高中数学椭圆基础练习题

合集下载

高中数学椭圆基础题型

高中数学椭圆基础题型

高中数学椭圆基础题型一、单选题(本大题共9小题,共45.0分)1.已知椭圆方程为x2+ky2=5的一个焦点是(0,2),那么k=()A. 59B. 97C. 1D. 532.设点P为椭圆C:x2a2+y24=1(a>2)上一点,F1,F2分别为C的左、右焦点,且∠F1PF2=60°,则△PF1F2的面积为()A. 4√3B. 2√3C. 4√33D. 2√333.设定点M1(0,−3),M2(0,3),动点P满足条件|PM1|+|PM2|=a+9a(其中a是正常数),则点P的轨迹是()A. 椭圆B. 线段C. 椭圆或线段D. 不存在4.已知椭圆C的焦点为F1(−1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A. x22+y2=1 B. x23+y22=1 C. x24+y23=1 D. x25+y24=15.在平面直角坐际系xOy中,P是椭圆y24+x23=1上的一个动点,点A(1,1),B(0,−1),则|PA|+|PB|的最大值为()A. 2B. 3C. 4D. 56.已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为√33,过F2的直线l交C于A,B两点,若△AF1B的周长为4√3,则椭圆C的方程为()A. x23+y2=1 B. x23+y22=1 C. x212+y28=1 D. x212+y24=17.k>3是方程x2k−3+y24−k=1表示椭圆的()条件A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.已知方程x29−k +y2k−4=1的曲线是焦点在y轴上的椭圆,则实数k的取值范围是()A. 4<k<9B. 4<k<132C. 132<k<9 D. 4<k<9且k≠1329. 过椭圆x 225+y 29=1的左焦点F 1的直线交椭圆于A ,B 两点,F 2为椭圆的右焦点,则△ABF 2的周长为( )A. 32B. 20C. 16D. 12二、多选题(本大题共5小题,共25.0分) 10. 以下是关于圆锥曲线的四个命题中真命题为( )A. 设A ,B 为两个定点,k 为非零常数,若|PA |−|PB |=k ,则动点P 的轨迹是双曲线;B. 方程2x 2−5x +2=0的两根可分别作为椭圆和双曲线的离心率;C. 双曲线x 225−y 29=1与椭圆x235+y 2=1有相同的焦点; D. 以过抛物线的焦点的一条弦PQ 为直径作圆,则该圆与抛物线的准线相切11. 已知曲线C :x 24+m+y 21+m =1(m ≠−1,且m ≠−4),则下列结论正确的是( ) A. 若曲线C 为椭圆或双曲线,则其焦点坐标为(±√3,0) B. 若曲线C 是椭圆,则m >−1C. 若m <−1且m ≠−4,则曲线C 是双曲线D. 直线kx −y −k =0(k ∈R )与曲线C 恒有两个交点12. 已知F 为椭圆x 2a2+y 2b 2=1(a >b >0)的一个焦点,A ,B 为该椭圆的两个顶点,若|AF|=3,|BF|=5,则满足条件的椭圆方程为( )A.x 24+y 23=1B.x 29+y 25=1C. x 216+y 215=1D. x 225+y 221=113. 已知方程mx 2+ny 2=1,其中m 2+n 2≠0,则( )A. mn >0时,方程表示椭圆B. mn <0时,方程表示双曲线C. n =0时,方程表示抛物线D. n >m >0时,方程表示焦点在x 轴上的椭圆14. 已知A 1,A 2是椭圆C:x 24+y 23=1长轴上的两个顶点,点P 是椭圆上异于A 1、A 2的任意一点,点Q 与点P 关于x 轴对称,则下列四个命题中正确的是( )A. 直线PA 1与PA 2的斜率之积为定值−43 B. PA 1⃗⃗⃗⃗⃗⃗⃗ ⋅PA 2⃗⃗⃗⃗⃗⃗⃗ <0C. △PA 1A 2的外接圆半径的最大值为7√36D. 直线PA 1与QA 2的交点M 在双曲线x 24−y 23=1上三、单空题(本大题共6小题,共30.0分)15.设A,B是椭圆C:x23+y2m=1长轴的两个端点.若C上存在点M满足∠AMB=120∘,则m的取值范围是.16.已知△ABC的周长为20,且顶点B(0,−4),C(0,4),则顶点A的轨迹方程是17.已知椭圆C的焦点在x轴上,且离心率为12,则C的方程可以为.18.设椭圆C:x2a2+y2b2=1(a>b>0)右焦点为F,椭圆C上的两点P,Q关于原点对称,焦距为2√5,|PF|−|QF|=a,且PF⊥QF,则椭圆C的方程为.19.已知椭圆x29+y25=1的左焦点为F,点P在椭圆上且在x轴的上方,若线段PF的中点在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是.20.椭圆x225+y29=1上一点P到焦点F1的距离是6,那么P到焦点F2的距离答案和解析1.【答案】A【解析】 【分析】本题考查椭圆的标准方程及椭圆的简单性质,利用待定系数法求参数的值,属于基础题. 把椭圆x 2+ky 2=5的方程化为标准形式,得到c 2的值等于4,解方程求出k . 【解答】解:椭圆x 2+ky 2=5,即x 25+y 25k=1,∵焦点坐标为(0,2),c 2=4, ∴5k −5=4, ∴k =59,故选:A .2.【答案】C【解析】 【分析】本题考查椭圆的简单性质,考查余弦定理的应用与三角形的面积公式,属于中档题. 依题意,在△F 1PF 2中,∠F 1PF 2=60°,|F 1P|+|PF 2|=2a ,求出|F 1F 2|=2√a 2−4,利用余弦定理可求得|F 1P|⋅|PF 2|的值,从而可求得△PF 1F 2的面积. 【解答】 解:∵椭圆C :x 2a 2+y 24=1(a >2),∴b =2,c =√a 2−4,又∵P 为椭圆上一点,∠F 1PF 2=60°,F 1、F 2为左右焦点, ∴|F 1P|+|PF 2|=2a ,|F 1F 2|=2√a 2−4,∴|F 1F 2|2=(|PF 1|+|PF 2|)2−2|F 1P||PF 2|−2|F 1P|⋅|PF 2|cos60°, =4a 2−3|F 1P|⋅|PF 2|,即4(a 2−4)=4a 2−3|F 1P|⋅|PF 2|, ∴|F 1P|⋅|PF 2|=163,∴S△PF1F2=12|F1P|⋅|PF2|sin60°,=12×163×√32=4√33.故答案选:C.3.【答案】C【解析】【分析】本题考查了椭圆的定义,考查了基本不等式的应用,属于基础题.根据基本不等式求得a+9a的最小值,利用椭圆的定义进行判断可得答案.【解答】解:∵a是正常数,∴a+9a≥2√9=6,当且仅当a=3时取等号当|PM1|+|PM2|=6时,点P的轨迹是线段M1M2;当|PM1|+|PM2|>6时,点P的轨迹是椭圆,故选C.4.【答案】B【解析】【分析】本题考查椭圆的定义、几何性质、直线与椭圆的位置关系及余弦定理,考查推理能力和计算能力,属于中档题.由椭圆定义可得|AF2|=a,|BF1|=32a,根据cos∠AF2O+cos∠BF2F1=0,解得a2= 3,b2=2.【解答】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|,又|AB|=|BF1|,∴|BF1|=3|BF2|,又|BF1|+|BF2|=2a,∴|BF2|=a2,∴|AF2|=a,|BF1|=32a,所以点A为椭圆短轴端点,∴在Rt△AF2O中,cos∠AF2O=1a,在△BF1F2中,由余弦定理可得cos∠BF2F1=4+(a2)2−(32a)22×2×a2,根据cos∠AF2O+cos∠BF2F1=0,可得1a +4−2a22a=0,解得a2=3,∴a=√3.b2=a2−c2=3−1=2.∴椭圆C的方程为:x23+y22=1,故选B.5.【答案】D【解析】【分析】本题给出椭圆内部一点A,求椭圆上动点P与A点和一个焦点B的距离和的最大值,着重考查了椭圆的定义、标准方程和简单几何性质等知识,属于中档题.根据椭圆的方程,算出它的焦点坐标为B(0,−1)和B′(0,1).因此连接PB′、AB′,根据椭圆的定义得|PA|+|PB|=|PA|+(2a−|PB′|)=4+(|PA|−|PB′|).再由三角形两边之差小于第三边,得到当且仅当点P在AB′延长线上时,|PA|+|PB|=4+|AB′|=5达到最大值,从而得到本题答案.【解答】解:∵椭圆方程为y24+x23=1,∴焦点坐标为B(0,−1)和B′(0,1),连接PB′、AB′,根据椭圆的定义,得|PB|+|PB′|=2a=4,可得|PB|=4−|PB′|,因此|PA|+|PB|=|PA|+(4−|PB′|)=4+(|PA|−|PB′|),∵|PA|−|PB′|≤|AB′|,∴|PA|+|PB|≤2a+|AB′|=4+1=5,当且仅当点P在AB′延长线上时,等号成立,综上所述,可得|PA|+|PB|的最大值为5.故答案选:D.6.【答案】B【解析】【分析】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.利用△AF1B的周长为4√3,求出a=√3,根据离心率为√33,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B的周长为4√3,∵△AF1B的周长为|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4√3,∴a=√3,∵离心率为√33,∴ca =√33,c=1,∴b=√a2−c2=√2,即椭圆C的方程为x23+y22=1.故选B.7.【答案】B【解析】【试题解析】【分析】本题主要考查充分条件和必要条件的判断,以及椭圆的方程,属于中档题.利用充分条件和必要条件的定义和椭圆方程判断即可.【解答】解:若方程x2k−3+y24−k=1表示椭圆,则{k−3>0 4−k>0k−3≠4−k,即3<k<4且k≠3.5,所以“k>3”是“方程x2k−3+y24−k=1表示椭圆”的必要不充分条件.故选B.8.【答案】C【解析】【分析】本题考查了椭圆的标准方程,属于基础题.根据椭圆的标准方程,建立关于k的不等式组,解之即得实数k的取值范围.【解答】解:∵方程x29−k +y2k−4=1表示焦点在y轴上的椭圆,∴{9−k>0k−4>09−k<k−4,解得132<k<9.实数k的取值范围是(132,9)故选:C.9.【答案】B【解析】【分析】本题考查椭圆的定义、方程和性质,主要考查椭圆的定义的运用,考查运算能力,属于基础题.由椭圆方程可得2a =10,再由椭圆的定义可得△ABF 2的周长4a ,即可得出答案. 【解答】解:由椭圆的定义可得:|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a =10,∴ △ABF 2的周长为:|AB|+|AF 2|+|BF 2|=|AF 1|+|BF 1|+|AF 2|+|BF 2|=20. 故选B .10.【答案】BCD【解析】 【分析】本题考查双曲线的定义,双曲线、椭圆的几何性质,抛物线的定义和性质. 根据椭圆,双曲线,抛物线的定义和性质逐个选项判断正误即可. 【解答】解:A 不正确,若动点P 的轨迹为双曲线,则|k|要小于A 、B 两个定点间的距离,当|k|大于A 、B 两个定点间的距离时,动点P 的轨迹不是双曲线;B 正确,方程2x 2−5x +2=0的两根分别为12和2,12和2可分别作为椭圆和双曲线的离心率, C 正确,双曲线x 225−y 29=1与椭圆x 235+y 2=1有相同的焦点,焦点在x 轴上,焦点坐标为(±√34,0),D 正确,不妨设抛物线为:y 2=2px(p >0),即抛物线位于y 轴的右侧,以x 轴为对称轴,设过焦点F 的弦为PQ ,PQ 的中点是M ,M 到准线的距离是d ,而P 到准线的距离d 1=|PF|,Q 到准线的距离d 2=|QF|,又M 到准线的距离d 是梯形的中位线,故有d =|PF|+|QF|2,则|PF|+|QF|2=|PQ|2=半径,所以圆心M 到准线的距离等于半径,所以圆与准线是相切. 故选BCD .11.【答案】AB【解析】 【分析】本题考查椭圆、双曲线标准方程,属于中档题.逐个根据双曲线的标准方程以及椭圆的标准方程判断可得结论. 【解答】解:对于A ,若曲线C 为椭圆,c 2=a 2−b 2=(4+m)−(1+m)=3,则其焦点坐标为(±√3,0); 若曲线C 为双曲线,即x 24+m −y 2−1−m=1,所以c 2=a 2+b 2=(4+m)−(1+m)=3,则其焦点坐标为(±√3,0),故A 正确;对于B ,若曲线C 是椭圆,则{4+m >01+m >0,则m >−1,故B 正确;对于C ,若m =−5,则曲线C 不是双曲线,故C 错误;对于D ,直线kx −y −k =0(k ∈R ),即直线y =k(x −1),过定点(1,0),若曲线C 为椭圆时恒有两个交点,若曲线C 为双曲线时不一定有两个交点,故D 错误. 故选AB .12.【答案】BCD【解析】 【分析】本题考查椭圆的概念及方程,椭圆的性质,考查分类讨论的数学思想,属于中档题. 首先需要对A ,B 两个顶点的位置分类讨论,根据椭圆的概念及性质,得到有关a 与c 的方程,结合a >0,c >0,若方程有解,再利用b 2=a 2−c 2,求得b ,即可确定椭圆方程;若方程有解,即可舍去. 【解答】解:由题意,对A ,B 两个顶点的位置分类讨论: (1)若A ,B 为左右顶点时,F 为椭圆的一个焦点,|AF|=3,|BF|=5, 可得{a +c =5a −c =3,解得{a =4c =1, 又b 2=a 2−c 2=15,故椭圆E 的方程为x 216+y 215=1;故C 正确;(2)当B 为短轴顶点,A 为左顶点时, F 为椭圆的一个焦点,|AF|=3,|BF|=5, 可得{a =5a −c =3,解得{a =5c =2, 又b 2=a 2−c 2=21, 故椭圆E 的方程为x 225+y 221=1,故D 正确;(3)若A 为短轴顶点,B 右顶点时,F 为椭圆的一个焦点,|AF|=3,|BF|=5, 可得{a =3a +c =5,解得{a =3c =2, 又b 2=a 2−c 2=5, 故椭圆E 的方程为x 29+y 25=1,故B 正确;综上所述:F 的方程为x 29+y 25=1或x 216+y 215=1或x 225+y 221=1.故选BCD .13.【答案】BD【解析】 【分析】本题考查圆锥曲线的标准方程,属于基础题.依据m 、n 的取值,结合圆锥曲线的方程逐一分析选项即可得解. 【解答】解:若m <0,n <0,则mx 2+ny 2=1不表示椭圆,故A 错误; 若m >0,n <0,则x 21m−y 2−1n=1表示焦点在x 轴上的双曲线,若m <0,n >0,则y 21n−x 2−1m=1表示焦点在y 轴上的双曲线,故B 正确;当n =0时,则由题意 m ≠0,则方程表示两条垂直于x 轴的直线,故C 错误; n >m >0时,0<1n <1m ,x 21m+y 21n=1表示焦点在x 轴上的椭圆,D 正确.故选:BD .14.【答案】BCD【解析】 【分析】本题考查椭圆的相关知识,向量的数量积,圆的相关知识,斜率的计算,双曲线的标准方程,考查推理和计算能力,属于综合题. 由A 1、A 2是椭圆C:x 24+y 23=1长轴上的两个顶点.设P(x 0,y 0)在椭圆上,A 1(−2,0),A 2(2,0), 直接求解直线PA 1与PA 2的斜率之积,可得定值;再根据向量坐标的运算即可判断PA 1⃗⃗⃗⃗⃗⃗⃗ ·PA 2⃗⃗⃗⃗⃗⃗⃗ <0;设点P 的坐标为(2cosθ,√3sinθ),求出半径r 与θ的关系,可得△PA 1A 2的外接圆半径的最大值为7√36;设出Q ,求解直线PA 1与QA 2的交点M ,满足双曲线x 24−y 23=1,从而可以判断; 【解答】解:对于A ,设点P 的坐标为(x 0,y 0),则x 024+y 023=1,解得y 02=3(4−x 02)4,∵A 1(−2,0),A 2(2,0), ∴k PA 1·k PA 2=y 0x 0+2·y 0x 0−2=y 02x 02−4=−34,故A 错误;对于B ,由A 可得PA 1⃗⃗⃗⃗⃗⃗⃗ =(−2−x 0,−y 0),PA 2⃗⃗⃗⃗⃗⃗⃗ =(2−x 0,−y 0),∴PA 1⃗⃗⃗⃗⃗⃗⃗ ⋅PA 2⃗⃗⃗⃗⃗⃗⃗ =x 02−4+y 02=x 02−4+3(4−x 02)4=x 02−44,∵−2<x 0<2,∴x 02−4<0,故PA 1⃗⃗⃗⃗⃗⃗⃗ ⋅PA 2⃗⃗⃗⃗⃗⃗⃗ <0,故B 正确;对于C ,设点P 的坐标为(2cosθ,√3sinθ),△PA 1A 2的外接圆的圆心为(0,n),半径为r , 则r =√4+n 2=√4cos 2θ+(√3sinθ−n)2,化简得n 2=sin 2 θ12,∴r =√4+sin 2θ12≤√4+112=7√36,当且仅当sinθ=±1时取等号,即△PA 1A 2的外接圆半径的最大值为7√36,故C 正确;对于D ,由A 得,PA 1的方程为y =yx 0+2(x +2),因为点Q 与点P 关于x 轴对称,设Q(x 0,−y 0),则QA 2的方程为y =−yx 0−2(x −2), 两式相乘得y 2=−y 02x 02−4(x 2−4), ∵y 02=3(4−x 02)4代入化简得x 24−y 23=1,即直线PA 1与QA 2的交点M 在双曲线x 24−y 23=1上,故D 正确.故选BCD .15.【答案】(0,1]∪[9,+∞)【解析】 【分析】本题考查椭圆的定义与性质,属于中档题.方法一:对焦点位置分类讨论,当焦点在x 轴上,过点M 作x 轴的垂线,交x 轴于点N ,根据tan∠AMB =tan(∠AMN +∠BMN)=tan120∘且点M 在椭圆C 上,即可解得m 的取值范围,同理可得焦点在y 轴上的m 的取值范围; 方法二:对m 分类讨论,当0<m <3时,则ab =√3√m≥tan60∘,当m >3时,则ab=√m √3≥tan60∘,即可求得m 的取值范围. 【解答】解:方法一:当椭圆焦点在x 轴上时,则0<m <3,点M(x,y), 过点M 作x 轴的垂线,交x 轴于点N ,则N(x,0), 故tan∠AMB =tan(∠AMN +∠BMN)=√3+x |y |+√3−x|y|1−√3+x |y |·√3−x|y |=2√3|y|x 2+y 2−3. 又tan∠AMB =tan120∘=−√3, 且由x 23+y 2m =1,可得x 2=3−3y 2m,则2√3|y|3−3y 2m+y 2−3=2√3|y|(1−3m)y 2=−√3.解得|y|=2m3−m .又0<|y|≤√m ,即0<2m3−m ≤√m , 结合0<m <3解得0<m ≤1.对于焦点在y 轴上的情况,同理亦可得m ≥9. 则m 的取值范围是(0,1]∪[9,+∞).方法二:当0<m <3时,焦点在x 轴上,,要使C 上存在点M 满足∠AMB =120∘,则ab ≥tan60∘=√3,即√3√m≥√3,解得0<m ≤1.当m >3时,焦点在y 轴上,要使C 上存在点M 满足∠AMB =120∘,则ab ≥tan60∘=√3,即√m√3≥√3,解得m ≥9.故m 的取值范围为(0,1]∪[9,+∞). 故答案为(0,1]∪[9,+∞).16.【答案】x 220+y 236=1(x ≠0)【解析】 【分析】本题考查椭圆的定义、标准方程,属于基础题.由题意可得顶点A 的轨迹是椭圆,得到椭圆焦点所在的坐标轴及a ,b ,c 的值,可得答案. 【解答】解:由题意可得|AB|+|AC|=20−|BC|=20−8=12>|BC|, 所以点A 的轨迹是以B ,C 为焦点,2a =12的椭圆, 则a =6,b =√a 2−c 2=√36−16=2√5, 故顶点A 的轨迹方程是x 220+y 236=1(x ≠0). 故答案为x 220+y 236=1(x ≠0).17.【答案】x 24+y 23=1(答案不唯一)【解析】 【分析】本题主要考查了椭圆的标准方程以及椭圆的几何性质,解题的关键是熟练掌握椭圆标准方程中a ,b 和c 之间的关系,属于基础题. 利用离心率为12,可得b =√32a ,即可求解. 【解答】解:设椭圆的标准方程为x2a2+y2b2=1(a>b>0),∵离心率为12,∴e=ca =√a2−b2a=12,∴b=√32a,令a=2,则b=√3,∴椭圆的标准方程为x24+y23=1.故答案为x24+y23=1(答案不唯一).18.【答案】x28+y23=1【解析】【分析】本题考查椭圆的标准方程的求法,以及椭圆的性质,属于中档题.设椭圆C的左焦点为F′,由椭圆对称性可求得{|QF′|=3a2,|QF|=a2,根据勾股定理可求得a,b,c的值,椭圆方程即可求出.【解答】解:设椭圆C的左焦点为F′,则由椭圆的对称性可知,|PF|−|QF|=|QF′|−|QF|=a,又|QF′|+|QF|=2a,解得{|QF′|=3a2,|QF|=a2,由PF⊥QF,得∠F′QF=90∘,由勾股定理可得|QF|2+|QF′|2=|FF′|2,即9a24+a24=20,解得a=2√2,∵2c=2√5,则c=√5,∴b=√a2−c2=√3,因此,椭圆C 的标准方程为x 28+y 23=1.故答案为x 28+y 23=1.19.【答案】√15【解析】 【分析】本题主要考查椭圆的定义和方程、性质,注意运用三角形的中位线定理、余弦定理,属于中档题.求得椭圆的a ,b ,c ,设椭圆的右焦点为F ′,连接PF ′,运用三角形的中位线定理和椭圆定理求得△PFF ′各边长,利用余弦定理求∠PFF ′的余弦值,进而可求该角的正切值,即为直线PF 的斜率. 【解答】 解:椭圆x 29+y 25=1的a =3,b =√5,c =2,设椭圆的右焦点为F ′,连接PF ′,线段PF 的中点A 在以原点O 为圆心,2为半径的圆上, 连接AO ,可得|PF ′|=2|AO|=4,△PFF ′中,PF =6−PF ′=2,FF ′=4,PF ′=4, ∴由余弦定理得cos∠PFF ′=PF 2+FF′2−PF′22PF×FF′=42+22−422×2×4=14,∴sin∠PFF ′=√1−(14)2=√154,∴tan∠PFF′=√15,即直线PF的斜率为√15.故答案为√15.20.【答案】4【解析】【分析】本题考查椭圆的标准方程以及定义,注意由标准方程分析a的值,属于基础题.根据题意,由椭圆的方程求出a的值,结合椭圆的定义可得|PF1|+|PF2|=2a=10,结合|PF1|的值,即可得答案.【解答】解:根据题意,椭圆x225+y29=1中a=√25=5,则有|PF1|+|PF2|=2a=10,又由|PF1|=6,则|PF2|=10−6=4,即P到焦点F2的距离为4;故答案为:4。

高中数学椭圆练习题

高中数学椭圆练习题

椭圆标准方程典型例题例1 已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值.例2 已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程.例3 ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹.例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和352,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.例5 已知椭圆方程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ∆的面积(用a 、b 、α表示).例6 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程例7 已知椭圆1222=+y x ,(1)求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k , 求线段PQ 中点M 的轨迹方程.例8 已知椭圆1422=+y x 及直线m x y +=.(1)当m 为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为5102,求直线的方程.例9 以椭圆131222=+y x 的焦点为焦点,过直线09=+-y x l :上一点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆方程.已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范例10 已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围.12 求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程.例13 知圆122=+y x ,从这个圆上任意一点P 向y 轴作垂线段,求线段中点M 的轨迹.例14 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.例15 椭圆192522=+y x 上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为A .4 B .2 C .8 D .23 例15 已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.例17 在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.例18 已知)2,4(P 是直线l 被椭圆193622=+y x 所截得的线段的中点,求直线l 的方程.高中数学椭圆经典试题练习1.在椭圆)0( 12222>>=+b a by a x 上取三点,其横坐标满足1322x x x +=,三点与某一焦点的连线段长分别为123,,r r r ,则123,,r r r 满足( )A .123,,r r r 成等差数列B .123112r r r += C .123,,r r r 成等比数列 D .以上结论全不对2.曲线22 1 4x y m+=的离心率e 满足方程22520x x -+=,则m 的所有可能值的积为( ) A .36 B .-36 C .-192 D .-1983.椭圆)0( 12222>>=+b a by a x ,过右焦点F 作弦AB ,则以AB 为直径的圆与椭圆右准线l 的位置关系是( )A .相交B .相离C .相切D .不确定4.设点P 是椭圆)0( 12222>>=+b a by a x 上异于顶点的任意点,作12PF F ∆的旁切圆,与x 轴的切点为D ,则点D ( )A .在椭圆内B .在椭圆外C .在椭圆上D .以上都有可能5. 椭圆的两焦点把两准线间的距离三等分,则这个椭圆的离心率是 ( )A 3B 23C 33 D 以上都不对 6. 椭圆141622=+y x 上有两点P 、Q ,O 为原点,若OP 、OQ 斜率之积为41-,则22OQ OP + 为 ( )A . 4 B. 64 C. 20 D. 不确定7. 过椭圆左焦点F 且倾斜角为ο60的直线交椭圆于A 、B 两点,若FB FA 2=,则椭圆的离心率为 ( ) A .32 B. 22 C. 21 D. 32 8.过原点的直线l 与曲线C:1322=+y x 相交,若直线l 被曲线C 所截得的线段长不大于6,则直线l 的倾斜角α的取值范围是 ( ) A 656παπ≤≤ B 326παπ<< C 323παπ≤≤ D. 434παπ≤≤ 9. 如图所示,椭圆中心在原点,F 是左焦点,直线1AB 与BF 交于D,且ο901=∠BDB ,则椭圆的离心率为 ( )A 213-B 215-C 215- D 2310.椭圆)10(,2222<<=+a a y x a 上离顶点A(0,a )最远点为(0,)a -成立的充要条件为( )A 10<<a B122<<a C 122<≤a D.220<<a . 11.若椭圆)0(12222>>=+b a b y a x 和圆c c b y x (,)2(222+=+为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e 的取值范围是 ( )A )53,55(B )55,52(C )53,52(D )55,0( 12.已知c 是椭圆)0(12222>>=+b a b y a x 的半焦距,则a c b +的取值范围是 ( ) A (1, +∞) B ),2(∞+ C )2,1( D ]2,1(13.设椭圆的对称轴为坐标轴,短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆的最短距离为3,则该椭圆的方程为14.M 是椭圆221 94x y +=不在坐标轴上的点,12,F F 是它的两个焦点,I 是12MF F ∆的内心,MI 的延长线交12F F 于N ,则MI NI= 15.12,F F 是椭圆2222: 1 (0)x y C a b a b+=>>的两个焦点,直线l 与椭圆C 交于12,P P ,已知椭圆中心O 关于直线l 的对称点恰好落在椭圆C 的左准线上,且2211109P F PF a -=,则椭圆C 的方程为 16. (2000全国高考) 椭圆14922=+y x 的焦点为21,F F ,点P 为其上的动点,当21PF F ∠ 为钝角时,点P 横坐标的取值范围是18.已知21,F F 为椭圆的两个焦点,P 为椭圆上一点,若3:2:1::211221=∠∠∠PF F F PF F PF , 则此椭圆的离心率为19.如果y x ,满足,369422=+y x 则1232--y x 的最大值为20.已知椭圆的焦点是)1,0(),1,0(21F F -,直线4=y 是椭圆的一条准线.① 求椭圆的方程;② 设点P 在椭圆上,且121=-PF PF ,求21PF F ∠.余弦值22.求中心在原点,一个焦点为)25,0(且被直线23-=x y 截得的弦中点横坐标为21的椭圆方程.。

高二数学椭圆练习题及答案

高二数学椭圆练习题及答案

高二数学椭圆练习题及答案一:选择题 1.已知方程表示焦点在x轴上的椭圆,则m的取值范围是2.已知椭圆,长轴在y轴上、若焦距为4,则m等于 4.已知点F1、F2分别是椭圆+=1的左、右焦点,弦AB过点F1,若△ABF26.方程=10,化简的结果是7.设θ是三角形的一个内角,且,则方程xsinθ﹣ycosθ=1表示的曲线221、22129.从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP,则该椭10.若点O和点F分别为椭圆的中心和左焦点,点P 为椭圆上的任意一点,则的最大值为11.如图,点F为椭圆=1的一个焦点,若椭圆上存在一点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF的中点,则该椭圆的离心率为12.椭圆顶点A,B,若右焦点F到直线AB的距离等于,则椭圆的离心率e=高二数学周测一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是满足题目要求的。

1.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A.B 为焦点的椭圆”,那么 A.甲是乙成立的充分不必要条件B.甲是乙成立的必要不充分条件C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件.若椭圆2kx?ky?1的一个焦点是,则k的是 A.2211B.C. D.3228D.3x2-y2=363.双曲线与椭圆4x2+y2=64有公共的焦点,它们的离心率互为倒数,则双曲线方程为 A.y2-3x2=36B.x2-3y2=36C.3y2-x2=364.已知F1、F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A、B两点,若△ABF2是正三角形,则这个椭圆的离心率是 A.23B.33C.22D.2x2y25.椭圆2?2?1的两个焦点F1,F2三等分它的两条准线间的距离,那么它的离心率abA.B. C. D.336x2y26.已知是直线l被椭圆??1所截得的线段的中点,则l 的方程为369A.x?2y?0B. x?2y?4?0C.x?3y?4?0D. x?2y?8?0x2y27.设F1,F2分别是椭圆2?2?1的左、右焦点,若在其右准线上存在P,ab使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是?A.?0 ?2???B.?01?C.?1?D.? ??x2y28.在椭圆,F为椭圆右焦点,在椭圆上有一点M,使|MP|+2|MF|??1内有一点P43的值最小,则这一最小值是 A.D.457B. 2C.3二、填空题.双曲线3mx2-my2=3的一个焦点是,则m的值是x2y210.已知方程??1表示椭圆,则k的取值范围是____________.3?k2?kx2y211.设F1、F2是椭圆C:+=1的焦点,在曲线C上满足PF1?PF2=0的点P的个数124为________x2y2?12. 已知椭圆+=1的两个焦点为F1、F2,P为椭圆上一点,满足∠F1PF2=,则△F1PF2433的面积为_________________.13.已知椭圆C的焦点F1和F2,长轴长6,设直线y?x?2交椭圆C于A、B两点,则线段AB的中点坐标 .14. 已知圆A:?x?2??y?16,圆B:?x?2??y?14.动圆C与圆A内切,且222与圆B外切.则动圆圆心的轨迹方程为.三、解答题 x2y215. 求以椭圆+1的两个顶点为焦点,以椭圆的焦点为顶点的169双曲线方程,并求此双曲线的实轴长、虚轴长、离心率及渐近线方程.16. 从双曲线C:x?y?1上一点Q引直线l:x?y?2的垂线,垂足为N,求线段QN的中点P的轨迹方程.17. 已知动点P与平面上两定点A,对应的准线方程为y??且离心率e为和42时,求直线l的方程.92,4234的等比中项.平分?2求椭圆方程,是否存在直线l与椭圆交于不同的两点M、N,且线段MN恰为直线x??若存在,求出直线l的斜率的取值范围,若不存在,请说明理由.x219. 设F1、F2分别是椭圆?y2?1的左、右焦点.4若P是该椭圆上的一个动点,求PF1?PF2的最大值和最小值;设过定点M的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角,求直线l的斜率k的取值范围.x2y220. 知椭圆2??1的左、右焦点分别为F1、F2,离心ab率e?x?2。

高中数学椭圆及其标准方程简单练习题及答案

高中数学椭圆及其标准方程简单练习题及答案

一、课前练习:1.判断下列各椭圆的焦点位置,并说出焦点坐标、焦距。

(1)14322=+y x (2)1422=+y x (3)1422=+y x 2.求适合下列条件的椭圆标准方程:两个焦点的坐标分别为)0,4(),0,4(-,椭圆上一点P 到两焦点距离的和等于10。

3.方程221||12x y m +=-表示焦点在y 轴的椭圆时,实数m 的取值范围是____________ 二、典例:例1 已知椭圆两个焦点的坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程.变式练习1:与椭圆x 2+4y 2=16有相同焦点,且过点()6,5-的椭圆方程是 . 例2 如图,在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?例3如图,设A ,B 的坐标分别为()5,0-,()5,0.直线AM ,BM 相交于点M ,且它们的斜率之积为49-,求点M 的轨迹方程.变式练习2:已知定圆x 2+y 2-6x -55=0,动圆M 和已知圆内切且过点P (-3,0),求圆心M 的轨迹及其方程. 三、巩固练习:1.平面内有两定点A 、B 及动点P ,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P 的轨迹是以A .B 为焦点的椭圆”,那么( B )A .甲是乙成立的充分不必要条件B .甲是乙成立的必要不充分条件C .甲是乙成立的充要条件D .甲是乙成立的非充分非必要条件2.椭圆2255x ky -=的一个焦点是(0,2),那么k 等于( A )A. 1-B. 1C.5D. 53.椭圆191622=+y x 的焦距是 ,焦点坐标为 ;若CD 为过左焦点1F 的弦,则CD F 2∆的周长为4.若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围为( D )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)5.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件)0(921>+=+a aa PF PF ,则点P 的轨迹是( A )A .椭圆B .线段C .不存在D .椭圆或线段 6.椭圆12222=+b y a x 和k by a x =+2222()0>k 具有( A )A .相同的离心率B .相同的焦点C .相同的顶点D .相同的长、短轴7.已知:△ABC 的一边长BC =6,周长为16,求顶点A 的轨迹方程. 答案:课前练习:1.(1)(0,1),(0,-1)焦距:2。

2018-2019学年高二数学椭圆练习及答案详解

2018-2019学年高二数学椭圆练习及答案详解

2018-2019学年高二数学椭圆练习A 级——基础小题练熟练快1.(2017·浙江高考)椭圆x 29+y 24=1的离心率是( )A.133B.53C.23D.59解析:选B 根据题意知,a =3,b =2,则c =a 2-b 2=5,∴椭圆的离心率e =ca =53. 2.(2018·长沙模拟)椭圆E 的焦点在x 轴上,中心在原点,其短轴上的两个顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆E 的标准方程为( )A.x 22+y 22=1 B.x 22+y 2=1C.x 24+y 22=1 D.y 24+x 22=1解析:选C 易知b =c =2,故a 2=b 2+c 2=4,从而椭圆E 的标准方程为x 24+y 22=1.3.椭圆x 2m +y 24=1的焦距为2,则m 的值是( )A .6或2B .5C .1或9D .3或5解析:选D 由题意,得c =1,当椭圆的焦点在x 轴上时,由m -4=1,解得m =5;当椭圆的焦点在y 轴上时,由4-m =1,解得m =3,所以m 的值是3或5,故选D.4.设椭圆x 24+y 23=1的焦点为F 1,F 2,点P 在椭圆上,若△PF 1F 2是直角三角形,则△PF 1F 2的面积为( )A .3B .3或32C.32D .6或3解析:选C 由已知a =2,b =3,c =1,则点P 为短轴顶点(0,3)时,∠F 1PF 2=π3,△PF 1F 2是正三角形,若△PF 1F 2是直角三角形,则直角顶点不可能是点P ,只能是焦点F 1(或F 2)为直角顶点,此时|PF 1|=b 2a =32⎝⎛⎭⎫或|PF 2|=b 2a ,S △PF 1F 2=12·b 2a ·2c =b 2c a =32.5.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A.43B.53C.54D.103解析:选B 由题意知椭圆的右焦点F 的坐标为(1,0),则直线AB 的方程为y =2x -2.联立⎩⎪⎨⎪⎧x 25+y 24=1,y =2x -2,解得交点(0,-2),⎝⎛⎭⎫53,43,∴S △OAB =12·|OF |·|y A -y B |=12×1×⎪⎪⎪⎪-2-43=53,故选B. 6.设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y 2=1上的点,则|PM |+|PN |的最小值、最大值分别为( )A .9,12B .8,11C .8,12D .10,12解析:选C 如图所示,因为两个圆心恰好是椭圆的焦点,由椭圆的定义可知|PF 1|+|PF 2|=10,易知|PM |+|PN |=(|PM |+|MF 1|)+(|PN |+|NF 2|)-2,则其最小值为|PF 1|+|PF 2|-2=8,最大值为|PF 1|+|PF 2|+2=12.7.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,以原点为圆心,椭圆的短半轴长为半径的圆与直线x -y +6=0相切,则椭圆C 的方程为________________.解析:由题意知e =c a =12,所以e 2=c 2a 2=a 2-b 2a 2=14,即a 2=43b 2.以原点为圆心,椭圆的短半轴长为半径的圆的方程为x 2+y 2=b 2,由题意可知b =62=3,所以a 2=4,b 2=3.故椭圆C 的方程为x 24+y 23=1.答案:x 24+y 23=18.若F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________________.解析:设点A 在点B 上方,F 1(-c,0),F 2(c,0),其中c =1-b 2,则可设A (c ,b 2),B (x 0,y 0),由|AF 1|=3|F 1B |,可得AF 1―→=3F 1B ―→,故⎩⎪⎨⎪⎧-2c =3(x 0+c ),-b 2=3y 0,即⎩⎨⎧x 0=-53c ,y 0=-13b 2,代入椭圆方程可得25(1-b 2)9+19b 2=1,解得b 2=23,故椭圆方程为x 2+3y 22=1. 答案:x 2+3y 22=1 9.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为______.解析:∵圆的标准方程为(x -3)2+y 2=1,∴圆心坐标为(3,0),∴c =3.又b =4,∴a =b 2+c 2=5. ∵椭圆的焦点在x 轴上,∴椭圆的左顶点为(-5,0). 答案:(-5,0)10.已知椭圆方程为x 2a 2+y 2b 2=1(a >b >0),A ,B 分别是椭圆长轴的两个端点,M ,N 是椭圆上关于x 轴对称的两点,直线AM ,BN 的斜率分别为k 1,k 2,若|k 1·k 2|=14,则椭圆的离心率为________.解析:设M (x 0,y 0),则N (x 0,-y 0),|k 1·k 2|=⎪⎪⎪⎪y 0x 0+a ·y 0a -x 0=y 20a 2-x 20=b 2⎝⎛⎭⎫1-x 20a 2a 2-x 20=b 2a 2=14, 从而e = 1-b 2a 2=32. 答案:32B 级——中档题目练通抓牢1.如图,已知椭圆C 的中心为原点O ,F (-25,0)为C 的左焦点,P 为C 上一点,满足|OP |=|OF |,且|PF |=4,则椭圆C 的方程为( )A.x 225+y 25=1 B.x 236+y 216=1C.x 230+y 210=1 D.x 245+y 225=1解析:选B 设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),焦距为2c ,右焦点为F ′,连接PF ′,如图所示.因为F (-25,0)为C 的左焦点,所以c =2 5.由|OP |=|OF |=|OF ′|知,∠FPF ′=90°,即FP ⊥PF ′.在Rt △PFF ′中,由勾股定理,得|PF ′|=|FF ′|2-|PF |2=(45)2-42=8.由椭圆定义,得|PF |+|PF ′|=2a =4+8=12,所以a =6,a 2=36,于是b 2=a 2-c 2=36-(25)2=16,所以椭圆C 的方程为x 236+y 216=1.2.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x-4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A.⎝⎛⎦⎤0,32B.⎝⎛⎦⎤0,34C.⎣⎡⎭⎫32,1D.⎣⎡⎭⎫34,1解析:选A 根据椭圆的对称性及椭圆的定义可得A ,B 两点到椭圆左、右焦点的距离和为4a =2(|AF |+|BF |)=8,所以a =2.又d =|3×0-4×b |32+(-4)2≥45,所以1≤b <2,所以e =ca =1-b 2a2= 1-b 24.因为1≤b <2,所以0<e ≤32.3.已知点P 是椭圆x 216+y 28=1上的动点,F 1,F 2分别是椭圆的左、右焦点,O 是坐标原点,若M 是∠F 1PF 2的平分线上一点,且F 1M ―→·MP ―→=0,则|OM ―→|的取值范围是( )A .[0,3)B .(0,22)C .[22,3)D .(0,4]解析:选B 如图,延长F 1M 交PF 2的延长线于点G . ∵F 1M ―→·MP ―→=0,∴F 1M ―→⊥MP ―→. 又MP 为∠F 1PF 2的平分线, ∴|PF 1|=|PG |,且M 为F 1G 的中点. ∵O 为F 1F 2中点,∴OM 綊12F 2G .∵|F 2G |=||PF 2|-|PG ||=||PF 1|-|PF 2||, ∴|OM ―→|=12|2a -2|PF 2||=|4-|PF 2||.∵4-22<|PF 2|<4或4<|PF 2|<4+22, ∴|OM ―→|∈(0,22).4.(2018·广东五校协作体第一次诊断考试)已知椭圆C :x 22+y 2=1的两焦点为F 1,F 2,点P (x 0,y 0)满足0<x 202+y 20<1,则|PF 1|+|PF 2|的取值范围是________. 解析:由点P (x 0,y 0)满足0<x 22+y 20<1,可知P (x 0,y 0)一定在椭圆内(不包括原点),因为a =2,b =1,所以由椭圆的定义可知|PF 1|+|PF 2|<2a =22,当P (x 0,y 0)与F 1或F 2重合时,|PF 1|+|PF 2|=2,又|PF 1|+|PF 2|≥|F 1F 2|=2,故|PF 1|+|PF 2|的取值范围是[2,22).答案:[2,22)5.如图,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1PA 2为钝角,则此椭圆的离心率的取值范围为________.解析:设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),∠B 1PA 2为钝角可转化为B 2A 2―→,F 2B 1―→所夹的角为钝角,则(a ,-b )·(-c ,-b )<0,即b 2<ac ,则a 2-c 2<ac ,故⎝⎛⎭⎫c a 2+ca -1>0,即e 2+e -1>0,解得e >5-12或e <-5-12,又0<e <1,所以5-12<e <1. 答案:⎝⎛⎭⎪⎫5-12,1 6.已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)在y 轴上的一个顶点为M ,两个焦点分别是F 1,F 2,∠F 1MF 2=120°,△MF 1F 2的面积为 3.(1)求椭圆G 的方程;(2)过椭圆G 长轴上的点P (t,0)的直线l 与圆O :x 2+y 2=1相切于点Q (Q 与P 不重合),交椭圆G 于A ,B 两点.若|AQ |=|BP |,求实数t 的值.解:(1)由椭圆性质,知|MF 2|=a , 于是c =a sin 60°=32a ,b =a cos 60°=12a . 所以△MF 1F 2的面积S =12·(2c )·b =12·(3a )·⎝⎛⎭⎫12a =3,解得a =2,b =1. 所以椭圆G 的方程为x 24+y 2=1.(2)显然,直线l 与y 轴不平行,可设其方程为y =k (x -t ). 由于直线l 与圆O 相切, 则圆心O 到l 的距离d =|kt |k 2+1=1, 即k 2t 2=k 2+1, ①联立⎩⎪⎨⎪⎧x 2+4y 2=4,y =k (x -t ),化简得(1+4k 2)x 2-8tk 2x +4(t 2k 2-1)=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8tk 21+4k 2.设Q (x 0,y 0),有⎩⎪⎨⎪⎧y 0=k (x 0-t ),y 0x 0=-1k ,解得x 0=tk 21+k2. 由已知可得,线段AB ,PQ 中点重合,即有x 1+x 2=t +x 0. 因此8tk 21+4k 2=t +tk 21+k 2,化简得k2=12, 将其代入①式,可得t =±3.7.(2018·成都一诊)已知椭圆x 25+y 24=1的右焦点为F ,设直线l :x =5与x 轴的交点为E ,过点F 且斜率为k 的直线l 1与椭圆交于A ,B 两点,M 为线段EF 的中点.(1)若直线l 1的倾斜角为π4,求|AB |的值;(2)设直线AM 交直线l 于点N ,证明:直线BN ⊥l . 解:由题意知,F (1,0),E (5,0),M (3,0). (1)∵直线l 1的倾斜角为π4,∴斜率k =1.∴直线l 1的方程为y =x -1.代入椭圆方程,可得9x 2-10x -15=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=109,x 1x 2=-53. ∴|AB |=2·(x 1+x 2)2-4x 1x 2 =2×⎝⎛⎭⎫1092+4×53=1659.(2)证明:设直线l 1的方程为y =k (x -1). 代入椭圆方程,得(4+5k 2)x 2-10k 2x +5k 2-20=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=10k 24+5k 2,x 1x 2=5k 2-204+5k 2.设N (5,y 0),∵A ,M ,N 三点共线,∴-y 13-x 1=y 02,∴y 0=2y 1x 1-3. 而y 0-y 2=2y 1x 1-3-y 2=2k (x 1-1)x 1-3-k (x 2-1) =3k (x 1+x 2)-kx 1x 2-5kx 1-3=3k ·10k 24+5k 2-k ·5k 2-204+5k 2-5k x 1-3=0.∴直线BN ∥x 轴,即BN ⊥l .C 级——重难题目自主选做1.已知椭圆x 2a 2+y 2b 2=1(a >b >0),A ,B 为椭圆上的两点,线段AB 的垂直平分线交x 轴于点M ⎝⎛⎭⎫a 5,0,则椭圆的离心率e 的取值范围是( )A.⎝⎛⎭⎫22,1B.⎝⎛⎭⎫33,1C.⎝⎛⎭⎫55,1 D.⎝⎛⎭⎫34,1 解析:选C 设A (x 1,y 1),B (x 2,y 2),x 1≠x 2,则⎩⎪⎨⎪⎧ ⎝⎛⎭⎫x 1-a 52+y 21=⎝⎛⎭⎫x 2-a 52+y 22,x 21a 2+y21b 2=1,x 22a 2+y 22b2=1,即⎩⎪⎨⎪⎧2a 5(x 1-x 2)=x 21-x 22+y 21-y 22,y 21=b 2-b2a 2x 21,y 22=b 2-b 2a2x 22,所以2a5(x 1-x 2)=a 2-b 2a 2(x 21-x 22),所以2a 35(a 2-b 2)=x 1+x 2.又-a ≤x 1≤a ,-a ≤x 2≤a ,x 1≠x 2, 所以-2a <x 1+x 2<2a ,则2a 35(a 2-b 2)<2a , 即b 2a 2<45,所以e 2=1-b 2a 2>15. 又0<e <1,所以55<e <1. 2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),点A ⎝⎛⎭⎫1,22在椭圆C 上.(1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线,使得当直线与椭圆C 有两个不同交点M ,N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM ―→=NQ ―→?若存在,求出直线的方程;若不存在,说明理由.解:(1)设椭圆C 的焦距为2c ,则c =1, 因为A ⎝⎛⎭⎫1,22在椭圆C 上, 所以2a =|AF 1|+|AF 2|=22, 因此a =2,b 2=a 2-c 2=1, 故椭圆C 的方程为x 22+y 2=1.(2)不存在满足条件的直线,证明如下:设直线的方程为y =2x +t ,M (x 1,y 1),N (x 2,y 2), P ⎝⎛⎭⎫x 3,53,Q (x 4,y 4),MN 的中点为D (x 0,y 0), 由⎩⎪⎨⎪⎧y =2x +t ,x 22+y 2=1消去x ,得9y 2-2ty +t 2-8=0, 所以y 1+y 2=2t9,且Δ=4t 2-36(t 2-8)>0,故y 0=y 1+y 22=t9,且-3<t <3. 由PM ―→=NQ ―→,得⎝⎛⎭⎫x 1-x 3,y 1-53=(x 4-x 2,y 4-y 2), 所以有y 1-53=y 4-y 2,y 4=y 1+y 2-53=2t 9-53.也可由PM ―→=NQ ―→知四边形PMQN 为平行四边形, 而D 为线段MN 的中点,因此,D 也为线段PQ 的中点,所以y0=53+y42=t9,可得y4=2t-159又-3<t<3,所以-73<y4<-1,与椭圆上点的纵坐标的取值范围是[-1,1]矛盾.因此不存在满足条件的直线.。

高中数学选修(2-1)椭圆基础、提高、综合篇

高中数学选修(2-1)椭圆基础、提高、综合篇

椭圆及其标准方程基础卷一、选择题:1、椭圆2211625x y +=的焦点坐标为( ) (A )(0, ±3) (B )(±3, 0) (C )(0, ±5) (D )(±4, 0)2、在方程22110064x y +=中,下列a , b , c 全部正确的一项是( ) (A )a =100, b =64, c =36 (B )a =10, b =6, c =8 (C )a =10, b =8, c =6 (D )a =100, c =64, b =36 3、已知a =4, b =1,焦点在x 轴上的椭圆方程是( )(A )2214x y += (B )2214y x += (C )22116x y += (D )22116y x += 4、已知焦点坐标为(0, -4), (0, 4),且a =6的椭圆方程是( )(A )2213620x y += (B )2212036x y += (C )2213616x y += (D )2211636x y += 5、若椭圆22110036x y +=上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是( ) (A )4 (B )194 (C )94 (D )146、已知F 1, F 2是定点,| F 1 F 2|=8, 动点M 满足|M F 1|+|M F 2|=8,则点M 的轨迹是( ) (A )椭圆 (B )直线 (C )圆 (D )线段 二、填空题:7、若y 2-lga ·x 2=31-a 表示焦点在x 轴上的椭圆,则a 的取值范围是 . 8、当a +b =10, c =25时的椭圆的标准方程是 .9、已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作垂线段PP ’,则线段PP ’的中点M 的轨迹方程为 .10、经过点M (3, -2), N (-23, 1)的椭圆的标准方程是 .11、椭圆的两焦点为F 1(-4, 0), F 2(4, 0),点P 在椭圆上,已知△PF 1F 2的面积的最大值为12,求此椭圆的方程。

高二上学期数学练习题(7)(椭圆的简单几何性质)有详细答案

高二上学期数学练习题(7)(椭圆的简单几何性质)有详细答案

高二上学期数学练习题(7)(椭圆的简单几何性质)班级 姓名 学号一.选择填空题1. 已知椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为 ( )A .(±13,0)B .(0,±10)C .(0,±13)D .(0,±69) 2. 椭圆x 2+4y 2=1的离心率为 ( ) A.32 B.34 C.22 D.233. 已知椭圆C 的左、右焦点坐标分别是(-2,0),(2,0),离心率是63,则椭圆C 的方程为( ) A.x 23+y 2=1 B .x 2+y 23=1 C.x 23+y 22=1 D.x 22+y 23=1 4. 已知椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的2倍,则m = ( ).A.14B.12C .2D .4 5. 过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 ( ) A.52 B.33 C.12 D.136. 如图所示,直线l :x -2y +2=0过椭圆的左焦点F 1和一个顶点B ,该椭圆的离心率为( ). A.15 B.25 C.55 D.2557. 已知椭圆x 23+y 24=1的上焦点为F ,直线x +y -1=0和x +y +1=0与椭圆分别相交于点A ,B 和C ,D ,则AF +BF +CF +DF = ( ). A .2 3 B .4 3 C .4 D .88. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率是63,过椭圆上一点M 作直线MA ,MB 分别交椭圆于A ,B 两点,且斜率分别为k 1,k 2,若点A ,B 关于原点对称,则k 1²k 2的值为 ( ). A.12 B .-12 C.13 D .-139. 已知椭圆C :x 22+y 2=1的右焦点为F ,直线l :x =2,点A ∈l ,线段AF 交C 于点B ,若F A →=3FB →,则|AF →|=A. 2 B .2 C. 3 D .3 ( ) 10. 椭圆x 225+y 29=1上的点P 到椭圆左焦点的最大距离和最小距离分别是( )A .8,2B .5,4C .5,1D .9,1二.填空题11.已知椭圆的短轴长等于2,长轴端点与短轴端点间的距离等于5,则此椭圆的标准方程是________. 12.已知椭圆x 2k +8+y 29=1的离心率为12,则k 的值为________.13.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12, 则椭圆G 的方程为________.14.已知中心在原点,对称轴为坐标轴,长半轴长与短半轴长的和为92,离心率为35的椭圆的标准方程为________15.直线y =x +2与椭圆x 2m +y 23=1有两个公共点,则m 的取值范围是________.16.椭圆x 2+4y 2=16被直线y =12x +1截得的弦长为________.17.已知F 1、F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A 、B 两点.若|F 2A |+|F 2B |=12,则|AB |=_______18.如图,在平面直角坐标系xOy 中,A1,A 2,B 1,B 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的四个顶点,F 为其右焦点,直线A 1B 2与直线B 1F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 则该椭圆的离心率为________. 三.解答题19.求椭圆x 24+y 2=1的长轴和短轴的长、离心率、焦点和顶点的坐标.20.已知椭圆长轴长是短轴长的2倍,且过点A (2,-6).求椭圆的标准方程.21.已知椭圆E 的中心在坐标原点O ,两个焦点分别为A (-1,0),B (1,0),一个顶点为H (2,0). (1)求椭圆E 的标准方程;(2)对于x 轴上的点P (t ,0),椭圆E 上存在点M ,使得MP ⊥MH ,求实数t 的取值范围.22.已知直线l :y =kx +1与椭圆x 22+y 2=1交于M 、N 两点,且|MN |=423.求直线l 的方程.23.已知过点A (-1,1)的直线与椭圆x 28+y24=1交于点B 、C ,当直线l 绕点A (-1,1)旋转时,求弦BC 中点M 的轨迹方程.24.如图所示,点A 、B 分别是椭圆x 236+y 220=1长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,P A ⊥PF . (1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于|MB |,求椭圆上的点到点M 的距离d 的最小值.高二上学期数学练习题(7)(椭圆的简单几何性质)参考答案班级 姓名 学号 (5-12页)一.选择填空题1. 已知椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为 ( )A .(±13,0)B .(0,±10)C .(0,±13)D .(0,±69)解析:由题意知椭圆焦点在y 轴上,且a =13,b =10,则c =a 2-b 2=69,故焦点坐标为(0,±69).答案 D 2. 椭圆x 2+4y 2=1的离心率为 ( ). A.32 B.34 C.22 D.23解析:将椭圆方程x 2+4y 2=1化为标准方程x 2+y 14=1,则a 2=1,b 2=14,即a =1,c =a 2-b 2=32,故离心率e =c a =32.答案 A 3. 已知椭圆C 的左、右焦点坐标分别是(-2,0),(2,0),离心率是63,则椭圆C 的方程为( ) A.x 23+y 2=1 B .x 2+y 23=1 C.x 23+y 22=1 D.x 22+y 23=1 解析 因为c a =63,且c =2,所以a =3,b =a 2-c 2=1.所以椭圆C 的方程为x 23+y 2=1.答案 A4. 已知椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的2倍,则m = ( ).A.14B.12 C .2 D .4 解析 将椭圆方程化为标准方程为x 2+y 21m=1,∵焦点在y 轴上,∴1m >1,∴0<m <1.由方程得a =1m ,b =1.∵a =2b ,∴m =14. 答案 A 5. 过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 ( ) A.52 B.33 C.12 D.13解析:记|F 1F 2|=2c ,则由题设条件,知|PF 1|=2c 3,|PF 2|=4c3, 则椭圆的离心率e =2c 2a =|F 1F 2||PF 1|+|PF 2|=2c 2c 3+4c 3=33,故选B.答案 B6. 如图所示,直线l :x -2y +2=0过椭圆的左焦点F 1和一个顶点B A.15 B.25 C.55 D.255解析:由条件知,F 1(-2,0),B (0,1),∴b =1,c =2,∴a =22+12=5,∴e =c a =25=255.答案 D7. 已知椭圆x 23+y 24=1的上焦点为F ,直线x +y -1=0和x +y +1=0与椭圆分别相交于点A ,B 和C ,D ,则AF +BF +CF +DF = ( ). A .2 3 B .4 3 C .4 D .8 解析 如图,两条平行直线分别经过椭圆的两个焦点,连接 AF 1、FD .由椭圆的对称性可知,四边形AFDF 1(其中F 1为椭 圆的下焦点)为平行四边形,∴AF 1=FD ,同理BF 1=CF , ∴AF +BF +CF +DF =AF +BF +BF 1+AF 1=4a =8.答案 D8. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率是63,过椭圆上一点M 作直线MA ,MB 分别交椭圆于A ,B 两点,且斜率分别为k 1,k 2,若点A ,B 关于原点对称,则k 1²k 2的值为 ( ). A.12 B .-12 C.13 D .-13解析 设点M (x ,y ),A (x 1,y 1),B (-x 1,-y 1),则y 2=b 2-b 2x 2a 2,y 12=b 2-b 2x 12a2,所以k 1·k 2=y -y 1x -x 1·y +y 1x +x 1=y 2-y 12x 2-x 12=-b 2a 2=c 2a 2-1=e 2-1=-13,即k 1·k 2的值为-13.答案 D 9. 已知椭圆C :x 22+y 2=1的右焦点为F ,直线l :x =2,点A ∈l ,线段AF 交C 于点B ,若F A →=3FB →,则|AF →|=A. 2 B .2 C. 3 D .3 ( ) 解析 设点A (2,n ),B (x 0,y 0).由椭圆C :x 22+y 2=1知a 2=2,b 2=1,∴c 2=1,即c =1,∴右焦点F (1,0).∴由F A →=3FB →得(1,n )=3(x 0-1,y 0).∴1=3(x 0-1)且n =3y 0,∴x 0=43,y 0=13n ,将x 0,y 0代入x 22+y 2=1,得12³(43)2+(13n )2=1.解得n 2=1,∴|AF →|=(2-1)2+n 2=1+1= 2.所以选A.答案 A 10. 椭圆x 225+y 29=1上的点P 到椭圆左焦点的最大距离和最小距离分别是( D )A .8,2B .5,4C .5,1D .9,1二.填空题11.已知椭圆的短轴长等于2,长轴端点与短轴端点间的距离等于5,则此椭圆的标准方程是________. 解析:设椭圆的长半轴长为a ,短半轴长为b ,焦距为2c ,则b =1,a 2+b 2=(5)2,即a 2=4. 所以椭圆的标准方程是x 24+y 2=1或y 24+x 2=1.答案 x 24+y 2=1或y 24+x 2=112.已知椭圆x 2k +8+y 29=1的离心率为12,则k 的值为________.解析:①当k +8>9时,e 2=c 2a 2=k +8-9k +8=14,k =4;②当k +8<9时,e 2=c 2a 2=9-k -89=14,k =-54.答案4或-5413.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12, 则椭圆G 的方程为________.解析:依题意设椭圆G 的方程为x 2a 2+y 2b 2=1(a >b >0),∵椭圆上一点到其两个焦点的距离之和为12.∴2a =12,即a =6.∵椭圆的离心率为32,∴e =c a =a 2-b 2a =32,∴36-b 26=32,∴b 2=9.∴椭圆G 的方程为x 236+y 29=1.答案 x 236+y 29=114.已知中心在原点,对称轴为坐标轴,长半轴长与短半轴长的和为92,离心率为35的椭圆的标准方程为________解析:由题意知⎩⎪⎨⎪⎧a +b =92,c a =35,a 2=b 2+c 2,解得⎩⎨⎧a =52,b =42.但焦点位置不确定.答案 x 250+y 232=1或x 232+y 250=115.直线y =x +2与椭圆x 2m +y 23=1有两个公共点,则m 的取值范围是________.解析:由⎩⎪⎨⎪⎧y =x +2,x 2m +y 23=1消去y ,整理得(3+m )x 2+4mx +m =0,若直线与椭圆有两个公共点,则⎩⎪⎨⎪⎧3+m ≠0,Δ=(4m )2-4m (3+m )>0,解得⎩⎪⎨⎪⎧m ≠-3,m <0或m >1.由x 2m +y 23=1表示椭圆知,m >0且m ≠3. 综上可知,m 的取值范围是(1,3)∪(3,+∞).答案 (1,3)∪(3,+∞) 16.椭圆x 2+4y 2=16被直线y =12x +1截得的弦长为________.解析:由⎩⎪⎨⎪⎧x 2+4y 2=16,y =12x +1,消去y 并化简得x 2+2x -6=0.设直线与椭圆的交点为M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-2,x 1x 2=-6. ∴弦长|MN |=(x 1-x 2)2+(y 1-y 2)2=(x 1-x 2)2+(12x 1-12x 2)2=54[(x 1+x 2)2-4x 1x 2]=54(4+24)=35,答案 35。

2024届高考数学复习:精选历年真题、好题专项(椭圆)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(椭圆)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(椭圆)练习一. 基础小题练透篇1.已知定点F 1,F 2,且|F 1F 2|=8,动点P 满足|PF 1|+|PF 2|=8,则动点P 的轨迹是( ) A .椭圆 B .圆 C .直线 D .线段2.[2023ꞏ山西省忻州市高三联考]“m >0”是“方程x 24 +y 2m =1表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 3.[2023ꞏ重庆市高三模拟]几何学中,把满足某些特定条件的曲线组成的集合叫做曲线族.点Q 是椭圆族T 上任意一点,如图所示,椭圆族T 的元素满足以下条件:①长轴长为4;②一个焦点为原点O ;③过定点P ()0,3 ,则||QP +||QO 的最大值是( )A .5B .7C .9D .114.[2023ꞏ四川省遂宁市模拟]已知椭圆x 2a 2 +y 2b 2 =1(a >b >0)的离心率为12 ,则( ) A .a 2=2b 2 B .3a 2=4b 2 C .a =2b D .3a =4b5.[2023ꞏ甘肃省张掖市高三检测]已知椭圆x 2+y 2b 2 =1(1>b >0)的左、右焦点分别为F 1,F 2,点M 是椭圆上一点,点A 是线段F 1F 2上一点,且∠F 1MF 2=2∠F 1MA =2π3 ,|MA |=32 ,则该椭圆的离心率为( )A .3B .12C .223D .36.在平面直角坐标系xOy 中,已知点A (0,3 ),B (0,-3 ),动点M 满足|MA |+|MB |=4,则MA → ꞏMB →的最大值为( )A .-2B .0C .1D .27.已知椭圆C 的焦点在x 轴上,过点(322 ,2)且离心率为13 ,则椭圆C 的焦距为________. 8.[2023ꞏ陕西省西安市模拟]椭圆x 29 +y 23 =1的左、右焦点分别为F 1,F 2,点P 在椭圆上,如果PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的________倍.二. 能力小题提升篇1.[2023ꞏ陕西省安康市高三联考]已知F 1,F 2是椭圆C :x 2a 2 +y 215 =1(a >15 )的两个焦点,P 为C 上一点,且∠F 1PF 2=60°.||PF 1 =5||PF 2 ,则C 的方程为( )A .x 221 +y 215 =1B .x 218 +y 215 =1C .x 236 +y 215 =1 D .x 242 +y 215 =12.[2023ꞏ广西贵港市高三联考]若2<m <8,椭圆C :x 2m +y 22 =1与椭圆D :x 2m +y 28 =1的离心率分别为e 1,e 2,则( )A .e 1ꞏe 2的最小值为32B .e 1ꞏe 2的最小值为12C .e 1ꞏe 2的最大值为3D .e 1ꞏe 2的最大值为123.[2023ꞏ江西名校联盟模拟]在直角坐标系xOy 中,F 是椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点,过点F 作x 轴的垂线交椭圆C 于P ,Q 两点,连接PB 交y 轴于点E ,连接AE 交PQ 于点M ,若M 是线段PF 的中点,则椭圆C 的离心率为( )A.22 B .12 C .13 D .144.[2023ꞏ陕西省西安市高三检测]设椭圆C :x 2a 2 +y 2b 2 =1()a >b >0 的右焦点为F ,椭圆C 上的两点A ,B 关于原点对称,且满足F A → ꞏFB →=0,||FB ≤||F A ≤2||FB ,则椭圆C 的离心率的最大值是( )A .13B .33C .23D .535.[2023ꞏ陕西省咸阳市摸底]已知椭圆C :x 2m 2-1+y 2m 2 =1(m >0)的两个焦点分别为F 1,F 2,点P 为椭圆上一点,且△PF 1F 2面积的最大值为3 ,则椭圆C 的短轴长为________.6.[2023ꞏ福建省高三联考]抛物线C 1:y 2=4x 的焦点F ,点P ()3,2 ,以点F ,P 为焦点的椭圆与抛物线有公共点,则椭圆的离心率的最大值为________.三. 高考小题重现篇1.[2021ꞏ山东卷]已知F 1,F 2是椭圆C :x 29 +y 24 =1的两个焦点,点M 在C 上,则||MF 1 ꞏ||MF 2 的最大值为( )A .13 B. 12 C .9 D. 62.[全国卷Ⅰ]已知椭圆C :x 2a 2 +y 24 =1的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .22 D .2233.[2022ꞏ全国甲卷]已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的离心率为13 ,A 1,A 2分别为C的左、右顶点,B 为C 的上顶点.若BA → 1ꞏBA →2=-1,则C 的方程为( )A .x 218 +y 216 =1B .x 29 +y 28 =1C .x 23 +y 22 =1 D .x 22 +y 2=14.[2022ꞏ全国甲卷]椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y轴对称.若直线AP,AQ的斜率之积为14,则C的离心率为()A.32B.22C.12D.135.[2019ꞏ全国卷Ⅲ]设F1,F2为椭圆C:x236+y220=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.6.[2021ꞏ全国甲卷]已知F1,F2为椭圆C:x216+y24=1的两个焦点,P,Q为C上关于坐标原点对称的两点,且|PQ|=|F1F2|,则四边形PF1QF2的面积为________.四. 经典大题强化篇1.已知椭圆x2a2+y2b2=1(a>b>0)的一个顶点为B(0,4),离心率e=5,直线l交椭圆于M,N两点.(1)若直线l的方程为y=x-4,求弦|MN|的长;(2)如果△BMN的重心恰好为椭圆的右焦点F,求直线l方程的一般式.2.[2022ꞏ湖北武汉调研]已知椭圆C:x2a2+y2b2=1(a>b>0)的一个顶点为A(2,0),离心率为22,直线y=k(x-1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当△AMN的面积为103时,求k的值.参考答案一 基础小题练透篇1.答案:D答案解析:因为|PF 1|+|PF 2|=|F 1F 2|,所以动点P 的轨迹是线段F 1F 2. 2.答案:B答案解析:当m >0时方程x 24 +y 2m =1不一定表示椭圆,如m =4时方程x 24 +y 24=1,即x 2+y 2=4就表示一个圆,所以“m >0”不是“方程x 24 +y2m=1表示椭圆”的充分条件;但是当方程x 24 +y 2m =1表示椭圆时,应有m >0,所以“m >0”是“方程x 24 +y 2m=1表示椭圆”的必要条件,故选B. 3.答案:A答案解析:如图所示设点Q 所在椭圆的另一焦点为F ,则||QP +||QO =||QP +4-||QF ≤||PF +4=4-||PO +4=5. 故选A. 4.答案:B答案解析:椭圆的离心率e =c a =12,c 2=a 2-b 2,化简得3a 2=4b 2,故选B.5.答案:B答案解析:设|MF 1|=r 1,|MF 2|=r 2,则r 1+r 2=2a =2,由余弦定理得|F 1F 2|2=|MF 1|2+|MF 2|2-2|MF 1||MF 2|cos 2π3,即4c 2=r 21 +r 22 +r 1r 2=(r 1+r 2)2-r 1r 2=4-r 1r 2,所以r 1r 2=4-4c 2,因为S △F 1MF 2=S △F 1MA +S △AMF 2,所以12 r 1r 2sin 23 π=12 r 1·|MA |·sin π3 +12 r 2·|MA |·sin π3,整理得r 1r 2=(r 1+r 2)·|MA |,即4-4c 2=2×32 ,整理得c 2=14,所以c =12 ,a =1,e =c a =12.故选B. 6.答案:C答案解析:易知M 的轨迹为椭圆,其方程为y 24+x 2=1,设M (x ,y ),则x 2=1-y 24,∴MA → ·MB → =(-x ,3 -y )·(-x ,-3 -y )=x 2+y 2-3=y 2+(1-y 24)-3=3y24-2, 因为y ∈[-2,2],所以34y 2∈[0,3],即3y24 -2∈[-2,1],∴(MA → ·MB →)max =1. 7.答案:2答案解析:设椭圆方程为x 2a 2 +y 2b 2 =1,由离心率为13 可得c a =13,由a 2=b 2+c 2可得b 2a 2=89 ,又92a 2 +4b 2 =1,解得a 2=9,b 2=8,c =1,焦距为2. 8.答案:5答案解析:由题得c =6 ,由题得PF 2⊥x 轴,当x =6 时,69+y 23 =1,所以y =±1,∴|PF 2|=1,所以|PF 1|=2×3-|PF 2|=6-1=5, 所以|PF 1|是|PF 2|的5倍.二 能力小题提升篇1.答案:C答案解析:在椭圆C :x 2a 2 +y 215=1(a >15 )中,由椭圆的定义可得||PF 1 +||PF 2 =2a ,因为||PF 1 =5||PF 2 ,所以||PF 2 =a 3,||PF 1 =5a3,在△PF 1F 2中,||F 1F 2 =2c ,由余弦定理得||F 1F 2 2=||PF 1 2+||PF 2 2-2||PF 1 ||PF 2 cos ∠F 1PF 2,即4c 2=25a 29 +a29-5a 29 =21a 29 ,所以c 2a 2 =2136 ,又b 2=15.所以a 2=36,所以椭圆C 的方程为x 236 +y 215 =1. 故选C. 2.答案:D答案解析:因为2<m <8,所以e 1= 1-2m ,e 2= 1-m8,所以e 1·e 2=⎝ ⎛⎭⎪⎫1-2m ⎝ ⎛⎭⎪⎫1-m 8 =1+14-⎝ ⎛⎭⎪⎫2m +m 8 ≤54-22m ·m 8 =12, 当且仅当m =4时,等号成立,故e 1·e 2的最大值为12,e 1·e 2无最小值.故选D.3.答案:C答案解析:不妨设点P 在x 轴上方,如图,连接BQ ,则由椭圆的对称性易得∠PBF =∠QBF ,∠EAB =∠EBA ,所以∠EAB =∠QBF ,所以ME ∥BQ ,所以|PE ||EB | =|PM ||MQ | .因为OE ∥PF ,所以|OF ||OB |=|EP ||EB | ,从而有|PM ||MQ | =|OF ||OB | .又M 是线段PF 的中点,所以e =c a =|OF ||OB | =|PM ||MQ | =13 . 4.答案:D答案解析:如图所示:设椭圆的左焦点F ′,由椭圆的对称性可知,四边形AFBF ′为平行四边形,又FA → ·FB →=0,即FA ⊥FB , 所以平行四边形AFBF ′为矩形,所以||AB =||FF ′ =2c ,设||AF ′ =|BF |=n ,||AF =m, 在直角△ABF 中,m +n =2a ,m 2+n 2=4c 2,得mn =2b 2,所以m n+n m =2c 2b 2 ,令m n =t ,得t +1t =2c2b 2 ,又由||FB ≤||FA ≤2||FB ,得m n =t ∈[1,2],所以t +1t =2c 2b 2 ∈⎣⎢⎡⎦⎥⎤2,52 ,所以c 2b 2 ∈⎣⎢⎡⎦⎥⎤1,54 ,即b 2a 2 =11+c 2b2∈⎣⎢⎡⎦⎥⎤49,12 , 所以e =ca=1-b 2a 2 ∈⎣⎢⎡⎦⎥⎤22,53 ,所以离心率最大值为53 .故选D.5.答案:23答案解析:由椭圆的方程可知,椭圆的焦点F 1,F 2在y 轴上,且|F 1F 2|=2m 2-(m 2-1) =2,由题意可知,当点P 为椭圆C 左右顶点时,△PF 1F 2的面积最大,且12 |F 1F 2|m 2-1 =3 ,解得m =2,所以椭圆C 的短轴长为2m 2-1 =23 .6.答案:22答案解析:抛物线C 1:y 2=4x 的焦点F (1,0),根据题意2c =(3-1)2+(2-0)2=22 ,c =2 .设椭圆和抛物线的交点为Q ,Q 到抛物线准线x =-1的距离为d ,离心率最大,即a 最小,a =||QF +||QP 2 =d +||QP 2 ≥3-(-1)2=2, 当PQ 与准线垂直时等号成立,此时e =ca =22. 三 高考小题重现篇1.答案:C答案解析:由题,a 2=9,b 2=4,则||MF 1 +||MF 2 =2a =6,所以||MF 1 ·||MF 2 ≤⎝ ⎛⎭⎪⎫||MF 1+||MF 22 2=9(当且仅当||MF 1 =||MF 2 =3时,等号成立).2.答案:C答案解析:由题意可知c =2,b 2=4,∴a 2=b 2+c 2=4+22=8,则a =22 ,∴e =c a =222 =22 . 3.答案:B答案解析:由椭圆C 的离心率为13 ,可得e =c a =a 2-b 2a 2=13.化简,得8a 2=9b 2.易知A 1(-a ,0),A 2(a ,0),B (0,b ),所以BA 1·BA 2=(-a ,-b )·(a ,-b )=-a 2+b 2=-1.联立得方程组⎩⎪⎨⎪⎧8a 2=9b 2,-a 2+b 2=-1, 解得⎩⎪⎨⎪⎧a 2=9,b 2=8. 所以C 的方程为x 29 +y 28 =1.故选B.4.答案:A答案解析:A ()-a ,0 ,设P ()x 1,y 1 ,则Q ()-x 1,y 1 ,则k AP =y 1x 1+a ,k AQ =y 1-x 1+a, 故k AP ·k AQ =y 1x 1+a ·y 1-x 1+a =y 21 -x 21 +a 2 =14, 又x 21 a2 +y 21 b2 =1,则y 21 =b 2()a 2-x 21 a 2, 所以b 2()a 2-x 21 a 2-x 21 +a2 =14 ,即b 2a 2 =14 , 所以椭圆C 的离心率e =c a=1-b 2a 2 =32 .故选A. 5.答案:(3,15 )答案解析:不妨令F 1,F 2分别为椭圆C 的左、右焦点,根据题意可知c =36-20 =4.因为△MF 1F 2为等腰三角形,所以易知|F 1M |=2c =8,所以|F 2M |=2a -8=4.设M (x ,y ),则⎩⎪⎨⎪⎧x 236+y220=1,|F 1M |2=(x +4)2+y 2=64,x >0,y >0,得⎩⎨⎧x =3,y =15,所以M 的坐标为(3,15 ).6.答案:8答案解析:根据椭圆的对称性及|PQ |=|F 1F 2|可以得到四边形PF 1QF 2为对角线相等的平行四边形,所以四边形PF 1QF 2为矩形.设|PF 1|=m ,则|PF 2|=2a -|PF 1|=8-m ,则|PF 1|2+|PF 2|2=m 2+(8-m )2=2m 2+64-16m =|F 1F 2|2=4c 2=4(a 2-b 2)=48,得m (8-m )=8,所以四边形PF 1QF 2的面积为|PF 1|×|PF 2|=m (8-m )=8.四 经典大题强化篇1.答案解析:(1)由已知得b =4,且c a =55 ,即c 2a 2 =15,∴a 2-b 2a 2 =15,解得a 2=20,∴椭圆方程为x 220 +y 216=1. 则4x 2+5y 2=80与y =x -4联立,消去y 得9x 2-40x =0,∴x 1=0,x 2=409,∴所求弦长|MN |=1+12|x 2-x 1|=4029. (2)椭圆右焦点F 的坐标为(2,0),设线段MN 的中点为Q (x 0,y 0),由三角形重心的性质知BF → =2FQ →, 又B (0,4),∴(2,-4)=2(x 0-2,y 0), 故得x 0=3,y 0=-2, 即Q 的坐标为(3,-2). 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=6,y 1+y 2=-4,且x 21 20 +y 21 16 =1,x 22 20 +y 2216=1, 以上两式相减得k MN =y 1-y 2x 1-x 2 =-45 ·x 1+x 2y 1+y 2 =-45 ×6-4 =65,故直线MN 的方程为y +2=65(x -3),即6x -5y -28=0.2.答案解析:(1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,得b =2 ,所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y22=1, 得(1+2k 2)x 2-4k 2x +2k 2-4=0.Δ=24k 2+16>0恒成立. 设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2 ,x 1x 2=2k 2-41+2k 2 ,所以|MN |=(x 2-x 1)2+(y 2-y 1)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2(1+k 2)(4+6k 2)1+2k 2. 又点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2 ,所以△AMN的面积S=12|MN|·d=|k|4+6k21+2k2,由|k|4+6k21+2k2=103,得k=±1.所以当△AMN的面积为103时,k=±1.。

北京高二数学椭圆练习题

北京高二数学椭圆练习题

北京高二数学椭圆练习题椭圆是数学中的一种特殊曲线,具有许多重要的性质和应用。

在高二数学学习阶段,学生需要通过解决练习题来巩固对椭圆的理解和应用能力。

以下是一些北京高二数学椭圆练习题,希望能够帮助同学们提高他们的数学能力和解题技巧。

练习题一:曲线方程1. 给定椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中a,b为正实数,且a>b。

如果c表示椭圆E的焦点到原点的距离,根据椭圆的性质,求出c与a、b的关系式。

解析:根据椭圆的定义,可以得到c关于a、b的关系式:$c=\sqrt{a^2-b^2}$。

2. 已知椭圆E的焦点F1(-3, 0),F2(3, 0),离心率e=2/3。

求椭圆E的方程。

解析:根据椭圆的性质,可以得到椭圆E的方程为:$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,其中a表示焦点到原点的距离,根据离心率的定义,可以得到$\frac{c}{a}=\frac{2}{3}$,而焦点到原点的距离为3,因此c=2。

根据焦点与顶点的关系,a和b的关系为:$a^2=b^2+c^2$,代入已知条件,可以得到$a^2=b^2+4$。

综上所述,椭圆E的方程为$\frac{x^2}{8} + \frac{y^2}{36} = 1$。

练习题二:参数方程1. 设椭圆E的焦点为F1(-3, 0),F2(3, 0),离心率为e。

令椭圆E的参数方程为$x=a\cos\theta$,$y=b\sin\theta$,求a、b与e的关系式。

解析:根据椭圆的性质,焦点到原点的距离为a,而且$\frac{c}{a}=e$。

由于焦点为F1(-3, 0)和F2(3, 0),所以a为3。

又因为离心率的定义为$e=\frac{c}{a}$,所以e=1。

2. 已知椭圆E的焦点为F1(-1, 0),F2(1, 0),离心率为0.8。

令椭圆E的参数方程为$x=a\cos\theta$,$y=b\sin\theta$,求a、b的值。

高中数学《椭圆》方程典型例题20例(含标准答案)

高中数学《椭圆》方程典型例题20例(含标准答案)

《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=,4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=.同理 2545x CF -=.∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 ()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-.将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=, 112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-. 所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,; (2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y .解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y .(2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin 34222+--=θθb b b 3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠AQB ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+a y x ay ,将22222y ba a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b c ab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅. ∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九 例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF ∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+by a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12FPF ,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα,∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=.∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-b a b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。

高中数学 椭圆专题(经典例题 考题 练习)附答案

高中数学 椭圆专题(经典例题 考题 练习)附答案

高中数学椭圆专题一.相关知识点1.椭圆的概念平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫椭圆。

这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距。

集合P={M||MF1|+|MF2|=2a,|F1F2|=2c,其中a>0,c>0,且a,c为常数}。

(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集。

2.椭圆的标准方程和几何性质3.椭圆中常用的4个结论(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,这时P在短轴端点处;当x=±a时,|OP|有最大值a,这时P在长轴端点处。

(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a是斜边长,a2=b2+c2。

(3)已知过焦点F1的弦AB,则△ABF2的周长为4a。

(4)若P为椭圆上任一点,F为其焦点,则a-c≤|PF|≤a+c。

一、细品教材1.(选修1-1P34例1改编)若F1(3,0),F2(-3,0),点P到F1,F2距离之和为10,则P点的轨迹方程是()A.x225+y216=1 B.x2100+y29=1 C.y225+x216=1 D.x225+y216=1或y225+x216=12.(选修1-1P42A组T6改编)设椭圆的两个焦点分别为F1,F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()A.22 B.2-12C.2- 2 D.2-1走进教材答案1.A; 2.D 二、双基查验1.设P是椭圆x24+y29=1上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于()A.4B.8 C.6 D.182.方程x25-m+y2m+3=1表示椭圆,则m的范围是()A.(-3,5) B.(-5,3) C.(-3,1)∪(1,5) D.(-5,1)∪(1,3)3.椭圆x 29+y 24+k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21 D.1925或214.已知椭圆的一个焦点为F (1,0),离心率为12,则椭圆的标准方程为________。

高中数学椭圆练习题(含答案)

高中数学椭圆练习题(含答案)

椭圆练习题一、 选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中有只有一项是符合题目要求的.) 1.椭圆63222=+y x 的焦距是( )A .2B .)23(2-C .52D .)23(2+2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是( ) A .椭圆 B .直线 C .线段 D .圆 3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( )A .14822=+x yB .161022=+x yC .18422=+x yD .161022=+y x4.方程222=+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是( )A .),0(+∞B .(0,2)C .(1,+∞)D .(0,1)5. 过椭圆12422=+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点2F 构成2ABF ∆,那么2ABF ∆的周长是( )A . 22B . 2C . 2D . 16.已知椭圆的对称轴是坐标轴,离心率为31,长轴长为12,则椭圆方程为( ) A .112814422=+y x 或114412822=+y x B . 14622=+y x C .1323622=+y x 或1363222=+y x D . 16422=+y x 或14622=+y x 7. 已知k <4,则曲线14922=+y x 和14922=-+-k y k x 有( ) A . 相同的短轴 B . 相同的焦点 C . 相同的离心率 D . 相同的长轴8.椭圆192522=+yx 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为( ) A .9 B .12 C .10 D .89.椭圆131222=+y x 的焦点为1F 和2F ,点P 在椭圆上,若线段1PF 的中点在y 轴上,那么1PF 是2PF 的( )A .4倍B .5倍C .7倍D .3倍10.椭圆1449422=+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,那么这弦所在直线的方程为( ) A .01223=-+y x B .01232=-+y xC .014494=-+y xD . 014449=-+y x11.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( )A .3B .11C .22D .1012.过点M (-2,0)的直线M 与椭圆1222=+y x 交于P 1,P 2,线段P 1P 2的中点为P ,设直线M 的斜率为k 1(01≠k ),直线OP 的斜率为k 2,则k 1k 2的值为( ) A .2 B .-2C .21 D .-21 二、 填空题:(本大题共4小题,每小题4分,共16分,把答案填在题中横线上.)13.椭圆2214x y m +=的离心率为12,则m = . 14.设P 是椭圆2214x y +=上的一点,12,F F 是椭圆的两个焦点,则12PF PF 的最大值为 ;最小值为 .15.直线y =x -21被椭圆x 2+4y 2=4截得的弦长为 .16.已知圆Q A y x C ),0,1(25)1(:22及点=++为圆上一点,AQ 的垂直平分线交CQ 于M ,则点M 的轨迹方程为 .三、解答题:(本大题共6小题,共74分,解答应写出文字说明.证明过程或演算步骤.) 17.已知三角形ABC 的两顶点为(2,0),(2,0)B C -,它的周长为10,求顶点A 轨迹方程.18.椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.19.点P到定点F(2,0)的距离和它到定直线x=8的距离的比为1:2,求点P的轨迹方程,并指出轨迹是什么图形.20.中心在原点,一焦点为F1(0,52)的椭圆被直线y=3x-2截得的弦的中点横坐标是21,求此椭圆的方程.21.已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与椭圆交于P和Q,且OP⊥OQ,|PQ|=210,求椭圆方程22.椭圆12222=+byax(a>b>)0与直线1=+yx交于P、Q两点,且OQOP⊥,其中O为坐标原点.(1)求2211ba+的值;(2)若椭圆的离心率e满足33≤e≤22,求椭圆长轴的取值范围.椭圆练习题参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDDABD13、3或316 14、 4 , 1 15、5382 16、121425422=+yx17、3)(x 15922±≠=+y x 18、解:(1)当A (2,0)为长轴端点时,a =2 , b =1,椭圆的标准方程为: ;(2)当为短轴端点时,,,椭圆的标准方程为: ;19.解:设P (x ,y ),根据题意,|PF|=(x-2)2-y 2,d=|x-8|,因为|PF|d =12 ,所以 (x-2)2-y 2 |x-8| = 12.化简,得3x 2+4y 2=48,整理,得x 216 +y 212=1,所以,点P 的轨迹是椭圆。

高中数学直线、圆、椭圆基础练习

高中数学直线、圆、椭圆基础练习
(1)求证:k1k2为定值;
(2)若k1=3k3,求△FMN的周长.
【考点】圆锥曲线中椭圆与直线的位置关系应用:证明定值、求周长问题
【解析】
证明:(1)不妨设M(x1,y1),N(x2,y2),
又∵A,B为椭圆C: 的左,右顶点,
∴A(-2,0),B(2,0),∴k1= ,k2= ,∴k1•k2= ,
∵ + =1,∴x12=4- ∴k1k2= = =- ,
故k1k2=- 为定值.
(2)联立直线l与椭圆方程 ,化简整理可得,(3m2+4)y2+6mty+3t2-12=0,
由韦达定理可得,y1+y2= ,y1y2= ,①
∵k1=3k3,且k3= ,∴ =3 ,
∴ = =k1k2=- ,
∴4y1y2=-(x2-2)(x1-2)=-x1x2+2(x1+x2)-4,②
∴△FMN的周长为4a,
又∵a=2,∴△FMN的周长为8.
直线、圆、椭圆基础强化训练(二)
直线
1.已知a>0,b>0,直线 :x+(a-4)y+1=0,l2:bx+y-2=0,且 ,则 的最小值为( )
A.2 B.4 C. D.
【答案】D
【考点】两直线的位置关系:垂直的应用、基本不等式求最值
【解析】由题意,因为 ,所以b+a-4=0,即a+b=4,则(a+1)+b=5,所以 =( ) (a+1+b)= (1+ + +1)≥ (1+2 +1)= ,当且仅当 = ,与(a+1)+b=5联立,解得即a= ,b= 时取等号,则 的最小值为 ,故答案选D.
得 ,………………………5分
>0,即k> 或k<- .………………………7分
.………………………8分
.……………………10分
因为坐标原点O位于以AB为直径的圆外,得

高二数学椭圆专项练习题及参考答案

高二数学椭圆专项练习题及参考答案

高二数学椭圆专项练习题及参考答案代入e=a/c=a/(a/2)=2,即椭圆的离心率为2。

5. 椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的焦点为$F_1$、$F_2$,$P$是椭圆上的任一点,$M$为$PF_1$的中点,若$PF_1$的长度为$s$,那么$OM$的长度等于$\sqrt{a^2-s^2}$。

1. 在椭圆上,焦点F和弦AB的垂直平分线交于M,AB交x轴于N。

求2. 已知椭圆的对称轴为坐标轴,离心率为2/3,长轴长为6。

求椭圆的方程。

3. 若x²/y² + 1 = 1表示焦点在y轴上的椭圆,则m的值是多少?4. 已知方程25-m/16+m = 1表示椭圆。

求m的值。

5. 椭圆的两焦点将准线间的距离分成三等分。

求该椭圆的离心率。

6. 椭圆x²/4 + y²/9 = 1上一点P到右焦点F₁的距离为b,则P点到左准线的距离是多少?7. 椭圆x²/4 + y²/9 = 1在t ∈ [0, 2π)时,x = sec t,y = ___。

求该椭圆的焦点坐标。

8. 曲线x + (m-1)y - 3my + 2m = 0表示椭圆。

求m的取值。

9. 椭圆432x² + 169y² = 上的一点A到左焦点的距离为多少?10. 椭圆x²/16 + y²/25 = 1上一点P到焦点F₂的距离为b。

求P点到左准线的距离。

11. 方程-3x² + y²sin²(2α + π/2) = 1表示椭圆。

求sin²α的取值。

12. 若λ-6x+5λy-5λλ-6 = 0表示焦点在x轴上的椭圆,则λ的值为多少?13. 椭圆259x² + 432y² = 上的一点到左焦点的距离是到右焦点的距离的4倍。

求该点的坐标。

14. 椭圆中心在原点,焦点在x轴上,两准线的距离为5。

高中数学椭圆及其标准方程练习题与详细答案

高中数学椭圆及其标准方程练习题与详细答案

椭圆及其标准方程练习题 一、 1.椭圆192522=+y x 上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( ) A.5 B.6 C.4 D.102.椭圆11692522=+y x 的焦点坐标是( ) A.(±5,0) B.(0,±5) C.(0,±12) D.(±12,0)3.已知椭圆的方程为18222=+my x ,焦点在x 轴上,则其焦距为( A ) A.228m - B.2m -22 C.282-m D.222-m 4.方程1)42sin(322=+-παy x 表示椭圆,则α的取值范围是( )A.838παπ≤≤- B.k k k (838ππαππ+<<-∈Z) C.838παπ<<- D. k k k (83282ππαππ+<<-∈Z) 5.在方程22110064x y +=中,下列a , b , c 全部正确的一项是 (A )a =100, b =64, c =36 (B )a =10, b =6, c =8 (C )a =10, b =8, c =6 (D )a =100, c =64, b =366.已知F 1, F 2是定点,| F 1 F 2|=8, 动点M 满足|M F 1|+|M F 2|=8,则点M 的轨迹是(A )椭圆 (B )直线 (C )圆 (D )线段二、7.1,6==c a ,焦点在y 轴上的椭圆的标准方程是 8.椭圆191622=+y x 的焦距是 ,焦点坐标为 ;若CD 为过左焦点1F 的弦,则CD F 2∆的周长为9.椭圆以坐标轴为对称轴,长、短半轴之和为10,焦距为45,则椭圆方程为 .10.P 点在椭圆452x +202y =1上,F 1,F 2是椭圆的焦点,若PF 1⊥PF 2,则P 点的坐标是 .三、11.椭圆22a x +22by =1(a >b >0)的两个焦点及其与坐标轴的一个交点正好是一个等边三角形的三个顶点,且椭圆上的点到焦点距离的最小值为3,求椭圆的方程.12.已知椭圆92x +42y =1上的点P 到其右焦点的距离是长轴两端点到右焦点的距离的等差中项,求P 点坐标.13.写出适合下列条件的椭圆的标准方程:⑴两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点的距离 之和等于10;⑵两个焦点坐标分别是(0,-2)和(0,2)且过(23-,25)参考答案:1.A 2.A 3.A 4.B 5. C 6.D7.1353622=+x y 8.答案:164);0,7(),0,7(;72221=-=a F F c9. 362x +162y =1或362y +162x =1 10.(3,4),(3,-4),(-3,4),(-3,-4) 11. 122x +92y =1 12.(0,2)或(0,-2) 13.解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为12222=+by a x )0(>>b a 9454,582,10222222=-=-=∴==∴==c a b c a c a 所以所求椭圆标准方程为92522=+y x ⑵ 因为椭圆的焦点在y 轴上,所以设它的标准方程为12222=+b x a y )0(>>b a 由椭圆的定义知,22)225()23(2++-=a +22)225()23(-+- 10211023+=102= 10=∴a 又2=c 6410222=-=-=∴c a b所以所求标准方程为61022=+x y 另法:∵ 42222-=-=a c a b ∴可设所求方程142222=-+a x a y ,后将点(23-,25)的坐标代入可求出a ,从而求出椭圆方程仰望天空时,什么都比你高,你会自卑;俯视大地时,什么都比你低,你会自负;只有放宽视野,把天空和大地尽收眼底,才能在苍穹泛土之间找准你真正的位置。

高二数学椭圆专项练习题及参考答案

高二数学椭圆专项练习题及参考答案

高二数学椭圆专项练习题及参考答案训练指要熟练掌握椭圆的定义、标准方程、几何性质;会用待定系数法求椭圆方程. 一、选择题1.椭圆中心在坐标原点,对称轴为坐标轴,离心率为0.6,长、短轴之和为36,则椭圆方程为A.16410022=+y xB.11006422=+y x C.1100641641002222=+=+y x y x 或 D.110818102222=+=+y x y x 或 2.若方程x 2+ky 2=2,表示焦点在y 轴上的椭圆,那么实数k 的取值范围是 A.(0,+∞) B.(0,2) C.(1,+∞) D.(0,1)3.已知圆x 2+y 2=4,又Q (3,0),P 为圆上任一点,则PQ 的中垂线与OP 之交点M 轨迹为(O 为原点) A.直线 B.圆 C.椭圆 D.双曲线二、填空题4.设椭圆1204522=+y x 的两个焦点为F 1、F 2,P 为椭圆上一点,且PF 1⊥PF 2,则||PF 1|-|PF 2||=_________.5.(2002年全国高考题)椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k =_________. 三、解答题6.椭圆2222by a x +=1(a >b >0),B (0,b )、B ′(0,-b ),A (a ,0),F 为椭圆的右焦点,若直线AB ⊥B ′F ,求椭圆的离心率.7.在面积为1的△PMN 中,tan M =21,tan N =-2,建立适当的坐标系,求以M 、N 为焦点且过点P 的椭圆方程.8.如图,从椭圆2222by a x +=1(a >b >0)上一点M 向x 轴作垂线,恰好通过椭圆的左焦点F 1,且它的长轴端点A 及短轴的端点B 的连线AB ∥OM .(1)求椭圆的离心率e ;(2)设Q 是椭圆上任意一点,F 2是右焦点,求∠F 1QF 2的取值范围;(3)设Q 是椭圆上一点,当QF 2⊥AB 时,延长QF 2与椭圆交于另一点P ,若△F 1PQ 的面积为203,求此时椭圆的方程.参考答案一、1.C 2.D 3.C 二、4.25,40||||100)2(||||562|||:|212222121=⋅⇒⎪⎭⎪⎬⎫==+==+PF PF c PF PF a PF PF 提示 ∴(|PF 1|-|PF 2|)2=100-2×40=20. ||PF 1|-|PF 2||=25. 5.1 三、6.215- 7.以MN 所在直线为x 轴,线段MN 的中垂线为y 轴建立坐标系,可得椭圆方程为.1315422=+y x 8.(1)22 (2)[0,2π] (3)1255022=+y x 提示:(1)∵MF 1⊥x 轴,∴x M =-c ,代入椭圆方程求得y M =ab 2,∴k OM =-,,2ab k ac b AB -= ∵OM ∥AB ,∴-c b abac b =⇒-=2 从而e =22. (2)设|QF 1|=r 1,|QF 2|=r 2,∠F 1QF 2=θ,则r 1+r 2=2a ,|F 1F 2|=2c.由余弦定理,得cos θ=212222124r r c r r -+1242)(21221221221-=--+=r r a r r c r r r r≥,01)2(2212=-+r r a 当且仅当r 1=r 2时,上式取等号. ∴0≤cos θ≤1,θ∈[0,2π]. (3)椭圆方程可化为122222=+cy c x ,又PQ ⊥AB ,∴k PQ =-.21==bak ABPQ :y =2(x -c )代入椭圆方程,得5x 2-8cx +2c 2=0.求得|PQ |=,526c F 1到PQ 的距离为d =,362c ∴.25320||2121=⇒=⋅=∆c d PQ S PQ F ∴椭圆方程为.1255022=+y x椭圆训练题:1. 椭圆19822=++y m x 的离心率21=e ,则m=__________ 2. 椭圆4x 2+2y 2=1的准线方程是_______________3. 已知F 1、F 2为椭圆192522=+y x 的两个焦点,A 、B 为过F 1的直线与椭圆的两个交点,则△ABF 2的周长是____________4. 椭圆12222=+by a x ()0>>b a 上有一点P 到其右焦点的距离是长轴两端点到右焦点的距离的等差中项,则P 点的坐标是_______________5. 椭圆12222=+by a x 焦点为F 1、F 2,P 是椭圆上的任一点,M 为P F 1的中点,若P F 1的长为s ,那么OM 的长等于____________6. 过椭圆1273622=+y x 的一个焦点F 作与椭圆轴不垂直的弦AB ,AB 的垂直平分线交AB 于M ,交x 轴于N ,则FN :AB =___________ 7. 已知椭圆的对称轴是坐标轴,离心率32=e ,长轴长是6,则椭圆的方程是____________ 8. 方程1162522=++-my m x 表示焦点在y 轴上的椭圆,则m 的值是______________ 9. 椭圆的两焦点把准线间的距离三等分,则这椭圆的离心率是______________10. 椭圆142222=+by b x 上一点P 到右焦点F 2的距离为b ,则P 点到左准线的距离是_______11. 椭圆⎪⎭⎫⎝⎛∈=+2,4,1csc sec 2222ππt t y t x ,这个椭圆的焦点坐标是__________ 12. 曲线()023122=+--+m my y m x 表示椭圆,那么m 的取值是______________13. 椭圆13422=+y x 上的一点()11,y x A ,A 点到左焦点的距离为25,则x 1=___________ 14. 椭圆()()19216122=-+-y x 的两个焦点坐标是______________15. 椭圆中心在原点,焦点在x 轴上,两准线的距离是5518,焦距为52,其方程为______ 16. 椭圆上一点P 与两个焦点F 1、F 2所成的PF 1F 2中,βα=∠=∠1221,F PF F PF ,则它的离心率e=__________17. 方程142sin 322=⎪⎭⎫ ⎝⎛+-παy x 表示椭圆,则的取值是______________18. 若()()065562222=--+-λλλλy x 表示焦点在x 轴上的椭圆,则的值是________19. 椭圆192522=+y x 上不同的三点()()2211,,59,4,,y x C B y x A ⎪⎭⎫⎝⎛与焦点()0,4F 的距离成等差数列,则=+21x x ____________20. P 是椭圆192522=+y x 上一点,它到左焦点的距离是它到右焦点的距离的4倍,则P 点的坐标是_______________21. 中心在原点,对称轴在坐标轴上,长轴为短轴的2倍,且过()6,2-的椭圆方程是______ 22. 在面积为1的△PMN 中,2tan ,21tan -==N M ,那么以M 、N 为焦点且过P 的椭圆方程是_____________23. 已知△ABC ,()()0,3,0,3-B A 且三边AC 、AB 、BC 的长成等差数列,则顶点C 的轨迹方程是_________24. 椭圆1422=+y m x 的焦距为2,则m 的值是__________ 25. 椭圆14922=+y x 的焦点到准线的距离是____________ 26. 椭圆()112222=-+m y m x 的准线平行于x 轴,则m 的值是__________ 27. 中心在原点,准线方程为4±=x ,离心率为21的椭圆方程是_______ 28. 椭圆的焦距等于长轴长与短轴长的比例中顶,则离心率等于___________29. 中心在原点,一焦点为()50,01F 的椭圆被直线23-=x y 截得的弦的中点横坐标为21,则此椭圆方程是_________ 30. 椭圆的中心为()0,0,对称轴是坐标轴,短轴的一个端点与两个焦点构成面积为12的三角形,两准线间的距离是225,则此椭圆方程是_____________ 31. 过点()2,3-且与椭圆369422=+y x 有相同焦点的椭圆方程是____________32. 将椭圆192522=+y x 绕其左焦点逆时针方向旋转90︒,所得椭圆方程是_______ 33. 椭圆192522=+y x 上一点M 到右准线的距离是7.5,那么M 点右焦半径是______ 34. AB 是椭圆14322=+y x 的长轴,F 1是一个焦点,过AB 的每一个十等分点作AB 的垂线,交椭圆同一侧于点P 1,P 2,P 3,,P 9,则11912111BF F P F P F P AF ++⋅⋅⋅+++的值是________35. 中心在原点,一焦点为F (0,1),长短轴长度比为t ,则此椭圆方程是__________ 36. 若方程222x ky +=表示焦点在y 轴的椭圆,则k 的取值是__________37. 椭圆221123x y +=的焦点为F 1、F 2,点P 为椭圆上一点,若线段PF 1的中点在y 轴上,那么1PF :2PF =___________ 38. 经过()()123,2,23,1M M --两点的椭圆方程是_____________39. 以椭圆的右焦点F 2(F 1为左焦点)为圆心作一圆,使此圆过椭圆中心并交椭圆于M 、N ,若直线MF 1是圆F 2的切线,则椭圆的离心率是___________40. 椭圆的两个焦点F 1、F 2及中心O 将两准线间的距离四等分,则一焦点与短轴两个端点连线的夹角是__________41. 点A (),0a 到椭圆2212x y +=上的点之间的最短距离是___________ 42. 椭圆2214x y +=与圆()2221x y r -+=有公共点,则r 的取值是________ 43. 若k R ∈,直线1y kx =+与椭圆2215x y m+=总有公共点,则m 的值是___________ 44. 设P 是椭圆上一点,两个焦点F 1、F 2,如果00211275,15PF F PF F ∠=∠=,则离心率等于__________45. P 是椭圆22143x y +=上任一点,两个焦点F 1、F 2,那么12F PF ∠的最大值是_______ 46. 椭圆2244x y +=长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,则此直角三角形的面积是__________47. 椭圆长轴长为6,焦距42,过焦点F 1作一倾角为的直线交椭圆于M 、N 两点,当MN 等于短轴长时,的值是_______48. 设椭圆22143x y +=的长轴两端点A 、B ,点P 在椭圆上,那么直线PA 与PB 的斜率之积是__________49. 倾斜角为4π的直线与椭圆2214x y +=交于A 、B 两点,则线段AB 的中点M 的轨迹方程是______________50. 已知点A (0,1)是椭圆上的一点,P 是椭圆上任一点,当弦长AP 取最大值时,点P的坐标是_____________1. 544-或 2. 1y =± 3. 20 4. ()()0,0,b b -或 5. 2sa - 6. 1:4 7. 2222119559x y x y +=+=或 8.9252m <<9.10.11. (0, 12. ()1,+∞ 13. 114. ()()1,115.22194x y+= 16. cos2cos2αβαβ+- 17.()37,,88k k k Z ππππ⎛⎫++∈⎪⎝⎭18.)19. 820. 1515,44⎛⎛ ⎝⎭⎝⎭或21.222211148371352x y x y +=+=或 22. 2241153x y += 23. 2213627x y += 24. 53或25. 26. 102m m <≠且 27. 22143x y +=28. 29.2212575x y += 30. 222211259925x y x y +=+=或 31.2211510x y += 32. ()()22441925x y +-+= 33. 634. 2035.222221111x y t t t +=-- 36. ()0,1 37. 7 38. 221155x y +=39.1 40.2π41. a a +42. 3⎤⎥⎣⎦ 43. m ≥1且m ≠544.3 45. 60︒ 46. 162547. 566ππ或 48. 34-49. 1,4y x x ⎛⎫⎛=-∈ ⎪⎝⎝⎭50. 133⎛⎫±- ⎪ ⎪⎝⎭一、选择题:本大题共12小题,每小题5分,共60分.请将唯一正确结论的代号填入题后的括号内.1.椭圆3m 2y mx 222++=1的准线平行于x 轴,则实数m 的取值范围是 ( )A .-1<m <3B .-23<m <3且m ≠0C .-1<m <3且m ≠0D .m <-1且m ≠02. a 、b 、c 、p 分别表示椭圆的半长轴、半短轴、半焦距、焦点到相应准线的距离,则它们的关系是 ( )A .p=22a bB .p=ba 2C .p=ca 2D .p=cb 23.短轴长为5,离心率为32的椭圆的两个焦点分别为F 1、F 2,过F 1作直线交椭圆于A 、B两点,则ΔABF 2的周长为 ( )A .24B .12C .6D .34.下列命题是真命题的是( )A .到两定点距离之和为常数的点的轨迹是椭圆B .到定直线x=ca 2和定F(c ,0)的距离之比为ac 的点的轨迹是椭圆C .到定点F(-c ,0)和定直线x=-ca 2的距离之比为ac(a>c>0)的点的轨迹 是左半个椭圆D .到定直线x=ca 2和定点F(c ,0)的距离之比为ca (a>c>0)的点的轨迹是椭圆5.P 是椭圆4x 2+3y 2=1上任意一点,F 1、F 2是焦点,那么∠F 1PF 2的最大值是( )A .600B .300C .1200D .906.椭圆22b 4x +22b y =1上一点P 到右准线的距离是23b ,则该点到椭圆左焦点的距离是( )A .bB .23b C .3b D .2b 7.椭圆12x 2+3y 2=1的焦点为F 1和F 2,点P 在椭圆上,如果线段F 1P 的中点在y 轴上,那么|PF 1|是|PF 2|的 ( )A .7倍B .5倍C .4倍D .3倍8.设椭圆22a x +22b y =1(a>b>0)的两个焦点是F 1和F 2,长轴是A 1A 2,P 是椭圆上异于A 1、A 2的点,考虑如下四个命题:①|PF 1|-|A 1F 1|=|A 1F 2|-|PF 2|; ②a-c<|PF 1|<a+c ; ③若b 越接近于a ,则离心率越接近于1; ④直线PA 1与PA 2的斜率之积等于-22a b .其中正确的命题是 ( )A .①②④B .①②③C .②③④D .①④9.过点M(-2,0)的直线l 与椭圆x 2+2y 2=2交于P1、P2两点,线段P1P2的中点为P,设直线l 的斜率为k 1(k 1≠0),直线OP的斜率为k 2,则k 1k 2的值为 ( ) A .2B .-2C .21D .-2110.已知椭圆22a x +22by =1(a>b>0)的两顶点A(a ,0)、B(0,b),右焦点为F ,且F 到直线AB的距离等于F 到原点的距离,则椭圆的离心率e 满足 ( )A .0<e<22B .22<e<1C . 0<e<2-1D .2-1<e<111.设F1、F2是椭圆2222b y ax +=1(a >b >0)的两个焦点,以F1为圆心,且过椭圆中心的圆与椭圆的一个交点为M,若直线F2M与圆F1相切,则该椭圆的离心率是( )A .2-3B .3-1C .23 D .2212.在椭圆4x 2+3y 2=1内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|的值最小,则这一最小值是` ( )A .25B .27 C .3D .4二、填空题:本大题共4小题,每小题4分,共16分.请将最简结果填入题中的横线上. 13.椭圆3x 2+ky 2=1的离心率是2x 2-11x+5=0的根,则k= .14.如图,∠OFB=6π,SΔABF=2-3,则以OA为长半轴,OB 为短半轴,F为一个焦点的椭圆的标准方程为 .15.过椭圆3y 2x 22+=1的下焦点,且与圆x 2+y 2-3x +y +23=0相切的直线的斜率是 . 16.过椭圆9x 2+5y 2=1的左焦点作一条长为12的弦AB ,将椭圆绕其左准线旋转一周,则弦AB 扫过的面积为 .三、解答题:本大题共6小题,共74分.解答题应写出必要的计算步骤或推理过程. 17.(本小题满分12分)已知A 、B 为椭圆22a x +22a 9y 25=1上两点,F 2为椭圆的右焦点,若|AF 2|+|BF 2|=58a ,AB 中点到椭圆左准线的距离为23,求该椭圆方程.18.(本小题满分12分)设中心在原点,焦点在x 轴上的椭圆的离心率为23,并且椭圆与圆x 2+y 2-4x-2y+25=0交于A 、B 两点,若线段AB 的长等于圆的直径. (1) 求直线AB 的方程; (2) 求椭圆的方程. 19.(本小题满分12分)已知9x 2+5y 2=1的焦点F 1、F 2,在直线l :x+y-6=0上找一点M ,求以F 1、F 2为焦点,通过点M 且长轴最短的椭圆方程.20.(本小题满分12分)一条变动的直线l 与椭圆4x 2+2y 2=1交于P 、Q 两点,M 是l 上的动点,满足关系|MP|·|MQ|=2.若直线l 在变动过程中始终保持其斜率等于1.求动点M 的轨迹方程,并说明曲线的形状.21.(本小题满分12分)设椭圆22a x +22by =1的两焦点为F 1、F 2,长轴两端点为A 1、A 2.(1) P 是椭圆上一点,且∠F 1PF 2=600,求ΔF 1PF 2的面积;(2) 若椭圆上存在一点Q ,使∠A 1QA 2=1200,求椭圆离心率e 的取值范围.22.(本小题满分14分)已知椭圆的一个顶点为A(0,-1),焦点在x 轴上,若右焦点到直线x -y +22=0的距离为3. (1)求椭圆的方程;(2)设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M、N,当|AM|=|AN|时,求m 的取值范围.椭圆训练试卷参考答案一、B D C D A A A A DC B C 二、13.4或4914.12y 8x 22=+15.5623±16.18π三、17.解:设A(x 1,y 1),B(x 2,y 2),由焦点半径公式有a-ex 1+a-ex 2=58a ,∴x 1+x 2=21a(∵e=54),即AB中点横坐标为41a ,又左准线方程为x=-45a ,∴41a+45a=23,即a=1,∴椭圆方程为x 2+925y 2=1.18.解:(1)直线AB 的方程为y=-21x+2; (2)所求椭圆的方程为12x 2+3y 2=1. 19.解:由9x2+5y 2=1,得F 1(2,0),F 2(-2,0),F 1关于直线l 的对称点F 1/(6,4),连F 1/F 2交l 于一点,即为所求的点M ,∴2a=|MF 1|+|MF 2|=|F 1/F 2|=45,∴a=25,又c=2,∴b 2=16,故所求椭圆方程为20x 2+16y 2=1.20.解:设动点M(x ,y),动直线l :y=x+m ,并设P(x 1,y 1),Q(x 2,y 2)是方程组⎩⎨⎧=-++=04y 2x ,m x y 22的解,消去y ,得3x 2+4mx+2m 2-4=0,其Δ=16m 2-12(2m 2-4)>0,∴-6<m<6,x 1+x 2=-3m4, x 1x 2=34m 22-,故|MP|=2|x-x 1|,|MQ|=2|x-x 2|.由|MP||MQ|=2,得|x-x 1||x-x 2|=1,也即|x 2-(x 1+x 2)x+x 1x 2|=1,于是有|x 2+3mx 4+34m 22-|=1.∵m=y -x ,∴|x 2+2y 2-4|=3.由x 2+2y 2-4=3,得椭圆7x 2+7y 22=1夹在直线y=x ±6间两段弧,且不包含端点.由x 2+2y 2-4=-3,得椭圆x 2+2y 2=1.21.解:(1)设|PF 1|=r 1,|PF 2|=r 2,则S 21F PF ∆=21r 1r 2sin∠F 1PF 2,由r 1+r 2=2a , 4c 2=r 12+r 22-2cos∠F 1PF 2,得r 1r 2=212PF F cos 1b 2∠+.代入面积公式,得 S 21F PF ∆=2121PF F cos 1PF F sin ∠+∠b 2=b 2tg∠2PF F 21=33b 2.(2)设∠A 1QB=α,∠A 2QB=β,点Q(x 0,y 0)(0<y 0<b).tgθ=tg(α+β)=βα-β+αtg tg 1tg tg =22020000y x a 1y x a y x a --++-=220200a y x ay 2-+.∵220a x +220b y =1,∴x 02=a 2-22ba -y 02.∴tgθ=202220y b b a ay 2-- =022y c ab 2-=-3.∴2ab 2≤3c 2y 0≤3c 2b ,即3c 4+4a 2c 2-4a 4≥0,∴3e 4+4e 2-4≥0,解之得e 2≥32,∴36≤e<1为所求.22.解:(1)用待定系数法.椭圆方程为22y 3x +=1.(2)设P为弦MN的中点.由⎪⎩⎪⎨⎧=++=,1y 3x ,m kx y 22得(3k 2+1)x 2+6kmx +3(m 2-1)=0.由Δ>0,得m 2<3k2+1 ①,∴x P =1k 3mk 32x x 2N M +-=+,从而,y P =kx p +m =1k 3m 2+.∴k AP =km 31k 3m 2++-.由MN⊥AP,得 km 31k 3m 2++-=-k 1,即2m =3k 2+1 ②.将②代入①,得2m >m 2,解得0<m <2.由②得k 2=31m 2->0.解得m >21.故所求m 的取值范围为(21,2).。

高二椭圆练习题及答案

高二椭圆练习题及答案

高二椭圆练习题及答案椭圆是高中数学中的一个重要的几何概念,它在解析几何和微积分等数学分支中有着广泛的应用。

为了帮助高二学生巩固和提高对椭圆的理解和应用能力,以下提供一些高二椭圆练习题及其答案。

练习题一:1. 椭圆的离心率等于0的特殊情况是什么?该椭圆的形状如何?2. 某椭圆的焦点坐标为(2,0)和(-2,0),长轴长度为8. 求该椭圆的方程。

3. 某椭圆的长轴长度为10,短轴长度为8. 如果该椭圆的焦点到椭圆上任意点的距离之和为15,求该椭圆的方程。

4. 某椭圆的方程为(x-1)²/25 + y²/16 = 1,求该椭圆的焦点坐标及离心率。

5. 某椭圆的离心率为1/2,焦点为(0,-4)和(0,4)。

求该椭圆的方程。

答案一:1. 当椭圆的离心率等于0时,它的焦点和中心重合,长轴和短轴相等,椭圆变为一个圆。

2. 根据焦点坐标和长轴的长度,我们可以确定椭圆的中心坐标和短轴的长度。

所以该椭圆的方程为(x-2)²/16 + y²/4 = 1。

3. 根据题目信息,我们可以利用椭圆的定义来求解。

假设该椭圆的焦点为(c, 0),根据定义可得2a = 10,2ae = 15。

解方程组得a = 5/2,c = 3/2。

所以该椭圆的方程为(x-3/2)²/25 + y²/16 = 1。

4. 根据方程的形式,我们可以直接确定椭圆的中心坐标和长短轴长度。

所以该椭圆的焦点坐标为(1±√9, 0),离心率为√(1-16/25) = 3/5。

5. 根据焦点坐标和离心率的信息,我们可以利用椭圆的定义来求解。

假设该椭圆的焦点为(c, 0),根据定义可得2a = 2e,a = 4,c = 2。

所以该椭圆的方程为(x-2)²/16 + y²/9 = 1。

练习题二:1. 已知椭圆的离心率为2/3,焦点坐标为(±4,0),求该椭圆的方程。

(完整版)高二数学椭圆基础训练题

(完整版)高二数学椭圆基础训练题

2.2椭圆基础训练题一、选择题(每题5分)1.已知椭圆221102x y m m +=--,长轴在y 轴上.若焦距为4,则m 等于( ) A .4 B .5 C .7 D .8 2.已知△ABC 的周长为20,且定点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0)B .1362022=+y x (x ≠0)C .120622=+y x (x ≠0)D .162022=+y x (x ≠0)3.椭圆1162522=+y x 的离心率为( )A .35 B . 34 C .45 D .9254.已知两点)0,1(1-F 、)0,1(F ,且21F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是( )。

A .191622=+y xB .1121622=+y xC .13422=+y xD .14322=+y x 5.曲线221259x y +=与曲线221(9)259x y k k k+=<--的( )(A )长轴长相等 (B )短轴长相等 (C )焦距相等 (D )离心率相等6.椭圆1162522=+y x 的焦距是( ) A .3 B .6 C .8 D .107.若点O 和点F 分别为椭圆2212x y +=的中心和右焦点,点P 为椭圆上的任意一点,则OP FP ⋅u u u r u u u r的最小值为A .2.12C .2.1 8.已知椭圆的方程为22194x y +=,则该椭圆的长半轴长为( )A .3B .2C .6D .49.椭圆13422=+y x 的焦点坐标为( ) A .)0,1(± B .)0,2(± C .)0,2(± D .)1,0(±10.已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A 、B 两点,且AB 错误!未找到引用源。

高三数学(椭圆)练习题 试题

高三数学(椭圆)练习题 试题

高三椭圆基础练习题导学案一、选择题1.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件)0(921>+=+a aa PF PF ,则点P 的轨迹是 ( )A .椭圆B .线段C .不存在D .椭圆或线段2.椭圆1162522=+y x 上的一点P,到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .73.方程222=+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是 ( )A .),0(+∞B .(0,2)C .(1,+∞)D .(0,1)4.若方程x 2a 2 —y2a =1表示焦点在y 轴上的椭圆,则实数a 的取值范围是( )A 、a<0B 、-1<a<0C 、a<1D 、以上皆非5、椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k 等于 ( )A .-1 B.1 C.5D. -56.过点(3, -2)且与椭圆4x 2+9y 2=36有相同焦点的椭圆的方程是 ( )A.2211510x y += B.221510x y += C.2211015x y += D.2212510x y += 7. 过椭圆12422=+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点2F 构成2ABF ∆,那么2ABF ∆的周长是( )A. 22B. 2C. 2D. 18.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是 ( )A .2 3 B.6 C.4 3 D.89.椭圆12222=+bya x 和kb y a x =+2222()0>k 具有( ) A .相同的离心率 B .相同的焦点 C .相同的顶点 D .相同的长、短轴10.椭圆221259x y +=上的点M 到焦点F 1的距离是2,N 是MF 1的中点,则|ON |为 ( ) A. 4 B . 2 C. 8 D .23 11.椭圆131222=+y x 的焦点为1F 和2F ,点P 在椭圆上,若线段1PF 的中点在y 轴上,那么1PF 是2PF 的( )A .4倍 B.5倍 C.7倍 D.3倍12.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则该椭圆方程是. ( )A. 16x 2+9y 2=1B. 16x 2+12y 2=1C. 4x 2+3y 2=1D. 3x 2+4y 2=113.21,F F 是椭圆17922=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则Δ12AF F 的面积为 ( )A .7B .47 C .27D .257二、、填空题:1.过点(2,3)-且与椭圆229436x y +=有共同的焦点的椭圆的标准方程为_______________.2. 若点()y ,4是椭圆18014422=+y x 上的点,则它到左焦点的距离为 . 3.点P 在椭圆252x +92y =1上,它到左焦点的距离是它到右焦点距离的两倍,则点P 的横坐标是4.设P 是椭圆2214x y +=上的一点,12,F F 是椭圆的两个焦点,则12PF PF 的最大值为 ;最小值为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学周周清(2)
一、选择题(每小题5分,共12小题)
1.平面内有两定点A 、B 及动点P ,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P 的轨迹是以A .B 为焦点的椭圆”,那么
( )
A .甲是乙成立的充分不必要条件
B .甲是乙成立的必要不充分条件
C .甲是乙成立的充要条件
D .甲是乙成立的非充分非必要条件 2.椭圆22
11625
x y +=的焦点坐标为 ( ) (A )(0, ±3) (B )(±3, 0) (C )(0, ±5) (D )(±4, 0)
3.已知焦点坐标为(0, -4), (0, 4),且a =6的椭圆方程是 ( )
(A )2213620x y += (B )2212036x y += (C )2213616x y += (D )22
11636
x y += 4.若椭圆22
110036
x y +=上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是( ) (A )4 (B )194 (C )94 (D )14
5.椭圆的短轴长是4,长轴长是短轴长的32
倍,则椭圆的焦距是 ( )
A 、4 C 、6 D 、6.离心率为3
2,长轴长为6的椭圆的标准方程是 ( ) (A )22195x y += (B )22195x y +=或22159x y += (C )2213620x y +=(D )2213620x y +=或2212036
x y += 7.椭圆14
22
=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( ) A.2
3 B.3 C.27 D.
4 8.椭圆19
2522
=+y x 上一点M 到焦点1F 的距离为2,N 是1MF 的中点,则=ON ( ) A.2 B.4 C.6 D.23
9.椭圆2222
22222222211()x y x y a b k a b a k b k
+=+=>>--和的关系是 ( ) A .有相同的长轴 B .有相同的离心率 C .有相同的短轴 D .有相同的焦点
10. 椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k 等于 ( )
A.-1
B.1
C.5
D. -5
11、关于曲线的对称性的论述正确的是( )
A 、方程220x xy y ++=的曲线关于X 轴对称
B 、方程33
0x y +=的曲线关于Y 轴对称
C 、方程2210x xy y -+=的曲线关于原点对称
D 、方程338x y -=的曲线关于原点对称
12.设M (-5,0),N (5,0),△MNP 的周长为36,则△MNP 的顶点P 的轨迹方程( ) A. )0(11692522≠=+x y x B. )0(116914422≠=+x y x C.)0(12516922≠=+y y x D. )0(11441692
2≠=+y y x
二、填空题(每小题5分,共4小题)
13. 椭圆的一个顶点为)0,2(A ,其长轴长是短轴长的2倍,则椭圆的标准方程 .
14. P 为椭圆22
110064
x y +=上的一点,F 1和F 2是其焦点,若∠F 1PF 2=60°,则△F 1PF 2的面积为 . 15.对于椭圆C 1: 9x 2+y 2
=36与椭圆C 2: 22
11612x y +=,更接近于圆的一个是 . 16. 如图,F 为椭圆的左焦点,P 为椭圆上一点,PF ⊥x 轴,OP//AB ,则椭圆的离心率是___________
三、解答题(共2小题,每小题10分)
17.分别在下列条件下求椭圆的标准方程
(1)两个焦点的坐标分别为(0,-6),(0,6),椭圆的短轴长为16;
(2经过两点12(6,1)(-3,-2)P P 、
18.已知直线l :y x m =+与椭圆C :122
2
=+y x ;(1)当直线l 与椭圆C 有公共点时,求m 的取值范围;(2)若椭圆截直线所得弦长为3
4,求m 的值。

相关文档
最新文档