2电磁场基本方程

合集下载

电磁场基本方程

电磁场基本方程

电磁场基本方程1.麦克斯韦方程组1)麦克斯韦方程组全面反映了电磁基本规律,揭示了一般电磁现象,其微分形式的方程为: 0()t ∂∇⨯+=∂B B 法拉第定律 (2-1) 该定律揭示电磁感应现象,将磁场和电场有机联系了起来。

-(-)J t ∂∇⨯=∂D H 麦克斯韦安培定律 (2-2) 该定律的含义是磁通密度矢量沿任意一个闭合回路的线积分与穿过该闭合回路所在曲面Ω的电流总和相等,而与介质和磁场强度H 的分布无关。

()ρ∇•=D 高斯定律 (2-3) 该定律的含义是穿过任意一个闭合曲面的电通量(电位移矢量在该闭合曲面的有向积分)与这一闭合曲面所包围的自由电荷代数和相等,而与电介质和电通密度矢量分布无关。

0()∇•=B 磁场高斯定律 (2-4) 该定律的含义是穿出任意一个闭合曲面的磁通量(即磁通密度矢量在该闭合曲面的有向积分)恒等于零,而与磁介质和磁通密度矢量分布无关。

2)连续性方程,它是电流守恒定律的微分形式,可表示成:-t ρ∂∇•=∂J (2-5) 3)本构关系:本构关系表示与媒质电磁特性相关场量之间的关系,也叫媒质构成方程。

它描述了磁介质、电介质与导电体媒质三种电磁介质,同时解释了电磁场作用的媒质的分子磁化、电子传导、极化的机理,其中:ε=D E (2-6)μ=B H (2-7) 在电源以外区域有:()e σν=+⨯J E B (2-8) 需要注意,公式 (2.6)到(2.8)中,εμσ、、均为标量,因为材料均是各向同性媒质,若是各向异性媒质则均为张量。

其中:H 表示磁场强度;B 表示磁感应强度;E 表示电场强度;D 表示电位移矢量;J 表示电流密度;ρ表示电荷密度;ε表示电容率;σ表示电导率;ν表示磁阻率。

对于低频似稳电磁场,进行问题分析时在一般情况下可忽略因电场变化时产生的磁场,只研究磁场变化而产生的电场。

因为由麦克斯韦方程可知,电磁场的频率较低时,一般在1010Hz 以下,传导电流密度J 很大,而电位移矢量密度/t ∂∂D 很小,因此近似认为导体中无感应的涡流。

电磁场与电磁波公式整理

电磁场与电磁波公式整理

电磁场与电磁波公式整理第一章A:矢量恒等式()()()A B C B C A C A B ×=×=×i i i ()()()A B C B A C C A B ××=−i i ()uv u v v u ∇=∇+∇ ()uA u A A u ∇=∇+∇i()0U ∇×∇=()0A ∇∇×=i 2()U U ∇∇=∇i2()()A A A ∇×∇×=∇∇−∇iVSAdV A dS ∇=∫∫i iVCAdS A dl ∇×=∫∫in V S AdV AdS e ∇×=×∫∫ n V S udV udS e ∇=∫∫n S C udS udl e ×∇=∫∫ 2)V S u v u dV udSnv v ∂+∇∇=∇∂∫∫i22(()VSuu v v dV uv dS n nv u ∂∂−=−∇∇∂∂∫∫ B:三种坐标系的积分元以及梯度、散度、旋度、和拉普拉斯运算⑴直角坐标系位置矢量微分元:x y z dr dx dy dz e e e =++面积元:,,x y z d dydz d dxdz d dxdy s s s === 体积元:dv dxdydz = x y z u u uu e e e x y z ∂∂∂∇=++∂∂∂ y x z A A A A x y z∇=∂∂∂++∂∂∂i x yz A x y z A A A x yz e ee∂∂∂∇×=2222222u u u u x y z ∇∂∂∂=++∂∂∂()uA u A u A ∇×=∇×+∇×()A B B A A B∇×=∇×−∇×i i i ()()()A B A B B A A B B A ∇=∇×+∇+×∇×+×∇×i i i ()()()()A B A B B A B A A B ∇××=∇−∇+∇−∇i i i i⑵圆柱坐标系位置矢量微分元:z dr d d dz e e e ρφρρφ=++面积元:,,z d d dz d d dz d d d s s s ρφρφρρρφ=== 体积元:dv d d dz ρρφ=z u u u u z e e e ρφρρφ∂∂∂∇=++∂∂∂ ()()()11A A A z A z ρρρφρρρφ∂∂∂∇=++∂∂∂i1z e e e A z A A Az ρφρρφρρφ∂∂∂∇×=∂∂∂22222211()u u u u z ρρρρρφ∂∂∂∂=++∇∂∂∂∂⑶球坐标系位置矢量微分元:sin r r r dr dr d d e e e θφθθφ=++面积元:2sin ,sin ,r d d d d r drd d rdrd r s s s θφθθφθφθ=== 体积元:2sin dv drd d r θθφ=1sin ru u u u r r r e e e θφθθφ∂∂∂∇=++∂∂∂22111()(sin )sin sin r A r r r r rA r A A φθθθθθφ∂∂∂∇=++∂∂∂i2sin 1sin sin re re r e A r ArrA r A r θφθθφθθθφ∂∂∂∇×=∂∂∂ 22222222111()(sin sin sin u u uu r r r r r r θθθθφθ∇∂∂∂∂∂=++∂∂∂∂∂ C:几个定理散度定理:v s FdV F dS ∇=∫∫i i斯托克斯定理:s c F dS F dl∇×=∫∫i i亥姆霍茨定理:()()()F r u r A r =−∇+∇×格林定理:n V S FdV F dS e ∇=∫∫i i高斯定理和环路定理:第二章表一:电荷和电流的三种密度表二:电场和磁场表四:介质中的电(磁)场感应强度:电磁感应定律S in B dS d d dt dt ϕε=−=−∫i in C in E dl ε=∫i S C S d Bd dt tE dl ∂∂=−∫∫i i 积分形式 1.如果回路静止则有:S C S Bd tE dl ∂∂=−∫∫i BE t∂∇×=−∂ 2.导体以速度v 在磁场中运动 : ()CC v B dl E dl ×=∫∫i i3.导体在时变场中运动:()CS S B d tC v B dl E dl ∂∂−×=+∫∫∫i i i表五:麦克斯韦方程组:。

电磁场问题的有限元分析

电磁场问题的有限元分析
性和瞬态磁场分析;电场分折,以及用于分析和计算电磁场 或波辐射性能的高频电磁场分析。
ANSYS电磁场分析首先求解出电磁场的磁势和电势, 然后经后处理得到其他电磁场物理量,如磁力线分布、磁 通量密度、电场分布、涡流电场、电感、电容以及系统能 量损失等
● 电力发电机 ● 变压器 ● 电动机 ● 天线辐射 ● 等离子体装置
9.1 电磁场基本理论
(4)ANSYS电磁场分析简介 2. ANSYS电磁场分析方法 (2)建立分析模型。 在建立几何模型后,对求解区域用选定的单元进行划分, 并对划分的单元赋予特性和进行编号。 单元划分的疏密程度要根据具体情况来定,即在电磁 场变化大的区域划分较密,而变化不大的区域可划分得稀 疏些。 (3)施加边界条件和载荷。 (4)求解和后处理。
过滤图形用户界面进入电磁场 分析环境。在ANSYS软件的 Multiphysics模块中,执行:Main Menu>Preferences,在弹出的对话 框中选择多选框“Magnetic-Nodal” 后,单击[OK]。
9.2 二维静态磁场分析
(2)二维静态磁场分析实例 (2) 建立模型 ①生成大圆面:Main Menu>Preprocessor>Modeling>Create>Area >Circle>By Dimensions弹出如对话框,在对 话框中输入大圆的半径“6”.然后单击 [OK]。 ②生成小圆: MainMenu>Preprocessor>Modeling>Create>Areas>Ci rcle>Solid Circle,弹出一个对话框,在“WP X”后面 输入“1”,在“Radius”后面输入“2”,单击[OK], 则生成第第二个圆。 ③布尔操作: MainMenu>Preprocessor>Modeling>Cr eate>Booleans>Overlap>Area,在弹出 对话框后,单击[Pick All]。

习题答案第2章 电磁场基本方程

习题答案第2章  电磁场基本方程

第2章电磁场基本方程2.1/2.1-1设空气中有一半径为a 的电子云,其中均匀充满着密度为ρv 的电荷。

试求球内(r<a )和球外(r>a )任意点处的电通密度D 和电场强度E 及D ⋅∇和E ⋅∇。

1)r<a:03ˆ,3ˆερρrrE r r D v v ==∴0,31022=×∇=⎟⎟⎠⎞⎜⎜⎝⎛⋅∂∂=⋅∇E r r r r D v v ρερ2)r>a:203233ˆ,3ˆr a r E r a r D v v ερρ==∴0,03132=×∇=⎟⎟⎠⎞⎜⎜⎝⎛⋅∂∂=⋅∇E a r r D v ρ2.2/ 2.1-2设空气中内半径a 、外半径b 的球壳区域内均分布着体密度为ρv 的电荷。

试求以下三个区域的电场强度E E ⋅∇、及E ×∇:(a)r<a ;(b)a<r<b ;(c)r>b.[解]应用高斯定理,取半径为r 的同心球面为高斯面.dvrr D s d D svv ∫∫=⋅=⋅ρπ24ˆ(a)r<a:0,0==∴E D 0,0=×∇=⋅∇E E (b)a<r<b:()()33203323ˆ,3ˆa r rr E a r r rD v v −=−=∴ερρ()0,3103302=×∇=⎥⎦⎤⎢⎣⎡−∂∂=⋅∇E a r r r E v v ερερ(c)r>b:()()33203323ˆ,3ˆa b rr E a b r rD v v −=−=∴ερρ0,0=×∇=⋅∇E E 2.3/2.1-3一半径等于3cm 的导体球,处于相对介电常数εr =2.5的电介质中,已知离球心r=2m 处的电场强度E=1mv/m ,求导体球所带电量Q 。

[解]由高斯定理知,Qr E =⋅24πεC E r Q 123921011.1105.210361444−−−×=×××××==∴ππεπ2.4/2.1-4一硬同轴线内导体半径为a ,外导体内外半径分别为b 、c ,中间介质为空气(题图2-1)。

第2章--电磁场基本方程---2

第2章--电磁场基本方程---2

l
a 2
2 a
故 E ˆ U
ln
b a
同轴线内最大电场强度EM发生于内导体表面处:
EM
U a ln
b a
c) EM最大值发生于
dEM da
U (a ln
b a
)2
(ln
b a
1)
0

ln b 1
b e
a
a

a b 1.8 0.662cm
e 2.718
15
电磁场
第二章 电磁场基本方程
例 3 设有二块无限大带电平行平面, 面上分别带有均匀 电荷, 上极板电荷密度是-ρs(C/m2), 下极板为+ρs(C/m2), 两 极板间距离为d(m), 如图3 - 3所示。试求平行板内、外各 点的电场强度。
解: 由高斯定理的微分形式 E , 得电荷密度为 0
0 E
用球坐标中的散度公式
A
1 r2
(r 2 Ar ) r
1
r sin
(sin A )
1
r sin
A
可得
0
(r>a)
o E0
15 2a3
(a2
r2)
(r<a)
21
电磁场
第二章 电磁场基本方程
2 .1 .4 比奥-萨伐定律, 磁通密度
H dl I
l ----安培环路定律
物理意义: 磁场强度H沿闭合路径的线积分等于该路径所
包围的电流I。
I: 传导电流的代数和。
可方便地计算一些具有对称特征的磁场分布。
因为S面是任意取的, 所以
( H ) ds J ds
s
S
H J 32

电磁场方程及其解法

电磁场方程及其解法

电磁场方程及其解法电磁场是自然界中非常重要的物理现象,它的应用领域非常广泛。

电磁场方程是描述电磁现象的基本方程,了解电磁场方程及其解法,对于深入理解电磁现象具有重要的意义。

一、麦克斯韦方程组麦克斯韦方程组是描述电磁现象的重要基础方程组。

麦克斯韦方程组包括四个方程:高斯定理、法拉第定律、安培环路定理和位移电流定律。

高斯定理描述了电场和电荷之间的关系。

该定理的数学表达式为:$$\nabla·\boldsymbol{E}=\frac{\rho}{\varepsilon_0}$$其中$\boldsymbol{E}$表示电场矢量,$\rho$表示电荷密度,$\varepsilon_0$表示真空电容率。

法拉第定律描述了磁场和电流之间的关系。

该定律的数学表达式为:$$\nabla\times\boldsymbol{E}=-\frac{\partial\boldsymbol{B}}{\partial t}$$其中$\boldsymbol{B}$表示磁场矢量,$t$表示时间。

安培环路定理描述了磁场和电流之间的关系。

该定理的数学表达式为:$$\nabla·\boldsymbol{B}=0$$$$\nabla\times\boldsymbol{B}=\mu_0\boldsymbol{J}+\mu_0\vare psilon_0\frac{\partial\boldsymbol{E}}{\partial t}$$其中$\boldsymbol{J}$表示电流密度,$\mu_0$表示真空磁导率。

位移电流定律描述了电场和磁场之间的关系。

该定律的数学表达式为:$$\nabla·\boldsymbol{J}=-\frac{\partial\rho}{\partial t}$$$$\nabla\times\boldsymbol{B}=\mu_0\boldsymbol{J}$$二、电磁场方程的解法由于电磁场方程比较复杂,通常采用数值解法进行求解。

电磁场理论

电磁场理论

电磁场理论电磁场理论,是电磁学的一个重要分支,研究电荷的运动对周围空间所形成的电场和磁场的影响,以及电流产生的磁场对周围空间所形成的电场和磁场的影响。

电磁场理论的基本方程包括麦克斯韦方程组和洛伦兹力密度方程。

麦克斯韦方程组是电磁场理论的基础,它包含了四个基本方程:1. 高斯定律:电场的通量与被包围电荷量之比等于电场强度在该点的值。

$$\abla \\cdot \\mathbf{E}=\\frac{\\rho}{\\varepsilon_{0}}$$2. 麦克斯韦—法拉第定律:磁场感应强度的闭合线圈输出电动势等于穿过该线圈的时间变化磁通量。

$$\abla \\times \\mathbf{E}=-\\frac{\\partial \\mathbf{B}}{\\partial t}$$3. 法拉第定律:导体中的电流与其上产生的磁场强度成正比。

$$\abla \\cdot \\mathbf{B}=0$$4. 安培定律:电流的旋度等于该点磁场的旋度与电场强度之和。

$$\abla \\times \\mathbf{B}=\\mu_{0} \\mathbf{J}+\\mu_{0}\\varepsilon_{0} \\frac{\\partial \\mathbf{E}}{\\partial t}$$其中,$\\rho$ 为电荷密度,$\\mathbf{E}$ 为电场强度,$\\mathbf{B}$ 为磁场感应强度,$\\mu_0$ 为真空中的磁导率,$\\varepsilon_0$ 为真空中的介电常数,$\\mathbf{J}$ 为电流密度。

洛伦兹力密度方程是磁场产生力的关系式,它描述了电磁场对电荷的作用力,即洛伦兹力:$$\\mathbf{f}=q\\left(\\mathbf{E}+\\mathbf{v} \\times\\mathbf{B}\\right)$$其中,$\\mathbf{v}$ 为电荷的速度。

麦克斯韦方程组四个方程的实验基础

麦克斯韦方程组四个方程的实验基础

麦克斯韦方程组四个方程的实验基础
麦克斯韦方程组是描述电磁场的基本方程,它有四个方程,分别是:
1. 麦克斯韦第一方程(电场高斯定律):它指出电场从正电荷发出并向负电荷发散,电场通过一个闭合曲面的通量与曲面所包围的电荷成正比。

这一方程的实验基础是库仑定律和电场的测量实验。

2. 麦克斯韦第二方程(电场磁感应定律):它表明磁感应线圈电场的环路积分等于该环路所包围的电荷以及穿过此环路的电流的代数和。

这一方程的实验基础是奥萨伐尔定律和磁场的测量实验。

3. 麦克斯韦第三方程(磁场高斯定律):它说明磁感应从北极发散,向南极汇聚,磁感应通过一个闭合曲面的通量为零。

这一方程的实验基础是磁场的测量实验。

4. 麦克斯韦第四方程(安培定律):它描述了变化的磁场产生电场环路积分,等于通过环路的电流和由磁场产生的位移电流之和。

这一方程的实验基础是法拉第电磁感应定律和安培环路定律的实验。

综上所述,麦克斯韦方程组的实验基础是通过电场、磁场和电流等的实验测量,结合库仑定律、奥萨伐尔定律、法拉第电磁感应定律和安培环路定律等原理来推导和验证的。

电磁场的计算与分析

电磁场的计算与分析

电磁场的计算与分析一、引言电磁场是电学和磁学研究的核心内容,是科学技术和工程技术发展的重要领域之一。

电磁场计算与分析是研究电磁场的重要手段,其核心思想是根据电磁场本质特征和规律,运用数学和物理方法建立电磁场的数学模型,进而计算和分析电磁场在空间中的分布和变化,为电学、磁学以及电磁工程学等领域的研究和应用提供了重要理论和技术基础。

本文主要从电磁场计算与分析的基本原理、数学模型、计算方法、应用等方面进行论述。

二、电磁场计算与分析基本原理电磁场的基本特征是电荷体系的空间分布和运动状态引起的电场和磁场变化,电磁场的本质规律是由麦克斯韦方程组描述的。

麦克斯韦方程组包括四个方程式,分别是高斯定理、法拉第定律、安培环路定理和法拉第电磁感应定律,它们描述了电荷和电流体系所产生的电场和磁场的产生、传播、相互作用和变化规律。

在电磁场的计算与分析中,基本原理是通过麦克斯韦方程式建立电场和磁场的数学模型,再根据边值条件和物理特征进行计算和分析,得到电磁场在空间中的分布和变化规律。

因此,电磁场计算与分析是一种把物理实验和理论相结合的方法,既需要物理实验参数的支持,又需要数学模型建立和计算方法的选择和应用。

三、电磁场的数学模型电磁场的数学模型建立是电磁场计算与分析的重要基础,目前常用的计算方法主要有有限元法、有限差分法、谱方法、边界元法等。

在这些方法中,有限元法和有限差分法是应用最广泛的两种方法。

1. 有限元法有限元法是一种将连续物理问题离散成有限个子域,用有限元方法近似求解得到数值解的方法。

该方法具有广泛的应用领域,如物理学、机械工程、结构力学、电磁学等,在电磁场计算和分析方面也得到了广泛的应用。

有限元法的主要思路是根据问题所在的物理区域,将区域内的物理量和模型分离成若干离散的单元,每个单元内的物理量按一定方式近似处理,然后利用计算机求解数值解。

该方法的核心是构建有限元模型,即如何选取合适的单元类型、单元尺寸和适当的外部条件等,这对于解决电磁场的复杂问题具有重要意义。

电磁场基本方程

电磁场基本方程

推导2
ˆ) 0 Id l ( I ' dl ' R F 2 l' 4 R l
r'
I' I R
r
电流元作用在电流元上的力
ˆ) 0 Idl ( I ' dl 'R dF 4 R2
线圈对线圈的作用可以表示为
l
F Id l B
作业 2.1-2
高斯定理解题步骤: (1)分析电场是否具有对称性。 (2)取合适的高斯面(封闭面),即取在E相等的曲面上。 (3)E相等的面不构成闭合面时,另选法线 n ˆ E 的面,
使其成为闭合面。
D ds s (4)分别求出 ,从而求得 D 及 E 。 qi S内
第2章 电磁场基本方程
主要内容 • 静态电磁场的基本定律 • 法拉第电磁感应定律和全电流定律 • Maxwell方程组 • 电磁场的边界条件 • 坡印廷定理和坡印廷矢量
1
§2.1 静态电磁场的基本定律和基本场矢量
基本定理
静电场: (1)
l
E dl 0即 E ds 0
17
§2.2 法拉第电磁感应定律和全电流定律
三、全电流连续性原理
a) 各个电流特点如下 1.传导电流:在导体中,由自由电子的定向运动形成: Jc E 2.运流电流:在真空和气体中,带电粒子的定向运动形成: Jv ρ v v 3.位移电流:电通量密度的时间变化率 J d D 传导电流、运流电流和位移电流之和称为全电流:
U ln b a
同轴线内最大电场强度EM发生于内导体表面处:
EM U a ln b a
c) EM最大值发生于
dEM U b (ln 1) 0 b 2 da (a ln a ) a

电磁场的基本理论

电磁场的基本理论

d
ez
b a
2
0 4 0
z z2
r 2
3/ 2
S rdrd
ez
S z 4 0
b a
2
z2
0
r 2
3/ 2 rdr
ez
S z 4 0
b a
z2
2
r2
3/ 2 rdr
ez
2 S z 4 0
b a
rdr
z2 r2
3/2
ez
S z 2 0
z2
1 a2
解解::(分1)析选电坐场标的系分:布圆,柱可坐知标线系电p荷(r产,生.z)
(的2)选电电场荷具源有轴对(0称,0,性Z'。) z轴d与q线电 l荷dz重'
(合3)确,定采d用E圆的柱方坐向标,轴线外任一点的电
(将场半4)确d强平E定度 面投d与为影E计角的到算度大坐区坐小标域标轴,上d线无,E 电关只4荷,考1中可虑0 点过大Rl为dz2小轴l 坐,取标
27
2、磁场的基本量--磁感应强度
理论上可以认为是电流元 Idl1 对电流元 Idl2 的安培作用力
F12 C 2 C 1 dF12 c2 I2dl 2B1
B为回路C1中的电流在 Idl2 所在点产生的磁场,称为磁感应
强度或磁通密度
B
dB
0
I dl
S
4 C R2
eR
dF12 I2dl 2dB1
1/ 2
1
z2
b2
1/ 2
25
四、安培力定律——磁感应强度
1、安培力定理
dl1
dl2 R
C2
实验结果表明,在真空中两个
C1

电磁场与电磁波--麦克斯韦方程组

电磁场与电磁波--麦克斯韦方程组

erykEm sin(t
kz)
对时间 t 积分,得
r B
r ey
kEm
cos(t
kz)
2.6 麦克斯韦方程组
rr
B = H
r H
r ey
kEm
cos(t
kz)
rr
D E
r D
erx
Em
cos(t
kz
)
rr 以上各个场矢量都应满足麦克斯韦方程,将以上得到的 H和 D 代入式
erx ery erz
r H
r
t
H 0
r
E /
r E t
2.6 麦克斯韦方程组
时变电场的激发源除了电荷以外,还有变化的磁场;而时变磁场的激 发源除了传导电流以外,还有变化的电场。电场和磁场互为激发源, 相互激发。
时变电磁场的电场和磁场不再相 互独立,而是相互关联,构成一 个整体 —— 电磁场。电场和磁 场分别是电磁场的两个分量。
r H
x
y
z
erx
H y z
erx
k 2 Em
sin(t
kz)
Hx Hy Hz
r
D t
erx
Dx t
erx Em sin(t kz)

r H
r D
t
k 2 2
作业:思考题 : 2.16, 2.18 习 题 : 2.20, 2.22
代入麦克斯韦方程组中,有
限定形式的麦克斯韦方程
r H
r E
t
(
r E
r
t
(
r H
)
(H) 0
r
( E)
r E)
(线性、各向 同性均匀媒质)

电动力学-复习-第二章-电磁场的基本规律

电动力学-复习-第二章-电磁场的基本规律

*
电场力服从叠加原理
真空中的N个点电荷 (分别位于 ) 对点电荷 (位于 )的作用力为
q
q1
q2
q3
q4
q5
q6
q7
*
2. 电场强度
空间某点的电场强度定义为置于该点的单位点电荷(又称试验电荷)受到的作用力,即
多层同心球壳
*
无限大平面电荷:如无限大的均匀带电平面、平板圆柱壳等。
(a)
(b)
*
例2.2.3 求真空中均匀带电球体的场强分布。已知球体半径为a ,电 荷密度为 0 。
解:(1)球外某点的场强
(2)求球体内一点的场强
( r ≥ a )
• 宏观分析时,电荷常是数以亿计的电子电荷e的组合,故可不考虑其量子化的事实,而认为电荷量q可任意连续取值。
2.1.1 电荷与电荷密度
*
1. 电荷体密度
单位:C/m3 (库仑/米3 )
根据电荷密度的定义,如果已知某空间区域V中的电荷体密度,则区域V中的总电量q为
电荷连续分布于体积V内,用电荷体密度来描述其分布
如果已知某空间曲线上的电荷线密度,则该曲线上的总电量q 为
单位: C/m (库仑/米)
*
对于总电量为 q 的电荷集中在很小区域 V 的情况,当不分析和计算该电荷所在的小区域中的电场,而仅需要分析和计算电场的区域又距离电荷区很远,即场点距源点的距离远大于电荷所在的源区的线度时,小体积 V 中的电荷可看作位于该区域中心、电量为 q 的点电荷。
第二章 电磁场的基本规律
*
2.1 电荷守恒定律 2.2 真空中静电场的基本规律 2.3 真空中恒定磁场的基本规律 2.4 媒质的电磁特性 2.5 电磁感应定律和位移电流 2.6 麦克斯韦方程组 2.7 电磁场的边界条件

《电磁场理论》2.2 真空中静电场的基本方程

《电磁场理论》2.2 真空中静电场的基本方程

2)解为球坐标系下的表达形式。
Q ( 4 r 2 er ) (r a) 0 (r a) 0 1 2 Qr E ( Qr e ) (r a) r 2 r (r 4 a3 ) (r a) r 0 3 4 a 0 0 E 3Q 4 a3 0 0
S

E (r ) dS
1

(r )dV
Q
球对称分布:
8
a
ρ0 O
9
轴对称分布
无限大平面电荷
例1 求电荷密度为 S 的无限大面电荷在空间中产生的 电场。 分析:电场方向垂直表面。在 S n 平行电荷面的面上大小相等。 解:取如图所示高斯面。 由高斯定律,有
s S E1 (r ) ez S E2 (r ) (ez ) S 0 s ez ( z 0) s 2 0 E 2 0 E s ez ( z 0) 2 0 10
E (r )
1 4 0

V'
(r ')
R dV ' 3 R
(r ') R E 3 dV ' V ' 4 R 0
R 3 0 R
E 0 ——静电场是无旋场,或保守场。 5
2.静电场的环路定理 对静电场取任意闭合回路L作路径积分: 由Stokes定理得: E d l ( E ) d S 0
对高斯定理的讨论 物理意义:静电场 E 穿过闭合面S的通量只与闭合面内
所围电荷量有关
静电场是有源场,静电荷是其散度源。
4
二、真空中静电场的旋度
1.静电场的旋度:

电磁学公式

电磁学公式

电磁学公式
电磁学常用公式库仑定律:F=kQq/r² 电场强度:E=F/q 点电荷电场强度:E=kQ/r² 匀强电场:E=U/d 电势能:E₁ =qφ 电势差:U₁₂=φ₁-φ₂静电力做功:W₁₂=qU₁₂电容定义式:C=Q/U 电容:C=εS/4πkd 带电粒子在匀强电场中的运动加速匀强电场:1/2*mv² =qU v² =2qU/m 偏转匀强电场: 运动时间:t=x/v₀垂直加速度:a=qU/md 垂直位移:y=1/2*at₂ =1/2*(qU/md)*(x/v₀)² 偏转角:θ=v⊥/v₀=qUx/md(v₀)² 微观电流:I=nesv 电源非静电力做功:W=εq 欧姆定律:I=U/R 串联电路电流:I₁=I₂=I₃ = …… 电压:U =U₁ +U₂ +U₃ + …… 并联电路电压:U₁=U₂=U₃= …… 电流:I =I₁+I₂+I₃+ …… 电阻串联:R =R₁+R₂+R₃+ …… 电阻并联:1/R =1/R₁+1/R₂+1/R₃+ …… 焦耳定律:Q=I² Rt P=I² R P=U² /R 电功率:W=UIt 电功:P=UI 电阻定律:R=ρl/S 全电路欧姆定律:ε=I(R+r) ε=U外+U内安培力:F=ILBsinθ 磁通量:Φ=BS 电磁感应感应电动势:E=nΔΦ/Δt 导线切割磁感线:ΔS=lvΔt E=Blv*sinθ 感生电动势:E=LΔI/Δt。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章 电磁场基本方程2.1 / 2.1-1设空气中有一半径为a 的电子云,其中均匀充满着密度为ρv 的电荷。

试求球内(r<a )和球外(r>a )任意点处的电通密度D 和电场强度E 及D ⋅∇和E ⋅∇。

[解] 应用高斯定理,取半径为r 的同心球面为高斯面.dv r r D s d D svv ⎰⎰=⋅=⋅ρπ24ˆ 1) r<a: 334r dv v v v πρρ⎰=3ˆ,3ˆερρr rE rrD v v ==∴ 0,31022=⨯∇=⎪⎪⎭⎫⎝⎛⋅∂∂=⋅∇E r r r r D v v ρερ 2) r>a: 334a dv v v v πρρ⎰=203233ˆ,3ˆr a rE ra rD v v ερρ==∴0,03132=⨯∇=⎪⎪⎭⎫⎝⎛⋅∂∂=⋅∇E a r r D v ρ 2.2 / 2.1-2设空气中内半径a 、外半径b 的球壳区域内均分布着体密度为ρv 的电荷。

试求以下三个区域的电场强度E E ⋅∇、及E ⨯∇:(a)r<a ;(b)a<r<b ;(c)r>b.[解] 应用高斯定理,取半径为r 的同心球面为高斯面.dv rr D s d D svv ⎰⎰=⋅=⋅ρπ24ˆ(a) r<a: 0=⎰dv v v ρ0,0==∴E D 0,0=⨯∇=⋅∇E E(b) a<r<b: ()3334a r dv v v v -=⎰πρρ()()33203323ˆ,3ˆa r rrE a rr rD v v-=-=∴ερρ ()0,3103302=⨯∇=⎥⎦⎤⎢⎣⎡-∂∂=⋅∇E a r r r E v v ερερ (c) r>b: ()3334a b dv v v v -=⎰πρρ()()33203323ˆ,3ˆa b rrE a br rD vv-=-=∴ερρ 0,0=⨯∇=⋅∇E E2.3 / 2.1-3一半径等于3cm 的导体球,处于相对介电常数εr =2.5的电介质中,已知离球心r=2m 处的电场强度E=1mv/m ,求导体球所带电量Q 。

[解] 由高斯定理知, Q r E =⋅24πεC E r Q 123921011.1105.210361444---⨯=⨯⨯⨯⨯⨯==∴ππεπ 2.4 / 2.1-4 一硬同轴线内导体半径为a ,外导体内外半径分别为b 、c ,中间介质为空气(题图2-1)。

当内外导体分别通过直流I 和-I 时,求:(a)内导体(ρ<a );(b)内外导体之间(a<ρ<b );(c)外导体中(b<ρ<c )三个区域的B H 、和B H ⋅∇⨯∇、。

[解] (a) :a r < 应用安培环路定律,222022aIl d d a IH l d H l==⋅=⋅⎰⎰⎰πρϕρρππρ题图2-1 同轴线横截面图22ˆa I H πρϕ=, 2002ˆa Il H B πμϕμ== J a Iz a I z H ==⎪⎪⎭⎫ ⎝⎛∂∂=⨯∇222ˆ21ˆππρρρ01=∂∂=⋅∇ϕρϕB B(b) :b r a << I H =⋅πρ2πρϕ2ˆI H =, πρμϕ2ˆ0IB =021ˆ=⎪⎭⎫ ⎝⎛∂∂=⨯∇πρρI z H 01=∂∂=⋅∇ϕρϕB B (c) :c r b <<()()222222222bc c I b b c I I H --=-⋅--=⋅ρρπππρ22222ˆb c c I H --=ρπρϕ, 222202ˆbc c I B --=ρπρμϕ ()J bc Iz b c c I z H '-=--=⎪⎪⎭⎫ ⎝⎛--∂∂=⨯∇222222ˆ21ˆπρπρρ 01=∂∂=⋅∇ϕρϕB B 2.5 / 2.2-1 一矩形线圈与载有电流I 的直导线同平面,如题图2-2所示。

求下述情况下线圈的感应电动势: a)线圈静止,I=I 0sin ωt ;b)线圈以速度v 向右边滑动,I=I 0。

[解] (a) 应用安培环路定律,I H I l d H l==⋅⎰πρ2,πρμρπρρ2ˆ,2ˆIB I H ==∴ab a Ic dl dz I dz Bd s d B C b a a scba am +===⋅=⎰⎰⎰⎰⎰++ln 2200πμρπμρψ 题图2-2载流直导线与矩形线圈(b ) ⎥⎦⎤⎢⎣⎡+++-=-=vt a vt b a c I dt d dt d m ln 20πμψε ()()()2012vt a vt b a v vt a v vta vtb ac I +++-+⋅+++-=πμ ()()vt a vt b a vbcI +++=02πμ 2.6 / 2.2-2一平行板电容器由两块导体圆片构成,圆片半径为a ,间距为d ,d<<a ,其间填充介电常数为ε、磁导率为μ0的介质。

在电容器中心加一正弦电压U=U 0sin ωt 。

(a)求介质中的电场强度和磁场强度;(b)求介质中位移电流总值,并证明它等于电容器的充电电流;(c)设介质电导率为σ,求介质中传导电流与位移电流之比。

若εr =5.5,σ=10-3S/m ,f =3×106Hz ,此比值多大? [解] (a) t dU zE t d U d U E ωωsin ˆ,sin 00===tU dH t U dtDH t D H s d t D J dl H t U dt D l s ωωερϕωωερρπρπρωωεcos 2ˆ,cos 222cos 002011==∂∂=∴∂∂=⋅⎪⎪⎭⎫ ⎝⎛∂∂+=⋅=∂∂⎰⎰(b) t U da t D a S J I d d ωωεππcos 022=∂∂== da dAC 2επε==d I t U da dt dU C I ===∴ωωπcos 02. 得证.(c) ,E J c σ= 振幅dUE J m cm0σσ==,cos 0t U dt D J d ωωε=∂∂=振幅0U d J dm ωε= 27.310854.85.51023101263=⨯⨯⨯⨯⨯==∴--πωεσdm cm J J 2.7 / 2.3-1 麦克斯韦方程组为什么不是完全对称的?[答] 自然界中存在电荷和电流,但并无单独存在的磁荷及磁流; 电场是有散场而磁场是无散场,因而不对称.2.8 / 2.3-2 试由表2.3-1中麦克斯韦方程组(b )(c )导出电流连续性方程(e )。

[解] 由0,0)(=⋅∇∂∂+⋅∇=⎪⎪⎭⎫ ⎝⎛∂∂+⋅∇⋅∇D t J t D J b 得 将式(c)代入上式得, 0=∂∂+⋅∇v tJ ρ 此即电流连续性方程(e) 2.9 / 2.3-3已知真空中无源区域有时变电场()kz t E xE -=ωcos ˆ0。

a)由表2.3-1的麦克斯韦方程(a )求时变磁场H;b)证明Ω===377/,0000εμεμωH E k 。

[解] (a) ()()t Bkz t kE y kz t E x z z y y x x E ∂∂-=-=-⨯⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂=⨯∇ωωsin ˆcos ˆˆˆˆ00 ()()C kz t E ky dt kz t kE yB +-=--=∴⎰ωωωcos ˆsin ˆ00时变场中无恒定成分,故C=0,得()00000,cos ˆE kH kz t H yBH ωμωμ=-==(b) 由Maxwell 方程(b),()kz t E xtEt D H --=∂∂=∂∂=⨯∇ωωεεsin ˆ000又,()()kz t E k x kz t E k y z z y y xx H --=-⨯⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂=⨯∇ωωμωωμsin ˆcos ˆˆˆˆ00200 从而得000022,εμωεμω==k kΩ==⨯⨯====--377120103611049700000πππεμεμωωμωμk H E2.10 / 2.3-4 设z y x E z E y E xE ˆˆˆ++=,请导出矢量波动方程(2.3-2)的三个标量方程。

[解] ()E E E ⨯∇⨯∇-⋅∇∇=∇2⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂⨯∇-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂∇=x E z E z y E x E y x z E y E x E z z y y x x y E x E z x E z E y z E y E x z E y E x E zx x y z y x x y z x y z z y x ˆˆˆˆˆˆˆ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂-z E y E y x E z E x z y E x E x z E y E z y y z z x x y y z ˆˆ ,ˆˆˆˆ_ˆˆ222222222222222222222z y x z z z y y y z x x E z E y E xz E y E x E z z E y E x E y z E y E x E x ∇+∇+∇=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂= 式中2222222zy x ∂∂+∂∂+∂∂=∇由有,0222=∂∂-∇tEE με⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=∂∂-∇=∂∂-∇=∂∂-∇000222222222t E E y E E t E E z z y y xx μεμεμε 2.11 / 2.3-5 试证:在简单媒质中存在场源00≠≠v J ρ,时,电场强度E和磁场强度H 分别满足非齐次矢量波动方程(2.3-4)和(2.3-5)。

[证] 由Maxwell 方程组(a )、(b)及(c)得()()()()H tt B D E E E v ⨯∇∂∂+∇=∂∂⨯∇+⋅∇∇=⨯∇⨯∇-⋅∇∇=∇μρεε112 ⎪⎪⎭⎫⎝⎛∂∂+∂∂+∇=221t D t J V μρε v t J tE E ρεμμε∇+∂∂=∂∂-∇∴1222由Maxwell 方程组(a )、(b)及(c)可得()()()2221t HJ E t J t D j B H H ∂∂+⨯-∇=⨯∇∂∂-⨯-∞=⎪⎪⎭⎫ ⎝⎛∂∂+⨯∇-⋅∇∇=⋅∇∇=∇μεεμ J tHH ⨯-∇=∂∂-∇∴222με2.12 / 2.3-6 应用麦氏方程组导出RLC 并联电路的下述电流方程:dt U Ldt dU C R U I ⎰++=1 [解] 由Maxwell 方程组 (b '),s d t D J l d H l s ⋅⎪⎪⎭⎫⎝⎛∂∂+=⋅⎰⎰1对a 端环线1l 所围截面S,有⎰=⋅s s d J 0 故03210=+++I I I I U 对R: R I l A I l Jl d JU ba ab 11===⋅=⎰σσσ,1RU I ab =∴ A lR σ=对L: dtdI L dt d U m ab 2==ψ dt U L I ab ⎰=∴12对C: dtdU CI ab=3 令 ,,0I I U U ab -== 得⎰++=dtdU C Udt L R U I 12.13 / 2.4-1 验证2.1-1题r=a 处的电场边界条件。

相关文档
最新文档