七年级上册一元一次方程专题练习(解析版)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学一元一次方程解答题压轴题精选(难)

1.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.

(1)求A、B两点的对应的数a、b;

(2)点C在数轴上对应的数为x,且x是方程2x+1= x﹣8的解.

①求线段BC的长;

②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.【答案】(1)解:∵|a+3|+(b﹣2)2=0,

∴a+3=0,b﹣2=0,

解得,a=﹣3,b=2,

即点A表示的数是﹣3,点B表示的数是2 。

(2)解:①2x+1= x﹣8

解得x=﹣6,

∴BC=2﹣(﹣6)=8

即线段BC的长为8;

②存在点P,使PA+PB=BC理由如下:

设点P的表示的数为m,

则|m﹣(﹣3)|+|m﹣2|=8,

∴|m+3|+|m﹣2|=8,

当m>2时,解得 m=3.5,

当﹣3<m<2时,无解

当x<﹣3时,解得m=﹣4.5,

即点P对应的数是3.5或﹣4.5

【解析】【分析】(1)根据绝对值及平方的非负性,几个非负数的和为零则这几个数都为零从而得出解方程组得出a,b的值,从而得出A,B两点表示的数;

(2)①解方程2x+1= x﹣8 ,得出x的值,从而得到C点的坐标,根据两点间的距离得出BC的长度;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,根据两点间的距离公式列出方程|m﹣(﹣3)|+|m﹣2|=8,然后分类讨论:当m>2时,解得m=3.5,当﹣3<m<2时,无解,当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5 。

2.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.

(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;

(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;

(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.

【答案】(1)解:①∵∠AON+∠BOM=90°,∠COM=∠MOB,

∵∠AOC=30°,

∴∠BOC=2∠COM=150°,

∴∠COM=75°,

∴∠CON=15°,

∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,

解得:t=15°÷3°=5秒;

②是,理由如下:

∵∠CON=15°,∠AON=15°,

∴ON平分∠AOC

(2)解:15秒时OC平分∠MON,理由如下:

∵∠AON+∠BOM=90°,∠CON=∠COM,

∵∠MON=90°,

∴∠CON=∠COM=45°,

∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,

设∠AON为3t,∠AOC为30°+6t,

∵∠AOC﹣∠AON=45°,

可得:6t﹣3t=15°,

解得:t=5秒

(3)解:OC平分∠MOB

∵∠AON+∠BOM=90°,∠BOC=∠COM,

∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,

设∠AON为3t,∠AOC为30°+6t,

∴∠COM为(90°﹣3t),

∵∠BOM+∠AON=90°,

可得:180°﹣(30°+6t)= (90°﹣3t),

解得:t=23.3秒;

如图:

【解析】【分析】(1)①根据∠AON+∠BOM=90°,∠COM=∠MOB,及平角的定义∠BOC=2∠COM=150°,故∠COM=75°,根据角的和差得出∠CON=15°从而得到AON=∠AOC ﹣∠CON=30°﹣15°=15°,根据旋转的速度,就可以算出t的值了;②根据∠CON=15°,∠AON=15°,即可得出ON平分∠AOC ;

(2)15秒时OC平分∠MON,理由如下:∠AON+∠BOM=90°,∠CON=∠COM,从而得出∠CON=∠COM=45°,又三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,根据∠AOC﹣∠AON=45°得出含t的方程,求解得出t的值;

(3)根据∠AON+∠BOM=90°,∠BOC=∠COM,及三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,故设∠AON为3t,∠AOC为30°+6t,从而得到∠COM

为(90°﹣3t),又∠BOM+∠AON=90°,从而得出含t的方程,就能解出t的值。

3.已知:如图所示,O为数轴的原点,A,B分别为数轴上的两点,A点对应的数为﹣30,B点对应的数为100.

(1)A、B的中点C对应的数是________;

(2)若点D数轴上A、B之间的点,D到B的距离是D到A的距离的3倍,求D对应的数.(提示:数轴上右边的点对应的数减去左边对应的数等于这两点间的距离);

(3)若P点和Q点是数轴上的两个动点,当P点从B点出发,以6个单位长度/秒的速度向左运动时,Q点也从A点出发,以4个单位长度/秒的速度向右运动,设两点在数轴上的E点处相遇,那么E点对应的数是多少?

【答案】(1)35

(2)解:设点D对应的数是x,则由题意,

得100﹣x=3[x﹣(﹣30)]

相关文档
最新文档