第5章直流-直流变换电路

合集下载

第5章 直流-直流变换电路

第5章 直流-直流变换电路
Cuk斩波电路与升降压式斩波电路的输出表达式完全相同。 斩波电路与升降压式斩波电路的输出表达式完全相同。 斩波电路与升降压式斩波电路的输出表达式完全相同
5.2.5 全桥式直流斩波电路
u UN
5.3、变压器隔离的直流-直流变换器 、变压器隔离的直流 直流变换器
输入输出间实现电隔离:在基本 变换电路中加入变压器。 输入输出间实现电隔离:在基本DC-DC变换电路中加入变压器。 变换电路中加入变压器 常见的有单端正激变换器,反激变换器,半桥及全桥式降压变换器等。 常见的有单端正激变换器,反激变换器,半桥及全桥式降压变换器等。
5.1.2 直流斩波器的分类
按变换电路的功能分类有
1)降压式直流-直流变换 降压式直流2)升压式直流-直流变换 升压式直流3)升压-降压复合型直流-直流变换 升压-降压复合型直流4)库克直流-直流变换 库克直流5)全桥式直流-直流变换 全桥式直流-
5.2、直流斩波器 、
5.2.1 降压式直流斩波电路
I 2 t on = I 1 t off
∫ i dt = 0
0 C
T
电源输出的电能EI 等于负载上得到的电能U 电源输出的电能 1等于负载上得到的电能 0I2,即 由此可以得出输出电压U 与输人电压E的关系为 的关系为: 由此可以得出输出电压 0与输人电压 的关系为:
EI1 = U 0 I 2
t on t on I1 D U0 = E = E= E= E I2 t off 1− D T − t on

ton
u L dt = 0
即:(E-U0)ton=U0(T-ton) :(
U
0
t on = E = D E T
5.2.2 升压式直流斩波电路
uL

电力电子技术第五章直流-直流变流电路PPT课件

电力电子技术第五章直流-直流变流电路PPT课件

(5-37) O
i
t
o
当tx<t0ff时,电路为电流断续工作状态, tx<t0ff是电流断续的条件,即
m
1 e 1 e
(5-38)
i
i
1
2
I
20
O
t
tt
t
t
on
1
x
2
t
off
T
c)
图5-3 用于直流电动机回馈能 量的升压斩波电路及其波形
c)电流断续时
16/44
5.1.3 升降压斩波电路和Cuk斩波电路
◆斩波电路有三种控制方式
☞脉冲宽度调制(PWM):T不变,改变ton。 ☞频率调制:ton不变,改变T。 ☞混合型:ton和T都可调,改变占空比
5/44
5.1.1 降压斩波电路
■对降压斩波电路进行解析
◆基于分时段线性电路这一思想,按V处于通态和处于断态两个过程 来分析,初始条件分电流连续和断续。
◆电流连续时得出
3/44
5.1.1 降压斩波电路
■降压斩波电路(Buck Chopper)
◆电路分析
☞使用一个全控型器件V,若采用晶闸
管,需设置使晶闸管关断的辅助电路。
☞设置了续流二极管VD,在V关断时
给负载中电感电流提供通道。
☞主要用于电子电路的供电电源,也
可拖动直流电动机或带蓄电池负载等。
◆工作原理
☞ t=0时刻驱动V导通,电源E向负载
☞输出电流的平均值Io为
EI1 U o I o
Io
Uo R
1
E R
(5-24) (5-25)
☞电源电流I1为
I1
Uo E
Io

直流 -直流变流电路( dc-dc )的定义

直流 -直流变流电路( dc-dc )的定义

直流-直流变流电路(DC-DC)是指一种能够将直流电源的电压或电流转换为不同电压或电流级别的电路。

它通常由电子元件和控制电路组成,可以实现电压升压、降压、反向极性、电流调节等功能。

DC-DC变流电路的主要目的是通过电力转换,将直流电源的电能以不同的形式和级别供应给负载或其他设备。

例如,将低电压直流电源升压为高电压,以满足某些特定应用的需求;或者将高电压直流电源降压为低电压,以适应其他电子设备的要求。

DC-DC变流电路通常采用电感、电容、开关管(如MOSFET)等元件,通过控制开关管的开关时间和频率,调整电流流向和电压水平,实现所需的电能转换。

控制电路可以根据输入和输出电压的差异来调整开关管的状态,以达到所需的电压转换效果。

DC-DC变流电路在各种电子设备和系统中广泛应用,例如电源适配器、太阳能光伏系统、电动汽车充电器等。

它可以提高能源利用率、减少能量损耗,并满足不同设备对电能的需求。

一、直流—直流变换电路概述 1、直流—直流变换电路及功能 直流-直流(DC-DC)变换电路是将一组电

一、直流—直流变换电路概述 1、直流—直流变换电路及功能        直流-直流(DC-DC)变换电路是将一组电
这也是电力电子电路稳态运行时的又一个普遍规律。
二、降压式变换电路(Buck电路)
3.电感电流连续工作模式(CCM)下稳态工作过程分析
BUCK电路 结构


















二、降压式变换电路(Buck电路)
a、 晶体管导通状态(t0 t t1=DT)
VD关断,依据等效电路拓扑,有:
二、降压式变换电路(Buck电路)
(2)电路工作频率很高,一个开关周期内电容充 放电引起的纹波uripple(t) 很小,相对于电容上
输出的直流电压Uo有: uripple max Uo 电容
上电压宏观上可以看作恒定。
电路稳态工作时,输出电容上电压由微小的纹波和较大 的直流分量组成,宏观上可以看作是恒定直流,这就是开关 电路稳态分析中的小纹波近似原理。
三、DC-DC的纹波和噪音
纹波和噪声的测量方法
用示波器测量纹波和噪声的装置的框图如图所示。它由被测开关电源、 负载、示波器及测量连线组成。有的测量装置中还焊上电感或电容、电 阻等元件。
三、DC-DC的纹波和噪音
纹波和噪声的测量方法
从上图来看,似乎与其他测波形电路没有什么区别,但实际上要求不同 。关系,见图中波形,由于电感电流连
续,有
1 I 2
I o min ,计算L的关系式。
(3)由输入输出电压关系,计算D
(4)由 I LMAX I VTMAX 求得MOS管的最大电流,同时依据波形计算
电流有效值,依此选择MOS管的电流。 (5)MOS管的最高工作电压为输入电压,依此选择MOS管的耐压。

第五章直流交流(DCAC)变换.

第五章直流交流(DCAC)变换.

第五章直流一交流(DC—AC变换5.1 逆变电路概述5.1.1 晶闸管逆变电路的换流问题DC—AC变换原理可用图5-1所示单相逆变电路来说明,其中晶闸管元件VT1、VT4,VT2、VT3成对导通。

当VT、VT4导通时,直流电源E通过VT1、VE向负载送出电流,形成输出电压%左(+)、右(-),如图5-1 (a)所示。

当VT2、VT3导通时,设法将VT1、VT4关断,实现负载电流从VT1、VT4向VT a、VT3的转移,即换流。

换流完成后,由VT a、VT3向负载输出电流,形成左(-)、右(+)的输出电压%,如图5-1 (b)所示。

这两对晶闸管轮流切换导通,则负载上便可得到交流电压呦,如图5-1(c)波形所示。

控制两对晶闸管的切换导通频率就可调节输出交流频率,改变直流电压E的大小就可调节输出电压幅值。

输出电流的波形、相位则决定于交流负载的性质。

f;图5-1 DC —AC变换原理要使逆变电路稳定工作,必须解决导通晶闸管的关断问题,器件,在承受正向电压条件下只要门极施加正向触发脉冲即可导通。

作用,只有使阳极电流衰减至维持电流以下才能关断。

常用的晶闸管换流方法有:(1)电网换流(2)负载谐振式换流(3)强迫换流即换流问题。

晶闸管为半控但导通后门极失去控制5.1.2 逆变电路的类型逆变器的交流负载中包含有电感、电容等无源元件,它们与外电路间必然有能量的交换,这就是无功。

由于逆变器的直流输入与交流输出间有无功功率的流动,所以必须在直流输入端设置储能元件来缓冲无功的需求。

在交一直一交变频电路中,直流环节的储能元件往往被当作滤波元件来看待,但它更有向交流负载提供无功功率的重要作用。

根据直流输入储能元件类型的不同,逆变电路可分为两种类型:1.电压源型逆变器电压源型逆变器是采用电容作储能元件,图电压源型逆变器有如下特点:1)直流输入侧并联大电容C用作无功功率缓冲环节(滤波环节),构成逆变器低阻抗的电源内阻特性(电压源特性),即输出电压确定,其波形接近矩形,电流波形与负载有关,接近正弦。

第5章直流-直流变换电路习题

第5章直流-直流变换电路习题

一、问答题5-1、试说明直流斩波器主要有哪几种电路结构?试分析它们各有什么特点?答:直流斩波电路主要有降压斩波电路(Buck ),升压斩波电路(Boost ),升-降压斩波电路(Buck-Boost )和库克(Cuk )斩波电路。

降压斩波电路是输出电压的平均值低于输入电压的变换电路。

它主要用于直流稳压电源和直流电机的调速。

升压斩波电路是输出电压的平均值高于输入电压的变换电路。

它可用于直流稳压电源和直流电机的再生制动。

升-降压变换电路是输出电压的平均值可以大于或小于输入直流电压,输出电压与输入电压极性相反。

主要用于要求输出与输入电压反向,其值可大于或小于输入电压的直流稳压电源。

库克电路也属升-降压型直流变换电路,但输入端电流波纹小,输出直流电压平稳,降低了对滤波器的要求。

5-2、简述图3-1基本降压斩波电路的工作原理。

输出电压电流波形。

答:0=t 时刻驱动V 导通,电源E 向负载供电,负载电压E u =0,负载电流0i 按指数曲线上升。

1t t =时控制V 关断,二极管VD 续流,负载电压0u 近似为零,负载电流呈指数曲线下降。

通常串接较大电感L 使负载电流连续且脉动小。

5-3、根据下图简述升压斩波电路的基本工作原理。

(图中设:电感L 、与电容C 足够大)输出电流波形答:当V 处于通态时,电源E 向电感L 充电,设充电电流为i 1,L 值很大,i 1基本恒定,同时电容C 向负载供电,C 很大,使电容器电压u 0基本不变,设V 处于通态的时间为t on ,在t on 时间内,电感L 上积蓄的能量为EI 1t on ;图3-2 基本升压斩波 图3-1基本降压斩波电路当V 处于断态时,E 与L 同时向电容充电,并向负载R 提供能量。

设V 处于断态的时间为t off ,在t off 时间内L 释放的能量为(U 0-E )I 1t off ,在一周期内L 积蓄的能量与释放的能量相等。

可求得: E t T U off=0。

第5章 直流-直流开关型变换器 习题答案

第5章 直流-直流开关型变换器 习题答案

第5章 直流-直流开关型变换器 习题第1部分:简答题1.开关器件的导通占空比是如何定义的?直流-直流开关型变换器有哪几种控制方式,各有何特点?其中哪种控制方式最常用,为什么?答:导通占空比被定义为开关期间的导通时间占工作周期的比值,即 onst D T, 直流-直流开关型变换器有三种控制方式:1)脉冲宽度调制PWM ,特点为:周期不变,通过改变导通时间来调节占空比。

2)脉冲频率调制PFM ,特点为:导通时间不变,通过改变周期来调节占空比。

3)混合型调制,特点为:导通时间和周期均可改变,来调节占空比。

其中PWM 最常用,因为载波(开关)频率恒定,滤波器设计较容易,且有利于限制器件的开关损耗。

2.画出带LC 滤波的BUCK 电路结构图。

并回答下列问题:实用的BUCK 电路中为什么要采用低通滤波器?为什么要接入续流二极管?设计滤波器时,滤波器的转折频率应如何选取,为什么?答:带LC 滤波的BUCK 电路结构图如下:1)实用Buck 电路采用低通滤波器可以滤除高次谐波,使输出电压更接近直流。

2)续流二极管的作用是:当开关VT 断开时,构成续流回路,释放电感储能。

3)滤波器的转折频率fc 应远小于开关频率fs ,以滤除输出电压中的高次谐波。

3.画出BOOST电路结构图,并简述BOOST电路中二极管和电容的作用。

答:BOOST电路结构图如下:二极管的作用:规定电流方向,隔离输出电压。

电容的作用:在开关断开期间,保持负载电压。

4.简述稳态电路中电感和电容上电压、电流的特点,并分析其物理意义。

答:1)稳态时,电感上的电压在1个周期上平均值为零,即伏秒平衡。

物理意义是: 稳态时电感中磁通在1个周期内净变化量为零。

2)稳态时,电容上的电流在1个周期上平均值为零,即安秒平衡。

物理意义是:稳态时电容上电荷在1个周期内净变化量为零。

5.为什么BUCK电路可以看作是直流降压变压器,而BOOST电路可以看作是直流升压变压器?这种变换器与真正的变压器相比有何异同之处?答:1)因为在连续导通模式下,Buck和BOOST电路都可以通过调节占空比D,使变压比Uo/Ud在0~1和大于1的范围内连续调节,因此从变压角度看,可将它们视为直流降压变压器和升压变压器。

电力电子技术-5.1直流斩波

电力电子技术-5.1直流斩波

z EM E e ( 1 T1/ E M T TR ) (1 ) T / I 20 e e ) , (1z z R R e 1 R L
上式代入
[t 1,T]
I I 20 I10
E R

1 e
di 1 E EM t / t / L (1 / 0 t t1 i1 EIM10 eRi 1) T E E ME , T(1 Me E M) (1 ) T / E E E M I 10 e e e e dt I R d R R R R 0 T 0 . 5 T I I max R T di 2 ) i 1 ( 0 ) t / I 10 , M ( Ed ( 1 ) T / E L / RE ( t t 1 ) / t 1 E L Ri 2 Ee(1 e0M, (te1 ),) 20 i1 ( t 1 ) M t I T e e e 1 + Ii10 (1 I 20 ) 2 R R dt RR EM T RT T T
输出电压平均值为: ton E (T ton t x ) EM Uo T 负载电流平均值为:
1 (1 m)e t x ln m
电流断续时的波形
t2
t

tx<toff
e 1 m e 1
ton t x 1 m E T
1
t1
5.1.1 降压斩波的工作原理 输出电压平均值 Ua u 0 dt
T
0
t1 T
E ft 1 E E

直流-直流变换电路

直流-直流变换电路
3.1 直接DC/DC变换电路
3.1.1 降压斩波电路 3.1.2 升压斩波电路 3.1.3 升降压斩波电路 3.1.4 Cuk斩波电路 3.1.5 Sepic斩波电路 3.1.6 Zeta斩波电路 3.1.7 复合斩波电路和多相多重斩波电路
3.1.1 降压斩波电路
3.1.2 升压斩波电路
3.1.7 复合斩波电路和多相多重斩波电路
直流
逆变
电路
交流 变压器
交流
整流 电路
脉动直流 滤波器
直流
变压器隔离型DC/DC变换器
• 采用这种结构的变换原因:
输出端与输入端需要隔离。 某些应用中需要相互隔离的多路输出。 输出电压与输入电压的比例远小于1或远大于1。 交流环节采用较高的工作频率,可以减小变压器和滤波电 感、滤波电容的体积和重量。
t
断.
O
t
S关断后到下一次再开通的一段时间 im1
内,必须设法使im1降回到零(变压 器的磁心复位),否则下一个开关周
O t0
t1
t2
t
B
期中, im1将在本周期结束时的剩余
值基础上继续增加,并在以后的开
BS
关周期中依次累积起来,从而导致
变压器的励磁电感饱和。
励磁电感饱和后, im1会更加迅速地 增长,最终损坏开关器件。
t
总输出电流最大脉动率(电流脉动 iO2
t
幅值与电流平均值之比)与相数的平 Oi3
t
方成反比。
Oio
t
3.2 变压器隔离型DC/DC变换器
3.2.1 正激电路 3.2.2 反激电路 3.2.3 半桥电路 3.2.4 全桥电路
3.2 变压器隔离型DC/DC变换器
变压器隔离型DC/DC变换器:先将直流逆变为交流, 再整流为直流电,也称为直-交-直电路。

第5章 直—直变换电路正激和反激20191104

第5章 直—直变换电路正激和反激20191104

◆电路工作原理
当使VT4保持通态时,该斩波电路就等效 为图5-22a所示的电流可逆斩波电路,向
电动机提供正电压,可使电动机工作于第
1、2象限,即正转电动和正转再生制动状 态。此时,需防止VT3导通造成电源短路 。
图5-23 桥式可逆斩波电路
当时VT2保持为通态时,VT3、VD4和VT4、VD3等效为又一组电流可逆斩波电
开关VT开通后,变压器绕组W1 、W2两端的 电压为上正下负,与其耦合的绕组W2两端的电 压也是上正下负。因此VD1处于通态,VD2为断 态,绕组W3两端的电压是上负下正,使VD3关 断,电感L的电流逐渐增长;VT关断后,电感L 通过VD2续流,VD1关断,L的电流逐渐下降。 VT关断后变压器的励磁W3电流经绕组和VD3流 回电源。VT关断后承受的电压为
3
5.4 带隔离的单管直流-直流变换电路
◆采用这种结构较为复杂的电路来完成直流-直流变换的原因: (1)输出端与输入端需要隔离。 (2)某些应用中需要相互隔离的多路输出。 (3)输出电压与输入电压的比例远小于1或远大于1.
同直流斩波电路相比,这种变流电路中增加了交流环节,因此也称 为直—交—直电路。
U ce
Ui (1
N1 ) N3
(5-61)
7
5.4.2 反激电路
■同正激电路不同,反激电路中的变压器起着
储能元件的作用,可以看作是一对相互耦合的
电感。
◆工作原理
VT开通后,VD处于断态,绕组W1的电流线
性增长,电感储能增加;VT关断后,绕组W1
的电流被切断,变压器中的磁场能量通过W2和
VD向输出端释放。VT关断后的电压uS为 Ui ◆工作模式
路,向电动机提供负电压,可使电动机工作于第3、4象限。VT3、VD4其中构

电力电子技术第5章 直流-直流变换电路

电力电子技术第5章  直流-直流变换电路

5.2 单管非隔离直流斩波器
5.2.1、降压式直流斩波电路
1、电路结构
电路中的VT采用IGBT;VD起续流作用,在VT关断时为 电感L储能提供续流通路;L为能量传递电感,C为滤波电 容,R为负载;Us为输入直流电压,U0为输出直流电压。
is
VT
- + UL
iL
L
iD
Us
VD
i0 + u0
CR
toff≥1,故负载上的输出电压U0高于电路输入电压Us,
该变换电路称为升压式斩波电路。
5.2.3 升降压式直流斩波电路
1、电路的结构
该电路的结构是储能电感L与负载R并联,续流二 极管VD反向串接在储能电感与负载之间。
iT VT
iD
iL +
uL
Us
L
-
VD
-
-
uC
u0
C
R
+ +
图5-9 升-降(压a)式斩波电路及工作波形
2、工作原理
2)在VT关断时,储能电感L两端电势极性变成左 负右正,VD转为正偏,电感L与电源Us叠加共同向 电容C充电,向负载R供能。如果VT的关断时间为
toff,则此时间内电感电压为 (U o U S ) 。
图5-8 Boost变换器电流连续工作模式波形图
3、基本数量关系
根据电感电压的伏秒平衡特性
图5-5 电流连续工作模式波形图
3、基本数量关系
根据电感电压的伏秒平衡特性 T
ton
T

uLdt uLdt uLdt 0
0
0
ton
设输出电压平均值为U0,则在稳态时,上式可以表达为:

第5章1直流变流电路-DC Chopper

第5章1直流变流电路-DC Chopper
(5-1)
式中:ton 为V处于通态的时间,toff 为V处于断态的时间,T 为开关 周期,α 为导通占空比,简称占空比或导通比。 负载电流平均值为:
Io = U o − Em R
(5-2)
电流断续时,负载电压uo平均值被抬高,不希望出现电流断续的情况。 ◆斩波电路有三种控制方式 脉冲宽度调制(PWM):T不变,改变ton。 频率调制:ton不变,改变T。 混合型:ton和T都可调,改变占空比
i1 IL i2 IL ton toff t
o o
t
图5-4 升降压斩波电路及其波形
稳态时,一个周期T内电感L两端电压uL对时间的积分为零,即

T
0
uL d t = 0
(5-39)
当V处于通态期间,uL=E;而当V处于断态期间,uL=-uo。 于是:
E ⋅ t on = U o ⋅ t off
(5-40)
I 1 t on = I 2 t off
(5-42)
由上式可得
I2 =
t off t on
I1 =
1−α
α
I1
(5-43)
如果V、VD为没有损耗的理想开关时,则输出功率和输入功率相 等,即
EI 1 = U o I 2
电力电子技术 直 流 变 换 电 路
自动化 谭健敏
图5-1 降压斩波电路的原理图及波形 a)电路图 c)电流断续时
5.1.1 降压斩波电路 电力电子技术 直 流 变 换 电 路
自动化 谭健敏
◆基本的数量关系 电流连续时 负载电压的平均值为:
Uo = t on t E = on E = αE t on + t off T
电力电子技术 直 流 变 换 电 路

直流-交流变换电路

直流-交流变换电路
22
二、三相电压型逆变电路
三个单相逆变电路可组合成一个三相逆变电路 应用最广的是三相桥式逆变电路 可看成由三个半桥逆变电路组成
+
V1
V3
Ud 2
VD 1
N'
U
V
Ud 2
VD 4
V5 VD3
VD5
W VD6
VD2
-
V4
V6
V2
图5-2-3 三相电压型桥式逆变电路 图5-9
N
23
三相电压型逆变电路
N c)
O
u UV
t
-
V4
V6
V2
Ud
d)
O
t
➢ 桥臂1、3、图55-的9 电流相加
u NN'
e)
O
可得直流侧电流id的波形, id每 60°脉动一次,直流 电压基本无脉动,因此逆
u UN
f)
O
iU
g)
O
变器从交流侧向直流侧传
送的功率是脉动的,电压
id
h)
O
型逆变电路的一个特点 .
2U d 3
U d 6
➢ 输出电压定量分析
uo成傅里叶级数
uo
4U d
(sint
1 sin 3t
3
1 sin 5t
5
)
基波幅值 基波有效值
U o1m
4U d
1.27U d
2 U o1
2U d
0.9U d
uo为正负各180°时,要改变输出电压有效值只能改变 Ud来实现 阻感负载时可采用移相调压
21
电压型逆变电路的主要特点
二、三相电压型逆变电路
13

(完整版)电力电子技术第5章-复习题-答案

(完整版)电力电子技术第5章-复习题-答案

第5/10章 直流-直流变换电路 习题与答案第1部分:填空题1.直流斩波电路完成的是直流到 另一种直流 的变换。

2.直流斩波电路中最基本的两种电路是 降压(Buck ) 电路和 升压(Boost ) 电路。

3.斩波电路有三种控制方式: 脉宽调制(PWM )、脉频调制(PFM ) 和 PWM/PFM 混合调制 ,其中最常用的控制方式是:脉宽调制(PWM ) 。

4.脉冲宽度调制的方法是: 开关周期 不变, 开关导通 时间变化,即通过导通占空比的改变来改变变压比,控制输出电压。

5.脉冲频率调制的方法是: 开关导通 时间不变, 开关周期 变化,导通比也能发生变化,达到改变输出电压的目的。

该方法的缺点是: 开关频率 的变化范围有限。

输出电压、输出电流中的 谐波频率 不固定,不利于滤波器的设计 。

6.降压斩波电路中通常串接较大电感,其目的是使负载电流 平滑 。

7.升压斩波电路使电压升高的原因:电感L 在开关管导通期间将电能转换为磁能储存起来,以实现电压泵升 ,电容C 在开关管导通期间给负载供能以使输出电压连续平滑 。

8.升压斩波电路的典型应用有 直流电动机传动 和 功率因素校正(APFC ) 等。

9.升降压斩波电路和Cuk 斩波电路呈现升压状态的条件是开关器件的导通占空比为 大于0.5小于1 ;呈现降压状态的条件是开关器件的导通占空比为 大于0小于0.5 。

10.设Buck 型DC-DC 变换器工作于CCM 模式,设输入电压U i =10V ,占空比D =0.6,则输出电压U O = 6V 。

11.设Boost 型DC-DC 变换器工作于CCM 模式,设输入电压U i =12V ,占空比D =0.8,则输出电压U O = 60V 。

13.开关型DC-DC 变换电路的三个基本元件是 开关管 、 电感 和 电容 。

14. 斩波电路用于拖动直流电动机时,降压斩波电路能使电动机工作于第 1 象限,升压斩波电路能使电动机工作于第 2 象限,电流可逆 斩波电路能使电动机工作于第1和第2象限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

is
VT
- + UL
iL
L
iD
Us
VD
i0 + u0
CR
图5-2
-
2、工作原理
1)在控制开关VT导通ton期间,二极管VD反偏, 则电源Us通过L向负载供电,此间iL增加,电感L 的储能也增加,在电感端有一个正向电压uL=Usuo,左边正右边负。这个电压引起电感电流iL线 性增加;如上图(a)所示。
第5章 直流-直流变换电路
本章要点
直流斩波电路的基本结构和分类; 单象限直流斩波器(降压式、升压式、升-降压式、
Cuk电路)的基本电路结构、工作原理和波形; H桥式斩波电路的基本结构和工作原理 变压器隔离的斩波电路的基本结构和工作原理
5.1 直流斩波器
一、概述
将一种幅值的直流电压变换成另一幅值固定或大小可调的直 流电压的过程称为直流-直流电压变换。它通过对电力电子 器件的通断控制,将直流电压断续地加到负载上,通过改变 占空比D来改变输出电压的平均值。它是一种开关型DC/DC 变换电路,俗称斩波器(Chopper)。
T
0uLd t 0 uLd t tou nLd t0
设输出电压平均值为U0,则在稳态时,上式可以表
达为: U ston (U o U s)tof f0

U0tont oftof ffUs tT offUs
由斩波电路的工作原理可看出,周期T ≥ toff,或T /
toff≥1,故负载上的输出电压U0高于电路输入电压Us,
该变换电路称为升压式斩波电路。
5.2.3 升降压式直流斩波电路
1、电路的结构
该电路的结构是储能电感L与负载R并联,续流二 极管VD反向串接在储能电感与负载之间。
iT VT
iD
iL +
uL
Us
L
-
(a)
VD
-
-
uC
u0
C
R
+ +
图5-8
2、工作原理
1)当开关VT导通时,电源Us经VT给电感L充电
变,而与电路其他参数无关。
5.2.2 升压式直流斩波电路
1、电路的结构
斩波开关VT与负载并联连接,储能电感与负载呈串联连接
uL
L iL
VD i0
Us
VT C
图5-5
Hale Waihona Puke u0R2、工作原理
1)VT导通时,Us向串在回路中的电感L充电,电 感电压左正右负;而负载电压上正下负,此时二极 管VD被反偏截止。由于电感L的恒流作用,此充电 电流为恒值IL。又VD截止时C向负载R放电,由于C 已经被充电且C容量很大,所以负载电压保持为一 恒值,记为U0。设VT的导通时间为ton,在此阶段 电源Us全部加在电感L上,则Us=uL ;
储能,电感电压上正下负,此时VD被负载电压
(下正上负)和电感电压反偏,流过VT的电流为
iT(=iL),方向如上图a所示。由于此时VD反偏截 止,电容C向负载R供能并维持输出电压基本恒定,
负载R及电容C上的电压极性为上负下正,与电源
u0
+
S
Id
Us
R
U0
Us
VD
U0
L
-
0 ton
t
T
图5-1
三、直流斩波器的分类
直流斩波器按照调制形式可分为 1)脉冲宽度调制(PWM);2)脉冲频率调制(PFM);
3)混合调制。 按变换电路的功能分类有 1)降压式直流-直流变换(Buck Converter);2)升
压式直流-直流变换(Boost Converter);3)升压-降 压复合型直流-直流变换(Boost-Buck Converter);4) 库克直流-直流变换(Cuk Converter)。 按输入直流电源和负载交换能量的形式又可分为 1)单象限直流斩波器;2)二象限直流斩波器。
to n
T
0uLd t 0 uLd t tou nLd t0
设输出电压平均值为U0,则在稳态时,上式可以表达为:
(U S U 0)to nU 0(T to)n

U0
ton EDE T
式中D为导通占空比;ton为VT的导通时间;T为开关周期。 通常ton≤T,所以该电路是一种降压直流变换电路。当输入 电压E不变时,输出电压Uo随占空比D的线性变化而线性改
在直流斩波器中,因输入电源为直流电,电流无自然过零点, 半控元件的关断只能通过强迫换流措施来实现。造成线路的 复杂化和成本的提高。因此,直流斩波器多以具有自关断能 力的全控型电力电子器件作为开关器件。
二、直流斩波器的基本结构和工作原理
下图是直流斩波器的原理图。图中开关S可以是各种全控型 电力电子开关器件,输入电源电压Us为固定的直流电压。 当开关S闭合时,直流电流经过S给负载RL供电;开关S断 开时,直流电源供给负载RL的电流被切断,L的储能经二极 管VD续流,负载RL两端的电压接近于零。
0 TiCd t 0ton iCd t tT on iCd t0
5.2 单管非隔离直流斩波器
5.2.1、降压式直流斩波电路
1、电路的结构
电路中的VT采用IGBT;VD起续流作用,在VT关断时为 电感L储能提供续流通路;L为能量传递电感,C为滤波电 容,R为负载;Us为输入直流电压,U0为输出直流电压。
2、工作原理
2)在VT关断时,储能电感L两端电势极性变成左 负右正,VD转为正偏,电感L与电源Us叠加共同向 电容C充电,向负载R供能。如果VT的关断时间为
toff,则此时间内电感电压为 (UoUS)。
图5-7 Boost变换器工作波形
3、基本数量关系
根据电感电压的伏秒平衡特性
T
to n
2、工作原理
2)在开关管VT关断时,电感中储存的电能产生感 应电势,使二极管导通,故电流iL经二极管VD续 流,uL=-uo(原方向设为正),电感L向负载供电, 电感L的储能逐步消耗在R上,电流iL下降。如上图 (b)所示。
图5-4 连续和断续两种工作模式波形图
3、基本数量关系
根据电感电压的伏秒平衡特性 T
四、直流斩波器中电感、电容的基本特性
1、电感电压的伏秒平衡特性 稳态条件下,变换器中的电感电压必然周期性重复,由于每 个开关周期中电感的储能为零,并且电感电流保持恒定,因此 ,每个开关周期中电感电压
0 TuLd t 0 ton uLd ttT on uLd t0
2、电容电流的安秒平衡特性 稳态条件下,开关变换器中的电容电流必然周期性重复, 每个开关周期中电容的储能为零,并且电容电压保持恒定, 因此,每个开关周期中电容电流
相关文档
最新文档