02改性硅橡胶、纳米siox 改性硅橡胶、纳米纤维改性硅橡胶、纳米TiQ改性硅橡胶的研究与应用进展,并介绍了硅橡胶纳米改性材料的发展方向。 关键词:硅橡胶,纳米材料,改性 用纳米材料对传统硅橡胶进行改性,可以提高硅橡胶的力学、耐热、导电和阻燃等性能。通常所说的纳米相改性硅橡胶是指采用特殊工艺或技术手段将制备好的纳米相材料均匀分散于硅橡胶基体中从而得到比原有性能更好的材料。在纳米相改性硅橡胶体系中存在纳米颗粒之间的相互作用和纳米颗粒与硅橡胶基体问的作用;同时,改性硅橡胶中除了纳米颗粒本身具有特殊的纳米效应外,还与硅橡胶基体颗粒周围局部场效应的形式发生协同作用,因此在其内部各组分的协同作用下会产生一些母体不具备的力学、阻隔、抗老化和导电等特异性质。 1、纳米蒙脱土改性硅橡胶 近年来,对蒙脱土/硅橡胶复合材料的研究是阻燃高分子材料的一个研究热点。这类材料具有较白炭黑/聚合硅橡胶无法比拟的优点,可以同时改善高分子材料的力学性能、热稳定性、气体阻隔性和阻燃性等[1。3]。硅橡胶具有热稳定性高、热释放速率低、成炭率高、低烟、无毒等优点,成为阻燃防火橡胶的首选材料;但硅橡胶本身具有可燃性,需要进行阻燃改性以便扩大其应用。 赖亮庆[4]等采用蒙脱土(MMT)、钠基蒙脱土(Na-MMT)、用羧基插层剂改性的蒙脱土(DK3)和用十八烷基插层剂改性的蒙脱土(DK4)粉末,计算出MMT、Na-MMT、DK3和DK的[0013面层间距d001分别为1.2rim、1.5rim、2.5rim、3.4nm,并且以它们作为填充剂,用熔融共混法制备了蒙脱土/硅橡胶复合材料,研究了蒙脱土对硅橡胶的力学和阻燃性能。结果表明:有机插层剂改性有利于蒙脱土在硅橡胶中的分散,并且提高硅橡胶的拉伸强度和阻燃等性能。一般而言,未改性蒙脱土的层间距较小,且具有亲水性,与硅橡胶的相容性较差;所以蒙脱土在硅橡胶中不易被剥离而呈微米级分散,达不到补强和阻燃的效果。而经有机插层剂改性的蒙脱土DK3、Ⅸ<4的层间距增大,且有机阳离子的引入使蒙脱土的疏水性大大提高;从而使蒙脱土与硅橡胶的相容性提高,蒙脱土易被插层或剥离成纳米级片层分散在硅橡胶中。这种硅橡胶依托蒙脱土纳米片层超大的比表面积和极高的径/厚比来增强材料的力学性能;另外。纳米片层分散在硅橡胶中能够阻隔氧气、自由基以及热量等往里层传递,所以硅橡胶的阻燃性能得到提高。研究还发现,当层间距d001为3.4nm的有机改性蒙脱土的质量分数为6%时,硅橡胶的拉伸强度达到12.1MPa,扯断伸长率为362%,氧指数为32.7%,硅橡胶的起始分解温度和终止分解温度分别比空白样提高83℃和13℃。 王锦成L5j等对蒙脱土(MMT)进行有机改性后,再用其作为填料,采用溶液插层法制备了有机蒙脱土(0MMT)填充脱醇型RTV-2硅橡胶。与MMT质量分数为2%的硅橡胶相比,OMMT质量分数为20%的硅橡胶的拉伸强度由1.39Mpa提高到1.98MP提高了42.4%;断裂伸长率由190%提高到210%,提高了lo.5%;透气量只有其0.003%,而透气系数只有其0.009%;热分解中心温度变化不大,分解的剧烈程度也得到较大程度的抑制。

有机无机纳米复合材料中无机纳米粒子表面改性方法的研究进展

有机无机纳米复合材料中无机纳米粒子表面改性方法的研究进展 摘要:纳米粒子和纳米复合材料被广泛的应用在各个领域,如药类、纺织、化妆品、农业、光学、食品包装、光电设备、半导体设备、航天航空设备、建筑行业以及催化剂中。纳米粒子能被添加到纳米聚合材料中。由无机纳米粒子和有机高分子组成的新一类的聚合物纳米复合材料具有他们组成成分本身不具备的性能。因此具有工业应用的前景。无机纳米粒子和聚合物基体的合并能显著提高基体的性能。新聚合物可能会在热力学性能、力学性能、流变性能、电力性能、催化性能、阻滞性和光学性能上获得提升。提升的性能受添加的纳米粒子的大小、形状、浓度以及和聚合物基体融合程度的影响。其中的关键问题在于防止颗粒凝聚。在聚合物基体中很难形成均匀分散的纳米粒子颗粒,因为纳米粒子颗粒的比表面积和体积效应容易造成粒子的凝聚。通过对无机纳米粒子的表面改性可以解决这个难题。改性能提高无机粒子和聚合物基体的表面相互作用。有两种方法对无机粒子表面进行改性。第一种方法是使表面和一些小分子反应或者镶嵌一些小分子,比如硅烷偶联剂;第二种方法是基于通过共价键将聚合物与粒子上的羟基相连接。第二种方法比第一种方法好的地方是,嫁接后的粒子能通过对嫁接单体的种类和嫁接方法的改变而得到想要的性质。 关键词:无机纳米粒子;表面改性;嫁接;硅烷偶联剂;有机无机纳米复合材料 第一章.简介 有机无机纳米复合粒子的发展,经常是通过在无机粒子上嫁接合成高分子或在聚合物基体上添加改性纳米粒子(NPs)来提高复合材料的机械性能和其他性能。一类新材料,以无机纳米粒子和有机高分子组成的纳米复合材料为代表的,当和它们各自本身的组成成分相比时,能展现出更好的性能。无机纳米粒子的表面改性已经吸引了很大的关注。无机纳米粒子的表面改性已经吸引了很大的关注,因为它能很好的融合纳米粒子和聚合物基体,并且提高它们的表面性能。 无机纳米粒子改性的聚合物基体能同时具备聚合物基体的性能和无机纳米粒子本身独特的性能,如更轻的重量和更好的可成形性。加入了具有如下性质的

相关文档
最新文档