细胞的基本功能
生理学 第二章 细胞的基本功能
+
2. 继发性主动转运
方向: 低→高 介导蛋白质:转运蛋白 分类: 同向转运 逆向转运 转运物质举例:
Na
+
葡萄糖(小肠上皮、肾小 管上皮)、氨基酸
小分子物质跨膜运输方式的比较
单纯扩散 运输方向 载体 能量 举例 顺浓度梯度 不需要 不耗能 O2、CO2、H2O、 甘油、乙醇、苯 等 易化扩散 顺浓度梯度 需要 不耗能 葡萄糖进入红细 胞 主动转运 逆浓度梯度 需要 耗能 Na+、K+、Ca+等 离子; 小肠吸收葡萄糖、 氨基酸等
静息状态下细胞膜对K+的通透性最大
3)膜外正电变为流动阻力
4)当动力(浓度差)=阻力(电位 差)时,跨膜流动停止
5)达到 K+的电-化学平衡电位,
即 K+平衡电位。
结论:静息电位相当于K+平衡电位
3. 静息电位小结
1) K+外流是静息电位形成的主要原因,静息电位接近于K+的 电-化学平衡电位。 2) 静息状态时细胞膜对Na+也有一定的通透性,通常静息电位 略低于K+平衡电位。 3)静息电位=极化状态,是一个现象的两种表达方式。 4)静息电位的大小主要受细胞内外K+浓度的影响,细胞代谢障 碍也可影响静息电位。
一、小分子物质和离子的跨膜转运
二、大分子物质和颗粒物质的跨膜转运
一、小分子物质和离子的跨膜转运
(一)被动转运
(二)主动转运
(一)被动转运
概念: 是指物质从高浓度一侧向低浓度一侧(顺浓度差)的跨膜 转运形式,转运过程不需要细胞代谢提供能量,其动力为细 胞膜两侧存在的浓度差(或电位差)。 分类: 1.单纯扩散(不需膜蛋白辅助) 2.易化扩散(需膜蛋白辅助)
细胞的基本结构与功能
细胞的基本结构与功能细胞是生物体的基本单位,它们以无数个微小的单元组成,构成了我们身体的骨架。
了解细胞的基本结构和功能,有助于我们更好地理解生命的奥秘。
本文将从细胞膜、细胞核、细胞质和细胞器等方面分析细胞的基本结构和功能。
一、细胞膜的结构和功能细胞膜是细胞最外层的包裹物,它由磷脂双层和各种蛋白质组成。
细胞膜起到物质进出细胞的控制门户的作用。
它具有选择性通透性,可以让某些物质通过,而阻止另一些物质的进入。
细胞膜通过磷脂双层的疏水性和亲水性来实现对物质的控制。
疏水性的脂质层可以阻止大部分水溶性物质的通过,而亲水性的蛋白质通道则能够帮助水溶性物质跨越细胞膜。
细胞膜也通过激活特定的受体和信号调节蛋白来传递信号,控制细胞内外的物质交流。
二、细胞核的结构和功能细胞核是细胞中最重要的结构之一,它包含了细胞的遗传信息和调控机制。
细胞核由核膜、染色质和核仁组成。
核膜是由两层膜组成的,它具有两个主要功能:一是保护细胞核的完整性,使细胞核内的DNA不受外界干扰;二是调控物质的进出,通过核孔控制信息和物质的传递。
染色质是DNA和蛋白质的复合体,其中包含了细胞所需的遗传信息。
它通过染色质的组织和结构的改变来调控基因的表达。
核仁是位于细胞核内的小团块,它在细胞内合成核糖体。
核糖体是蛋白质合成的场所,它通过合成不同的蛋白质来满足细胞的需求。
三、细胞质的结构和功能细胞质是细胞膜和核膜之间的区域,包含了细胞内的许多结构和物质。
细胞质主要由水、有机分子和无机盐组成,它在维持细胞稳定和代谢活动中发挥重要作用。
细胞质中存在着各种细胞器,如线粒体、内质网和高尔基体等,它们各自具有不同的功能。
线粒体是细胞的能量生产中心,它通过氧化代谢来产生细胞所需的能量。
内质网是由膜片组成的复杂结构,它参与蛋白质的合成、折叠和运输。
高尔基体是膜囊系统,它参与蛋白质的修饰和分泌。
除了这些细胞器外,还有溶酶体、囊泡和细胞骨架等结构,它们在细胞的降解、运输和形态维持等方面起着重要作用。
生理学第二章细胞的基本功能
2021/4/21
36
2.肌丝滑行
终池膜上的钙通道开放 终池内的Ca2+进入肌浆
Ca2+与肌钙蛋白结合 肌钙蛋白的构型改变 原肌球蛋白位移, 暴露细肌丝上的结合位点 横桥与结合位点结合, 分解ATP释放能量
横桥摆动 牵拉细肌丝朝肌节中央滑行
肌节2缩021/短4/21=肌细胞收缩
按任意键 飞入横桥摆动动画
37
四、骨骼肌收缩的形式
(一)等长收缩与等张收缩 等长收缩:收缩时,只有张力增加而长度不
变的收缩,称为等长收缩。
等张收缩:收缩时,只有长度缩短而张力不
变的收缩,称为等张收缩。
2021/4/21
38
(二)单收缩与强直收缩
Na+-K+泵又称Na+-K+-ATP酶,简称钠泵。
当膜内钠离 子↑ 或膜外 钾离子↑时, 都被激活, ATP 分 解 产 生能量,将 胞 内 3 个 Na+ 移至胞外和 将胞外2个 K+ 移 入 胞 内 。
2021/4/21
7
钠泵活动的意义:
•生物电产生的基础; •是其它物质继发主动转运的动力 •细胞内高钾是胞浆内许多代谢反应所必需的 •防止细胞内水肿
转运的物质:氧气、二氧化碳、脂类等
决定扩散速度的因素:浓度差;膜的通透性
2021/4/21
3
2.易化扩散
概念:非脂溶性或脂溶性小的小分子、离子物 质在膜蛋白的帮助下,由高浓度一侧向 低浓度一侧移动通过细胞膜的方式
转运的物质:葡萄糖;氨基酸;无机盐
第二章 细胞的基本功能1
刺激
机体或组织 机体或组织兴奋性 或机能状态?
? 反应 程度大小
12
二、细胞的生物电现象及其产生机制
静息电位(resting potential,RP)
动作电位(action potential,AP)
13
(一)静息电位(Resting Potential,RP)
1、静息电位概念 指细胞处于相对安静状态时, 膜内外侧存在的电位差。 2、静息电位产生机制 离子流学说的要点:细胞内外各 种离子的浓度分布不均。细胞膜 对各种离子有选择的通透性。 机制:钾离子外流所达到的电化 学平衡电位。
相对特异性 存在通道阻断剂 通道状态的可控性及 突变性
通道 通道蛋白 易化扩散 (电压门控通道) (channel transport) (化学门控通道)
4
三)主动转运(active transport)
1、概念:由细胞膜的生物泵作用,将某种物质(分子或离子)逆 浓度梯度(电位梯度)跨膜转运过程。
第二章
细胞的基本功能
第一节 细胞膜的基本结构和物质转运功能
第二节 细胞的兴奋性和生物电活动 第三节 细胞的跨膜信号转导(自学) 第四节 骨骼肌的兴奋和收缩
1
第一节 一、
脂质双分子层
细胞膜的基本结构和物质转运功能 细胞膜的化学组成和分子结构
细胞膜蛋白质
细胞膜糖类
2
二、细胞膜的物质转运功能
一)单纯扩散(simple diffusion)
15
(二)动作电位 (Action Potential, AP)
1、概念:可兴奋细胞在适宜刺激作用下,在RP基础上所产生的
膜电位的短暂、迅速、可逆、可扩布的波动过程。
AP出现=兴奋;膜电位随时间连续变化过程。 动作电位的变化过程
第二章 细胞的基本功能
一、G蛋白耦联受体介导的信号转导 (一)信号分子
1. G蛋白
2. G蛋白耦联受体
3. G蛋白效应器
4. 第二信使
5. 蛋白激酶
1. G蛋白
即鸟苷酸结合蛋白,是 耦联细胞膜受体和蛋白效 应器的膜蛋白。
结构特征: ① 由α、β和γ三个亚单位组成,α亚单位 起催化作用; ② 有鸟苷酸结合位点;与受体及效应蛋白的 作用位点; ③ 有GTP酶活性; ④ 两种存在形式:与GDP结合的非活性形 式;与 GTP结合活性形式。
2. G蛋白耦联受体
受体:细胞膜上或细胞内能特异识别生物活性分子(配体) 并与之结合,进而引起生物学效应的特殊蛋白质 。 其中一类受体需在G蛋白介导作用下才能完成其信号 转导功能,称为G蛋白耦联受体。 结构:一条多肽链,7个跨膜α-螺旋,膜外N末端,膜内C末端 作用:与配体结合后能结合并激活G蛋白
5. 蛋白激酶
能催化蛋白质磷酸化的一类酶。按作用底物分为:
①丝/苏氨酸蛋白激酶;(主要)②酪氨酸蛋白激酶。
蛋白质磷酸化的作用:
① 使酶活性改变→代谢改变; ② 通道开放→膜电位改变→兴奋性改变;
细胞的基本功能
细胞的基本功能
细胞是生命的基本单位,具有以下基本功能:
1. 新陈代谢:细胞通过代谢反应从外部环境中获取营养物质和能量,并利用这些物质和能量维持生命活动和生长。
2. 储存遗传信息:细胞内包含着遗传信息,这些信息决定了细胞的结构和功能,并且可以被遗传到下一代细胞。
3. 复制:细胞可以通过细胞分裂的过程进行复制,使得一个细胞可以变成两个完整的细胞。
4. 传递信号:细胞可以通过细胞膜和内部信号传导通路来感知和响应外部环境的变化,从而调节其内部的生命活动。
5. 调节物质的运输和交换:细胞通过细胞膜和细胞器来调节物质的运输和交换,保持细胞内部环境的稳定和适应外部环境的需要。
6. 保持形态和结构:细胞具有不同的形态和结构,可以根据不同的功能需求改变自己的形态和结构,从而适应不同的环境和任务。
1/ 1。
《细胞的基本功能》课件
总结词:脂质合成
详细描述:内质网还参与脂质的合成 ,如磷脂、胆固醇等。
总结词:钙离子储存与释放
详细描述:内质网具有储存和释放钙 离子的功能,参与细胞信号转导和钙 平衡调节。
高尔基体
总结词
蛋白质运输与分泌
详细描述
高尔基体参与蛋白质的运输与分泌 ,对细胞内外物质的转运起到关键 作用。
能量代谢的意义
能量代谢是细胞维持生命活动的关键,通过呼吸作用获取能量,并利用 这些能量进行各种生理活动,如肌肉收缩、神经传导等。
信息代谢
信息代谢定义
信息代谢是指细胞内信息的传递、处理和储存的过程,是细胞实现各种生理功能的基础。
信息代谢类型
包括信号转导和基因表达。信号转导是指细胞通过一系列生化反应将外界信号传递到内部并引发相应的生理反应;基 因表达则是指细胞根据需要表达或抑制某些基因,从而调控自身的生理功能。
胞吞和胞吐作用
大分子物质或颗粒可通过细胞膜的 内陷或突出形成囊泡,将物质摄入 或排出细胞,如突触小泡的胞吐作 用。
ห้องสมุดไป่ตู้
03 细胞器
CHAPTER
线粒体
在此添加您的文本17字
总结词:能量转换站
在此添加您的文本16字
详细描述:线粒体是细胞内的主要能量转换站,负责将有 机物氧化释放的化学能转化为ATP中的化学能,为细胞活 动提供动力。
《细胞的基本功能》ppt课件
• 细胞概述 • 细胞膜 • 细胞器 • 细胞核 • 细胞的代谢 • 细胞周期与分裂 • 细胞分化与癌变
目录
CONTENTS
01 细胞概述
CHAPTER
细胞定义
细胞是生物体的基本结构和功 能单位,具有自主代谢、繁殖 和遗传的能力。
生理学课件 第二章 细胞的基本功能
原发性主动转运
主动转运
继发性主动转运
扩展
扩展
四、入胞和出胞
概念:一些大分子物质或团块通过细胞膜变形活动进出细胞的过程,需细 胞消耗能量 入胞 吞噬 吞饮 出胞
二、易化扩散
概念:水溶性或脂溶性很小的物质,在特殊膜蛋白的帮助下,由高浓度一 侧通过细胞膜向低浓度一侧扩散的现象。 特点:①顺浓度差:不需细胞消耗能量 ②需要特殊膜蛋白的帮助 载体转运 分类: 通道转运
1.载体转运
物质:葡萄糖、氨基酸等
特点:① 高度的特异性:一种载体一般只能第二章 细胞的基本功能
第一节 细胞膜的物质转运功能
细胞膜的结构:脂质双分子层液态镶嵌结构
一、单纯扩散
概念:是指脂溶性的小分子物质从细胞膜的高浓度一侧向低浓度一侧转 运的过程。 特点:顺浓度差;不需细胞消耗能量 物质:CO2、O2、NH3、乙醇等 注:某种物质能否通过单纯扩散方式过膜,除了取决于膜两侧浓度差, 还取决于细胞膜的通透性。
③ 竞争性抑制:一种载体同时转运两种或两种以上结构相似的物质 时,一种物质的增加,将减弱对另一物质的转运。
CONTENTS
2.通道转运
物质:无机离子、水 特点:通道的开或关 受化学因素的调控——化学门控通道 受电压因素的调控——电压门控通道
三、主动转运
概念:借助细胞膜泵蛋白的作用,将物质由低浓度一侧转运到高浓度一侧
一、骨骼肌的收缩原理
滑行学说——肌肉的缩短是通过肌小节中细肌丝与粗肌丝相互滑行的结 果(其间肌丝本身的长度不变)。
二、细胞的基本功能
二、细胞的基本功能西医综合考试大纲本章节部分:1.细胞的跨膜物质转运:单纯扩散、经载体和经通道易化扩散、原发性和继发性主动转运、出胞和入胞。
2.细胞的跨膜信号转导:由G蛋白偶联受体、离子通道受体和酶偶联受体介导的信号转导。
3.神经和骨骼肌细胞的静息电位和动作电位及其简要的产生机制。
4.刺激和阈刺激,可兴奋细胞(或组织),组织的兴奋,兴奋性及兴奋后兴奋性的变化。
电紧张电位和局部电位。
5.动作电位(或兴奋)的引起和它在同一细胞上的传导。
6.神经-骨骼肌接头处的兴奋传递。
7.横纹肌的收缩机制、兴奋-收缩偶联和影响收缩效能的因素。
知识概要:细胞膜蛋白的功能:物质转运功能、受体功能、酶的功能细胞膜外表面糖链具有受体和抗体的作用1.细胞的跨膜物质转运:单纯扩散、经载体和经通道易化扩散、原发性和继发性主动转运、出胞和入胞细胞的跨膜物质转运液态镶嵌模型,(Singer,1972)小分子跨膜运输通过:单纯扩散、易化扩散、主动转运Ps:当电位梯度较大且与浓度梯度作用方向相反时可逆浓度梯度扩散成、动作电位复极化时相的形成、局部电位的产生有静息(备用)、激活和失活三种状态道,Ach的受体是通道的一组成部分,只有在Ach与受体结合后通道才打开Na+通道特异性阻滞剂:河豚毒K+通道特异性阻滞剂:四乙基胺Ps:经通道和经载体易化扩散的主要区别:物质转运速率水分子跨膜转运方式:单纯扩散、经水通道和离子通道转运的过程或电位梯度进行的跨膜转运过程细胞外液[Na]约为胞内的10倍③维持细胞内渗透压和细胞容积④维持细胞内pH的稳定具有重要意义++2+(关键:钠泵、载体)同向转运:转运分子与Na+扩散方向相同+葡萄糖、氨基酸的重吸收)、分泌H大多数脂溶性维生素的吸收I-由血液进入甲状腺上皮细胞内无饱和现象:单纯扩散、经通道的易化扩散单纯扩散、易化扩散与主动转运比较G蛋白偶联受体:配体为多肽和蛋白质类激素是一条包含7次跨膜的肽链可间接激活腺苷酸环化酶可激活鸟苷酸结合蛋白G蛋白:连接膜受体与离子通道,与细胞外信号分子结合,来源于同一受体超家族由α、β和γ三个亚单位构成α亚单位具有结合GTP或GDP的能力,及GTP酶的活性IP3:作用:使胞内Ca库释放CaDG:作用:活化PLA举例:肾上腺素离子通道受体:神经-肌肉接头终板膜跨膜信号转导方式离子的平衡电位:当电位差驱动力=浓度差驱动力,达稳态时,此时的跨膜电位差称为该离子的平衡电位不同细胞静息电位(RP)不同:骨骼肌细胞-90mV,神经细胞-70mV,平滑肌细胞-55mV,RBC-10mV静息电位通常是平稳的直流电,但在心肌和平滑肌细胞会出现自发性的静息电位波动钠通道:电压门控;去极化达阈电位时,可引起正反馈扩散驱动力:浓度差和电位差每种离子的平衡电位可由Nernst公式计算出细胞外液的K浓度↑时,K平衡电位↓细胞外液的K浓度明显↑时,静息电位的绝对值将↓Na+通透性↑→RP↓活时相)负后电位:负极时迅速外流的K+蓄积在膜外侧附近,暂时阻碍了K+的外流指峰电位的”全或无”不论传播距离多远,其幅度和形状均不改变③有不应期:峰电位不融合或重叠+阈强度和阈刺激是用作衡量组织兴奋性高低的常用指标可兴奋细胞的共同标志(特征):产生动作电位钠通道激活和内向离子电流(也是局部电位与动作电位的共同点)5.动作电位(或兴奋)的引起和它在同一细胞上的传导兴奋:细胞对刺激发生反应的过程.动作电位的同义语或动作电位的产生过程动作电位一旦在细胞膜的某一点产生,就沿着细胞膜向各个方向传播,直到整个细胞膜都产生动作电位为止.这种在单一细胞上动作电位的传播,称为传导髓鞘:电阻大、不导电,不允许离子通过单个平均幅度:0.4mV终板膜上无电压门控钠通道,不产生动作电位;可通过电紧张电位刺激周围具有钠通道的肌膜,使之产生动作电位,传播至整个肌膜Ach在刺激终板膜产生终板电位的同时,可被终板膜表面的AchE迅速分解,所以终板电位持续时间仅几毫秒横纹肌的肌原纤维是由粗、细两组与其走向平行的蛋白丝组成肌肉的缩短和伸长均通过粗、细肌丝在肌节内的相互滑动而发生肌丝滑行理论的最直接证据是:肌肉收缩时,暗带长度不变,明带和H带长度缩短肌肉收缩的基本过程是在肌动蛋白和肌球蛋白的相互作用下将分解ATP释放的化学能转变为机械能的过程2+2+②运动神经元轴突上的动作电位引起神经-肌肉接头前膜释放Ach③Ach与终板膜上的受体结合,激活Na+通道,产生终板电位④终板电位引起肌膜去极化达阈电位,触发肌细胞电位.传遍整个肌膜⑤肌膜上的动作电位沿横管(T管)传到肌纤维深部,并影响到肌质网⑥肌质网终末泡释放Ca2+,胞质中Ca2+浓度↑,并与肌钙蛋白结合,产生构象变化⑨只要细胞内Ca浓度不↓,横桥周期继续出现2+-后负荷:主要影响肌肉收缩的收缩力量(主动张力)和缩短速度缩和舒张复合收缩:是指骨骼肌受到连续刺激时,后来的刺激有可能在前一次收缩结束前即到达肌肉,于是肌肉有可能在机械收缩过程中接受新的刺激,并发生新的兴奋和收缩新的收缩过程可与上次尚未结束的收缩过程发生总和强直收缩:当骨骼肌受到频率较高的连续刺激时,可出现以这种总和为基础的强直收缩。
细胞的基本功能-医学生理学-课件1-02
钠离子
钾离子
2. 电压门控通道 (voltage-gated ion channel)
电压门控通道跨膜信号 转导过程:
跨膜电位的改变; 结构域中精氨酸或赖 氨酸产生位移; 诱发通道“闸门”的 开放; 细胞膜出现新的电变 化。
钠离子 钾离子
上海第二医科大学生理教研室
3.机械门控通道(mechanically- gated channel) 触发因素是机械性刺激: 如内耳毛细胞听毛 受基底膜振动。
又称Ca2+-ATP酶 分布在细胞膜、肌浆网和内质网 分解一个ATP 胞浆 胞外 1Ca++ 1Ca++ 机制 作用是维持细胞内外的钙离子浓度梯度
4.继发性主动转运
(secondary active transport)
定义
—许多物质在进行逆浓度梯度或
电位梯度的跨膜转运时,所 需的能量并不直接来自ATP 的分解,而是来自Na+在膜两 侧的浓度势能差,后者是钠 泵利用分解ATP释放的能量建立 的。这种间接利用ATP能量的主 动转运过程称为~。
第二章 细胞的基本功能
细胞—人体的最基本的功能单位
本章内容: 细胞膜的物质转运功能 细胞膜的生物电现象 细胞的信号转导功能 肌细胞的收缩功能
第一节
细胞膜的结构和物质转运功能
细胞膜的作用: 细胞膜是细胞和环境之间的屏障; 细胞膜有物质转运功能; 细胞膜还有跨膜信息传递功能。
一、膜的化学组成和分子结构
钠-钾泵的作用
维持细胞膜两侧 Na+、K+的不均衡 分布; 其活动是生电性的
3 2
二、细胞的动作电位
(一)细胞的动作电位
定义:细胞膜受到阈刺激或阈上刺
生理学:细胞的基本功能(填空题)
二.填空题33.人体和其它生物体的最基本的功能单位是细胞。
34.机体的每个细胞都被一层薄膜所包被,称为细胞膜(质膜)。
35. 细胞膜主要有脂质、蛋白质和少量糖等组成;从重量上看:膜中蛋白质与脂质在膜内的比例大约在4:1~1:4之间;功能活跃的膜,膜中蛋白质比例较高。
36. 液态镶嵌模型的基本内容是:以液态脂质的双分子层为基架,其中镶嵌着具有不同分子结构、因而也具有不同生理功能的蛋白质。
37. 脂质双分子层在热力学上的稳定性,和它的流动性,使细胞膜可以承受相当大的张力和外形改变而不致破裂,而且即使膜结构有时发生一些较小的断裂,也可以自动融合而修复。
38. 体内靠单纯扩散,进出细胞膜的物质较少,比较肯定的是氧和二氧化碳等气体分子;它们进出的量主要受该气体在膜两侧的浓度差(分压差)影响。
39.根据参与的膜蛋白的不同,易化扩散可分为:由通道和由载体介导的易化扩散。
40.人体最重要的物质转运形式是原发性主动转运,;在其物质转运过程中,是逆电-化学梯度进行的。
41. 钠泵能分解A TP使之释放能量,在消耗代谢能的情况下逆着浓度差把细胞内的Na+移出膜外,同时把细胞外的K+ 移入膜内,因而形成和保持了不均衡离子分布。
42. 继发性主动转运可分为同向转运和反向转运(交换)两种形式;与其相应的转运体,称之为同向转运体和反向转运体(交换体)。
43. G蛋白的共同特点是其中的α亚单位同时具有结合GTP或GDP的能力和GTP酶活性。
44. 膜学说认为生物电现象的各种表现,主要是由于细胞内外离子分布不均匀和在不同状态下,细胞膜对不同离子的通透性不同。
45.静息电位是由K+外流,Na+快速内流形成的,峰电位的上升支是形成的。
46. 在刺激的持续时间以及刺激强度对时间的变化率不变的情况下,刚能引起细胞兴奋或产生动作电位的最小刺激强度,称为阈强度;也就是能够使膜的静息电位去极化达到阈电位的外加刺激的强度。
47. 动作电位的幅度决定于细胞内外的Na+ 浓度差,当用河豚毒阻断Na+通道后,则动作电位不能产生。
细胞的基本功能 ppt课件
通道转运与钠-钾泵转运模式图
钠-钾泵:当[Na+]i↑/[K+]o↑激活
分解ATP产生能量
2K+泵至细胞内;3Na+泵至细胞外
维持[Na+]o高、[K+]i高 原先的不均匀分布状态 钠-钾泵的这种活动还为其它一些物质转运 提供了动力(如葡萄糖、氨基酸的吸收:以Na+-载
②不需另外消耗能量; ③选择性(∵特殊膜蛋白质本身有结构特异性); ④饱和性(∵结合位点是有限的); ⑤竞争性(∵经同一特殊膜蛋白质转运); ⑥浓度和电压依从性(∵特殊膜蛋白质的变构是有条件的,
如化学门控通道、电压门控通道)。
(三)主动转运(active transport)
概念:指物质逆浓度梯度或电位梯度的转运过程。
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
第一节 细胞膜的物质转运功能
一、细胞膜的分子结构
(一)细胞膜的脂质
以液态的脂质 双分子层为基架, 具有稳定性和流动 性。
低浓度一侧移动的过程。
(2)分类: ①通道介导的易化扩散 ②载体介导的易化扩散
1.通道介导的易化扩散
[Na+]o > [Na+]i
[K+]i >[K+]o 转运的物质:各种带电离子
2.载体介导的易化扩散
转运的物质:葡萄糖(GL)、氨基酸(AA)等小分子亲水物质
生理学 细胞的基本功能
阻断剂: 河豚毒素、局麻药
后电位
后去极化:快速K+外流堆积,复极化减慢 后超极化:钾通道开放时间长,过多钾外流
动作电位的特点: a.“全或无”现象:动作电位一旦产生
就达到最大值,其幅度不会因刺激强度的 加强而增大。 b.不衰减传导 c.脉冲式,不会重合
4 .经载体介导的易化扩散(图) 转运的物质:GS、AA进入一般细胞 共同特点:① 结构特异性 ② 饱和现象 ③ 竞争性抑制
被动转运:单纯扩散 易化扩散 主动转运: 1.定义:指细胞膜将物质分子(或离子)
逆浓度差和电位差转运的过程 2.生物泵:实质就是ATP酶
如“钠-钾泵”、“质子泵”等 ▲钠泵: 钠-钾泵或Na+- K+ -ATP酶(图)
d.不同细胞,AP的幅度和持续时间不同 (图)
4、动作电位的引起和阈电位
阈电位和锋电位的引起 刺激阈电位AP
1、阈电位 TP: 是一种膜电位的临界值,能触发AP, 是引起钠通道大量开放的膜电位值, 即钠内流形成正反馈的膜电位值。
RP和TP的差值大,细胞兴奋性低; 差值小,兴奋性高。 2、阈强度:使细胞膜去极化到阈电位的最小
概念: AP是膜两侧电位在RP基础上发生
的一次可扩布的快速而可逆的倒转和复原。 图
去极相 去极化
超射
锋电位
复极相:复极化初期
后电位 复极化后期(负后电位)
后超极化(正后电位)
(二)动作电位的产生机制
1、电化学驱动力; 2、动作电位期间膜电导的变化; 3、膜电导与离子通道(膜片钳技术) 锋电位
•上升支:去极相 由Na+内流形成,是Na+的平衡电位 有效刺激→部分Na+通道开放→少量Na+→膜去极 化→阈电位→大量Na+通道开放→大量Na+内流→膜 内负电位消失,出现正电位
细胞的基本功能
转运体:膜蛋白
分类:
同向转运:小肠/肾小管上皮上的Na+-葡萄糖联合转运体
逆向转运:心肌细胞上的 Na+-Ca2+交换
没有Na+由高浓度的膜外顺浓度差进入膜内,就不会出现 葡萄糖、氨基酸等分子逆浓度差进入膜内。
膜泡运输
大分子、颗粒物质
耗能(主动)
需膜蛋白参与
方式:
入胞:吞噬(固体),吞饮(液体) 出胞:神经末梢释放递质,腺细胞的分泌
动作电位(AP)=兴奋 2.Ap分期(以神经细胞为例)
上升相:去极化
下降相:复极化
上升支 去极化(-70 到0 mV)
动 峰电位 作 电 位 后电位
超射 (0到+30 mV ) 下降支 复极化(+30到-70 mV ) 负后电位—后去极化 正后电位---后超极化
(负值大于-70 mV)
3.Ap产生机制
机械门控通道(机械刺激) :毛细胞
经通道的易化扩散
通道扩散特点:
选择性;门控性
离子通道功能状态:
①静息状态-通道关闭:
(备用状态)刺激能开放
②激活状态-通道开放: 离子扩散 ③失活状态-通道关闭: 刺激不能开放
电压门控通道:在膜去极化到一定电位时开放, 如神经元上的Na+ 通道; 化学门控通道:受膜环境中某些化学物质的影响 而开放,这类化学物质(配基)主要来自细胞外液, 如激素、递质等; 机械门控通道:当膜的局部受牵拉变形时被激活, 如触觉的神经末梢、听觉的毛细胞等都存在这类 通道。
本质表现
外在表现
AP = 兴奋 = 峰电位 = 神经冲动
细胞兴奋后兴奋性的变化 细胞在发生一次兴奋后,将经历一系列兴奋性的变化。
生理学--细胞的基本功能
一条肽链,10个跨膜螺旋,N、C端及活性位点
都位于胞内。
转运机制:胞内[Ca2+]↑→ Ca2+-钙调蛋白
(calmodulin,CaM)复合物+ C端/钙泵,并激活
钙泵→转运Ca2+出细胞(或进入肌质网)。
分解1分子ATP,转出1个Ca2+.
钙泵转运的意义:
维持细胞内原有低钙水平,防止钙超载(指 胞质内[Ca2+]长时间、不可逆升高)→维持细胞 正常的兴奋/收缩能力。
(二)继发性主动转运 ----secondary active transport, SAT;联合转运,cotransport)
概念:指利用原发性主动转运建立的膜电-化学势 能完成的物质逆浓度梯度跨膜转运。 例:小肠腔、肾小管腔内Glucose和AA的转运,
甲状腺细胞的聚碘。
1.Na+-葡萄糖同向转运体(Na+-glucose symporter) 以小肠上皮细胞为例:
② 膜内、外正常[Na+]差→维持胞内渗透压和细胞容 积正常稳定。
③ 膜内、外正常[Na+]差→维持Na+-H+交换的动力→ 维持胞内pH的正常稳定。
④ 对Na+、K+的不对等转运(、、、)→膜外正电 荷↑(生电作用)。
2. 钙泵(calcium pump)
——Ca2+-ATP酶(Ca2+-ATPase)
(chemically-gated ion channel)
——快速的跨膜信号转导方式.
通道与受体并存, 例: N2型乙酰胆碱受体(肌细胞) A型-氨基丁酸(GABAA)受体 甘氨酸受体 促离子型谷氨酸受体等(神经元胞体)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
胞
后电位
阈电位
动
作
刺激器
电
记录仪器
位
19
(二)动作电位产生机制 1.去极相:Na+内流→Na+平衡电位 2.复极相:K+外流→静息电位 3.复极后:钠泵活动↑→离子分布恢复
20
三、刺激引起动作电位的基本原理
(一)刺激及其阈强度 1.刺激定义:生物体或组织细胞所处环境的变化 2.刺激条件:强度、持续时间、强度-时间变化率 3.阈强度:刚引起细胞产生动作电位的最小刺激强度 4.阈刺激 、阈下刺激 、阈上刺激
24
(四)局部兴奋及其总和 1.局部兴奋:阈下刺激引起,局部细胞膜微小去极化 2.特点 等级性电位 衰减性传导(电紧张传播) 总和效应 (时间总和、空间总和)
25
产生动作电位的必要条件 膜去极化达到阈电位 阈电位的引起 一次阈刺激或阈上刺激 两次以上阈下刺激
26
动作电位 阈电位
阈下刺激
时间总和
17
二、动作电位及其产生机制
(一)动作电位概念和特点 1.概念:静息电位基础上,可兴奋细胞受刺激后产生的可 传播的电位变化 2.过程 上升支-去极相(去极化和反极化或超射) 下降支-复极相(复极化) 3.特点:“全或无”现象 、不衰减性传导 、脉冲式 18
膜内电位(mV)
超射
神
去极相
复极相
经
细
静息电位
30
囊泡
动作电位 运动神经末梢
骨骼肌细胞膜
运动终板
电压门控 Ca2+通道
乙酰胆碱酯酶
N型胆碱能受体
神经-肌接头结构及其传递
31
(二)兴奋传递过程 1.运动神经元兴奋接头前膜去极化Ca2+内流 2.前膜释放递质ACh(量子式释放)终板膜N2型 ACh受体离子通道结合 3.Na+内流终板电位(局部兴奋) 4.相邻肌膜去极化达阈电位而爆发动作电位
5
备用-通道关闭
激活-通道开放
失活-通道关闭
钠通道门控状况
6
(三)主动转运 1.定义:跨膜,逆浓度差和(或)逆电位差扩散,消 耗能量 2.原发性主动转运 直接利用分解ATP释放的能量 离子泵介导:钠-钾泵、钙泵 、质子泵 3.继发性主动转运 间接利用分解ATP释放的能量
7
钠-钾泵(简称钠泵) 1.化学本质:Na+-K+-ATP酶 2.作用:分解ATP释放能量,泵出3个Na+,泵入2个K+ 3.意义:细胞内外离子分布的不均衡具有重要意义 建立势能储备 细胞代谢活动的必须条件 维持细胞一定的形态和功能
阈下刺激
空间总和
27
四、动作电位在同一细胞上的传导
1.传导机制:局部电流 2.有髓鞘神经纤维
跳跃式传导
兴奋
去极化部位
兴奋传导
28
朗飞结
跳
跃
式
传
导
传导方向
29
第三节 骨骼肌细胞的收缩功能
一、骨骼肌神经-肌接头处的兴奋传递
(一)神经-肌接头处的结构 1.接头前膜:运动神经末梢,囊泡,含乙酰胆碱(ACh) 2.接头间隙:细胞外液 3.接头后膜(终板膜 ):分布N2型ACh受体离子通道 , 胆碱酯酶
32
(三)影响兴奋传递的因素 1.细胞外液理化性质 Ca2+↑或Mg2+↓,ACh释放增加;反之释放减少 2.药物 阻碍ACh释放:肉毒梭菌、破伤风毒素 促进ACh释放:黑寡妇蜘蛛毒素 与ACh竞争受体:加拉碘铵、美洲箭毒、-银环蛇毒 胆碱酯酶抑制剂:有机磷农药、新斯的明
21
(二)组织细胞的兴奋性及其周期性变化 1.兴奋性定义:细胞受刺激后发生兴奋的能力 动作电位和兴奋被看作是同义语 兴奋与兴奋性的区别 兴奋性衡量指标-阈值:两者呈反变关系 2.兴奋性的周期性变化 绝对不应期、相对不应期、超常期、低常期
22
膜内电位(mV)
ab-绝对不应期 bc-相对不应期 cd-超常期 de-低常期
(一)静息电位概念和特点 1.概念:细胞未受刺激时膜内外两侧的电位差 2.特点:跨膜电位 、外正内负、直流电位 3.重要术语 极化—外正内负状态 去极化—使静息电位绝对值减小 超极化—使静息电位绝对值增大 复极化—细胞膜去极化后再向静息电位方向恢复
16
(二)静息电位产生机制 1.膜离子流学说 细胞膜内外离子呈不均衡分布(见教材表2-1) 不同状态下细胞膜对各种离子通透性不同 2.基本原因:K+外流→K+平衡电位 3.静息电位实测值略小于K+平衡电位 4.静息电位受膜内外K+浓度的影响
2.转导路径
G蛋白耦联受体介导
离子通道介导
酶联型受体介导
12
信使物质 受体
细胞外液 腺苷酸环化酶
胞液
蛋白激酶A
G 蛋 白 耦 联 受 体 介 导
13
离子通道型受体
经通道离子流
离子通道介导
14
酪氨酸激酶受体
酶联型受体介导
改变细胞代谢、 蛋白质合成
15
第二节 细胞的生物电现象及其产生机制
一、静息电位及其产生机制
动作电位变化曲线
正常 水平
兴奋性变化曲线时间(ms)动作位与兴奋性变化关系23
(三)阈电位与再生性循环 1.局部反应:阈下刺激引起,超极化和去极化 2.阈电位:膜去极化达到可引发动作电位的膜电位临界值 3.再生性循环:正反馈过程 去极化→钠通道开放→Na+内流→进一步去极化 4.阈电位与阈强度的区别
第二章 细胞的基本功能
第一节 细胞膜的物质转运和信号转导功能 第二节 细胞的生物电现象及其产生机制 第三节 骨骼肌细胞的收缩功能
1
第一节 细胞膜的物质转运和信号转导功能
一、物质的跨膜转运
(一)单纯扩散 1.定义:脂溶性,跨膜,顺浓度差扩散 2.转运物质 O2、CO2、N2、NO、乙醇、尿素和类固醇激素等 3.决定因素:浓度差、通透性
8
钠 泵 主 动 转 运
9
(四)入胞与出胞 1.入胞:大分子溶质或团块物质进入细胞 吞噬:固态物质,如细菌、组织碎片等 吞饮:液态物质 2.出胞:大分子物质以分泌囊泡形式排出细胞 举例:分泌激素、酶原,神经递质释放
10
入胞
吞噬
吞饮
出胞
11
二、跨膜信号转导
1.跨膜信号转导定义
体内化学信号(神经递质、激素和细胞因子等)、电 信号和机械刺激信号等,通过细胞膜的信号转导对细 胞的增殖、分化和代谢等进行调节
2
(二)易化扩散 1.定义:非脂溶性或脂溶性很小,跨膜,顺浓度差扩散, 特殊蛋白质帮助 2.经载体易化扩散 特点:结构特异性、饱和性、竞争性抑制 转运物质:葡萄糖、氨基酸、核苷酸等
3
细胞外液 细胞内液
葡 萄 糖 经 载 体 转 运
4
3.经通道易化扩散 转运物质:Na+、K+、Ca2+、Cl等 离子通道特征 选择性 门控特性 激活-开放;备用或失活-关闭 电压门控、化学门控、机械门控通道